1
|
Ugbaja SC, Mushebenge AGA, Kumalo H, Ngcobo M, Gqaleni N. Potential Benefits of In Silico Methods: A Promising Alternative in Natural Compound's Drug Discovery and Repurposing for HBV Therapy. Pharmaceuticals (Basel) 2025; 18:419. [PMID: 40143195 PMCID: PMC11944881 DOI: 10.3390/ph18030419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 01/30/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Hepatitis B virus (HBV) is an important global public health issue. The World Health Organization (WHO) 2024 Global Hepatitis Report estimated that the global prevalence of people living with HBV infection is 254 million, with an estimated prevalence incidence of 1.2 million new HBV infections yearly. Previous studies have shown that natural compounds have antiviral inhibition potentials. In silico methods such as molecular docking, virtual screening, pharmacophore modeling, quantitative structure-activity relationship (QSAR), and molecular dynamic simulations have been successfully applied in identifying bioactive compounds with strong binding energies in HBV treatment targets. The COVID-19 pandemic necessitated the importance of repurposing already approved drugs using in silico methods. This study is aimed at unveiling the benefits of in silico techniques as a potential alternative in natural compounds' drug discovery and repurposing for HBV therapy. Relevant articles from PubMed, Google Scholar, and Web of Science were retrieved and analyzed. Furthermore, this study comprehensively reviewed the literature containing identified bioactive compounds with strong inhibition of essential HBV proteins. Notably, hesperidin, quercetin, kaempferol, myricetin, and flavonoids have shown strong binding energies for hepatitis B surface antigen (HBsAg). The investigation reveals that in silico drug discovery methods offer an understanding of the mechanisms of action, reveal previously overlooked viral targets (including PreS1 Domain of HBsAg and cccDNA (Covalently Closed Circular DNA) regulators, and facilitate the creation of specific inhibitors. The integration of in silico, in vitro, and in vivo techniques is essential for the discovery of new drugs for HBV therapy. The insights further highlight the importance of natural compounds and in silico methods as targets in drug discovery for HBV therapy. Moreover, the combination of natural compounds, an in silico approach, and drug repurposing improves the chances of personalized and precision medicine in HBV treatment. Therefore, we recommend drug repurposing strategies that combine in vitro, in vivo, and in silico approaches to facilitate the discovery of effective HBV drugs.
Collapse
Affiliation(s)
- Samuel Chima Ugbaja
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu Natal, Durban 4000, South Africa;
| | - Aganze Gloire-Aimé Mushebenge
- Department of Pharmacology, University of the Free State, Bloemfontein Campus, Bloemfontein 9301, South Africa;
- Faculty of Pharmaceutical Sciences, University of Lubumbashi, Lubumbashi 1825, Democratic Republic of the Congo
| | - Hezekiel Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Mlungisi Ngcobo
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu Natal, Durban 4000, South Africa;
| | - Nceba Gqaleni
- Discipline of Traditional Medicine, School of Nursing and Public Health, University of KwaZulu Natal, Durban 4000, South Africa;
| |
Collapse
|
2
|
Das M, Panigrahy N. A critical review on phytochemicals as antiviral medications for SARS-CoV-2 virus infection. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2053-2069. [PMID: 39352534 DOI: 10.1007/s00210-024-03467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/17/2024] [Indexed: 03/19/2025]
Abstract
A pandemic of acute respiratory infection, which was specified as coronavirus disease 2019, was instigated by a different strain of the virulent coronavirus SARS-CoV-2 that first appeared in late 2019. Since viral infections spread fast and there is presently no effective treatment, the use of plants with a long history of use in treating these infections has been explored regularly. The pandemic of coronavirus disease 2019 (COVID-19) has brought to light the dearth of medications with approval to treat acute viral illnesses. Because of this, the illness had a high fatality rate. The mortality rate was initially quite high and varied according to the patient's geographic location. For instance, among Chinese patients, the rate was 3·6%, whereas 1·5% of COVID-19-related deaths were documented outside of China. As of 2020, India has a 1.4% case fatality rate (CFR) of COVID-19 mortality, compared to 2.8% in Brazil and 1.8% in the USA. Many studies are being conducted to create pharmaceutical compounds specifically targeting important SARS-CoV-2 proteins. Several drug discovery initiatives are being undertaken to find powerful inhibitors by combining biochemical assay and computer-aided drug design techniques. Although plant-derived compounds have not had much success in the dominion of antivirals, plants are, however, believed to be a limitless supply of medications for a variety of diseases and clinical conditions. The scientific foundation required for developing novel natural source medications is provided by the chemical characterization and analysis of plant components. Most viral infections treated by ethnobotanical applications and historical literature on ayurveda, and traditional medicine are generally attributed to phytochemicals, which are compounds derived from medicinal plants. In this review, we have described the application of vascular plant-derived chemicals, such as tannins, polyphenols, alkaloids, and flavonoids, as antivirals, especially for managing COVID-19. This article discusses novel bioactive compounds and their molecular structures that target the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as prospective candidates for anti-coronavirus disease drugs. Moreover, to confirm the effectiveness of the phytochemicals that have demonstrated antiviral activity, clinical trials would need to be conducted in addition to the preclinical research that has already been done. To ensure spectacular findings, more applications of the compound would need to be studied to fully understand the effects of those phytochemicals whose clinical usefulness has already been established.
Collapse
Affiliation(s)
- Manoja Das
- Department of Biotechnology, GIET University, Gunupur, 765022, Odisha, India.
| | - Namita Panigrahy
- Department of Biotechnology, GIET University, Gunupur, 765022, Odisha, India
| |
Collapse
|
3
|
Klamrak A, Rahman SS, Nopkuesuk N, Nabnueangsap J, Narkpuk J, Janpan P, Saengkun Y, Soonkum T, Sriburin S, Teeravechyan S, Sitthiwong P, Jangpromma N, Kulchat S, Choowongkomon K, Patramanon R, Chaveerach A, Daduang J, Daduang S. Integrative computational analysis of anti-influenza potential in Caesalpinia mimosoides Lamk hydroethanolic extract. Sci Rep 2025; 15:3988. [PMID: 39893295 PMCID: PMC11787316 DOI: 10.1038/s41598-025-87585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
In a recent study, we used chemical analysis to show that the Caesalpinia mimosoides aqueous extract, which contains a high concentration of simple phenolics, has strong anti-influenza activity. We determined through molecular docking methods that its potential target inhibitor is the neuraminidase. Therefore, our study objectives were to evaluate whether the aqueous-ethanol extract (30% v/v) of this plant species exhibits greater antiviral activity than the aqueous plant extract. The C. mimosoides hydroethanolic extract exhibited potent antioxidant activity in the DPPH assay, with an IC50 value of 15.01 µg/mL, comparable to authentic quercetin (IC50 = 12.72 µg/mL) and approximately 4.91 times greater than standard gallic acid (IC50 = 3.06 µg/mL). Through untargeted metabolomic analyses (UPLC-ESI(±)-QTOF-MS/MS) and subsequent stepwise computational metabolomics analyses, we identified the extract as primarily containing simple phenolics (e.g., gallic acid, ellagic acid, shikimic acid, and chlorogenic acid), flavonoid derivatives (e.g., quercetin, taxifolin, myricitrin, and afzelin), and other bioactive components, including dicarboxylic acids and germacrone. The polyphenol-rich extract showed strong anti-influenza activity, with an IC50 of 2.33 µg/mL against the influenza A/PR/8/34 virus and no cytotoxic effects, as indicated by a CC50 greater than 50 µg/mL. This represents an approximately 3.35-fold increase in effectiveness compared to its corresponding aqueous extract (IC50 = 7.81 µg/mL). Furthermore, the extract demonstrated no hemolytic activity, even at a maximum concentration of 2,000 µg/mL, suggesting its potential as a safe antiviral agent. Molecular docking analyses revealed that the identified phytochemicals can simultaneously interact with the "drug-target binding sites" of neuraminidase (NA) and PB2 subunit of influenza RNA polymerase, indicating their potential polypharmacological effects. The antiviral activity of the ethanolic-aqueous extract against other strains is being explored due to the versatile biological effects of phenolic substances.
Collapse
Affiliation(s)
- Anuwatchakij Klamrak
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Shaikh Shahinur Rahman
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Applied Nutrition and Food Technology, Faculty of Biological Sciences, Islamic University, Kushtia, 7000, Bangladesh
| | - Napapuch Nopkuesuk
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jaran Nabnueangsap
- Salaya Central Instrument Faculty RSPG, Research Management and Development Division, Mahidol University, Bangkok, Thailand
| | - Jaraspim Narkpuk
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Piyapon Janpan
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Yutthakan Saengkun
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thananya Soonkum
- Salaya Central Instrument Faculty RSPG, Research Management and Development Division, Mahidol University, Bangkok, Thailand
| | - Supawadee Sriburin
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Samaporn Teeravechyan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120, Thailand
| | - Poramet Sitthiwong
- Khaoyai Panorama Farm Co., Ltd, 297 M.6, Thanarat Rd., Nongnamdang, Pakchong, Nakhonratchasima, 30130, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sirinan Kulchat
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jureerut Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
4
|
Carvalho MAGD, Souza GB, Tizziani T, Pontes CLM, Dambrós BP, Sousa NFD, Scotti MT, Steindel M, Braga AL, Sandjo LP, Assis FFD. Synthesis, in vitro and in silico evaluation of gallamide and selenogallamide derivatives as inhibitors of the SARS-CoV-2 main protease. Arch Pharm (Weinheim) 2024; 357:e2400253. [PMID: 39148177 DOI: 10.1002/ardp.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
The present work reports the inhibitory effect of amides derived from gallic acid (gallamides) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro), along with cytotoxicity evaluation and molecular docking studies. In addition to gallamides, other relevant compounds were also synthesized and evaluated against Mpro, making a total of 25 compounds. Eight compounds presented solubility issues during the inhibitory assay and one showed no inhibitory activity. Compounds 3a, 3b, and 3f showed the highest enzymatic inhibition with IC50 = 0.26 ± 0.19 µM, 0.80 ± 0.38 µM, and 2.87 ± 1.17 µM, respectively. Selenogallamide 6a exhibited IC50 values of 5.42 ± 2.89 µM and a comparison with its nonselenylated congener 3c shows that the insertion of the chalcogen moiety improved the inhibitory capacity of the compound by approximately 10 times. Regarding the cellular toxicity in THP-1 and Vero cells, compounds 3e and 3g, showed moderate cytotoxicity in Vero cells, while for THP-1 both were nontoxic, with CC50 > 150 µM. Derivative 3d showed moderate cytotoxicity against both cell lines, whereas 6d was moderatly toxic to THP-1. Other compounds analyzed do not induce substantial cellular toxicity at the concentrations tested. The molecular docking results for compounds 3a, 3b, and 3f show that hydrogen bonding interactions involving the hydroxyl groups (OH) of the gallate moiety are relevant, as well as the carbonyl group.
Collapse
Affiliation(s)
- Maryelle A G de Carvalho
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Gabriella B Souza
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Tiago Tizziani
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Carime L M Pontes
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Bibiana P Dambrós
- Department of Microbiology, Immunology and Parasitology, CCB, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Natália F de Sousa
- Department of Chemistry, Center for Exact and Natural Sciences, Universidade Federal de Paraíba, Campus I, João Pessoa, Paraíba, Brazil
| | - Marcus T Scotti
- Department of Chemistry, Center for Exact and Natural Sciences, Universidade Federal de Paraíba, Campus I, João Pessoa, Paraíba, Brazil
| | - Mario Steindel
- Department of Microbiology, Immunology and Parasitology, CCB, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Antonio L Braga
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Louis P Sandjo
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| | - Francisco F de Assis
- Department of Chemistry, CFM, Universidade Federal de Santa Catarina, Campus Universitario-Trindade, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
5
|
Guo W, Zhang B, Liu M, Zhang J, Feng Y. Based on Virtual Screening and Simulation Exploring the Mechanism of Plant-Derived Compounds with PINK1 to Postherpetic Neuralgia. Mol Neurobiol 2024; 61:9184-9203. [PMID: 38602654 DOI: 10.1007/s12035-024-04098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
Accumulating evidence strongly supports that PINK1 mutation can mediate mitochondrial autophagy dysfunction in dopaminergic neurons. This study was conducted to determine the role of PINK1 in the pathogenesis of postherpetic neuralgia (PHN) and find new targets for its treatment. A rigorous literature review was conducted to identify 2801 compounds from more than 200 plants in Asia. Virtual screening was used to shortlist the compounds into 20 groups based on their binding energies. MM/PBSA was used to further screen the compound dataset, and vitexin, luteoloside, and 2'-deoxyadenosine-5'-monophosphate were found to have a score of - 59.439, - 52.421, and - 47.544 kcal/mol, respectively. Pain behavioral quantification, enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, western blotting, and transmission electron microscopy were used to confirm the effective mechanism. Vitexin had the most significant therapeutic effect on rats with PHN followed by luteoloside; 2'-deoxyadenosine-5'-monophosphate had no significant effect. Our findings suggested that vitexin could alleviate PHN by regulating mitochondrial autophagy through PINK1.
Collapse
Affiliation(s)
- Wenjing Guo
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, People's Republic of China
| | - Bo Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, People's Republic of China
| | - Minchen Liu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, People's Republic of China
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, People's Republic of China.
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Cai Lun Road 1200, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
6
|
Liu S, Wang B, Chen T, Wang H, Liu J, Zhao X, Zhang Y. Two new and effective food-extracted immunomodulatory agents exhibit anti-inflammatory response activity in the hACE2 acute lung injury murine model of COVID-19. Front Immunol 2024; 15:1374541. [PMID: 38807598 PMCID: PMC11130445 DOI: 10.3389/fimmu.2024.1374541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
OBJECTIVE The coronavirus disease 2019 (COVID-19) spread rapidly and claimed millions of lives worldwide. Acute respiratory distress syndrome (ARDS) is the major cause of COVID-19-associated deaths. Due to the limitations of current drugs, developing effective therapeutic options that can be used rapidly and safely in clinics for treating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections is necessary. This study aims to investigate the effects of two food-extracted immunomodulatory agents, ajoene-enriched garlic extract (AGE) and cruciferous vegetables-extracted sulforaphane (SFN), on anti-inflammatory and immune responses in a SARS-CoV-2 acute lung injury mouse model. METHODS In this study, we established a mouse model to mimic the SARS-CoV-2 infection acute lung injury model via intratracheal injection of polyinosinic:polycytidylic acid (poly[I:C]) and SARS-CoV-2 recombinant spike protein (SP). After the different agents treatment, lung sections, bronchoalveolar lavage fluid (BALF) and fresh faeces were harvested. Then, H&E staining was used to examine symptoms of interstitial pneumonia. Flow cytometry was used to examine the change of immune cell populations. Multiplex cytokines assay was used to examine the inflammatory cytokines.16S rDNA high-throughput sequencing was used to examine the change of gut microbiome. RESULTS Our results showed that AGE and SFN significantly suppressed the symptoms of interstitial pneumonia, effectively inhibited the production of inflammatory cytokines, decreased the percentage of inflammatory cell populations, and elevated T cell populations in the mouse model. Furthermore, we also observed that the gut microbiome of genus Paramuribaculum were enriched in the AGE-treated group. CONCLUSION Here, for the first time, we observed that these two novel, safe, and relatively inexpensive immunomodulatory agents exhibited the same effects on anti-inflammatory and immune responses as neutralizing monoclonal antibodies (mAbs) against interleukin 6 receptor (IL-6R), which have been suggested for treating COVID-19 patients. Our results revealed the therapeutic ability of these two immunomodulatory agents in a mouse model of SARS-CoV-2 acute lung injury by promoting anti-inflammatory and immune responses. These results suggest that AGE and SFN are promising candidates for the COVID-19 treatment.
Collapse
Affiliation(s)
- Shasha Liu
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baiqiao Wang
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tianran Chen
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Wang
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinbo Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuan Zhao
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- School of Public Health, Zhengzhou University, Zhengzhou, China
- Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, China
| |
Collapse
|
7
|
Rijo P, Abuamara TMM, Ali Lashin LS, Kamar SA, Isca VMS, Mohammed TS, Abdrabo MSM, Amin MA, Abd El Maksoud AI, Hassan A. Glycyrrhizic Acid Nanoparticles Subside the Activity of Methicillin-Resistant Staphylococcus aureus by Suppressing PBP2a. Pharmaceuticals (Basel) 2024; 17:589. [PMID: 38794159 PMCID: PMC11123903 DOI: 10.3390/ph17050589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) are classified as high-risk infections that can lead to death, particularly among older individuals. Nowadays, plant nanoparticles such as glycyrrhizic acid are recognized as efficient bactericides against a wide range of bacterial strains. Recently, scientists have shown interest in plant extract nanoparticles, derived from natural sources, which can be synthesized into nanomaterials. Interestingly, glycyrrhizic acid is rich in antioxidants as well as antibacterial agents, and it exhibits no adverse effects on normal cells. In this study, glycyrrhizic acid nanoparticles (GA-NPs) were synthesized using the hydrothermal method and characterized through physicochemical techniques such as UV-visible spectrometry, DLS, zeta potential, and TEM. The antimicrobial activity of GA-NPs was investigated through various methods, including MIC assays, anti-biofilm activity assays, ATPase activity assays, and kill-time assays. The expression levels of mecA, mecR1, blaR1, and blaZ genes were measured by quantitative RT-qPCR. Additionally, the presence of the penicillin-binding protein 2a (PBP2a) protein of S. aureus and MRSA was evaluated by a Western blot assay. The results emphasized the fabrication of GA nanoparticles in spherical shapes with a diameter in the range of 40-50 nm. The data show that GA nanoparticles exhibit great bactericidal effectiveness against S. aureus and MRSA. The treatment with GA-NPs remarkably reduces the expression levels of the mecA, mecR1, blaR1, and blaZ genes. PBP2a expression in MRSA was significantly reduced after treatment with GA-NPs. Overall, this study demonstrates that glycyrrhizic acid nanoparticles have potent antibacterial activity, particularly against MRSA. This research elucidates the inhibition mechanism of glycyrrhizic acid, which involves the suppressing of PBP2a expression. This work emphasizes the importance of utilizing plant nanoparticles as effective antimicrobial agents against a broad spectrum of bacteria.
Collapse
Affiliation(s)
- Patricia Rijo
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Tamer M. M. Abuamara
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Lashin Saad Ali Lashin
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Sherif A. Kamar
- Department of Basic Medical Science, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19111, Jordan; (T.M.M.A.); (L.S.A.L.); (S.A.K.)
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Vera M. S. Isca
- CBIOS—Lusófona University’s Research Center for Biosciences and Health Technologies, 1749-024 Lisbon, Portugal;
| | - Tahseen S. Mohammed
- Department of Public Health and Community Medicine, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt; (T.S.M.); (M.S.M.A.)
| | - Mohamed S. M. Abdrabo
- Department of Public Health and Community Medicine, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt; (T.S.M.); (M.S.M.A.)
| | - Mohamed A. Amin
- Department of Basic Medical Science, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan;
- Department of Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed I. Abd El Maksoud
- College of Biotechnology, Misr University of Science and Technology, Giza 12573, Egypt;
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| | - Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat 32897, Egypt
| |
Collapse
|
8
|
Surmanidze N, Vanidze M, Djafaridze I, Davitadze R, Qarcivadze I, Khakhutaishvili M, Kalandia A. Optimization of the method of ultrasonic extraction of lycopene with a green extract from the fruit of Elaeagnus umbellata, common in Western Georgia. Food Sci Nutr 2024; 12:3593-3601. [PMID: 38726431 PMCID: PMC11077213 DOI: 10.1002/fsn3.4030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 05/12/2024] Open
Abstract
The study determined the content of lycopene in the fruits of the Elaeagnus umbellata (35.25-60.21 mg/100 g), common at different heights above sea level in Western Georgia. For the effective extraction of lycopene as a biologically active substance, the optimal conditions for ultrasonic extraction were selected: sunflower oil was used as a "green solvent"; the ratio of solid mass and solvent was 1:50; temperature 30°C; ultrasound amplitude 40%; power 85 W; and extraction time 10 min. FTIR spectra revealed the characteristic functional groups of lycopene exhibiting two characteristic peaks at 2920 and 2950 cm-1. To explore the effect of lycopene on oil quality, the acid value, peroxide value, and p-anisidine were determined in each oil sample. The antioxidant determination by inhibition of DPPH radicals showed significant differences in native oils and oils with lycopene.
Collapse
Affiliation(s)
- Nona Surmanidze
- Department of Chemistry, Faculty of Natural Sciences and Health CareBatumi Shota Rustaveli State University (BSU)BatumiGeorgia
| | - Maia Vanidze
- Department of Chemistry, Faculty of Natural Sciences and Health CareBatumi Shota Rustaveli State University (BSU)BatumiGeorgia
| | - Indira Djafaridze
- Department of Chemistry, Faculty of Natural Sciences and Health CareBatumi Shota Rustaveli State University (BSU)BatumiGeorgia
| | - Ruslan Davitadze
- Department of Chemistry, Faculty of Natural Sciences and Health CareBatumi Shota Rustaveli State University (BSU)BatumiGeorgia
| | - Inga Qarcivadze
- Department of Chemistry, Faculty of Natural Sciences and Health CareBatumi Shota Rustaveli State University (BSU)BatumiGeorgia
| | - Meri Khakhutaishvili
- Department of Chemistry, Faculty of Natural Sciences and Health CareBatumi Shota Rustaveli State University (BSU)BatumiGeorgia
| | - Aleko Kalandia
- Department of Chemistry, Faculty of Natural Sciences and Health CareBatumi Shota Rustaveli State University (BSU)BatumiGeorgia
| |
Collapse
|
9
|
Majrashi TA, El Hassab MA, Mahmoud SH, Mostafa A, Wahsh EA, Elkaeed EB, Hassan FE, Eldehna WM, Abdelgawad SM. In vitro biological evaluation and in silico insights into the antiviral activity of standardized olive leaves extract against SARS-CoV-2. PLoS One 2024; 19:e0301086. [PMID: 38662719 PMCID: PMC11045091 DOI: 10.1371/journal.pone.0301086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/08/2024] [Indexed: 04/28/2024] Open
Abstract
There is still a great global need for efficient treatments for the management of SARS-CoV-2 illness notwithstanding the availability and efficacy of COVID-19 vaccinations. Olive leaf is an herbal remedy with a potential antiviral activity that could improve the recovery of COVID-19 patients. In this work, the olive leaves major metabolites were screened in silico for their activity against SARS-CoV-2 by molecular docking on several viral targets such as methyl transferase, helicase, Plpro, Mpro, and RdRp. The results of in silico docking study showed that olive leaves phytoconstituents exhibited strong potential antiviral activity against SARS-CoV-2 selected targets. Verbacoside demonstrated a strong inhibition against methyl transferase, helicase, Plpro, Mpro, and RdRp (docking scores = -17.2, -20, -18.2, -19.8, and -21.7 kcal/mol.) respectively. Oleuropein inhibited 5rmm, Mpro, and RdRp (docking scores = -15, -16.6 and -18.6 kcal/mol., respectively) respectively. Apigenin-7-O-glucoside exhibited activity against methyl transferase and RdRp (docking score = -16.1 and -19.4 kcal/mol., respectively) while Luteolin-7-O-glucoside inhibited Plpro and RdRp (docking score = -15.2 and -20 kcal/mol., respectively). The in vitro antiviral assay was carried out on standardized olive leaf extract (SOLE) containing 20% oleuropein and IC50 was calculated. The results revealed that 20% SOLE demonstrated a moderate antiviral activity against SARS-CoV-2 with IC50 of 118.3 μg /mL. Accordingly, olive leaf could be a potential herbal therapy against SARS-CoV-2 but more in vivo and clinical investigations are recommended.
Collapse
Affiliation(s)
- Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Asir, Saudi Arabia
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Sara H. Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, Giza, Egypt
| | - Engy A. Wahsh
- Clinical Pharmacy Department, Faculty of Pharmacy, October 6 University, Giza Governorate, Egypt
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Fatma E. Hassan
- Department of Physiology, General Medicine Practice Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Medical Physiology Department, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | |
Collapse
|
10
|
Klamrak A, Nabnueangsap J, Narkpuk J, Saengkun Y, Janpan P, Nopkuesuk N, Chaveerach A, Teeravechyan S, Rahman SS, Dobutr T, Sitthiwong P, Maraming P, Nualkaew N, Jangpromma N, Patramanon R, Daduang S, Daduang J. Unveiling the Potent Antiviral and Antioxidant Activities of an Aqueous Extract from Caesalpinia mimosoides Lamk: Cheminformatics and Molecular Docking Approaches. Foods 2023; 13:81. [PMID: 38201109 PMCID: PMC10778375 DOI: 10.3390/foods13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Our group previously demonstrated that Caesalpinia mimosoides Lamk exhibits many profound biological properties, including anticancer, antibacterial, and antioxidant activities. However, its antiviral activity has not yet been investigated. Here, the aqueous extract of C. mimosoides was prepared from the aerial parts (leaves, stalks, and trunks) to see whether it exerts anti-influenza (H1N1) effects and to reduce the organic solvents consumed during extraction, making it a desirable approach for the large-scale production for medical uses. Our plant extract was quantified to contain 7 g of gallic acid (GA) per 100 g of a dry sample, as determined using HPLC analysis. It also exerts potent antioxidant activities comparable to those of authentic GA. According to untargeted metabolomics (UPLC-ESI(-)-QTOF-MS/MS) with the aid of cheminformatics tools (MetFrag (version 2.1), SIRIUS (version 5.8.3), CSI:FingerID (version 4.8), and CANOPUS), the major metabolite was best annotated as "gallic acid", phenolics (e.g., quinic acid, shikimic acid, and protocatechuic acid), sugar derivatives, and dicarboxylic acids were deduced from this plant species for the first time. The aqueous plant extract efficiently inhibited an influenza A (H1N1) virus infection of MDCK cells with an IC50 of 5.14 µg/mL. Of equal importance, hemolytic activity was absent for this plant extract, signifying its applicability as a safe antiviral agent. Molecular docking suggested that GA interacts with conserved residues (e.g., Arg152 and Asp151) located in the catalytic inner shell of the viral neuraminidase (NA), sharing the same pocket as those of anti-neuraminidase drugs, such as laninamivir and oseltamivir. Additionally, other metabolites were also found to potentially interact with the active site and the hydrophobic 430-cavity of the viral surface protein, suggesting a possibly synergistic effect of various phytochemicals. Therefore, the C. mimosoides aqueous extract may be a good candidate for coping with increasing influenza virus resistance to existing antivirals.
Collapse
Affiliation(s)
- Anuwatchakij Klamrak
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Jaran Nabnueangsap
- Salaya Central Instrument Facility RSPG, Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Jaraspim Narkpuk
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (J.N.); (S.T.)
| | - Yutthakan Saengkun
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Piyapon Janpan
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Napapuch Nopkuesuk
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Samaporn Teeravechyan
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand; (J.N.); (S.T.)
| | - Shaikh Shahinur Rahman
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Department of Applied Nutrition and Food Technology, Faculty of Biological Sciences, Islamic University, Kushtia 7000, Bangladesh
| | - Theerawat Dobutr
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Poramet Sitthiwong
- Khaoyai Panorama Farm Co., Ltd., 297 M.6, Thanarat Rd., Nongnamdang, Pakchong, Nakhonratchasima 30130, Thailand;
| | - Pornsuda Maraming
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Natsajee Nualkaew
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Rina Patramanon
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Sakda Daduang
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (A.K.); (Y.S.); (P.J.); (N.N.); (S.S.R.); (T.D.); (N.N.)
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
| | - Jureerut Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Khon Kaen University, Khon Kaen 40000, Thailand; (P.M.); (N.J.); (R.P.)
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
11
|
Hinkov A, Tsvetkov V, Shkondrov A, Krasteva I, Shishkov S, Shishkova K. Effect of a Total Extract and Saponins from Astragalus glycyphyllos L. on Human Coronavirus Replication In Vitro. Int J Mol Sci 2023; 24:16525. [PMID: 38003714 PMCID: PMC10671514 DOI: 10.3390/ijms242216525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Members of the family Coronaviridae cause diseases in mammals, birds, and wildlife (bats), some of which may be transmissible to humans or specific to humans. In the human population, they can cause a wide range of diseases, mainly affecting the respiratory and digestive systems. In the scientific databases, there are huge numbers of research articles about the antiviral, antifungal, antibacterial, antiviral, and anthelmintic activities of medicinal herbs and crops with different ethnobotanical backgrounds. The subject of our research is the antiviral effect of isolated saponins, a purified saponin mixture, and a methanol extract of Astragalus glycyphyllos L. In the studies conducted for the cytotoxic effect of the substances, CC50 (cytotoxic concentration 50) and MTC (maximum tolerable concentration) were determined by the colorimetric method (MTT assay). The virus was cultured in the MDBK cell line. As a result of the experiments carried out on the influence of substances on viral replication (using MTT-based colorimetric assay for detection of human Coronavirus replication inhibition), it was found that the extract and the purified saponin mixture inhibited 100% viral replication. The calculated selective indices are about 13 and 18, respectively. The obtained results make them promising for a preparation with anti-Coronavirus action.
Collapse
Affiliation(s)
- Anton Hinkov
- Laboratory of Virology, Faculty of Biology, University of Sofia “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (V.T.); (S.S.)
| | - Venelin Tsvetkov
- Laboratory of Virology, Faculty of Biology, University of Sofia “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (V.T.); (S.S.)
| | - Aleksandar Shkondrov
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (A.S.); (I.K.)
| | - Ilina Krasteva
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav St., 1000 Sofia, Bulgaria; (A.S.); (I.K.)
| | - Stoyan Shishkov
- Laboratory of Virology, Faculty of Biology, University of Sofia “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (V.T.); (S.S.)
| | - Kalina Shishkova
- Laboratory of Virology, Faculty of Biology, University of Sofia “St. Kl. Ohridski”, 1164 Sofia, Bulgaria; (V.T.); (S.S.)
| |
Collapse
|
12
|
Elkousy RH, Said ZNA, Ali MA, Kutkat O, Abu El Wafa SA. Anti-SARS-CoV-2 in vitro potential of castor oil plant ( Ricinus communis) leaf extract: in-silico virtual evidence. Z NATURFORSCH C 2023; 78:365-376. [PMID: 37401758 DOI: 10.1515/znc-2023-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023]
Abstract
Ricinus communis L. is a medicinal plant that displays valuable pharmacological properties, including antioxidant, antimicrobial, analgesic, antibacterial, antiviral and anti-inflammatory properties. This study targeted to isolate and identify some constituents of R. communis leaves using ultra-performance liquid chromatography coupled with mass spectroscopy (UPLC-MS/MS) and different chromatographic techniques. In vitro anti-MERS and anti-SARS-CoV-2 activity for different fractions and for two pure isolated compounds, lupeol (RS) and ricinine (RS1) were evaluated using a plaque reduction assay with three different mechanisms and IC50 based on their cytotoxic concentration (CC50) from an MTT assay using Vero E6 cell line. Isolated phytoconstituents and remdesivir are assessed for in-silico anti-COVID-19 activity using molecular docking tools. The methylene chloride extract showed pronounced virucidal activity against SARS-CoV-2 (IC50 = 1.76 μg/ml). It was also shown that ricinine had superior potential activity against SARS-CoV-2, (IC50 = 2.5 μg/ml). Lupeol displayed the most potency against MERS, (IC50 = 5.28 μg/ml). Ricinine appeared to be the most biologically active compound. The study showed that R. communis and its isolated compounds have potential natural virucidal activity against SARS-COV-2; however, additional exploration is necessary and study for their in vivo activity.
Collapse
Affiliation(s)
- Rawah H Elkousy
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (for Girls), Al-Azhar University, P.O. Box 11651, Nasr City, Cairo, Egypt
| | - Zeinab N A Said
- Department of Medical Microbiology & Immunology, Faculty of Medicine (for Girls), Al-Azhar University, P.O. Box 11754, Nasr City, Cairo, Egypt
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, P.O. Box 12622, Giza, Egypt
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Viruses, National Research Centre, P.O. Box 12622, Giza, Egypt
| | - Salwa A Abu El Wafa
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (for Girls), Al-Azhar University, P.O. Box 11651, Nasr City, Cairo, Egypt
| |
Collapse
|
13
|
Maiti P, Nand M, Mathpal S, Wahab S, Kuniyal JC, Sharma P, Joshi T, Ramakrishnan MA, Chandra S. Potent multi-target natural inhibitors against SARS-CoV-2 from medicinal plants of the Himalaya: a discovery from hybrid machine learning, chemoinformatics, and simulation assisted screening. J Biomol Struct Dyn 2023; 42:10551-10564. [PMID: 37732349 DOI: 10.1080/07391102.2023.2257333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
The emergence and immune evasion ability of SARS-CoV-2 Omicron strains, mainly BA.5.2 and BF.7 and other variants of concern have raised global apprehensions. With this context, the discovery of multitarget inhibitors may be proven more comprehensive paradigm than its one-drug-to-one target counterpart. In the current study, a library of 271 phytochemicals from 25 medicinal plants from the Indian Himalayan Region has been virtually screened against SARS-CoV-2 by targeting nine virus proteins, viz., papain-like protease, main protease, nsp12, helicase, nsp14, nsp15, nsp16, envelope, and nucleocapsid for screening of a multi-target inhibitor against the viral replication. Initially, 94 phytochemicals were screened by a hybrid machine learning model constructed by combining 6 confirmatory bioassays against SARS-CoV-2 replication using an instance-based learner lazy k-nearest neighbour classifier. Further, 25 screened compounds with excellent drug-like properties were subjected to molecular docking. The phytochemical Cepharadione A from the plant Piper longum showed binding potential against four proteins with the highest binding energy of -10.90 kcal/mol. The compound has acceptable absorption, distribution, metabolism, excretion, and toxicity properties and exhibits stable binding behaviour in terms of root mean square deviation (0.068 ± 0.05 nm), root-mean-square fluctuation, hydrogen bonds, solvent accessible surface area (83.88-161.89 nm2), and molecular mechanics Poisson-Boltzmann surface area during molecular dynamics simulation of 200 ns with selected target proteins. Concerning the utility of natural compounds in the therapeutics formulation, Cepharadione A could be further investigated as a remarkable lead candidate for the development of therapeutic drugs against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyanka Maiti
- G.B. Pant National Institute of Himalayan Environment (NIHE), Almora, India
| | - Mahesha Nand
- G.B. Pant National Institute of Himalayan Environment (NIHE), Almora, India
| | - Shalini Mathpal
- Department of Biotechnology, Kumaun University, Nainital, India
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | | | - Priyanka Sharma
- Department of Botany, D.S.B. Campus, Kumaun University, Nainital, India
| | - Tushar Joshi
- Department of Biotechnology, Kumaun University, Nainital, India
| | | | - Subhash Chandra
- Department of Botany, Soban Singh Jeena University, Almora, India
| |
Collapse
|
14
|
Banik A, Ahmed SR, Shahid SB, Ahmed T, Tamanna HK, Marma H. Therapeutic Promises of Plant Metabolites against Monkeypox Virus: An In Silico Study. Adv Virol 2023; 2023:9919776. [PMID: 37693295 PMCID: PMC10492655 DOI: 10.1155/2023/9919776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
The monkeypox virus was still spreading in May 2022, with the first case identified in a person with travel ties to Nigeria. Using molecular docking-based techniques, we evaluated the efficiency of different bioactive chemicals obtained from plants against the monkeypox virus. A total of 56 plant compounds were evaluated for antimonekypox capabilities, with the top four candidates having a higher binding affinity than the control. We targeted the monkeypox profilin-like protein, which plays a key role in viral replication and assembly. Among the metabolites, curcumin showed the strongest binding affinity with a value of -37.43 kcal/mol, followed by gedunin (-34.89 kcal/mol), piperine (-34.58 kcal/mol), and coumadin (-34.14 kcal/mol). Based on ADME and toxicity assessments, the top four substances had no negative impacts. Furthermore, four compounds demonstrated resistance to deformability, which was corroborated by normal mode analysis. According to the bioactivity prediction study, the top compound target class was an enzyme, membrane receptor, and oxidoreductase. Furthermore, the study discovered that wortmannin, a gedunin analogue, can behave as an orthopoxvirus. The study found that these bioactive natural drug candidates could potentially work as monkeypox virus inhibitors. We recommended further experimental validation to confirm the promising findings of the study.
Collapse
Affiliation(s)
- Anik Banik
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Sheikh Rashel Ahmed
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Sonia Binte Shahid
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Tufayel Ahmed
- Department of Plant and Environmental Biotechnology, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | | | - Hlamrasong Marma
- Faculty of Biotechnology and Genetic Engineering, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
15
|
Abou Baker DH, Hassan EM, El Gengaihi S. An overview on medicinal plants used for combating coronavirus: Current potentials and challenges. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2023; 13:100632. [PMID: 37251276 PMCID: PMC10198795 DOI: 10.1016/j.jafr.2023.100632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
Worldwide, Severe acute respiratory syndrome Coronavirus (SARS-CoV-2) pandemic crisis, causing many morbidities, mortality, and devastating impact on economies, so the current outbreak of the CoV-2 is a major concern for global health. The infection spread quickly and caused chaos in many countries around the world. The slow discovery of CoV-2 and the limited treatment options are among the main challenges. Therefore, the development of a drug that is safe and effective against CoV-2 is urgently needed. The present overview briefly summarizes CoV-2 drug targets ex: RNA-dependent RNA polymerase (RdRp), papain-like protease (PLpro), 3-chymotrypsin-like protease (3CLpro), transmembrane serine protease enzymes (TMPRSS2), angiotensin-converting enzyme 2 (ACE2), structural protein (N, S, E, and M), and virulence factors (NSP1, ORF7a, and NSP3c) for which drug design perspective can be considered. In addition, summarize all anti-COVID-19 medicinal plants and phytocompounds and their mechanisms of action to be used as a guide for further studies.
Collapse
Affiliation(s)
- Doha H Abou Baker
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| | - Emad M Hassan
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| | - Souad El Gengaihi
- Medicinal and Aromatic Plants Dept., Pharmaceutical and Drug Industries Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
16
|
Palai S, Kesh SS, Rudrapal M. Plant‐Based Products and Phytochemicals against Viral Infections of the Central Nervous System. PHYTOCHEMICAL DRUG DISCOVERY FOR CENTRAL NERVOUS SYSTEM DISORDERS 2023:251-272. [DOI: 10.1002/9781119794127.ch10] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Nunes DADF, Lopes GFM, Nizer WSDC, Aguilar MGD, Santos FRDS, Sousa GFD, Ferraz AC, Duarte LP, Brandão GC, Vieira-Filho SA, Magalhães CLDB, Ferreira JMS, de Magalhães JC. Virucidal antiviral activity of Maytenus quadrangulata extract against Mayaro virus: Evidence for the presence of catechins. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116436. [PMID: 37003399 DOI: 10.1016/j.jep.2023.116436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mayaro virus (MAYV) is an arbovirus endemic to the Amazon region, which comprises the states of the North and Midwest region of Brazil and encompasses the largest tropical forest in the world, the Amazon Forest. The confirmation of its potential transmission by Aedes aegypti and recent cases in Brazil, mainly in large centers in the northern region, led to the classification of Mayaro fever as an emerging disease. Traditional medicine is commonly used to treat various diseases, mainly by local riverside populations. Some species of the genus Maytenus, which have similar morphologies, are popularly used to treat infections and inflammations. In this context, our research group has studied and confirmed the antiviral activity of several plant-derived compounds. However, several species of this same genus have not been studied and therefore deserve attention. AIM OF THE STUDY This study aimed to demonstrate the effects of ethyl acetate extracts of leaves (LAE) and branches (TAE) of Maytenus quadrangulata against MAYV. MATERIALS AND METHODS Mammalian cells (Vero cells) were used to evaluate the cytotoxicity of the extracts. After cell infection by MAYV and the treatment with the extracts, we evaluated the selectivity index (SI), the virucidal effect, viral adsorption and internalization, and the effect on viral gene expression. The antiviral action was confirmed by quantifying the viral genome using RT-qPCR and by analyzing the effect on virus yield in infected cells. The treatment was performed based on the effective concentration protective for 50% of the infected cells (EC50). RESULTS The leaves (LAE; EC50 12.0 μg/mL) and branches (TAE; EC50 101.0 μg/mL) extracts showed significative selectivity against the virus, with SI values of 79.21 and 9.91, respectively, which were considered safe. Phytochemical analysis revealed that the antiviral action was associated with the presence of catechins, mainly in LAE. This extract was chosen for the subsequent studies since it reduced the viral cytopathic effect and virus production, even at high viral loads [MOI (multiplicity of infection) 1 and 5]. The effects of LAE resulted in a marked reduction in viral gene expression. The viral title was drastically reduced when LAE was added to the virus before infection or during replication stages, reducing virus production up to 5-log units compared to infected and untreated cells. CONCLUSION Through kinetic replication, MAYV was not detected in Vero cells treated with LAE throughout the viral cycle. The virucidal effect of LAE inactivates the viral particle and can intercept the virus at the end of the cycle when it gains the extracellular environment. Therefore, LAE is a promising source of antiviral agents.
Collapse
Affiliation(s)
| | | | | | - Mariana G de Aguilar
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Ariane Coelho Ferraz
- Department of Biological Sciences, Universidade Federal de Ouro Preto, MG, Brazil
| | - Lucienir Pains Duarte
- Department of Chemistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | - José Carlos de Magalhães
- Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, MG, Brazil.
| |
Collapse
|
18
|
Bhat S, Pradeep S, Patil SS, Flores-Holguín N, Glossman-Mitnik D, Frau J, Sommano SR, Ali N, Mohany M, Shivamallu C, Prasad SK, Kollur SP. Preliminary Evaluation of Lablab purpureus Phytochemicals for Anti-BoHV-1 Activity Using In Vitro and In Silico Approaches. ACS OMEGA 2023; 8:22684-22697. [PMID: 37396248 PMCID: PMC10308559 DOI: 10.1021/acsomega.3c01478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023]
Abstract
Lablab purpureus from the Fabaceae family has been reported to have antiviral properties and used in traditional medical systems like ayurveda and Chinese medicine and has been employed to treat a variety of illnesses including cholera, food poisoning, diarrhea, and phlegmatic diseases. The bovine alphaherpesvirus-1 (BoHV-1) is notorious for causing significant harm to the veterinary and agriculture industries. The removal of the contagious BoHV-1 from host organs, particularly in those reservoir creatures, has required the use of antiviral drugs that target infected cells. This study developed LP-CuO NPs from methanolic crude extracts, and FTIR, SEM, and EDX analyses were used to confirm their formation. SEM analysis revealed that the LP-CuO NPs had a spherical shape with particle sizes between 22 and 30 nm. Energy-dispersive X-ray pattern analysis revealed the presence of only copper and oxide ions. By preventing viral cytopathic effects in the Madin-Darby bovine kidney cell line, the methanolic extract of Lablab purpureus and LP-CuO NPs demonstrated a remarkable dose-dependent anti-BoHV-1 action in vitro. Furthermore, molecular docking and molecular dynamics simulation studies of bio-actives from Lablab purpureus against the BoHV-1 viral envelope glycoprotein disclosed effective interactions between all phytochemicals and the protein, although kievitone was found to have the highest binding affinity, with the greatest number of interactions, which was also validated with molecular dynamics simulation studies. Understanding the chemical reactivity qualities of the four ligands was taken into consideration facilitated by the global and local descriptors, which aimed to predict the chemical reactivity descriptors of the studied molecules through the conceptual DFT methodology, which, along with ADMET finding, support the in vitro and in silico results.
Collapse
Affiliation(s)
- Smitha
S. Bhat
- Department
of Biotechnology and Bioinformatics, JSS
Academy of Higher Education and Research, Mysuru 570 015, India
| | - Sushma Pradeep
- Department
of Biotechnology and Bioinformatics, JSS
Academy of Higher Education and Research, Mysuru 570 015, India
| | - Sharanagouda S. Patil
- ICAR-National
Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Bengaluru 560 064, India
| | - Norma Flores-Holguín
- Laboratorio
Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chihuahua 31136, Mexico
| | - Daniel Glossman-Mitnik
- Laboratorio
Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Chihuahua 31136, Mexico
| | - Juan Frau
- Departament
de Química, Facultat de Ciences, Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
| | - Sarana Rose Sommano
- Plant
Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Nemat Ali
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Mohany
- Department
of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Chandan Shivamallu
- Department
of Biotechnology and Bioinformatics, JSS
Academy of Higher Education and Research, Mysuru 570 015, India
| | - Shashanka K. Prasad
- Department
of Biotechnology and Bioinformatics, JSS
Academy of Higher Education and Research, Mysuru 570 015, India
- Plant
Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Shiva Prasad Kollur
- School
of Physical Sciences, Amrita Vishwa Vidyapeetham,
Mysuru Campus, Mysuru, Karnataka 570 026, India
| |
Collapse
|
19
|
Zannella C, Chianese A, Annunziata G, Ambrosino A, De Filippis A, Tenore GC, Novellino E, Stornaiuolo M, Galdiero M. Antiherpetic Activity of Taurisolo ®, a Grape Pomace Polyphenolic Extract. Microorganisms 2023; 11:1346. [PMID: 37317320 DOI: 10.3390/microorganisms11051346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
Herpes simplex virus (HSV) is widespread in the population, causing oral or genital ulcers and, rarely, severe complications such as encephalitis, keratitis, and neonatal herpes. Current available anti-HSV drugs are acyclovir and its derivatives, although long-term therapy with these agents can lead to drug resistance. Thus, the discovery of novel antiherpetic compounds merits additional studies. In recent decades, much scientific effort has been invested in the discovery of new synthetic or natural compounds with promising antiviral properties. In our study, we tested the antiviral potential of a novel polyphenol-based nutraceutical formulation (named Taurisolo®) consisting of a water polyphenol extract of grape pomace. The evaluation of the antiviral activity was carried out by using HSV-1 and HSV-2 in plaque assay experiments to understand the mechanism of action of the extract. Results were confirmed by real-time PCR, transmission electron microscope (TEM), and fluorescence microscope. Taurisolo® was able to block the viral infection by acting on cells when added together with the virus and also when the virus was pretreated with the extract, demonstrating an inhibitory activity directed to the early phases of HSV-1 and HSV-2 infection. Altogether, these data evidence for the first time the potential use of Taurisolo® as a topical formulation for both preventing and healing herpes lesions.
Collapse
Affiliation(s)
- Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Giuseppe Annunziata
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Annalisa Ambrosino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Ettore Novellino
- Department of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Mariano Stornaiuolo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
20
|
Hu J, Li C, Zhou Y, Ding J, Li X, Li Y. Allicin Inhibits Porcine Reproductive and Respiratory Syndrome Virus Infection In Vitro and Alleviates Inflammatory Responses. Viruses 2023; 15:v15051050. [PMID: 37243135 DOI: 10.3390/v15051050] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important pathogens to the swine industry worldwide over the past three decades. No approved effective antiviral drug is available to control this virus. The antiviral effects of allicin (diallyl thiosulfinate) on many human and animal viruses have been documented. However, the antiviral effect of allicin on PRRSV infection remains unknown. In this study, we found that allicin exhibited an inhibitory effect on HP-PRRSV and NADC30-like PRRSV in a dose-dependent manner by interfering with viral entry, replication, and assembly. Furthermore, allicin alleviated the expression of pro-inflammatory cytokines (IFN-β, IL-6, and TNFα) induced by PRRSV infection. The pro-inflammatory signaling pathways, TNF signaling pathway and MAPK signaling pathway, up-regulated by PRRSV infection were restored by allicin treatment. Taken together, these results demonstrate that allicin has antiviral activity against PRRSV and ameliorates inflammatory responses induced by PRRSV infection, suggesting that allicin is a promising drug candidate for anti-PRRSV therapy in vivo.
Collapse
Affiliation(s)
- Jingbo Hu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chenxi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yanyang Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jingjing Ding
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiangdong Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
21
|
Paul A, Chakraborty N, Sarkar A, Acharya K, Ranjan A, Chauhan A, Srivastava S, Singh AK, Rai AK, Mubeen I, Prasad R. Ethnopharmacological Potential of Phytochemicals and Phytogenic Products against Human RNA Viral Diseases as Preventive Therapeutics. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1977602. [PMID: 36860811 PMCID: PMC9970710 DOI: 10.1155/2023/1977602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
RNA viruses have been the most destructive due to their transmissibility and lack of control measures. Developments of vaccines for RNA viruses are very tough or almost impossible as viruses are highly mutable. For the last few decades, most of the epidemic and pandemic viral diseases have wreaked huge devastation with innumerable fatalities. To combat this threat to mankind, plant-derived novel antiviral products may contribute as reliable alternatives. They are assumed to be nontoxic, less hazardous, and safe compounds that have been in uses in the beginning of human civilization. In this growing COVID-19 pandemic, the present review amalgamates and depicts the role of various plant products in curing viral diseases in humans.
Collapse
Affiliation(s)
- Anamika Paul
- Department of Botany, Scottish Church College, Kolkata 700006, India
| | | | - Anik Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, 344090 Rostov-on-Don, Russia
| | - Abhishek Chauhan
- Amity Institute of Environment Toxicology and Safety Management, Amity University, Noida, U.P., India
| | - Shilpi Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, 845401 Bihar, India
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Iqra Mubeen
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845401 Bihar, India
| |
Collapse
|
22
|
Kumar N, Acharya V. Machine intelligence-guided selection of optimized inhibitor for human immunodeficiency virus (HIV) from natural products. Comput Biol Med 2023; 153:106525. [PMID: 36603433 DOI: 10.1016/j.compbiomed.2022.106525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/28/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
The human immunodeficiency virus (HIV) connects to the cluster of differentiation (CD4) and any of the entry co-receptors (CCR5 and CXCR4); followed by unloading the viral genome, reverse transcriptase, and integrase enzymes within the host cell. The co-receptors facilitate the entry of virus and vital enzymes, leading to replication and pre-maturation of viral particles within the host. The protease enzyme transforms the immature viral vesicles into the mature virion. The pivotal role of co-receptors and enzymes in homeostasis and growth makes the crucial target for anti-HIV drug discovery, and the availability of X-ray crystal structures is an asset. Here, we used the machine intelligence-driven framework (A-HIOT) to identify and optimize target-based potential hit molecules for five significant protein targets from the ZINC15 database (natural products dataset). Following validation with dynamic motion behavior analysis and molecular dynamics simulation, the optimized hits were evaluated using in silico ADMET filtration. Furthermore, three molecules were screened, optimized, and validated: ZINC00005328058 for CCR5 and protease, ZINC000254014855 for CXCR4 and integrase, and ZINC000000538471 for reverse transcriptase. In clinical trials, the ZINC000254014855 and ZINC000254014855 were passed in primary screens for vif-HIV-1, and we reported the specific receptor as well as interactions. As a result, the validated molecules may be investigated further in experimental studies targeting specific receptors in order to design and synergize an anti-HIV regimen.
Collapse
Affiliation(s)
- Neeraj Kumar
- Functional Genomics and Complex System Lab, HiCHiCoB, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| | - Vishal Acharya
- Functional Genomics and Complex System Lab, HiCHiCoB, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad, 201002, India.
| |
Collapse
|
23
|
Astragaloside IV alleviates sepsis-induced muscle atrophy by inhibiting the TGF-β1/Smad signaling pathway. Int Immunopharmacol 2023; 115:109640. [PMID: 36586273 DOI: 10.1016/j.intimp.2022.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Muscle atrophy occurs in patients with sepsis and increases mortality and disability. Remission of muscle atrophy may improve the quality of life in patients with sepsis. Astragaloside IV (ASIV) has been shown to have excellent anti-inflammatory and anti-fibrotic effects and to reduce organ damage caused by sepsis. However, the effect of ASIV on sepsis-induced muscle atrophy has not been reported. Therefore, this study explored the pharmacological effects and mechanisms of ASIV in sepsis-induced muscle atrophy. METHODS Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis and lipopolysaccharide (LPS)-stimulated C2C12 myotubes. After administration of ASIV, the body weight, tibialis anterior (TA) and gastrocnemius muscle weight and fiber cross-sectional area of the mice were measured. The diameter of myotubes was observed by immunofluorescence staining. ELISA was used to assess inflammatory factors in plasma and cell culture supernatants. RT-PCR and Western blotting were used to detect the expression of MuRF1, Atrogin-1 and TGF-β1/Smad signaling pathway components in TA and C2C12 myotubes. RESULTS Our study found that ASIV reduced serum inflammatory factors and improved survival in septic mice. ASIV alleviated muscle mass reduction, myofiber cross-sectional area reduction, and C2C12 myotube atrophy by inhibiting the expression of the E3 ubiquitin ligases MuRF1 and atrogin-1. In addition, we observed that ASIV inhibited TGF-β1/Smad signaling. Inhibition of the TGF-β1/Smad signaling pathway partly blocked the anti-muscle atrophy effect of ASIV. CONCLUSION ASIV can alleviate sepsis-induced muscle atrophy, which may be related to the inhibition of the TGF-β1/Smad signaling pathway.
Collapse
|
24
|
Delices M, Muller JDAI, Arunachalam K, Martins DTDO. Anadenanthera colubrina (Vell) Brenan: Ethnobotanical, phytochemical, pharmacological and toxicological aspects. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115745. [PMID: 36162548 DOI: 10.1016/j.jep.2022.115745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anadenanthera colubrina (Vell.) Brenan is an endemic tree to South America and different parts of it are used by the population for the treatment of various diseases, as well as in indigenous rituals. This species has high pharmacological potential but may present toxic potential due to the presence of psychotropic compounds. AIM OF THE STUDY To review published studies with the species A. colubrina regarding ethnobotanical, phytochemical, pharmacological and toxicological aspects, as well as discuss perspectives for new research and protection of this species. MATERIALS AND METHODS A literature review was performed by accessing published articles on databases such as: PubMed, Science Direct, Scielo, Scopus, Taylor and Francis online, Springer Link, National Center for Biotechnology Information (NCBI), ACS Publications, Chemspider and Google Scholar. The keywords used were: "Anadenanthera colubrina" or "Mimosa colubrina" or "Piptadenia colubrina" or "Piptadenia macrocarpa" or "Piptadenia grata" or "Anadenanthera macrocarpa" and "medicinal plants" or "pharmacological" or "phytochemicals" or "traditional use" or "toxicological" or "ethnobotanical" or "pre-clinical trial" or "clinical". Articles found by database searches and search engines were screened at four stages: (i) title screening, (ii) locality screening, (iii) abstract screening, and (iv) full text. Other articles found through supplementary searches were screened in the full text whenever available. Each article was assessed by three reviewers at the title and abstract screening stages, except for those found in Portuguese databases that were assessed by the native reviewer. RESULTS This robust tree has been popularly useful for agroeconomic, medicinal and as a hallucinogen in religious rituals. According to the published studies, the main parts of the plant are the bark and seeds that are mostly used for respiratory conditions and as entheogens, respectively. It is a rich traditional herbal medicine with many pharmacological properties such as anti-inflammatory, antinociceptive, antidiarrheal, wound healing, antimicrobial, antitumoral, antioxidant, antiaddictive, insecticide and allelopathic that were described in in vitro and in vivo assays, and approximately 56 compounds were identified, suggesting a therapeutic potential for this species. Although most relate to medicinal uses, these are preliminaries and do not show the mechanism of action. The phytochemical assays showed the presence of phenolic compounds, flavonoids, triterpenes, steroids and alkaloids. Some of the compounds are anadanthoflavone, which is exclusive to this species, and no pharmacological or toxicological studies have yet demonstrated this compound. Another important compound is bufotenine which was isolated from seeds and is related to hallucinogenic and antiviral activity. The extracts made from leaves, bark, gum, and fruits appear to be safe, according to both in vivo and in vitro toxicology testing, which all shown low toxicity. Due to the presence of bufotenine in the seeds, it can be toxic, however, it was not found in toxicological assays with the seed extracts. CONCLUSIONS Therefore, part of the studies confirms the popular use of A. colubrina, however, more assays with isolated compounds and with the different extracts are necessary to corroborate other uses and the mechanism of action of their pharmacological effects needs to discuss in more detail. Therefore, the present review would be identified the gaps and suggests further studies oriented to validate the popular use. Thus, it must be noted that the use of this species must be controlled in order to minimize the environmental impact, as most of the pharmacological potential was shown with the bark and seeds. Due to its wide use in folk medicine, it is part of the Brazilian medicinal species with priority for conservation.
Collapse
Affiliation(s)
- Merline Delices
- Área de Farmacologia, Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Jessica de Araujo Isaias Muller
- Área de Farmacologia, Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| | - Karuppusamy Arunachalam
- Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica (CeTroGen), Programa de Pós-graduação em Saúde e Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina (FAMED), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, Mato Grosso do Sul, Brazil; Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650 201, China.
| | - Domingos Tabajara de Oliveira Martins
- Área de Farmacologia, Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil; Área de Farmacologia, Departamento de Ciências Básicas em Saúde, Faculdade de Medicina, Universidade Federal de Mato Grosso (UFMT), Cuiabá, MT, Brazil.
| |
Collapse
|
25
|
Dhama K, Sharun K, Gugjoo MB, Tiwari R, Alagawany M, Iqbal Yatoo M, Thakur P, Iqbal HM, Chaicumpa W, Michalak I, Elnesr SS, Farag MR. A Comprehensive Review on Chemical Profile and Pharmacological Activities of Ocimum basilicum. FOOD REVIEWS INTERNATIONAL 2023; 39:119-147. [DOI: 10.1080/87559129.2021.1900230] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Mudasir B. Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Jammu and Kashmir, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary SciencesDeen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mahmoud Alagawany
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mohd. Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir Shalimar, Srinagar, Jammu and Kashmir, India
| | - Pallavi Thakur
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Hafiz M.N. Iqbal
- Tecnologico De Monterrey, School of Engineering and Sciences, Campus Monterrey, Mexico
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Shaaban S. Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
26
|
Rani J, Bhargav A, Khan FI, Ramachandran S, Lai D, Bajpai U. In silico prediction of natural compounds as potential multi-target inhibitors of structural proteins of SARS-CoV-2. J Biomol Struct Dyn 2022; 40:12118-12134. [PMID: 34486935 PMCID: PMC8425474 DOI: 10.1080/07391102.2021.1968497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a colossal loss to human health and lives and has deeply impacted socio-economic growth. Remarkable efforts have been made by the scientific community in containing the virus by successful development of vaccines and diagnostic kits. Initiatives towards drug repurposing and discovery have also been undertaken. In this study, we compiled the known natural anti-viral compounds using text mining of the literature and examined them against four major structural proteins of SARS-CoV-2, namely, spike (S) protein, nucleocapsid (N) protein, membrane (M) protein and envelope (E) protein. Following computational approaches, we identified fangchinoline and versicolactone C as the compounds to exhibit strong binding to the target proteins and causing structural deformation of three structural proteins (N, S and M). We recommend the inhibitory effects of these compounds from our study should be experimentally validated against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jyoti Rani
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India,G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research – Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India
| | - Anasuya Bhargav
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research – Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Srinivasan Ramachandran
- G N Ramachandran Knowledge of Centre, Council of Scientific and Industrial Research – Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,Srinivasan Ramchandran ;
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China,Dakun Lai
| | - Urmi Bajpai
- Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, New Delhi, India,CONTACT Urmi Bajpai ;
| |
Collapse
|
27
|
Sharma D, Sharma N, Manchanda N, Prasad SK, Sharma PC, Thakur VK, Rahman MM, Dhobi M. Bioactivity and In Silico Studies of Isoquinoline and Related Alkaloids as Promising Antiviral Agents: An Insight. Biomolecules 2022; 13:17. [PMID: 36671402 PMCID: PMC9856122 DOI: 10.3390/biom13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Viruses are widely recognized as the primary cause of infectious diseases around the world. The ongoing global pandemic due to the emergence of SARS-CoV-2 further added fuel to the fire. The development of therapeutics becomes very difficult as viruses can mutate their genome to become more complex and resistant. Medicinal plants and phytocompounds could be alternative options. Isoquinoline and their related alkaloids are naturally occurring compounds that interfere with multiple pathways including nuclear factor-κB, mitogen-activated protein kinase/extracellular-signal-regulated kinase, and inhibition of Ca2+-mediated fusion. These pathways play a crucial role in viral replication. Thus, the major goal of this study is to comprehend the function of various isoquinoline and related alkaloids in viral infections by examining their potential mechanisms of action, structure-activity relationships (SAR), in silico (particularly for SARS-CoV-2), in vitro and in vivo studies. The current advancements in isoquinoline and related alkaloids as discussed in the present review could facilitate an in-depth understanding of their role in the drug discovery process.
Collapse
Affiliation(s)
- Divya Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| | - Neetika Sharma
- Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| | - Namish Manchanda
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| | - Satyendra K. Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Prabodh Chander Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College (SRUC), Kings Buildings, 11 West Mains Road, Edinburgh EH9 3JG, UK
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| | - M. Mukhlesur Rahman
- Pharmaceutical and Natural Products Chemistry, School of Health, Sports and Bioscience, University of East London, Stratford Campus, London E15 4LZ, UK
| | - Mahaveer Dhobi
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Sector-III, Pushp Vihar, New Delhi 110017, India
| |
Collapse
|
28
|
Basnet S, Marahatha R, Shrestha A, Bhattarai S, Katuwal S, Sharma KR, Marasini BP, Dahal SR, Basnyat RC, Patching SG, Parajuli N. In Vitro and In Silico Studies for the Identification of Potent Metabolites of Some High-Altitude Medicinal Plants from Nepal Inhibiting SARS-CoV-2 Spike Protein. Molecules 2022; 27:8957. [PMID: 36558090 PMCID: PMC9786757 DOI: 10.3390/molecules27248957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Despite ongoing vaccination programs against COVID-19 around the world, cases of infection are still rising with new variants. This infers that an effective antiviral drug against COVID-19 is crucial along with vaccinations to decrease cases. A potential target of such antivirals could be the membrane components of the causative pathogen, SARS-CoV-2, for instance spike (S) protein. In our research, we have deployed in vitro screening of crude extracts of seven ethnomedicinal plants against the spike receptor-binding domain (S1-RBD) of SARS-CoV-2 using an enzyme-linked immunosorbent assay (ELISA). Following encouraging in vitro results for Tinospora cordifolia, in silico studies were conducted for the 14 reported antiviral secondary metabolites isolated from T. cordifolia-a species widely cultivated and used as an antiviral drug in the Himalayan country of Nepal-using Genetic Optimization for Ligand Docking (GOLD), Molecular Operating Environment (MOE), and BIOVIA Discovery Studio. The molecular docking and binding energy study revealed that cordifolioside-A had a higher binding affinity and was the most effective in binding to the competitive site of the spike protein. Molecular dynamics (MD) simulation studies using GROMACS 5.4.1 further assayed the interaction between the potent compound and binding sites of the spike protein. It revealed that cordifolioside-A demonstrated better binding affinity and stability, and resulted in a conformational change in S1-RBD, hence hindering the activities of the protein. In addition, ADMET analysis of the secondary metabolites from T. cordifolia revealed promising pharmacokinetic properties. Our study thus recommends that certain secondary metabolites of T. cordifolia are possible medicinal candidates against SARS-CoV-2.
Collapse
Affiliation(s)
- Saroj Basnet
- Center for Drug Design and Molecular Simulation Division, Kathmandu 44600, Nepal
| | - Rishab Marahatha
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal
- Department of Chemistry, Oklahoma State University, Still Water, OK 74078, USA
| | - Asmita Shrestha
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal
| | - Salyan Bhattarai
- Paraza Pharma, Inc., 2525 Avenue Marie-Curie, Montreal, QC H4S 2E1, Canada
| | - Saurav Katuwal
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal
| | - Khaga Raj Sharma
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal
| | | | - Salik Ram Dahal
- Department of Chemistry, Oklahoma State University, Still Water, OK 74078, USA
- Oakridge National Laboratory, Bethel Valley Rd, Oak Ridge, TN 37830, USA
| | - Ram Chandra Basnyat
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal
| | | | - Niranjan Parajuli
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal
| |
Collapse
|
29
|
Atoum MF, Padma KR, Don KR. Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e131577. [PMID: 36915406 PMCID: PMC10007998 DOI: 10.5812/ijpr-131577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/23/2022] [Accepted: 12/17/2022] [Indexed: 01/22/2023]
Abstract
CONTEXT The whole universe is facing a coronavirus catastrophe, and prompt treatment for the health crisis is primarily significant. The primary way to improve health conditions in this battle is to boost our immunity and alter our diet patterns. A common bulb veggie used to flavor cuisine is garlic. Compounds in the plant that are physiologically active are present, contributing to its pharmacological characteristics. Among several food items with nutritional value and immunity improvement, garlic stood predominant and more resourceful natural antibiotic with a broad spectrum of antiviral potency against diverse viruses. However, earlier reports have depicted its efficacy in the treatment of a variety of viral illnesses. Nonetheless, there is no information on its antiviral activities and underlying molecular mechanisms. OBJECTIVES The bioactive compounds in garlic include organosulfur (allicin and alliin) and flavonoid (quercetin) compounds. These compounds have shown immunomodulatory effects and inhibited attachment of coronavirus to the angiotensin-converting enzyme 2 (ACE2) receptor and the Mpro of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Further, we have discussed the contradictory impacts of garlic used as a preventive measure against the novel coronavirus. METHOD The GC/MS analysis revealed 18 active chemicals, including 17 organosulfur compounds in garlic. Using the molecular docking technique, we report for the first time the inhibitory effect of the under-consideration compounds on the host receptor ACE2 protein in the human body, providing a crucial foundation for understanding individual compound coronavirus resistance on the main protease protein of SARS-CoV-2. Allyl disulfide and allyl trisulfide, which make up the majority of the compounds in garlic, exhibit the most potent activity. RESULTS Conventional medicine has proven its efficiency from ancient times. Currently, our article's prime spotlight was on the activity of Allium sativum on the relegation of viral load and further highlighted artificial intelligence technology to study the attachment of the allicin compound to the SARS-CoV-2 receptor to reveal its efficacy. CONCLUSIONS The COVID-19 pandemic has triggered interest among researchers to conduct future research on molecular docking with clinical trials before releasing salutary remedies against the deadly malady.
Collapse
Affiliation(s)
- Manar Fayiz Atoum
- Faculty of Applied Health Sciences, Hashemite University, Zarqa, Jordan
| | - Kanchi Ravi Padma
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam (Women’s) University, Tirupati, India
| | - Kanchi Ravi Don
- Department of Oral Pathology and Microbiology, Bharath Institute of Higher Education and Research, Sree Balaji Dental College and Hospital, Chennai, India
| |
Collapse
|
30
|
Elsebai MF, Albalawi MA. Essential Oils and COVID-19. Molecules 2022; 27:molecules27227893. [PMID: 36431995 PMCID: PMC9696513 DOI: 10.3390/molecules27227893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Herbal products are a major source of herbal medicines and other medicines. Essential oils have shown various pharmacological activities, such as antiviral activity, and therefore are proposed to have potential activity against SARS-CoV-2. Due to their lipophilicity, essential oils can easily penetrate the viral membrane and cause the viral membrane to rupture. In addition, crude essential oils usually have many active constituents that can act on different parts of the virus including its cell entry, translation, transcription, and assembly. They have further beneficial pharmacological effects on the host's respiratory system, including anti-inflammatory, immune regulation, bronchiectasis, and mucolytics. This review reported potential essential oils which could be promising drugs for COVID-19 eradication. Essential oils have many advantages because they are promising volatile antiviral molecules, making them potential drug targets for the prevention and treatment of COVID-19, whether used alone or in combination with other chemotherapeutic drugs. The aim of the current review is to shed light on the potential essential oils against enveloped viruses and their proposed activity against SARS-CoV-2 which is also an enveloped virus. The objectives were to present all data reflecting the promising activities of diverse essential oils against enveloped viruses and how they could contribute to the eradication of COVID disease, especially in indoor places. The data collected for the current review were obtained through the SciFinder database, Google scholar, PubMed, and Mendeley database. The data of the current review focused on the most common essential oils which are available in the pharmaceutical market and showed noticeable activities against enveloped viruses such as HSV and influenza.
Collapse
Affiliation(s)
- Mahmoud Fahmi Elsebai
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence: or ; Tel.: +20-1557290900; Fax: +20-50-2247496
| | | |
Collapse
|
31
|
Bijelić K, Hitl M, Kladar N. Phytochemicals in the Prevention and Treatment of SARS-CoV-2-Clinical Evidence. Antibiotics (Basel) 2022; 11:1614. [PMID: 36421257 PMCID: PMC9686831 DOI: 10.3390/antibiotics11111614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The first case of SARS-CoV-2 infection was reported in December 2019. Due to the rapid spread of the disease and the lack of adequate therapy, the use of plants that have a long history in the treatment of viral infections has often been considered. The aim of this paper is to provide a brief review of the literature on the use of phytochemicals during the new pandemic. An extensive search of published works was performed through platforms Google Scholar, PubMed, Science Direct, Web of Science and Clinicaltrials.gov. Numerous preclinical studies on the use of phytochemicals (quercetin, curcumin, baicalin, kaempferol, resveratrol, glycyrrhizin, lycorine, colchicine) against SARS-CoV-2 have shown that these components can be effective in the prevention and treatment of this infection. Clinical research has proven that the use of black cumin and green propolis as well as quercetin has positive effects. As for other phytochemicals, in addition to preclinical testing which has already been carried out, it would be necessary to conduct clinical tests in order to assert their effectiveness. For those phytochemicals whose clinical efficacy has been proven, it would be necessary to conduct research on a larger number of patients, so that the conclusions are more representative.
Collapse
Affiliation(s)
- Katarina Bijelić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Maja Hitl
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Nebojša Kladar
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Center for Medical and Pharmaceutical Investigation and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
32
|
Joshi C, Chaudhari A, Joshi C, Joshi M, Bagatharia S. Repurposing of the herbal formulations: molecular docking and molecular dynamics simulation studies to validate the efficacy of phytocompounds against SARS-CoV-2 proteins. J Biomol Struct Dyn 2022; 40:8405-8419. [PMID: 33988079 PMCID: PMC8127611 DOI: 10.1080/07391102.2021.1922095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/26/2021] [Indexed: 12/15/2022]
Abstract
Herbal formulations mentioned in traditional medicinal texts were investigated for in silico effect against SARS-COV-2 proteins involved in various functions of a virus such as attachment, entry, replication, transcription, etc. To repurpose and validate polyherbal formulations, molecular docking was performed to study the interactions of more than 150 compounds from various formulations against the SARS-CoV-2 proteins. Molecular dynamics (MD) simulation was performed to evaluate the interaction of top scored ligands with the various receptor proteins. The docking results showed that Liquiritic acid, Liquorice acid, Terchebulin, Glabrolide, Casuarinin, Corilagin, Chebulagic acid, Neochebulinic acid, Daturataturin A, and Taraxerol were effective against SARS-COV-2 proteins with higher binding affinities with different proteins. Results of MD simulations validated the stability of ligands from potent formulations with various receptors of SARS-CoV-2. Binding free energy analysis suggested the favourable interactions of phytocompounds with the recpetors. Besides, in silico comparison of the various formulations determined that Pathyadi kwath, Sanjeevani vati, Yashtimadhu, Tribhuvan Keeratiras, and Septillin were more effective than Samshamni vati, AYUSH-64, and Trikatu. Polyherbal formulations having anti-COVID-19 potential can be used for the treatment with adequate monitoring. New formulations may also be developed for systematic trials based on ranking from these studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Chinmayi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Armi Chaudhari
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre, Gandhinagar, Gujarat, India
| | | |
Collapse
|
33
|
Palanisamy K, Maiyelvaganan KR, Kamalakannan S, Thilagavathi R, Selvam C, Prakash M. In silico screening of potential antiviral inhibitors against SARS-CoV-2 main protease. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2136392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Kandhan Palanisamy
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| | - K. Rudharachari Maiyelvaganan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| | - Shanmugasundaram Kamalakannan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Chelliah Selvam
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, USA
| | - Muthuramalingam Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
34
|
Simo Nemg FB, De S, Keshry SS, Mamidi P, Njayou FN, Demanou M, Moundipa Fewou P, Chattopadhyay S. Plants extracts from Cameroon pharmacopeia strongly inhibit the Chikungunya virus infection by targeting entry and replication steps. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115458. [PMID: 35728708 DOI: 10.1016/j.jep.2022.115458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cameroon is one of the sub-Saharan African countries affected by Chikungunya virus (CHIKV). With the absence of approved treatment, this disease represents globally a major public health concern. Several plants are traditionally used in Cameroon for the treatment of virus induced fever and arthralgia. But to date there is no study that validate the efficacy of these plants for the treatment of Chikungunya virus infection. AIM OF THE STUDY This study aims to explore the inhition effect, mechanism of action of plant extracts against Chikungunya virus. MATERIAL AND METHODS An ethnobotanical survey conducted in some regions of Cameroon, led to the identification of nine medicinal plants used in traditional medicine for the healing of fever-related diseases and arthritis. Crude hydro-ethanolic extracts of each plant were prepared by maceration and their effects against CHIKV infection were investigated. CHIKV S27 strain was used to infection in Vero cell line. The antiviral activities were determined by plaque assay and/or RT-PCR targeting E1 envelope gene of CHIKV. Dose-response studies of the active plants were also determined by flow cytometry and Western blot. RESULTS Four extracts, Entada africana Guill et Pers. (E4), Entandrophragma cylindricum Sprague (EI), Khaya grandifoliola C. D.C. Sapindales (E2) and Macaranga hurifolia Beille (E6) showed antiviral activity with the half-maximal inhibitory concentration of 8.29; 8.14; 12.81 and 26.89 μg/mL respectively. All extracts were nontoxic up to the concentration of 100 μg/μL. Entandrophragma cylindricum Sprague (EI), Khaya grandifoliola C. D.C. Sapindales (E2), and Entada africana Guill et Pers. (E4) showed strong inhibition on the entry step of viral infection. At the same time, only Entandrophragma cylindricum Sprague (EI) inhibited the viral titer significantly in replication and intercellular assembly steps. Four plant extracts namely Entandrophragma cylindricum Sprague (EI), Macaranga hurifolia Beille (E6), Phragmentera capitata (Sprengel) Balle (E12), and Detarium microcarpum (E13) were effective against egression step. CONCLUSIONS Together, the results of this study showed anti-chikungunya activities of Entandrophragma cylindricum Sprague (EI) and Macaranga hurifolia Beille (E6), with therapeutics perspectives and can be promising sources of the development of anti-CHIKV molecule in future.
Collapse
Affiliation(s)
- Fredy Brice Simo Nemg
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, University of Yaoundé 1, PO.BOX: 812, Yaounde, Cameroon; Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, 751023, Bhubaneswar, Odisha, India.
| | - Saikat De
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, 751023, Bhubaneswar, Odisha, India.
| | - Supriya Suman Keshry
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, 751023, Bhubaneswar, Odisha, India.
| | - Prabhudutta Mamidi
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, 751023, Bhubaneswar, Odisha, India.
| | - Frederic Nico Njayou
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, University of Yaoundé 1, PO.BOX: 812, Yaounde, Cameroon.
| | - Maurice Demanou
- Yellow Fever Regional Laboratory Coordinator, WHO IST West Africa, 158 Avenue de L'indépendance, 03 BP 7019, Ouagadougou, Burkina Faso.
| | - Paul Moundipa Fewou
- Laboratory of Pharmacology and Toxicology, Department of Biochemistry, University of Yaoundé 1, PO.BOX: 812, Yaounde, Cameroon.
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Chandrasekharpur, 751023, Bhubaneswar, Odisha, India.
| |
Collapse
|
35
|
Kashyap P, Thakur M, Singh N, Shikha D, Kumar S, Baniwal P, Yadav YS, Sharma M, Sridhar K, Inbaraj BS. In Silico Evaluation of Natural Flavonoids as a Potential Inhibitor of Coronavirus Disease. Molecules 2022; 27:molecules27196374. [PMID: 36234910 PMCID: PMC9572657 DOI: 10.3390/molecules27196374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 01/08/2023] Open
Abstract
The recent coronavirus disease (COVID-19) outbreak in Wuhan, China, has led to millions of infections and the death of approximately one million people. No targeted therapeutics are currently available, and only a few efficient treatment options are accessible. Many researchers are investigating active compounds from natural plant sources that may inhibit COVID-19 proliferation. Flavonoids are generally present in our diet, as well as traditional medicines and are effective against various diseases. Thus, here, we reviewed the potential of flavonoids against crucial proteins involved in the coronavirus infectious cycle. The fundamentals of coronaviruses, the structures of SARS-CoV-2, and the mechanism of its entry into the host’s body have also been discussed. In silico studies have been successfully employed to study the interaction of flavonoids against COVID-19 Mpro, spike protein PLpro, and other interactive sites for its possible inhibition. Recent studies showed that many flavonoids such as hesperidin, amentoflavone, rutin, diosmin, apiin, and many other flavonoids have a higher affinity with Mpro and lower binding energy than currently used drugs such as hydroxylchloroquine, nelfinavir, ritonavir, and lopinavir. Thus, these compounds can be developed as specific therapeutic agents against COVID-19, but need further in vitro and in vivo studies to validate these compounds and pave the way for drug discovery.
Collapse
Affiliation(s)
- Piyush Kashyap
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144401, India
| | - Mamta Thakur
- Department of Food Technology, School of Sciences, ITM University, Gwalior 474001, India
| | - Nidhi Singh
- Centre of Bioinformatics, University of Allahabad, Prayraj 211002, India
| | - Deep Shikha
- Department of Food Technology, Bhai Gurdas Institute of Engineering and Technology, Sangrur 148001, India
| | - Shiv Kumar
- MMICT & BM (HM), Maharishi Markandeshwar Deemed to be University, Mullana, Ambala 133207, India
- Correspondence: (S.K.); or (K.S.); or (B.S.I.)
| | - Poonam Baniwal
- Department of Quality Control, Food Corporation of India, New Delhi 110001, India
| | - Yogender Singh Yadav
- Department of Dairy Engineering, College of Dairy Science and Technology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar 125004, India
| | - Minaxi Sharma
- Laboratoire de Chimieverte et Produits Biobasés, Département AgroBioscience et Chimie, Haute Ecole Provinciale du Hainaut-Condorcet, 11, 7800 ATH Rue de la Sucrerie, Belgium
| | - Kandi Sridhar
- UMR1253, Science et Technologie du Lait et de l’œuf, INRAE, L’InstitutAgro, Rennes-Angers, 65 Rue de Saint Brieuc, F-35042 Rennes, France
- Correspondence: (S.K.); or (K.S.); or (B.S.I.)
| | - Baskaran Stephen Inbaraj
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242 05, Taiwan
- Correspondence: (S.K.); or (K.S.); or (B.S.I.)
| |
Collapse
|
36
|
Pareek A, Kumar R, Mudgal R, Neetu N, Sharma M, Kumar P, Tomar S. Alphavirus antivirals targeting RNA‐dependent RNA polymerase domain of nsP4 divulged using surface plasmon resonance. FEBS J 2022; 289:4901-4924. [DOI: 10.1111/febs.16397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/13/2022] [Accepted: 02/11/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Akshay Pareek
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Ravi Kumar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Rajat Mudgal
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Neetu Neetu
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Monica Sharma
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| |
Collapse
|
37
|
Yadav P, El-Kafrawy SA, El-Day MM, Alghafari WT, Faizo AA, Jha SK, Dwivedi VD, Azhar EI. Discovery of Small Molecules from Echinacea angustifolia Targeting RNA-Dependent RNA Polymerase of Japanese Encephalitis Virus. Life (Basel) 2022; 12:life12070952. [PMID: 35888042 PMCID: PMC9324244 DOI: 10.3390/life12070952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 05/28/2023] Open
Abstract
The Japanese encephalitis virus (JEV), a mosquito-borne flavivirus that causes viral encephalitis leading to neural damage, is a major threat in most Asian countries. The RNA-dependent RNA polymerase (RdRp) present in the viral genome is the key component for genome replication, making it an attractive target for antiviral drug development. In this study, the natural products from Echinacea angustifolia were retrieved for structure-based virtual screening against JEV-RdRp. The top six compounds (Echinacoside, Echinacin, Rutin, Cynaroside, Quercetagetin 7-glucoside, and Kaempferol-3-glucoside) were obtained based on the highest negative docking score, ADMET (absorption, distribution, metabolism, excretion, and toxicity), and molecular interaction. The computational analysis of these selected compounds against the co-crystallized ligands, i.e., ATP and GTP, were performed. Further, 100 ns molecular dynamic simulation and post-free binding energy calculation of all the selected compounds complexed with JEV-RdRP were performed to check the stability of the complexes. The obtained results showed considerable stability and intermolecular interaction with native ligand-binding site residues of JEV-RdRp. Hence, selected natural compounds are admissible inhibitors of JEV-RdRp protein and can be considered for future antiviral drug development studies.
Collapse
Affiliation(s)
- Pardeep Yadav
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India; (P.Y.); (S.K.J.)
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida 201308, India
| | - Sherif A. El-Kafrawy
- Special Infectious Agents Unit-BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (S.A.E.-K.); (M.M.E.-D.); (W.T.A.); (A.A.F.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Mai M. El-Day
- Special Infectious Agents Unit-BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (S.A.E.-K.); (M.M.E.-D.); (W.T.A.); (A.A.F.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Wejdan T. Alghafari
- Special Infectious Agents Unit-BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (S.A.E.-K.); (M.M.E.-D.); (W.T.A.); (A.A.F.)
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Arwa A. Faizo
- Special Infectious Agents Unit-BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (S.A.E.-K.); (M.M.E.-D.); (W.T.A.); (A.A.F.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida 201310, India; (P.Y.); (S.K.J.)
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida 201308, India
- Institute of Advanced Materials, IAAM, 59053 Ulrika, Sweden
| | - Esam I. Azhar
- Special Infectious Agents Unit-BSL-3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia; (S.A.E.-K.); (M.M.E.-D.); (W.T.A.); (A.A.F.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| |
Collapse
|
38
|
Identification of causal agent of wilt of common sage ( Salvia officinalis L.). HERBA POLONICA 2022. [DOI: 10.2478/hepo-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Summary
Introduction: Common sage is cultivated in Europe and North America. It has strong antiviral, antibacterial and antifungal properties. This plant can be infected by different pathogenic fungi species, such as Alternaria alternata, Fusarium spp. (F. culmorum, F. equiseti, F. oxysporum), Phomopsis sclarea and Botrytis cinerea. Those species are the most frequently isolated fungi from sage stem base.
Objective: The aim of this study was to identify the causal agent of common sage wilt disease.
Methods: Studies were carried out in 2018–2020. 23 fungal isolates were identified based on their morphology and with use of PCR technique. Length and width of 100 conidia growing on SNA medium were measured after 7 days. Koch’s postulates were checked and the development of one fungus isolate (no. 13) was compared on seven media: the CMA, MEA, OA, PCA, SNA, PDA and Czapek medium. Sequences of the second largest subunit of RNA polymerase II (RPB2) were used to identify the pathogen.
Results: The fungus formed 3 kinds of spores: thin-walled, hyaline, slightly folded at the base, mostly 4-cell macroconidia, oblong, hyaline one- or two-cell microconidia and oval thick-walled chlamydospores. The Koch’s postulates were fulfilled. The fungus formed the most abundant aerial mycelium on the Czapek medium, and the least on the CMA medium. On the SNA medium, the mycelium grew into the medium and the aerial mycelium was not formed. The obtained RPB2 nucleotide sequence was 100% similar to the Fusarium oxysporum sequence deposited in GenBank (NCBI).
Conclusions: The results of this research can be used in further studies on the biological diversity of this species.
Collapse
|
39
|
Popoola TD, Segun PA, Ekuadzi E, Dickson RA, Awotona OR, Nahar L, Sarker SD, Fatokun AA. West African medicinal plants and their constituent compounds as treatments for viral infections, including SARS-CoV-2/COVID-19. Daru 2022; 30:191-210. [PMID: 35476297 PMCID: PMC9043090 DOI: 10.1007/s40199-022-00437-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The recent emergence of the COVID-19 pandemic (caused by SARS-CoV-2) and the experience of its unprecedented alarming toll on humanity have shone a fresh spotlight on the weakness of global preparedness for pandemics, significant health inequalities, and the fragility of healthcare systems in certain regions of the world. It is imperative to identify effective drug treatments for COVID-19. Therefore, the objective of this review is to present a unique and contextualised collection of antiviral natural plants or remedies from the West African sub-region as existing or potential treatments for viral infections, including COVID-19, with emphasis on their mechanisms of action. EVIDENCE ACQUISITION Evidence was synthesised from the literature using appropriate keywords as search terms within scientific databases such as Scopus, PubMed, Web of Science and Google Scholar. RESULTS While some vaccines and small-molecule drugs are now available to combat COVID-19, access to these therapeutic entities in many countries is still quite limited. In addition, significant aspects of the symptomatology, pathophysiology and long-term prognosis of the infection yet remain unknown. The existing therapeutic armamentarium, therefore, requires significant expansion. There is evidence that natural products with antiviral effects have been used in successfully managing COVID-19 symptoms and could be developed as anti-COVID-19 agents which act through host- and virus-based molecular targets. CONCLUSION Natural products could be successfully exploited for treating viral infections/diseases, including COVID-19. Strengthening natural products research capacity in developing countries is, therefore, a key strategy for reducing health inequalities, improving global health, and enhancing preparedness for future pandemics.
Collapse
Affiliation(s)
- Temidayo D Popoola
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Peter A Segun
- Department of Pharmacognosy, Faculty of Pharmacy, Olabisi Onabanjo University, Ogun State, Sagamu Campus, Nigeria
| | - Edmund Ekuadzi
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Rita A Dickson
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Olanrewaju R Awotona
- Department of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, Legacy University, No. 55, Kairaba Avenue, Fajara, Banjul, The Gambia
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany, ASCR & Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Satyajit D Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
| | - Amos A Fatokun
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK.
| |
Collapse
|
40
|
Abdelgawad SM, Hassab MAE, Abourehab MAS, Elkaeed EB, Eldehna WM. Olive Leaves as a Potential Phytotherapy in the Treatment of COVID-19 Disease; A Mini-Review. Front Pharmacol 2022; 13:879118. [PMID: 35496299 PMCID: PMC9045134 DOI: 10.3389/fphar.2022.879118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/09/2022] [Indexed: 12/23/2022] Open
Abstract
Beginning from December 2019, widespread COVID-19 has caused huge financial misfortunes and exceptional wellbeing emergencies across the globe. Discovering an effective and safe drug candidate for the treatment of COVID-19 and its associated symptoms became an urgent global demand, especially due to restricted information that has been discharged with respect to vaccine efficacy and safety in humans. Reviewing the recent research, olive leaves were selected as a potential co-therapy supplement for the treatment and improvement of clinical manifestations in COVID-19 patients. Olive leaves were reported to be rich in phenolic compounds such as oleuropein, hydroxytyrosol, verbascoside, apigenin-7-O-glucoside, and luteolin-7-O-glucoside and also triterpenoids such as maslinic, ursolic, and oleanolic acids that have been reported as anti-SARS-CoV-2 metabolites in recent computational and in vitro studies. In addition, olive leaf extract was previously reported in several in vivo studies for its anti-inflammatory, analgesic, antipyretic, immunomodulatory, and antithrombotic activities which are of great benefit in the control of associated inflammatory cytokine storm and disseminated intravascular coagulation in COVID-19 patients. In conclusion, the described biological activities of olive leaves alongside their biosafety, availability, and low price make them a potential candidate drug or supplement to control COVID-19 infection and are recommended for clinical investigation.
Collapse
Affiliation(s)
- Shimaa M Abdelgawad
- Pharmacognosy Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Wagdy M Eldehna
- School of Biotechnology, Badr University in Cairo, Badr City, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| |
Collapse
|
41
|
Prasetyo WE, Purnomo H, Sadrini M, Wibowo FR, Firdaus M, Kusumaningsih T. Identification of potential bioactive natural compounds from Indonesian medicinal plants against 3-chymotrypsin-like protease (3CL pro) of SARS-CoV-2: molecular docking, ADME/T, molecular dynamic simulations, and DFT analysis. J Biomol Struct Dyn 2022:1-18. [DOI: 10.1080/07391102.2022.2068071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wahyu Eko Prasetyo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Heri Purnomo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Miracle Sadrini
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Fajar Rakhman Wibowo
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Maulidan Firdaus
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| | - Triana Kusumaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Surakarta, Indonesia
| |
Collapse
|
42
|
Abdelrahim M, Esmail A, Al Saadi N, Zsigmond E, Al Najjar E, Bugazia D, Al-Rawi H, Alsaadi A, Kaseb AO. Thymoquinone's Antiviral Effects: It is Time to be Proven in the Covid-19 Pandemic Era and its Omicron Variant Surge. Front Pharmacol 2022; 13:848676. [PMID: 35462919 PMCID: PMC9022724 DOI: 10.3389/fphar.2022.848676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/17/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic has impacted every country in the world. With more than 400 million cases and more than 5.5 million deaths. The FDA either approved or authorized the emergency use for three vaccines against COVID-19. The treatment options of COVID-19 are very limited. Multiple complementary and alternative medicine modalities were suggested to be efficacious in the treatment of COVID-19 such as Thymoquinone. The effects of Thymoquinone have been examined and multiple studies indicate a promising beneficial effect. However, the current body of research is limited in terms of its scope, quality, and quantity. While higher-quality studies are required, physicians do not routinely recommend the use of marketed supplements of natural products, including Thymoquinone for COVID-19. Given the numerous suggested positive effects of Thymoquinone, including anti-inflammatory and antimicrobial properties, additional research is required to confirm or refute these promising benefits. Complementary and alternative medicine is an area that requires additional evidence-based practice and research to confirm effects observed in clinical practice.
Collapse
Affiliation(s)
- Maen Abdelrahim
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, United States
- Cockrell Center for Advanced Therapeutic Phase I Program, Houston Methodist Research Institute, Houston, TX, United States
- Weill Cornell Medical College, Institute of Academic Medicine, Houston, TX, United States
| | - Abdullah Esmail
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, United States
- Houston Methodist Research Institute, Houston, TX, United States
- Faculty of Medicine and Health Sciences, University of Science and Technology, Sanaa, Yemen
| | - Noor Al Saadi
- Faculty of Medicine, Xavier University School of Medicine Aruba, Oranjestad, Aruba
| | - Eva Zsigmond
- Houston Methodist Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | - Ebtesam Al Najjar
- Faculty of Medicine and Health Sciences, University of Science and Technology, Sanaa, Yemen
| | - Doaa Bugazia
- Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Hadeel Al-Rawi
- Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Ayat Alsaadi
- Department of Biology and Chemistry, Buffalo State College, Buffalo, NY, United States
| | - Ahmed O. Kaseb
- Department of Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
43
|
Ali S, Alam M, Khatoon F, Fatima U, Elasbali AM, Adnan M, Islam A, Hassan MI, Snoussi M, De Feo V. Natural products can be used in therapeutic management of COVID-19: Probable mechanistic insights. Biomed Pharmacother 2022; 147:112658. [PMID: 35066300 PMCID: PMC8769927 DOI: 10.1016/j.biopha.2022.112658] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The unexpected emergence of the new Coronavirus disease (COVID-19) has affected more than three hundred million individuals and resulted in more than five million deaths worldwide. The ongoing pandemic has underscored the urgent need for effective preventive and therapeutic measures to develop anti-viral therapy. The natural compounds possess various pharmaceutical properties and are reported as effective anti-virals. The interest to develop an anti-viral drug against the novel severe acute respiratory syndrome Coronavirus (SARS-CoV-2) from natural compounds has increased globally. Here, we investigated the anti-viral potential of selected promising natural products. Sources of data for this paper are current literature published in the context of therapeutic uses of phytoconstituents and their mechanism of action published in various reputed peer-reviewed journals. An extensive literature survey was done and data were critically analyzed to get deeper insights into the mechanism of action of a few important phytoconstituents. The consumption of natural products such as thymoquinone, quercetin, caffeic acid, ursolic acid, ellagic acid, vanillin, thymol, and rosmarinic acid could improve our immune response and thus possesses excellent therapeutic potential. This review focuses on the anti-viral functions of various phytoconstituent and alkaloids and their potential therapeutic implications against SARS-CoV-2. Our comprehensive analysis provides mechanistic insights into phytoconstituents to restrain viral infection and provide a better solution through natural, therapeutically active agents.
Collapse
Affiliation(s)
- Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Fatima Khatoon
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, Uttar Pradesh 201303, India
| | - Urooj Fatima
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | | | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, P.O. Box 2440, Hail, Saudi Arabia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, Italy.
| |
Collapse
|
44
|
Roles of traditional medicine and traditional healers for rabies prevention and potential impacts on post-exposure prophylaxis: A literature review. PLoS Negl Trop Dis 2022; 16:e0010087. [PMID: 35051178 PMCID: PMC8775316 DOI: 10.1371/journal.pntd.0010087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction Globally, traditional medicine is widely used to treat a variety of injuries and illnesses, including dog bites, and exposures that are risky for rabies. However, efficacy of most traditional remedies used for rabies prevention or treatment has not been demonstrated in controlled trials or proven in community-based surveys. Methods Six databases were searched including the terms rabies, traditional treatment, traditional remedy, traditional therapy, traditional medicine, and medicinal treatment to review traditional remedies used in the prevention and treatment of rabies. In addition, published literature of rabies transmission dynamics was used to estimate statistical likelihood of dog bite victims developing rabies to provide clarity as to why traditional healers have a high apparent success rate when preventing death from rabies in victims bitten by suspected rabid dogs. Results Literature review yielded 50 articles, including three controlled experiments, that described use of traditional remedies for rabies prevention and treatment. Traditional remedies for rabies ranged from plant- or animal-based products to spiritual rituals; however, only a few controlled mice trials were conducted, and none of these trials demonstrated efficacy in preventing or treating rabies. Risk of dying from rabies after a bite from a dog with unknown rabies status is low, 1.90% (0.05%-29.60%). Therefore, traditional healers had a 98.10% (70.40%-99.95%) apparent success rate in preventing death from suspected rabid dog bites despite inefficaciousness of herbal remedies. Conclusion There was no universal plant species or route of administration that was consistently used for rabies prevention or treatment across countries. No traditional remedy was efficacious in the prevention or treatment of rabies in randomized controlled experiments. Understanding the cultural context under which traditional remedies are used may facilitate collaboration of traditional healers with the modern medical system to ensure timely and appropriate use of proven therapies for prevention and clinical management of rabies. Traditional medicine is commonly used worldwide for a variety of ailments and diseases, including animal bite wound care and pre-clinical rabies prevention. Traditional healers often use herbal-based remedies containing local plants. Other traditional remedies include animal-based or spiritual-based methods. This literature review included plant surveys, controlled mice experiments, and community-based studies concerning rabies prevention provided by traditional healers in multiple countries. There was no consistent remedy used across the published literature, and most importantly, there were no published studies supporting effective traditional medicine methods for use in the prevention or treatment of human rabies. Our review of rabies virus transmission rates show that traditional healers have a high apparent success rate of preventing rabies deaths from dog bites, but there is no scientific or medical basis for this perception. Educating communities about proven, effective rabies prevention through post-exposure prophylaxis while understanding the cultural importance of traditional medicine is needed for promoting effective rabies prevention.
Collapse
|
45
|
Nazar N, Howard C, Slater A, Sgamma T. Challenges in Medicinal and Aromatic Plants DNA Barcoding-Lessons from the Lamiaceae. PLANTS (BASEL, SWITZERLAND) 2022; 11:137. [PMID: 35009140 PMCID: PMC8747715 DOI: 10.3390/plants11010137] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The potential value of DNA barcoding for the identification of medicinal plants and authentication of traded plant materials has been widely recognized; however, a number of challenges remain before DNA methods are fully accepted as an essential quality control method by industry and regulatory authorities. The successes and limitations of conventional DNA barcoding are considered in relation to important members of the Lamiaceae. The mint family (Lamiaceae) contains over one thousand species recorded as having a medicinal use, with many more exploited in food and cosmetics for their aromatic properties. The family is characterized by a diversity of secondary products, most notably the essential oils (EOs) produced in external glandular structures on the aerial parts of the plant that typify well-known plants of the basil (Ocimum), lavender (Lavandula), mint (Mentha), thyme (Thymus), sage (Salvia) and related genera. This complex, species-rich family includes widely cultivated commercial hybrids and endangered wild-harvested traditional medicines, and examples of potential toxic adulterants within the family are explored in detail. The opportunities provided by next generation sequencing technologies to whole plastome barcoding and nuclear genome sequencing are also discussed with relevant examples.
Collapse
Affiliation(s)
- Nazia Nazar
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| | - Caroline Howard
- Tree of Life Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK;
| | - Adrian Slater
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| | - Tiziana Sgamma
- Biomolecular Technology Group, Leicester School of Allied Health Science, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK;
| |
Collapse
|
46
|
Akram M, Egbuna C, Imtiaz A, Ogodo AC, Otekunrin OA, Ifemeje JC, Ezeonyebuchi FN, Archibong IE, Chandra S, Saklani S, Adetunji CO, Patrick-Iwuanyanwu KC, Zedech Uche C. Drug discovery opportunities from traditional practices against SARS-CoV-2. CORONAVIRUS DRUG DISCOVERY 2022:191-205. [DOI: 10.1016/b978-0-323-95574-4.00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
|
47
|
Mehraeen E, Dadras O, Afsahi AM, Karimi A, Pour MM, Mirzapour P, Barzegary A, Behnezhad F, Habibi P, Salehi MA, Vahedi F, Heydari M, Kianzad S, Moradmand-Badie B, Javaherian M, SeyedAlinaghi S, Sabatier JM. Vaccines for COVID-19: A Systematic Review of Feasibility and Effectiveness. Infect Disord Drug Targets 2022; 22:e230921196758. [PMID: 34554905 DOI: 10.2174/1871526521666210923144837] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/01/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Many potential vaccines for COVID-19 are being studied and developed. Several studies have reported on the safety and efficacy of these vaccines. This systematic review aimed to report on the current evidence concerning the feasibility and effectiveness of vaccines for COVID-19. METHODS A systematic search was carried out utilizing the keywords in the online databases, including Scopus, Web of Science, PubMed, Embase, and Cochrane. We included both human and non-human studies because of the vaccine novelty, limiting our ability to include sufficient human studies. RESULTS This review showed several SARS-CoV-2 vaccines to be currently under development using different platforms, including eight vaccines that are adenovirus-based vectors, six vaccines that are RNA-based formulations, one vaccine being DNA-based formulation, and other vaccines using other platforms, including lipid nanoparticles. Although the safety and efficacy profiles of these vaccines are still under debate, some countries have allowed for emergency use of some vaccines in at-risk populations, such as healthcare workers and the elderly. CONCLUSION It is crucial to gather as much clinically relevant evidence as possible regarding the immunogenicity, efficacy, and safety profiles of available vaccines and adhere wisely to CDC protocols and guidelines for vaccine production.
Collapse
Affiliation(s)
- Esmaeil Mehraeen
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Omid Dadras
- The Excellent Center for Dengue and Community Public Helath (EC for DACH), School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Amir Masoud Afsahi
- Department of Radiology, School of Medicine, University of California, San Diego [UCSD], California, USA
| | - Amirali Karimi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrzad Mohsseni Pour
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Pegah Mirzapour
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | | | - Farzane Behnezhad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Pedram Habibi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Salehi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzin Vahedi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Heydari
- Department of Health Information Technology, Khalkhal University of Medical Sciences, Khalkhal, Iran
| | - Shaghayegh Kianzad
- School of Medicine, Iran University of Medical Sciences, Tehran 7134845794, Iran
| | | | - Mohammad Javaherian
- Department of Physiotherapy, Tehran University of Medical Sciences, Tehran, Iran
| | - SeyedAhmad SeyedAlinaghi
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Jean-Marc Sabatier
- Université Aix-Marseille, Institut deNeuro-physiopathologie [INP], UMR 7051, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385Marseille Cedex, France
| |
Collapse
|
48
|
Drug repurposing for SARS-CoV-2 (COVID-19) treatment. CORONAVIRUS DRUG DISCOVERY 2022. [PMCID: PMC9217734 DOI: 10.1016/b978-0-323-85156-5.00027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Drug repurposing involves the process of investigating already existing drugs with an aim to use them for different therapeutic purposes than the intended one. This approach is relatively faster, less costly, and reliable in terms of safety as the drug under study is already derisked and known for its other chemistry and pharmacokinetic properties. With these benefits in mind, it is a very reliable way to undertake drug development for emerging diseases such as COVID-19 which demand immediate interventions to slow or completely stop its havoc on mankind. One of the biggest challenges that drug repurposing has is the possibility of the occurrence of new mechanisms of action between the drug ligand and some proteins in the human physiology. Drug repurposing appears to have settled in the meantime in drug development, though more studies in the future will be warranted particularly in regards to resistance.
Collapse
|
49
|
Therapeutic options in coronavirus treatment. CORONAVIRUS DRUG DISCOVERY 2022. [PMCID: PMC9217689 DOI: 10.1016/b978-0-323-85156-5.00021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This chapter details the various therapeutic options available for the treatment of the novel coronavirus, SARS-CoV-2, that has brought the world to a standstill. As at 3.53 CEST, June 28, 2020, WHO reported 9,843,073 confirmed cases of COVID-19, with a death toll of 495,760. The rate of the spread of this disease is alarming posing serious threat to the world healthcare system. Clinical investigations and research are on the way for the development of vaccines or antiviral drugs. Despite this effort, no medication has been found to be very effective for its treatment. In this chapter, emphasis was laid on the need for repurposing of antiviral drugs to combat COVID-19 along with other alternatives such as convalescent plasma therapy and exploitation of drugs from medicinal plants and other natural resources.
Collapse
|
50
|
Jaiswal V, Chauhan S, Lee HJ. The Bioactivity and Phytochemicals of Pachyrhizus erosus (L.) Urb.: A Multifunctional Underutilized Crop Plant. Antioxidants (Basel) 2021; 11:58. [PMID: 35052562 PMCID: PMC8773301 DOI: 10.3390/antiox11010058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/23/2022] Open
Abstract
Pachyrhizus erosus (L.) Urb. is an underutilized crop plant belonging to the Fabaceae family. In recent years, the plant received huge attention and was introduced in different countries owing to properties such as a high nutritional content, its nitrogen-fixing abilities, and different biological activities such as its antioxidant, immune modulation, anticancer, anti-diabetes, anti-osteoporosis, antiviral, and antiaging affects, among others. In this review, an attempt has been made to comprehensively compile the biological activities of the plant to provide a panoramic view of the current efforts and further directions, which may lead to the development of pharmacological applications. This information will be helpful in creating interest towards P. erosus and it may be useful in developing the plant for medical applications and/or as a functional food. More than 50 phytochemicals have been reported from the plant, which belong to different chemical classes such as triterpenoids, organic acid, flavonoids, and fatty acids. Numerous biological activities were reported from the plant through in vivo, in vitro, ex vivo, and human studies. However, well-defined clinical studies are still lacking for the establishment of any biological properties that could be further developed. Suggestions for the further development of P. erosus, according to current knowledge about the different biological properties, has also been provided.
Collapse
Affiliation(s)
- Varun Jaiswal
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si 13120, Korea; (V.J.); (S.C.)
| | - Shweta Chauhan
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si 13120, Korea; (V.J.); (S.C.)
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam-si 13120, Korea; (V.J.); (S.C.)
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|