1
|
Chen Y, Zhang C, Feng Y. Medicinal plants for the management of post-COVID-19 fatigue: A literature review on the role and mechanisms. J Tradit Complement Med 2025; 15:15-23. [PMID: 39807273 PMCID: PMC11725095 DOI: 10.1016/j.jtcme.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 01/16/2025] Open
Abstract
Background COVID-19 infection has a lasting impact on human health, which is known as post-COVID-19 conditions. Fatigue is one of the most commonly reported post-COVID-19 conditions. Management of fatigue in the post-COVID-19 era is necessary and emerging. The use of medicinal plants may provide a strategy for the management of post-COVID-19 fatigue. Methods A literature search has been conducted by using PubMed, Embase and Cochrane library databases is performed for studies published up to March 2024. Keywords, such as "post-COVID-19 conditions, persistent COVID-19 symptoms, chronic COVID-19, long-term sequelae, fatigue, post-COVID-19 fatigue, herbal plants, medicinal herbs, traditional Chinese medicine, pharmacological mechanisms, pharmacological actions" are thoroughly searched in Englsih and Chinese. This study reviews the pathophysiology of post-COVID-19 fatigue and potential herbal plants for managing post-COVID-19 fatigue. Results and conclusion Representative medicinal plants that have been extensively investigated by previous studies are presented in the study. Three common mechanisms among the most extensively studied for post-COVID-19 fatigue, with each mechanism having medicinal plants as an example. The latest clinical studies concerning the management of post-COVID-19 fatigue using medicinal plants have also been summarized. The study shows the potential for improving post-COVID-19 fatigue by consuming medicinal plants.
Collapse
Affiliation(s)
- Yuanyuan Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
2
|
Apaza-Ticona L, Beltrán M, Moraga E, Cossio D, Bermejo P, Guerra JA, Alcamí J, Bedoya LM. Maca (Lepidium meyenii Walp.) inhibits HIV-1 infection through the activity of thiadiazole alkaloids in viral integration. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118613. [PMID: 39047879 DOI: 10.1016/j.jep.2024.118613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Lepidium meyenii Walp. (maca) has been traditionally used for centuries in the Central Andes region both as food and as medicine. In the last decades, its fertility enhancer properties have gained importance, with the majority of the scientific literature related to this topic. However, other traditional uses are less known as metabolic or infectious diseases. AIM OF THE STUDY The main purpose of this study is to investigate the anti-infectious activity of L. meyenii, specifically in HIV-1 infection. There are previous reports of the transcriptional related activity of L. meyenii extracts in human T lymphocytes via transcription factors as NF-κB. Since T lymphocytes are the main target of HIV-1 infection and NF-κB is strongly involved in HIV-1 transcription, L. meyenii could display antiviral activity. MATERIAL AND METHODS Chromatography and spectroscopy techniques were used to isolate and identify the compounds in the active extracts. An antiviral assay system based on recombinant viruses was used to evaluate the anti-HIV activity. Cell toxicity was tested for all the extracts and compounds. Viral entry was studied using VSV-HIV chimera viruses and reverse transcription and viral integration were studied by qPCR of viral DNA in infected cells. Finally, viral transcription was studied in primary lymphocytes transfected with HIV-1 or NF-κB luciferase reporter plasmids. RESULTS n-Hexane extracts of purple maca displayed anti-HIV activity in an in vitro assay. A bioassay-guided fractionation led to the identification of three thiadiazole alkaloids with antiviral activity. All the compounds were able to inhibit HIV infection of MT-2 cell lines and primary lymphocytes (PBMCs) with IC50 values in the low micromolar range. The mechanism of action differs between the three compounds: one of them showed activity on viral entry, and all the three compounds inhibited viral integration at low concentrations. Remarkably, none of the compounds inhibited reverse transcription or viral transcription. CONCLUSIONS n-Hexane extracts of the purple ecotype of L. meyenii inhibit HIV-1 infection in vitro and three active thiadiazole alkaloids were isolated acting mainly on viral integration and viral entry.
Collapse
Affiliation(s)
- Luis Apaza-Ticona
- Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Manuela Beltrán
- AIDS Immunopathology Department, National Centre of Microbiology, Carlos III Health Institute, Ctra. Pozuelo Km. 2, 28224, Madrid, Spain.
| | - Elisa Moraga
- HIV Unit, Hospital Clínic-IDIBAPS, University of Barcelona, c/ Rosselló, 149-153, 08036, Barcelona, Spain.
| | - David Cossio
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Paulina Bermejo
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - José A Guerra
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - José Alcamí
- AIDS Immunopathology Department, National Centre of Microbiology, Carlos III Health Institute, Ctra. Pozuelo Km. 2, 28224, Madrid, Spain.
| | - Luis M Bedoya
- AIDS Immunopathology Department, National Centre of Microbiology, Carlos III Health Institute, Ctra. Pozuelo Km. 2, 28224, Madrid, Spain; Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| |
Collapse
|
3
|
Wu ZW, Peng XR, Liu XC, Wen L, Tao XY, Al-Romaima A, Wu MY, Qiu MH. The structures of two polysaccharides from Lepidium meyenii and their immunomodulatory effects via activating NF-κB signaling pathway. Int J Biol Macromol 2024; 269:131761. [PMID: 38663705 DOI: 10.1016/j.ijbiomac.2024.131761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/12/2024] [Accepted: 04/20/2024] [Indexed: 05/09/2024]
Abstract
Lepidium meyenii Walp., also known as the "Peruvian national treasure", is a popular functional food in the daily lives of Peruvian people due to its bioactive with main polysaccharides. However, studies on polysaccharides isolated from Lepidium meyenii were few. Two new highly heterogeneous polysaccharides, MCP-1a and MCP-2b, were isolated and purified from the tuber of Lepidium meyenii. The structure characterization revealed that MCP-1a primarily consisted of D-Glc and had a molecular weight of 6.6 kDa. Its backbone was composed of 1,4,6-α-D-Glc, while branches feature T-α-L-Ara, 1,5-α-L-Ara, and T-α-D-Glc attached to the O-6 positions. MCP-2b was a rare arabinogalactan with a molecular weight of 49.4 kDa. Interestingly, the backbone of MCP-2b was composed of 1,6-β-D-Gal, 1,3,6-β-D-Gal with a few 1,3-β-D-GlcpA-4-OMe units inserted. Side chains of MCP-2b were mainly composed of 1,3-β-D-Gal, T-β-D-Gal, T-α-L-Ara, 1,5-α-L-Ara, with trace amounts of 1,4-β-D-Glc and T-β-D-Glc. The bioactivity assay results revealed that MCP-1a and MCP-2b increased the release of NO, IL-1β, TNF-α, and IL-6 from RAW 264.7 cells at concentrations ranging from 50 μg/mL to 400 μg/mL. Furthermore, MCP-1a and MCP-2b could promote the expression of key transcription factors (IκB-α, p-IκB-α, p65, and p-p65) in the NF-κB pathway, indicating that MCP-1a and MCP-2b had potential immunomodulatory activities.
Collapse
Affiliation(s)
- Zhou-Wei Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiao-Cui Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Luan Wen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xin-Yu Tao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Abdulbaset Al-Romaima
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming-Yi Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
4
|
Pintão AM, Santos T, Nogueira F. Antimalarial Activity of Aqueous Extracts of Nasturtium ( Tropaeolum majus L.) and Benzyl Isothiocyanate. Molecules 2024; 29:2316. [PMID: 38792178 PMCID: PMC11124403 DOI: 10.3390/molecules29102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Malaria remains an important and challenging infectious disease, and novel antimalarials are required. Benzyl isothiocyanate (BITC), the main breakdown product of benzyl glucosinolate, is present in all parts of Tropaeolum majus L. (T. majus) and has antibacterial and antiparasitic activities. To our knowledge, there is no information on the effects of BITC against malaria. The present study evaluates the antimalarial activity of aqueous extracts of BITC and T. majus seeds, leaves, and stems. We used flow cytometry to calculate the growth inhibition (GI) percentage of the extracts and BITC against unsynchronized cultures of the chloroquine-susceptible Plasmodium falciparum 3D7 - GFP strain. Extracts and/or compounds with at least 70% GI were validated by IC50 estimation against P. falciparum 3D7 - GFP and Dd2 (chloroquine-resistant strain) unsynchronized cultures by flow cytometry, and the resistance index (RI) was determined. T. majus aqueous extracts showed some antimalarial activity that was higher in seeds than in leaves or stems. BITC's GI was comparable to chloroquine's. BITC's IC50 was similar in both strains; thus, a cross-resistance absence with aminoquinolines was found (RI < 1). BITC presented features that could open new avenues for malaria drug discovery.
Collapse
Affiliation(s)
- Ana Maria Pintão
- Egas Moniz School of Health & Science, University Campus, Quinta da Granja Monte da Caparica, 2829-511 Caparica, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, University Campus, Quinta da Granja Monte da Caparica, 2829-511 Caparica, Portugal
| | - Tiago Santos
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (T.S.); (F.N.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Fátima Nogueira
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal; (T.S.); (F.N.)
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
- LAQV-REQUIMTE, MolSyn, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| |
Collapse
|
5
|
Le NTH, Foubert K, Theunis M, Naessens T, Bozdag M, Van Der Veken P, Pieters L, Tuenter E. UPLC-TQD-MS/MS Method Validation for Quality Control of Alkaloid Content in Lepidium meyenii (Maca)-Containing Food and Dietary Supplements. ACS OMEGA 2024; 9:15971-15981. [PMID: 38617670 PMCID: PMC11007719 DOI: 10.1021/acsomega.3c09356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 04/16/2024]
Abstract
Lepidium meyenii Walp. (Brassicaceae), also known as Maca or Peruvian ginseng, is a common ingredient in food supplements with many claimed health benefits, such as improved endurance, increased energy level, and enhanced sexual properties. Due to potential toxicity of its chemicals, including alkaloids, some regulatory authorities, e.g., in Belgium, Germany, the United States, expressed concerns about the safe consumption of Maca root. However, due to the lack of commercial standards, no established analytical method currently exists for this purpose. The current project focuses on the quantitative determination of potentially toxic alkaloids from Maca. The current study presents the first analytical method for quality control of alkaloid content in Maca-containing food and dietary supplements, assessing the presence of 11 major compounds belonging to three different classes, i.e., imidazole, β-carboline, and pyrrole alkaloids. An accurate, rapid, and sensitive UPLC-TQD-MS/MS method is reported, which was fully validated according to the International Council for Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) and SANTE/11312/2021 guidelines. To ensure the method's applicability and practicability in the absence of primary standards, validation of secondary standards (SSs) alongside primary standards (PSs) was also conducted for imidazole alkaloids. As a result, in Maca raw powder, total alkaloid content was found to vary from 418 to 554 ppm (mg/kg). Furthermore, all quantified imidazole alkaloids were ascertained to be the major alkaloids with the total content from 323 to 470 ppm in Maca raw powder, followed by the β-carboline and pyrrole alkaloids. It was also observed that the commercial preparation of finished products affects the total alkaloid content, evidenced by the large variation from 56 to 598 ppm. Ultimately, from a regulatory point of view, it seems advisible not to request the complete absence of the alkaloids but to impose a maximum level based on safety considerations. In addition to the analytical method, a low-cost, simple, and scalable synthetic scheme of macapyrrolins A, C, and G was reported for the first time.
Collapse
Affiliation(s)
- Ngoc-Thao-Hien Le
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Kenn Foubert
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Mart Theunis
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Tania Naessens
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Murat Bozdag
- Laboratory
of Medicinal Chemistry, Department of Pharmaceutical Sciences, University
of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Pieter Van Der Veken
- Laboratory
of Medicinal Chemistry, Department of Pharmaceutical Sciences, University
of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Luc Pieters
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| | - Emmy Tuenter
- Natural
Products & Food Research and Analysis - Pharmaceutical Technology
(NatuRAPT), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp 2610, Belgium
| |
Collapse
|
6
|
Ulloa del Carpio N, Alvarado-Corella D, Quiñones-Laveriano DM, Araya-Sibaja A, Vega-Baudrit J, Monagas-Juan M, Navarro-Hoyos M, Villar-López M. Exploring the chemical and pharmacological variability of Lepidium meyenii: a comprehensive review of the effects of maca. Front Pharmacol 2024; 15:1360422. [PMID: 38440178 PMCID: PMC10910417 DOI: 10.3389/fphar.2024.1360422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Maca (Lepidium meyenii), a biennial herbaceous plant indigenous to the Andes Mountains, has a rich history of traditional use for its purported health benefits. Maca's chemical composition varies due to ecotypes, growth conditions, and post-harvest processing, contributing to its intricate phytochemical profile, including, macamides, macaenes, and glucosinolates, among other components. This review provides an in-depth revision and analysis of Maca's diverse bioactive metabolites, focusing on the pharmacological properties registered in pre-clinical and clinical studies. Maca is generally safe, with rare adverse effects, supported by preclinical studies revealing low toxicity and good human tolerance. Preclinical investigations highlight the benefits attributed to Maca compounds, including neuroprotection, anti-inflammatory properties, immunoregulation, and antioxidant effects. Maca has also shown potential for enhancing fertility, combating fatigue, and exhibiting potential antitumor properties. Maca's versatility extends to metabolic regulation, gastrointestinal health, cardio protection, antihypertensive activity, photoprotection, muscle growth, hepatoprotection, proangiogenic effects, antithrombotic properties, and antiallergic activity. Clinical studies, primarily focused on sexual health, indicate improved sexual desire, erectile function, and subjective wellbeing in men. Maca also shows promise in alleviating menopausal symptoms in women and enhancing physical performance. Further research is essential to uncover the mechanisms and clinical applications of Maca's unique bioactive metabolites, solidifying its place as a subject of growing scientific interest.
Collapse
Affiliation(s)
- Norka Ulloa del Carpio
- Centro de Investigación Clínica de Medicina Complementaria—CICMEC, Gerencia de Medicina Complementaria, Seguro Social de Salud-EsSalud, Lima, Peru
| | - Diego Alvarado-Corella
- Bioactivity and Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose, Costa Rica
| | | | - Andrea Araya-Sibaja
- Laboratorio Nacional de Nanotecnología, LANOTEC-CeNAT-CONARE, San José, Costa Rica
| | - José Vega-Baudrit
- Laboratorio Nacional de Nanotecnología, LANOTEC-CeNAT-CONARE, San José, Costa Rica
| | - Maria Monagas-Juan
- United States Pharmacopeia (USP) Dietary Supplements and Herbal Medicines, Rockville, MD, United States
| | - Mirtha Navarro-Hoyos
- Bioactivity and Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose, Costa Rica
| | - Martha Villar-López
- Centro de Investigación Clínica de Medicina Complementaria—CICMEC, Gerencia de Medicina Complementaria, Seguro Social de Salud-EsSalud, Lima, Peru
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
7
|
Minich DM, Ross K, Frame J, Fahoum M, Warner W, Meissner HO. Not All Maca Is Created Equal: A Review of Colors, Nutrition, Phytochemicals, and Clinical Uses. Nutrients 2024; 16:530. [PMID: 38398854 PMCID: PMC10892513 DOI: 10.3390/nu16040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Maca (Lepidium meyenii, Lepidium peruvianum) is part of the Brassicaceae family and grows at high altitudes in the Peruvian Andes mountain range (3500-5000 m). Historically, it has been used as a nutrient-dense food and for its medicinal properties, primarily in enhancing energy and fertility. Scientific research has validated these traditional uses and other clinical applications by elucidating maca's mechanisms of action, nutrition, and phytochemical content. However, research over the last twenty years has identified up to seventeen different colors (phenotypes) of maca. The color, hypocotyl size, growing location, cultivation, and post-harvest processing methods can have a significant effect on the nutrition content, phytochemical profile, and clinical application. Yet, research differentiating the colors of maca and clinical applications remains limited. In this review, research on the nutrition, phytochemicals, and various colors of maca, including black, red, yellow (predominant colors), purple, gray (lesser-known colors), and any combination of colors, including proprietary formulations, will be discussed based on available preclinical and clinical trials. The gaps, deficiencies, and conflicts in the studies will be detailed, along with quality, safety, and efficacy criteria, highlighting the need for future research to specify all these factors of the maca used in publications.
Collapse
Affiliation(s)
- Deanna M. Minich
- Human Nutrition and Functional Medicine, Adjunct Faculty, University of Western States, Portland, OR 97213, USA
- Food & Spirit, LLC, Port Orchard, WA 98366, USA
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Symphony Natural Health Institute, West Valley City, UT 84119, USA
| | - Kim Ross
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Symphony Natural Health Institute, West Valley City, UT 84119, USA
- Kim Ross Consulting, LLC, Lakewood Ranch, FL 34211, USA
- College of Nutrition, Sonoran University of Health Sciences, Tempe, AZ 85282, USA
| | - James Frame
- Symphony Natural Health Holdings Inc., Craigmuir Chambers, Road Town, Tortola VG1110, (BVI), UK;
- Natural Health International Pty Ltd., Sydney, NSW 2000, Australia
| | - Mona Fahoum
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Meridian Medicine, Seattle, WA 98133, USA
- Bastyr Center for Natural Health, Bastyr University, Kenmore, WA 98028, USA
| | - Wendy Warner
- Symphony Natural Health, Inc., West Valley City, UT 84119, USA; (K.R.); (M.F.); (W.W.)
- Wendy Warner, MD, PC, Yardley, PA 19067, USA
| | - Henry O. Meissner
- National Institute of Complementary Medicine, Health Research Institute, Western Sydney University, Building J, 158-160 Hawkesbury Road, Westmead, NSW 2145, Australia;
- Therapeutic Research, TTD International Pty Ltd., 39 Leopard Ave., Elanora-Gold Coast, QLD 4221, Australia
| |
Collapse
|
8
|
Cao F, Zhang H, Yan Y, Chang Y, Ma J. Extraction of polysaccharides from Maca enhances the treatment effect of 5-FU by regulating CD4 +T cells. Heliyon 2023; 9:e16495. [PMID: 37274637 PMCID: PMC10238885 DOI: 10.1016/j.heliyon.2023.e16495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
In our previous studies, we used a graded alcohol precipitation method to extract four maca polysaccharide components (MCP1, MCP2, MCP3, and MCP4) from maca with various molecular weights. Compared to other three components, MCP2 had stronger immunoregulatory abilities on CD4+T cells. To avoid the immunosuppressive effect of 5-fluorouracil (5-FU), maca polysaccharides in combination with 5-FU treatment were investigated in this study. The results show that 500 mg/kg and 1000 mg/kg MCP2 could significantly delay the growth of tumor and enhance the anti-tumor effect of 5-FU in vivo. Furthermore, MCP2 can partly recover the proliferation of CD4+T cells after being suppressed by 5-FU in vitro. Additionally, in order to explore the mechanism in which MCP2 acts on CD4+T cells, the MCP2 is marked with FITC fluorescence and synthesis MCP2-Tyr-FITC for the first time. Confocal microscope results show that MCP2-Tyr-FITC can directly bind to the surface of CD4+T cells. Together, our work demonstrates that maca polysaccharides could enhance the anti-tumor effect when combined with 5-FU by regulating CD4+T cells, suggesting a novel potential immunomodulator in tumor therapy.
Collapse
Affiliation(s)
- Fenghua Cao
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang 212000, China
| | - Hanyuan Zhang
- Zhenjiang Hospital of Chinese Traditional and Western Medicine, Zhenjiang 212000, China
| | - Ying Yan
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yi Chang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jie Ma
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Gencoglu H. Maca modulates fat and liver energy metabolism markers insulin, IRS1, leptin, and SIRT1 in rats fed normal and high-fat diets. Arch Physiol Biochem 2023; 129:323-329. [PMID: 32951476 DOI: 10.1080/13813455.2020.1821064] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Maca root extract on insulin, insulin receptor substrate-1 (IRS1), leptin, and NAD-dependent deacetylase sirtuin-1 (SIRT1), as well as body weight changes evaluated in this study for a 60 days model of normal and high-fat diet (HFD) fed rats. 28 male rats allocated to four groups: (i) Control, (ii) Maca (40 mg/kg/day), (iii) HFD, and (iv) HFD + Maca. After the 60 days of study, fat tissue and liver insulin levels decreased in the HFD and HFD + Maca groups in comparison to Control and Maca groups (p < .001). Maca group showed a significant IRS1 increase in the fat tissue (p < .0001). Leptin levels were the highest in the Maca group and the lowest in the HFD group in the fat tissue (p < .01). SIRT1 levels were found the highest in the Maca groups (p < .01). These results show the protective and regulatory effectiveness of Maca when fed with a normal or HFD diet.
Collapse
Affiliation(s)
- Hasan Gencoglu
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| |
Collapse
|
10
|
Malík M, Tlustoš P. Nootropic Herbs, Shrubs, and Trees as Potential Cognitive Enhancers. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12061364. [PMID: 36987052 PMCID: PMC10056569 DOI: 10.3390/plants12061364] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/13/2023]
Abstract
Plant-based nootropics are a diverse group of natural drugs that can improve cognitive abilities through various physiological mechanisms, especially in cases where these functions are weakened or impaired. In many cases, the nootropics enhance erythrocyte plasticity and inhibit aggregation, which improves the blood's rheological properties and increases its flow to the brain. Many of these formulations possess antioxidant activity that protects brain tissue from neurotoxicity and improves the brain's oxygen supply. They can induce the synthesis of neuronal proteins, nucleic acids, and phospholipids for constructing and repairing neurohormonal membranes. These natural compounds can potentially be present in a great variety of herbs, shrubs, and even some trees and vines. The plant species reviewed here were selected based on the availability of verifiable experimental data and clinical trials investigating potential nootropic effects. Original research articles, relevant animal studies, meta-analyses, systematic reviews, and clinical trials were included in this review. Selected representatives of this heterogeneous group included Bacopa monnieri (L.) Wettst., Centella asiatica (L.) Urban, Eleutherococcus senticosus (Rupr. & Maxim.) Maxim., Ginkgo biloba L., Lepidium meyenii Walp., Panax ginseng C.A. Meyer, Paullinia cupana Kunth, Rhodiola rosea L., Schisandra chinensis (Turcz.) Baill., and Withania somnifera (L.) Dunal. The species are depicted and described, together with their active components and nootropic effects, and evidence of their efficacy is presented. The study provides brief descriptions of the representative species, their occurrence, history, and the chemical composition of the principle medicinal compounds, with uses, indications, experimental treatments, dosages, possible side effects, and contraindications. Most plant nootropics must be taken at optimal doses for extended periods before measurable improvement occurs, but they are generally very well tolerated. Their psychoactive properties are not produced by a single molecule but by a synergistic combination of several compounds. The available data suggest that including extracts from these plants in medicinal products to treat cognitive disorders can have substantial potential therapeutic benefits.
Collapse
|
11
|
Jiang Y, Liu R, Huang L, Huang Q, Liu M, Liu S, Li J. Spiroleiferthione A and Oleiferthione A: Two Unusual Isothiocyanate-Derived Thioketone Alkaloids from Moringa oleifera Lam. Seeds. Pharmaceuticals (Basel) 2023; 16:ph16030452. [PMID: 36986551 PMCID: PMC10054748 DOI: 10.3390/ph16030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Spiroleiferthione A (1), with a 2-thiohydantoin a heterocyclic spiro skeleton, and oleiferthione A (2), an imidazole-2-thione derivative, were isolated from the aqueous extract of Moringa oleifera Lam. seeds. The unprecedented structures of 1 and 2 were elucidated by extensive spectroscopic data, X-ray diffraction, and gauge-independent atomic orbital (GIAO) NMR calculation, as well as electronic circular dichroism (ECD) calculation. The structures of 1 and 2 were determined to be (5R,7R,8S)-8-hydroxy-3-(4′-hydroxybenzyl)-7-methyl-2-thioxo-6-oxa-1, 3-diazaspiro [4.4] nonan-4-one, and 1-(4′-hydroxybenzyl)-4,5-dimethyl-1,3-dihydro-2H-imidazole-2-thione, respectively. Biosynthetic pathways for 1 and 2 have been proposed. Compounds 1 and 2 are considered to have originated from isothiocyanate and then undergone a series of oxidation and cyclization reactions to form 1 and 2. Compounds 1 and 2 demonstrated weak inhibition rates of NO production, 42.81 ± 1.56% and 33.53 ± 2.34%, respectively, at a concentration of 50 μM. Additionally, Spiroleiferthione A demonstrated moderate inhibitory activity against high glucose-induced human renal mesangial cell proliferation in a dosage-dependent manner. A wider range of biological activities, and the diabetic nephropathy protective activity of Compound 1 in vivo and its mechanism of action, need further investigation after the sufficient enrichment of Compound 1 or total synthesis.
Collapse
Affiliation(s)
- Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.J.)
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Rong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.J.)
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ling Huang
- College of Pharmacy, Dali University, Dali 671000, China
| | - Qi Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.J.)
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.J.)
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.J.)
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (S.L.); (J.L.)
| | - Jing Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; (Y.J.)
- National Clinical Research Center for Geriatric Disorders, Institute for Rational and Safe Medication Practices, Xiangya Hospital, Central South University, Changsha 410008, China
- Correspondence: (S.L.); (J.L.)
| |
Collapse
|
12
|
Salinas-Arellano ED, Castro-Dionicio IY, Jeyaraj JG, Mirtallo Ezzone NP, Carcache de Blanco EJ. Phytochemical Profiles and Biological Studies of Selected Botanical Dietary Supplements Used in the United States. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 122:1-162. [PMID: 37392311 DOI: 10.1007/978-3-031-26768-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Based on their current wide bioavailability, botanical dietary supplements have become an important component of the United States healthcare system, although most of these products have limited scientific evidence for their use. The most recent American Botanical Council Market Report estimated for 2020 a 17.3% increase in sales of these products when compared to 2019, for a total sales volume of $11,261 billion. The use of botanical dietary supplements products in the United States is guided by the Dietary Supplement Health and Education Act (DSHEA) from 1994, enacted by the U.S. Congress with the aim of providing more information to consumers and to facilitate access to a larger number of botanical dietary supplements available on the market than previously. Botanical dietary supplements may be formulated for and use only using crude plant samples (e.g., plant parts such as the bark, leaves, or roots) that can be processed by grinding into a dried powder. Plant parts can also be extracted with hot water to form an "herbal tea." Other preparations of botanical dietary supplements include capsules, essential oils, gummies, powders, tablets, and tinctures. Overall, botanical dietary supplements contain bioactive secondary metabolites with diverse chemotypes that typically are found at low concentration levels. These bioactive constituents usually occur in combination with inactive molecules that may induce synergy and potentiation of the effects observed when botanical dietary supplements are taken in their different forms. Most of the botanical dietary supplements available on the U.S. market have been used previously as herbal remedies or as part of traditional medicine systems from around the world. Their prior use in these systems also provides a certain level of assurance in regard to lower toxicity levels. This chapter will focus on the importance and diversity of the chemical features of bioactive secondary metabolites found in botanical dietary supplements that are responsible for their applications. Many of the active principles of botanical dietary substances are phenolics and isoprenoids, but glycosides and some alkaloids are also present. Biological studies on the active constituents of selected botanical dietary supplements will be discussed. Thus, the present chapter should be of interest for both members of the natural products scientific community, who may be performing development studies of the products available, as well as for healthcare professionals who are directly involved in the analysis of botanical interactions and evaluation of the suitability of botanical dietary supplements for human consumption.
Collapse
Affiliation(s)
- Eric D Salinas-Arellano
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Ines Y Castro-Dionicio
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Jonathan G Jeyaraj
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Nathan P Mirtallo Ezzone
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA
| | - Esperanza J Carcache de Blanco
- Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 500 West 12th Avenue, Columbus, OH, 43210, USA.
| |
Collapse
|
13
|
Evaluation of the Biological Activity of Glucosinolates and Their Enzymolysis Products Obtained from Lepidium meyenii Walp. (Maca). Int J Mol Sci 2022; 23:ijms232314756. [PMID: 36499083 PMCID: PMC9740802 DOI: 10.3390/ijms232314756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Glucosinolates (GLS) were extracted and purified from Lepidium meyenii (Maca) root. Purified GLS were analyzed without desulfation by UPLC-ESI-MS. Glucosinolates were decomposed into benzyl isothiocyanate (BITC) by thioglucosidase. DPPH radical scavenging activity, ABTS radical scavenging activity, and reducing power were used to evaluate antioxidant activity of Maca crude extract (MCE), total GLS, and BITC. Maca crude extract showed the highest antioxidant activity among them, and BITC showed no antioxidant activity at concentrations less than 10 mg/mL. Cytotoxicity on five human cancer cell lines and the inhibition rate of NO production were used to evaluate the activity of anti-cancer and anti-inflammatory of total GLS and BITC. The inhibition rate of NO production of 50 μg/mL BITC can reach 99.26% and the cell viability of 100 μg/mL BITC on five tumor cell lines is less than 3%. The results show that BITC may be used as a promising anti-cancer and anti-inflammatory drug.
Collapse
|
14
|
Non-targeted Metabolite Profiling to Evaluate the Drying Process Effect in the Peruvian Maca Actives Through Principal Component Analysis. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Ibrahim RM, Elmasry GF, Refaey RH, El-Shiekh RA. Lepidium meyenii (Maca) Roots: UPLC-HRMS, Molecular Docking, and Molecular Dynamics. ACS OMEGA 2022; 7:17339-17357. [PMID: 35647470 PMCID: PMC9134390 DOI: 10.1021/acsomega.2c01342] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/26/2022] [Indexed: 06/01/2023]
Abstract
Lepidium meyenii or Maca is widely cultivated as a health care food supplement due to its nutritional and medicinal properties. Although there are a few in-depth studies evaluating Maca antihypertensive effects, the correlations between the chemical constituents and bioactivity of the plant have not been studied before. Thus, the roots were extracted using different solvents (aqueous, methanol, 50% methanol, and methylene chloride) and investigated for their antihypertensive and antioxidant activities through several in vitro assays. The methanolic extract exhibited the best renin and angiotensin converting enzyme (ACE) inhibitory activities with IC50 values of 24.79 ± 1.3 ng/mL and 22.02 ± 1.1 ng/mL, respectively, along with the highest antioxidant activity. In total, 120 metabolites from different classes, e.g., alkylamides, alkaloids, glucosinolates, organic acids, and hydantoin derivatives, were identified in the methanolic extract using ultrahigh-performance liquid chromatography/high-resolution mass spectrometry (UPLC/HRMS). Molecular docking simulations were used to investigate the potential binding modes and the intermolecular interactions of the identified compounds with ACE and renin active sites. Glucotropaeolin, β-carboline alkaloids, succinic acid, and 2,4-dihydroxy-3,5-cyclopentyl dienoic acid showed the highest affinity to target the ACE with high docking scores (S ranging from -35.32 to -22.51 kcal mol-1) compared to lisinopril (S = -36.64 kcal mol-1). Interestingly, macamides displayed the greatest binding affinity to the active site of renin with docking scores (S ranging from -22.47 to -28.25 kcal mol-1). Further, β-carbolines achieved docking scores comparable to that of the native ligand (S ranging from -13.50 to -20.06 kcal mol-1). Molecular dynamics simulations and MMPBSA were also carried out and confirmed the docking results. Additionally, the computational ADMET study predicted that the compounds attaining promising docking results had proper pharmacokinetics, drug-likeness characteristics, and safe toxicological profiles. Ultimately, our findings revealed that Maca roots could be considered a promising candidate as an antihypertensive drug.
Collapse
Affiliation(s)
- Rana M. Ibrahim
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini Street, 11562 Cairo, Egypt
| | - Ghada F. Elmasry
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Eini Street, 11562 Cairo, Egypt
| | - Rana H. Refaey
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, October University of Modern Sciences and Arts (MSA), Giza, Egypt
| | - Riham A. El-Shiekh
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini Street, 11562 Cairo, Egypt
| |
Collapse
|
16
|
Purnomo KA, Korinek M, Tsai YH, Hu HC, Wang YH, Backlund A, Hwang TL, Chen BH, Wang SW, Wu CC, Chang FR. Decoding Multiple Biofunctions of Maca on Its Anti-allergic, Anti-inflammatory, Anti-thrombotic, and Pro-angiogenic Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11856-11866. [PMID: 34590863 DOI: 10.1021/acs.jafc.1c03485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Four active partition layers and ten isolates, including (5R)- and (5S)-macapyrrolidone A (1a, 1b), and four new alkaloids, (5R)- and (5S)-macapyrrolidone B (2a, 2b) and macapyrrolins D, E (3, 4), were isolated from maca (Lepidium meyenii Walp.), an indigenous food plant from Peru. Derived from the n-hexane layer, the macamide-rich fraction exhibited pro-angiogenic activity on EPC and HUVEC cells. Anti-thrombotic activity was displayed by the polar part of maca extracts (n-butanol and water layers). Both 75% methanol aq. (midlower polar part) and n-hexane (low polar part) layers, which showed signs of fatty acid content, markedly inhibited superoxide and elastase release in an anti-inflammatory assay. The 75% methanol aq. layer showed strong anti-allergic activity, and macapyrrolin A (5) was found active based on β-hexosaminidase release inhibition assays and a ChemGPS-NP experiment. These valuable bioactivity results suggest that maca is a food plant with good benefits for human health.
Collapse
Affiliation(s)
- Kartiko Arif Purnomo
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hao-Chun Hu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Anders Backlund
- Research Group Pharmacognosy, Department of Pharmaceutical Biochemistry, Uppsala University, BMC, Box 574, S-75123 Uppsala, Sweden
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital 33305 Taoyuan, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Shih-Wei Wang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 25245, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
| | - Chin-Chung Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City 25245, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
17
|
Peng X, Zhang R, Liu J, Li Z, Zhou L, Qiu M. Lepithiohydimerins A—D: Four Pairs of Neuroprotective Thiohydantoin Dimers Bearing a Disulfide Bond from Maca (
Lepidium meyenii
Walp.). CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xing‐Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan 650201 China
| | - Ran‐Ran Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan 650201 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Jun‐Hong Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan 650201 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Zhong‐Rong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan 650201 China
| | - Lin Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan 650201 China
| | - Ming‐Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan 650201 China
| |
Collapse
|
18
|
Le HTN, Van Roy E, Dendooven E, Peeters L, Theunis M, Foubert K, Pieters L, Tuenter E. Alkaloids from Lepidium meyenii (Maca), structural revision of macaridine and UPLC-MS/MS feature-based molecular networking. PHYTOCHEMISTRY 2021; 190:112863. [PMID: 34242970 DOI: 10.1016/j.phytochem.2021.112863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Lepidium meyenii Walp., known as Peruvian ginseng, is widely used in ethnomedicine. To date, L. meyenii is cultivated worldwide at high-altitude and is commonly used as a food supplement. However, its medicinal value is still controversial and its mechanism of action remains unknown, due to limited knowledge about the phytochemical constituents of this plant species. In this study, a multidisciplinary approach comprising conventional NMR- and HRMS-based structure elucidation, quantum mechanical calculation of NMR chemical shifts and UPLC-MS/MS feature-based molecular networking was applied to analyse the phytochemical profile of L. meyenii. In the current work, three previously undescribed imidazole alkaloids were identified using extensive spectroscopic techniques (HRMS, NMR), for which the names lepidiline E, F and G were adopted. In addition, two amidine alkaloids were reported, representing an undescribed class of alkaloids in L. meyenii, and 1,2,3,4-tetrahydro-β-carboline-3-carboxylic acid, a well-known β-carboline alkaloid, was also isolated from L. meyenii for the first time. Molecular networks of imidazole, amidine and β-carboline alkaloids in L. meyenii were constructed by the Global Natural Products Social Molecular Networking (GNPS) web platform, resulting in the tentative identification of three undescribed analogues. In addition, the structure of a previously reported compound named 'macaridine' was revised as macapyrrolin C based on density functional theory (DFT) calculations and comprehensive comparison of NMR data.
Collapse
Affiliation(s)
- Hien T N Le
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Elias Van Roy
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Ella Dendooven
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Laura Peeters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Mart Theunis
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Emmy Tuenter
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
19
|
Macathiohydantoin L, a Novel Thiohydantoin Bearing a Thioxohexahydroimidazo [1,5-a] Pyridine Moiety from Maca ( Lepidium meyenii Walp.). Molecules 2021; 26:molecules26164934. [PMID: 34443522 PMCID: PMC8398295 DOI: 10.3390/molecules26164934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Five new thiohydantoin derivatives (1–5) were isolated from the rhizomes of Lepidium meyenii Walp. NMR (1H and 13C NMR, 1H−1H COSY, HSQC, and HMBC), HRESIMS, and ECD were employed for the structure elucidation of new compounds. Significantly, the structure of compound 1 was the first example of thiohydantoins with thioxohexahydroimidazo [1,5-a] pyridine moiety. Additionally, compounds 2 and 3 possess rare disulfide bonds. Except for compound 4, all isolates were assessed for neuroprotective activities in corticosterone (CORT)-stimulated PC12 cell damage. Among them, compound (−)-3 exhibited moderate neuroprotective activity (cell viability: 68.63%, 20 μM) compared to the positive control desipramine (DIM) (cell viability: 88.49%, 10 μM).
Collapse
|
20
|
1H qNMR-based quantitative analysis of total macamides in five maca (Lepidium meyenii Walp.) dried naturally. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Jiao M, Dong Q, Zhang Y, Lin M, Zhou W, Liu T, Yuan B, Yin H. Neuroprotection of N-benzyl Eicosapentaenamide in Neonatal Mice Following Hypoxic-Ischemic Brain Injury. Molecules 2021; 26:molecules26113108. [PMID: 34067444 PMCID: PMC8197015 DOI: 10.3390/molecules26113108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 11/26/2022] Open
Abstract
Maca (Lepidium meyenii) has emerged as a popular functional plant food because of its medicinal properties and nutritional value. Macamides, as the exclusively active ingredients found in maca, are a unique series of non-polar, long-chain fatty acid N-benzylamides with multiple bioactivities such as antifatigue characteristics and improving reproductive health. In this study, a new kind of macamide, N-benzyl eicosapentaenamide (NB-EPA), was identified from maca. We further explore its potential neuroprotective role in hypoxic–ischemic brain injury. Our findings indicated that treatment with biosynthesized NB-EPA significantly alleviates the size of cerebral infarction and improves neurobehavioral disorders after hypoxic–ischemic brain damage in neonatal mice. NB-EPA inhibited the apoptosis of neuronal cells after ischemic challenge. NB-EPA improved neuronal cell survival and proliferation through the activation of phosphorylated AKT signaling. Of note, the protective property of NB-EPA against ischemic neuronal damage was dependent on suppression of the p53–PUMA pathway. Taken together, these findings suggest that NB-EPA may represent a new neuroprotectant for newborns with hypoxic–ischemic encephalopathy.
Collapse
Affiliation(s)
- Mengya Jiao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.J.); (Q.D.); (Y.Z.); (W.Z.); (B.Y.)
| | - Qun Dong
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.J.); (Q.D.); (Y.Z.); (W.Z.); (B.Y.)
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiting Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.J.); (Q.D.); (Y.Z.); (W.Z.); (B.Y.)
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Min Lin
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510310, China;
| | - Wan Zhou
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.J.); (Q.D.); (Y.Z.); (W.Z.); (B.Y.)
| | - Tao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.J.); (Q.D.); (Y.Z.); (W.Z.); (B.Y.)
- Correspondence: (T.L.); (H.Y.)
| | - Baohong Yuan
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.J.); (Q.D.); (Y.Z.); (W.Z.); (B.Y.)
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui Yin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (M.J.); (Q.D.); (Y.Z.); (W.Z.); (B.Y.)
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (T.L.); (H.Y.)
| |
Collapse
|
22
|
Ablon G. Nutraceuticals. Dermatol Clin 2021; 39:417-427. [PMID: 34053595 DOI: 10.1016/j.det.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hair loss has a multifactorial etiology that includes internal and external triggers. These include poor diet and nutrition (extrinsic), as well as the natural aging process (intrinsic). Other external factors include pollution, hair products, hair styling, and ultraviolet exposure, which can cause free radical formation, oxidative stress, and microinflammation at the site of the hair follicles. Botanic substances have demonstrated antioxidant, anti-inflammatory, and immune-enhancing properties. Vitamins and minerals are needed when deficiencies are apparent or demonstrate efficacy at higher doses than normally found in one's diet. The safety and efficacy of oral nutraceuticals have been demonstrated in clinical trials.
Collapse
Affiliation(s)
- Glynis Ablon
- UCLA Dermatology, 1600 Rosecrans Avenue, 4B, Manhattan Beach, CA 90266, USA.
| |
Collapse
|
23
|
Controlling the quality of maca (Lepidium meyenii) dietary supplements: Development of compendial procedures for the determination of intact glucosinolates in maca root powder products. J Pharm Biomed Anal 2021; 199:114063. [PMID: 33862504 DOI: 10.1016/j.jpba.2021.114063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 11/21/2022]
Abstract
The demand and sales of dietary supplements derived from maca (Lepidium meyenii) have skyrocketed in the last decade and a variety of related nutritional and healthcare products have mushroomed into a business with market prominence. However, the lack of standard testing protocols for quality control could jeopardize the immediate benefits of these products for public health. We describe herein the development of analytical procedures for the determination of glucosinolates (GLs), the biologically active ingredients in maca. Because of the high polarity and instability caused by enzymatic hydrolysis, GLs in maca have been exclusively analyzed using desulfated GLs. This indirect analysis requires additional sample preparation steps, which is labor-intensive, and may lose the original GLs and introduce artificial compounds. Furthermore, the reported GL profiles of maca are inconsistent and incomplete, some GLs may be structurally misidentified. In this context, we focused on direct analysis of intact GLs in maca without the enzymatic desulfation. Four GLs (sinalbin, glucolepigramin, glucolimnanthin, and glucotropaeolin) were identified as the major GLs in maca root powder. An HPLC method based on ion pair chromatography was developed to determine individual and total GLs; chromatographic separations were achieved on a Luna column (C18, 4.6 × 100 mm,3 mm) using 0.1 % TFA in water and in methanol as mobile phase in a gradient elution mode. The developed procedures were validated within the calibration range of 10-500 μg/mL. Inter- and intra-day precision were shown to be lower than 3% at all concentrations levels with recovery between 100.2 % and 103.3 %. The procedures were applied to a total of 42 maca root powder products from 11 manufacturers. Sample analysis revealed a consistent correlation of glucotropaeolin: glucolimnanthin (1: 0.19) across all products with a correlation coefficient of 0.994. The correlation in combination with total GL contents for each product could be used for authentication and GL content determination. Incorporation of the developed procedures into USP monographs will strengthen the public standards for maca powder dietary supplements.
Collapse
|
24
|
Liu JH, Zhang RR, Peng XR, Ding ZT, Qiu MH. Lepipyrrolins A-B, two new dimeric pyrrole 2-carbaldehyde alkaloids from the tubers of Lepidium meyenii. Bioorg Chem 2021; 112:104834. [PMID: 33813309 DOI: 10.1016/j.bioorg.2021.104834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
Nine new pyrrole alkaloids, including two undescribed dimeric pyrrole 2‑carbaldehyde alkaloids, lepipyrrolins A-B (1-2), seven pyrrole-alkaloid derivatives, macapyrrolins D-J (3-9), along with three known ones (10-12) were isolated from the rhizomes of Lepidium meyenii. Their structures and absolute configurations were demonstrated by extensive spectroscopic data (1D, 2D NMR, HRESIMS), and calculated electronic circular dichroism (ECD) experiment. Compounds 1, 3-12 were tested for their nitric oxide inhibitory effects. Furthermore, compound 1 was evaluated for its cytotoxic activity against five human tumor cell lines (HL-60, SMMC-7221, A549, MCF-7, and SW480) in vitro, and displayed selective cytotoxicity against SMMC-7721 with IC50 value of 16.78 ± 0.49 μM.
Collapse
Affiliation(s)
- Jun-Hong Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Ran-Ran Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xing-Rong Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Zhong-Tao Ding
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
| | - Ming-Hua Qiu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| |
Collapse
|
25
|
Perez CJ, Conceição RS, Ifa DR. Chemical profiling and separation of bioactive secondary metabolites in Maca (Lepidium peruvianum) by normal and reverse phase thin layer chromatography coupled to desorption electrospray ionization-mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4690. [PMID: 33410238 DOI: 10.1002/jms.4690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Maca is a Peruvian tuberous root of the Brassicaceae family grown in the central Andes between altitudes of 4000 and 4500 m. The medicinal plant is a nutraceutical with important biological activities and health effects. In this study, we report a rapid high-performance thin layer chromatography (HPTLC)-(-)desorption electrospray ionization (DESI)-mass spectrometry (MS) method to profile and separate intact glucosinolates without prior biochemical modifications from the hydromethanolic extracts of two phenotypes, red and black Maca (Lepidium peruvianum) seeds. In the first stage of the plant's life cycle, aromatic glucosinolates were the main chemical constituents whereby six aromatic, three indole, and one aliphatic glucosinolate were tentatively identified. At the seedling stage, glucolepigramin/Glucosinalbin was the most predominant precursor, rather than Glucotropaeolin, which is mainly found in hypocotyls and roots. These findings lead us to suggest that glucolepigramin/glucosinalbin play a major role as active precursors in the biosynthetic pathways of other secondary metabolites in the early stages of plant development. Between red and black Maca seeds, only minor differences in the relative abundances of glucosinolates were observed rather than different plant metabolites. For the first time, we report six potential plant antibiotics, phytoanticipins: glycosylated ascorbigens and dihydroascorbigens from Maca seeds. We also investigated a targeted reverse phase C18 functionalized TLC-DESI-MS method with high sensitivity and specificity for Brassicaceae fatty acids in Maca seeds and health supplements such as black Maca root lyophilized powder and tinctures. The investigation of secondary metabolites by normal and reverse phase TLC-DESI-MS methods, described in this study, can aid in their identification as they begin to emerge in later stages of development in plant tissues such as leaves, hypocotyls, and roots.
Collapse
Affiliation(s)
- Consuelo J Perez
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
| | - Rodrigo S Conceição
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
- Department of Health, State University of Feira de Santana, Feira de Santana, Brazil
| | - Demian R Ifa
- Centre for Research in Mass Spectrometry, Department of Chemistry, York University, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Singh N, Barnych B, Morisseau C, Wagner KM, Wan D, Takeshita A, Pham H, Xu T, Dandekar A, Liu JY, Hammock BD. N-Benzyl-linoleamide, a Constituent of Lepidium meyenii (Maca), Is an Orally Bioavailable Soluble Epoxide Hydrolase Inhibitor That Alleviates Inflammatory Pain. JOURNAL OF NATURAL PRODUCTS 2020; 83:3689-3697. [PMID: 33320645 PMCID: PMC7888481 DOI: 10.1021/acs.jnatprod.0c00938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lepidium meyenii (maca), a plant indigenous to the Peruvian Andes, recently has been utilized globally for claimed health or recreational benefits. The search for natural products that inhibit soluble epoxide hydrolase (sEH), with therapeutically relevant potencies and concentrations, led to the present study on bioactive amide secondary metabolites found in L. meyenii, the macamides. Based on known and suspected macamides, 19 possible macamides were synthesized and characterized. The majority of these amides displayed excellent inhibitory potency (IC50 ≈ 20-300 nM) toward the recombinant mouse, rat, and human sEH. Quantitative analysis of commercial maca products revealed that certain products contain known macamides (1-5, 8-12) at therapeutically relevant total concentrations (≥3.29 mg/g of root), while the inhibitory potency of L. meyenii extracts directly correlates with the sum of concentration/IC50 ratios of macamides present. Considering both its in vitro efficacy and high abundance in commercial products, N-benzyl-linoleamide (4) was identified as a particularly relevant macamide that can be utilized for in vivo studies. Following oral administration in the rat, compound 4 not only displayed acceptable pharmacokinetic characteristics but effectively reduced lipopolysaccharide-induced inflammatory pain. Inhibition of sEH by macamides provides a plausible biological mechanism of action to account for several beneficial effects previously observed with L. meyenii treatments.
Collapse
Affiliation(s)
- Nalin Singh
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Bogdan Barnych
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Christophe Morisseau
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Karen M. Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Debin Wan
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Ashley Takeshita
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Hoang Pham
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| | - Ting Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People’s Republic of China
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California Davis, Davis, CA, 95616, United States
| | - Jun-Yan Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA, 95616, United States
| |
Collapse
|
27
|
Macamides: A review of structures, isolation, therapeutics and prospects. Food Res Int 2020; 138:109819. [DOI: 10.1016/j.foodres.2020.109819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022]
|
28
|
Apaza Ticona L, Tena Pérez V, Serban AM, Sánchez‐Corral J, Rumbero Sánchez Á. Design, Synthesis and Pharmacological Evaluation of
N
‐Benzyl Linoleamide Analogues from
Tropaeolum tuberosum
as NF‐κB Inhibitors and Nrf2 Activators. ChemistrySelect 2020. [DOI: 10.1002/slct.202003062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Luis Apaza Ticona
- Department of Organic Chemistry Faculty of Sciences University Autónoma of Madrid Cantoblanco 28049 Madrid Spain
- Department of Pharmacology Pharmacognosy and Botany Faculty of Pharmacy University Complutense of Madrid Ciudad Universitaria s/n 28040 Madrid Spain
| | - Víctor Tena Pérez
- Department of Organic Chemistry Faculty of Sciences University Autónoma of Madrid Cantoblanco 28049 Madrid Spain
| | - Andreea Madalina Serban
- Maria Sklodowska Curie University Hospital for Children Constantin Brancoveanu Boulevard 077120 Bucharest Romania
| | - Javier Sánchez‐Corral
- Department of Organic Chemistry Faculty of Sciences University Autónoma of Madrid Cantoblanco 28049 Madrid Spain
| | - Ángel Rumbero Sánchez
- Department of Organic Chemistry Faculty of Sciences University Autónoma of Madrid Cantoblanco 28049 Madrid Spain
| |
Collapse
|
29
|
Parthasarathy A, Mantravadi PK, Kalesh K. Detectives and helpers: Natural products as resources for chemical probes and compound libraries. Pharmacol Ther 2020; 216:107688. [PMID: 32980442 DOI: 10.1016/j.pharmthera.2020.107688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
About 70% of the drugs in use are derived from natural products, either used directly or in chemically modified form. Among all possible small molecules (not greater than 5 kDa), only a few of them are biologically active. Natural product libraries may have a higher rate of finding "hits" than synthetic libraries, even with the use of fewer compounds. This is due to the complementarity between the "chemical space" of small molecules and biological macromolecules such as proteins, DNA and RNA, in addition to the three-dimensional complexity of NPs. Chemical probes are molecules which aid in the elucidation of the biological mechanisms behind the action of drugs or drug-like molecules by binding with macromolecular/cellular interaction partners. Probe development and application have been spurred by advancements in photoaffinity label synthesis, affinity chromatography, activity based protein profiling (ABPP) and instrumental methods such as cellular thermal shift assay (CETSA) and advanced/hyphenated mass spectrometry (MS) techniques, as well as genome sequencing and bioengineering technologies. In this review, we restrict ourselves to a survey of natural products (including peptides/mini-proteins and excluding antibodies), which have been applied largely in the last 5 years for the target identification of drugs/drug-like molecules used in research on infectious diseases, and the description of their mechanisms of action.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, 85 Lomb Memorial Dr, Rochester, NY 14623, USA
| | | | - Karunakaran Kalesh
- Department of Chemistry, Durham University, Lower Mount Joy, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
30
|
Apaza Ticona L, Arnanz Sebastián J, Serban AM, Rumbero Sánchez Á. Alkaloids isolated from Tropaeolum tuberosum with cytotoxic activity and apoptotic capacity in tumour cell lines. PHYTOCHEMISTRY 2020; 177:112435. [PMID: 32562919 DOI: 10.1016/j.phytochem.2020.112435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Two alkaloids were isolated and identified for the first time in the black tubers of Tropaeolum tuberosum, collected from the Titicani-Taca, Ingavi province in La Paz, Bolivia. Their structures were elucidated by extensive NMR and MS spectroscopic analyses. The isolated compounds were evaluated for their cytotoxicity and apoptotic capacity against four human cancer cell lines. 2-Benzyl-3-thioxohexahydropyrrolo[1,2-c]imidazole-1-one (1) showed slight cytotoxic activity against all the cancer cell lines which were tested, with IC50 values ranging from 27.45 ± 0.80 to 31.07 ± 0.87 μM. Moreover, N-(4-acetyl-5-methyl-5-phenyl-4,5-dihydro-1,3,4-thiadiazol-2-yl) acetamide (2) showed significant anti-cancer potential, with IC50 values between 1.26 ± 0.57 μM and 1.37 ± 0.09 μM against all human cancer cell lines which were tested. Treatment of tumour cell lines with the compounds caused an increase in the apoptotic rate of these cells, observing that compound 2 presented an apoptotic effect which was double with respect to the control (Dimethylenastron).
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049, Madrid, Spain; Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid. Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Julia Arnanz Sebastián
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049, Madrid, Spain
| | - Andreea Madalina Serban
- Maria Sklodowska Curie University Hospital for Children. Constantin Brancoveanu Boulevard, 077120, Bucharest, Romania
| | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
31
|
Ticona LA, Coballes MR, Potente G, Sánchez ÁR. Anti-inflammatory Potential of Macamides Isolated from Yellow Tubers
of Mashua (Tropaeolum Tuberosum). ACTA ACUST UNITED AC 2020. [DOI: 10.1055/a-1159-4242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractAlthough Tropaeolum tuberosum tubers have been consumed cooked as a folk
remedy for the treatment of skin, lungs, liver and kidneys diseases, these uses
have very limited scientific basis. Therefore, this article develops a
phytochemical analysis of the yellow tubers of T. tuberosum with the
objective to assess whether the isolated compounds have anti-inflammatory
potential in the CCD-1109Sk, MRC-5 and RWPE-1 cell lines. We performed an
extraction of T. tuberosum tubers using different organic solvents,
followed by a bioguided chromatographic separation. Four macamides were
identified by LC/MS techniques, but only N-benzyllinoleamide
(1) and N-benzyloleamide (2) were isolated and
elucidated by NMR/MS techniques, given that they were present in a
larger proportion in the tubers. The anti-inflammatory potential of macamides
was evaluated by the inhibition of NF-κB and STAT3 activation. Both
compounds displayed inhibition of NF-κB activation with IC50
values of 2.28±0.54 µM;
3.66±0.34 µM and
4.48±0.29 µM for compound (1) and
6.50±0.75 µM;
7.74±0.19 µM and
8.37 ±0.09 µM for compound (2)
in CCD-1109Sk, MRC-5 and RWPE-1 cell lines, respectively. Moreover, both
compounds inhibited the STAT3 activation with IC50 of
0.61±0.76 µM;
1.24±0.05 µM and
2.10±0.12 µM for compound (1) and
5.49±0.31 µM;
7.73 ±0.94 µM and
7.79±0.30 µM for compound (2).
Therefore, isolated macamides of T. tuberosum tubers showed promising
anti-inflammatory effects, suggesting a possible beneficial use to combat
inflammatory processes of skin, lung and prostate.
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Department of Organic Chemistry, Faculty of Sciences, University
Autónoma of Madrid, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of
Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - María Rodríguez Coballes
- Department of Organic Chemistry, Faculty of Sciences, University
Autónoma of Madrid, Madrid, Spain
| | - Giulia Potente
- Department for Life Quality Studies, University of Bologna, Rimini,
Italy
| | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University
Autónoma of Madrid, Madrid, Spain
| |
Collapse
|
32
|
Montazeri M, Mirzaee F, Daryani A, Naeimayi R, Moradi Karimabad S, Khalilzadeh Arjmandi H, Esmaealzadeh N, Shahani S. Anti- Toxoplasma Activities of the Hydroalcoholic Extract of Some Brassicaceae Species. Adv Biomed Res 2020; 9:5. [PMID: 32055539 PMCID: PMC7003551 DOI: 10.4103/abr.abr_206_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/16/2019] [Accepted: 11/12/2019] [Indexed: 11/06/2022] Open
Abstract
Background: Toxoplasma gondii (T. gondii) is a protozoan parasite that infects a wide range of warm-blooded animals and humans. The conventional anti-Toxoplasma treatments cause significant toxicity. Brassicaceae family contains several medicinal plants with anti-inflammatory, chemopreventive, insecticide, antibacterial, antiviral, and antiparasitic effects. In this study, the hydroalcoholic extract of some Brassicaceae species was investigated against T. gondiiin vitro. Materials and Methods: Seeds of Alyssum homolocarpum, Lepidium perfoliatum, Lepidium sativum, and aerial parts of Nasturtium officinale and Capsellabursa-pastoris were extracted by maceration method using 80% ethanol. Vero cells were treated with different concentrations (5–600 μg/mL) of the extracts and pyrimethamine (as positive control), and the cellular viability was verified. Next, Vero cells were infected by T. gondii tachyzoites (RH strain), and the viability of the infected cells was measured by a colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: The 50% inhibitory concentration values were 5.1, 14.67, 32.49, 37.31, 71.35, and 2.63 μg/mL, and the selectivity indices were 8.06, 2.59, 0.74, 0.78, 0.65 (P < 0.05 compared with positive control), and 3.03 for L. sativum, L. perfoliatum, N. officinale, A. homolocarpum, C. bursa-pastoris, and pyrimethamine, respectively. Conclusion: The results of this study demonstrated that the hydroalcoholic extracts of L. sativum and L. perfoliatum have the promising anti-Toxoplasma activity by growth inhibition of T. gondii tachyzoites in infected cells.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fatemeh Mirzaee
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Parasitology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Raheleh Naeimayi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shohre Moradi Karimabad
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hadiseh Khalilzadeh Arjmandi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Niusha Esmaealzadeh
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Somayeh Shahani
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
33
|
Blažević I, Montaut S, Burčul F, Olsen CE, Burow M, Rollin P, Agerbirk N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. PHYTOCHEMISTRY 2020; 169:112100. [PMID: 31771793 DOI: 10.1016/j.phytochem.2019.112100] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/04/2019] [Accepted: 08/18/2019] [Indexed: 05/05/2023]
Abstract
The glucosinolates (GSLs) is a well-defined group of plant metabolites characterized by having an S-β-d-glucopyrano unit anomerically connected to an O-sulfated (Z)-thiohydroximate function. After enzymatic hydrolysis, the sulfated aglucone can undergo rearrangement to an isothiocyanate, or form a nitrile or other products. The number of GSLs known from plants, satisfactorily characterized by modern spectroscopic methods (NMR and MS) by mid-2018, is 88. In addition, a group of partially characterized structures with highly variable evidence counts for approximately a further 49. This means that the total number of characterized GSLs from plants is somewhere between 88 and 137. The diversity of GSLs in plants is critically reviewed here, resulting in significant discrepancies with previous reviews. In general, the well-characterized GSLs show resemblance to C-skeletons of the amino acids Ala, Val, Leu, Trp, Ile, Phe/Tyr and Met, or to homologs of Ile, Phe/Tyr or Met. Insufficiently characterized, still hypothetic GSLs include straight-chain alkyl GSLs and chain-elongated GSLs derived from Leu. Additional reports (since 2011) of insufficiently characterized GSLs are reviewed. Usually the crucial missing information is correctly interpreted NMR, which is the most effective tool for GSL identification. Hence, modern use of NMR for GSL identification is also reviewed and exemplified. Apart from isolation, GSLs may be obtained by organic synthesis, allowing isotopically labeled GSLs and any kind of side chain. Enzymatic turnover of GSLs in plants depends on a considerable number of enzymes and other protein factors and furthermore depends on GSL structure. Identification of GSLs must be presented transparently and live up to standard requirements in natural product chemistry. Unfortunately, many recent reports fail in these respects, including reports based on chromatography hyphenated to MS. In particular, the possibility of isomers and isobaric structures is frequently ignored. Recent reports are re-evaluated and interpreted as evidence of the existence of "isoGSLs", i.e. non-GSL isomers of GSLs in plants. For GSL analysis, also with MS-detection, we stress the importance of using authentic standards.
Collapse
Affiliation(s)
- Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia.
| | - Sabine Montaut
- Department of Chemistry and Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Franko Burčul
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Patrick Rollin
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans et CNRS, UMR 7311, BP 6759, F-45067, Orléans Cedex 2, France
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
34
|
Wang T, Sun CH, Zhong HB, Gong Y, Cui ZK, Xie J, Wang YP, Liang C, Cao HH, Chen XR, Zou ZP, Li SF, Bai XC. N-(3-methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide promotes bone formation via the canonical Wnt/β-catenin signaling pathway. Phytother Res 2019; 33:1074-1083. [PMID: 30768733 DOI: 10.1002/ptr.6301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 12/14/2018] [Accepted: 01/10/2019] [Indexed: 11/07/2022]
Abstract
Osteoporosis is characterized by low bone mineral density and microarchitectural deterioration of bone tissue. N-(3-methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide (MBOC) is one of the macamides isolated from Maca (Lepidium meyenii Walp.), a cruciferous plant from the Andes of Peru. In this study, C3H/10T1/2 mesenchymal stem cells were treated with MBOC in osteogenic induction medium. An ovariectomized (OVX) mouse model was used to investigate the effect of 1-month MBOC treatment on the prevention of postmenopausal osteoporosis. Remarkably, trabecular thickness, trabecular number, and bone volume/tissue volume of the distal femoral metaphysis were significantly increased in OVX + MBOC mice compared with OVX mice, as revealed by microcomputed tomography analysis. Trabecular separation was decreased in OVX + MBOC mice compared with OVX mice. Consistently, MBOC increased the levels of osteocalcin and runt-related transcription factor 2 in OVX mice, as well as the expression of runt-related transcription factor 2, osterix, and alkaline phosphatase in C3H/10T1/2 cells. Mechanistically, MBOC activates the canonical Wnt/β-catenin signaling pathway via inhibiting phosphorylation of GSK-3β at Tyr216 and maintaining β-catenin expression. Collectively, the current study demonstrates the robustness of MBOC in the induction of mesenchymal stem cells osteogenic differentiation and consequent bone formation, suggesting that MBOC may be a potentially effective drug to treat postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chun-Han Sun
- Department of Orthopedics, Huizhou First People's Hospital, Huizhou, Guangdong, China
| | - Hao-Bo Zhong
- Department of Orthopedics, Huizhou First People's Hospital, Huizhou, Guangdong, China
| | - Yan Gong
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhong-Kai Cui
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Xie
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan-Peng Wang
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuang Liang
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - He-He Cao
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao-Rui Chen
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhi-Peng Zou
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Sheng-Fa Li
- Department of Orthopedics, Huizhou First People's Hospital, Huizhou, Guangdong, China
| | - Xiao-Chun Bai
- Key Laboratory of Mental Health of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Academy of Orthopedics, Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|