1
|
Saggiomo SL, Peigneur S, Tytgat J, Daly NL, Wilson DT. Interrogating stonefish venom: small molecules present in envenomation caused by Synanceia spp. FEBS Open Bio 2025; 15:399-414. [PMID: 39563477 PMCID: PMC11891765 DOI: 10.1002/2211-5463.13926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/08/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
The stonefish Synanceia verrucosa and Synanceia horrida are arguably the most venomous fish species on earth and the culprits of severe stings in humans globally. Investigation into the venoms of these two species has mainly focused on protein composition, in an attempt to identify the most medically relevant proteins, such as the lethal verrucotoxin and stonustoxin components. This study, however, focused on medically relevant small molecules, and through nuclear magnetic resonance, mass spectroscopy, and fractionation techniques, we discovered and identified the presence of three molecules new to stonefish venom, namely γ-aminobutyric acid (GABA), choline and 0-acetylcholine, and provide the first report of GABA identified in a fish venom. Analysis of the crude venoms on human nicotinic acetylcholine receptors (nAChRs) and a GABAA receptor (GABAAR) showed S. horrida venom could activate neuronal (α7) and adult muscle-type (α1β1δε) nAChRs, while both crude S. horrida and S. verrucosa venoms activated the GABAAR (α1β2γ2). Cytotoxicity studies in immunologically relevant cells (human PBMCs) indicated the venoms possess cell-specific cytotoxicity and analysis of the venom fractions on Na+ channel subtypes involved in pain showed no activity. This work highlights the need to further investigate the small molecules found in venoms to help understand the mechanistic pathways of clinical symptoms for improved treatment of sting victims, in addition to the discovery of potential drug leads.
Collapse
Affiliation(s)
- Silvia Luiza Saggiomo
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
- Present address:
Hepatic Fibrosis GroupQIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Steve Peigneur
- Toxicology and PharmacologyKatholieke Universiteit (KU) LeuvenBelgium
| | - Jan Tytgat
- Toxicology and PharmacologyKatholieke Universiteit (KU) LeuvenBelgium
| | - Norelle L. Daly
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| | - David Thomas Wilson
- Australian Institute of Tropical Health and MedicineJames Cook UniversityCairnsAustralia
| |
Collapse
|
2
|
Lim B, Lim C, Jang MJ, Seo YJ, Kim DY, Tuggle CK, Lim KS, Kim JM. Cell deconvolution-based integrated time-series network of whole blood transcriptome reveals systemic antiviral activities and cell-specific immunological changes against PRRSV infection. Vet Res 2025; 56:19. [PMID: 39844283 PMCID: PMC11755918 DOI: 10.1186/s13567-025-01451-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/04/2024] [Indexed: 01/24/2025] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) causes significant economic losses in the swine industry. However, the molecular mechanisms behind the common and cell type-specific systemic responses during PRRS virus (PRRSV) infection are not well understood. In this study, we collected viremia data, antibody levels, and whole-blood RNA-seq data obtained from eight PRRSV-infected piglets. We utilised a cell deconvolution approach to calculate cell type enrichment, constructed a time-serial gene co-expression network with differentially expressed genes, and conducted functional annotations. Three significant modules were identified within the network. The changes associated with viremia revealed an upregulated expression of genes related to antiviral activity. In the T-cell- and NK-cell-specific modules, infection led to an increased T-cell population and upregulation of genes related to T-cell defence responses. Conversely, in the monocyte- and neutrophil-specific module, genes involved in inflammatory responses were downregulated due to a decrease in monocyte proportion. This study highlights the time-series antiviral activities associated with viremia and the transcriptomic changes associated with immune responses in specific cell types. The findings provide comprehensive insights into host responses to PRRSV infection, including diagnostic biomarkers.
Collapse
Affiliation(s)
- Byeonghwi Lim
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Chiwoong Lim
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Min-Jae Jang
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Young-Jun Seo
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Do-Young Kim
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | | | - Kyu-Sang Lim
- Department of Animal Resources Science, Kongju National University, Yesan, Chungcheongnam-do, 32439, Republic of Korea.
| | - Jun-Mo Kim
- Functional Genomics & Bioinformatics Laboratory, Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| |
Collapse
|
3
|
de Lima RC, da Costa Faria NR, de Carvalho AT. Flow Cytometry as Immunoassay Tool for Research on Yellow Fever Virus. Methods Mol Biol 2025; 2913:1-17. [PMID: 40249420 DOI: 10.1007/978-1-0716-4458-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Flow cytometry is a sensitive and practical technique that can be applied in both basic and clinical research. It allows extracting quantitative and multiparametric valuable information to assist in the study of cell immunophenotyping, morphological complexity, location and/or expression of extra and intracellular molecules involved in metabolic and proliferative pathways, inflammation, viability, and cell death, among others. The parameters are analyzed by labeling antigens of yellow fever virus and/or cells with fluorescent specific monoclonal antibodies or dyes for immunophenotyping and data acquisition using a flow cytometer. In translational research, flow cytometry is a useful tool in tracking and monitoring the etiology, evolution, and outcome of several infectious diseases, such as yellow fever (YF), with the aim of benefiting human health through detection of intracellular viral antigen and vaccine efficacy trials, as well as characterization, quantification, and monitoring of immune cells subpopulations and their biological functions quality. In the last 10 years we have been facing the re-emergence of YF, considered an endemic disease caused by arbovirus in continents including South America. Unfortunately, severe forms of the disease are still associated with increased mortality. Even with the availability of effective vaccines, gaps about understanding the immune pathophysiology and clinical management are still considered a huge challenge for the scientific community. Therefore, such tool has the potential to aggregate in flavivirus setting, being effective in tracking infection in different biological culture systems, animal and human models, as well as in searching for new antiviral drugs and vaccine efficacy.
Collapse
Affiliation(s)
- Raquel Curtinhas de Lima
- Laboratory of Parasite-Host Interactions (LIVH), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Nieli Rodrigues da Costa Faria
- Laboratory of Arboviruses and Hemorrhagic Viruses (LARBOH), Oswaldo Cruz Institute (IOC), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Amanda Torrentes de Carvalho
- Biology Institute, Department of Imunobiology (GIM) Laboratory of Immunobiology of Infectious Diseases (LIDI), Fluminense Federal University (UFF), Niterói, Brazil
| |
Collapse
|
4
|
Nantsupawat T, Gumrai P, Apaijai N, Phrommintikul A, Prasertwitayakij N, Chattipakorn SC, Chattipakorn N, Wongcharoen W. Atrial pacing improves mitochondrial function in peripheral blood mononuclear cells in patients with cardiac implantable electronic devices. Am J Physiol Heart Circ Physiol 2024; 327:H1146-H1152. [PMID: 39240255 PMCID: PMC11560073 DOI: 10.1152/ajpheart.00537.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
Mitochondrial dysfunction contributes significantly to the development of atrial fibrillation (AF). Conflicting data regarding the atrial pacing and the risk of AF existed, and the impact of atrial pacing on mitochondrial function remains unknown. Therefore, we sought to examine the association between atrial pacing percentage and mitochondrial function in patients with cardiovascular implantable electronic devices (CIEDs) with atrial pacing capability. This is a cross-sectional study involving 183 patients with CIEDs with atrial pacing capability. The oxidative stress and mitochondrial function were determined in peripheral blood mononuclear cells (PBMCs). Among 183 patients, 55.7% had permanent pacemakers, 7.7% had defibrillators, and 36.6% had cardiac resynchronization therapy. Mean age was 67.5 ± 14.7 yr with 51% being male. Mean left ventricular ejection fraction (LVEF) was 53.9 ± 16.8%. We demonstrated that the presence of atrial pacing above 50% correlated with higher levels of mitochondrial spared respiratory capacity (P = 0.043) and coupling efficiency (P = 0.045). After adjusting with multiple linear regression for age, sex, LVEF, history of AF, sick sinus syndrome, comorbidities, estimated glomerular filtration rate (eGFR), cardiac resynchronization therapy (CRT), and percentage of ventricular pacing, our findings revealed a statistically significant association between a higher percentage of atrial pacing and increased spared respiratory capacity (β, 0.217, P = 0.046), lower nonmitochondrial respiration (β, -0.230; P = 0.023), and proton leak (β, -0.247; P = 0.022). We demonstrated that atrial pacing enhances mitochondrial performance in PBMCs and left ventricular contractile performance in patients with CIEDs. This observation may serve as an additional support for the preventive effect of atrial pacing in the prevention of atrial arrhythmia.NEW & NOTEWORTHY Atrial pacing enhances mitochondrial spare respiratory capacity and reduces proton leak. This finding may provide further evidence supporting the preventive role of atrial pacing in reducing the risk of atrial fibrillation in patients with cardiac implantable electronic devices.
Collapse
Affiliation(s)
- Teerapat Nantsupawat
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| | - Pawut Gumrai
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattayaporn Apaijai
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Arintaya Phrommintikul
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| | - Narawudt Prasertwitayakij
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wanwarang Wongcharoen
- Division of Cardiology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Medicine, Cardiac Electrophysiology Research and Training Center, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
5
|
Higdon LE, Scheiding S, Kus AM, Lim N, Long SA, Anderson MS, Wiedeman AE. Impact on in-depth immunophenotyping of delay to peripheral blood processing. Clin Exp Immunol 2024; 217:119-132. [PMID: 38693758 PMCID: PMC11239563 DOI: 10.1093/cei/uxae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/20/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
Peripheral blood mononuclear cell (PBMC) immunophenotyping is crucial in tracking activation, disease state, and response to therapy in human subjects. Many studies require the shipping of blood from clinical sites to a laboratory for processing to PBMC, which can lead to delays that impact sample quality. We used an extensive cytometry by time-of-flight (CyTOF) immunophenotyping panel to analyze the impacts of delays to processing and distinct storage conditions on cell composition and quality of PBMC from seven adults across a range of ages, including two with rheumatoid arthritis. Two or more days of delay to processing resulted in extensive red blood cell contamination and increased variability of cell counts. While total memory and naïve B- and T-cell populations were maintained, 4-day delays reduced the frequencies of monocytes. Variation across all immune subsets increased with delays of up to 7 days in processing. Unbiased clustering analysis to define more granular subsets confirmed changes in PBMC composition, including decreases of classical and non-classical monocytes, basophils, plasmacytoid dendritic cells, and follicular helper T cells, with each subset impacted at a distinct time of delay. Expression of activation markers and chemokine receptors changed by Day 2, with differential impacts across subsets and markers. Our data support existing recommendations to process PBMC within 36 h of collection but provide guidance on appropriate immunophenotyping experiments with longer delays.
Collapse
Affiliation(s)
- Lauren E Higdon
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, USA
| | - Sheila Scheiding
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Anna M Kus
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Noha Lim
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Mark S Anderson
- Biomarker and Discovery Research, Immune Tolerance Network, San Francisco, CA, USA
| | - Alice E Wiedeman
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
6
|
Hernandez-Galicia G, Gomez-Morales L, Lopez-Bailon LU, Valdovinos-Torres H, Contreras-Ochoa CO, Díaz Benítez CE, Martinez-Barnetche J, Alpuche-Aranda C, Ortiz-Navarrete V. Presence of SARS-CoV-2-specific T cells before vaccination in the Mexican population. J Leukoc Biol 2024; 116:95-102. [PMID: 38717738 DOI: 10.1093/jleuko/qiae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 06/30/2024] Open
Abstract
The immune response to SARS-CoV-2 has been extensively studied following the pandemic outbreak in 2020; however, the presence of specific T cells against SARS-CoV-2 before vaccination has not been evaluated in Mexico. In this study, we estimated the frequency of T CD4+ and T CD8+ cells that exhibit a specific response to S (spike) and N (nucleocapsid) proteins in a Mexican population. We collected 78 peripheral blood samples from unvaccinated subjects, and the presence of antibodies against spike (RBD) and N protein was determined. Peripheral blood mononuclear cells were isolated and stimulated with a pool of S or N protein peptides (Wuhan-Hu-1 strain). IL-1β, IL-4, IL-6, IL-10, IL-2, IL-8, TNF-α, IFN-γ, and GM-CSF levels were quantified in the supernatant of the activated cells, and the cells were stained to assess the activation and memory phenotypes. Differential activation frequency dependent on serological status was observed in CD4+ cells but not in CD8+ cells. The predominantly activated population was the central memory T CD4+ cells. Only 10% of the population exhibited the same phenotype with respect to the response to nucleocapsid peptides. The cytokine profile differed between the S and N responses. S peptides induced a more proinflammatory response compared with the N peptides. In conclusion, in a Mexican cohort before vaccination, there was a significant response to the S and N SARS-CoV-2 proteins resulting from previous infections with seasonal coronaviruses or previous undetected exposure to SARS-CoV-2.
Collapse
Affiliation(s)
- Gabriela Hernandez-Galicia
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, 2508 Instituto Politécnico Nacional Avenue, 07360, Mexico City, Mexico
| | - Luis Gomez-Morales
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, 2508 Instituto Politécnico Nacional Avenue, 07360, Mexico City, Mexico
- Department of Immunology, National School of Biological Sciences, National Polytechnic Institute, Manuel Carpio and Plan de Ayala St, 11340, Mexico City, Mexico
| | - Luis Uriel Lopez-Bailon
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, 2508 Instituto Politécnico Nacional Avenue, 07360, Mexico City, Mexico
- Department of Immunology, National School of Biological Sciences, National Polytechnic Institute, Manuel Carpio and Plan de Ayala St, 11340, Mexico City, Mexico
| | - Humberto Valdovinos-Torres
- Center for Infectious Diseases Research, National Institute of Public Health, 655 Universidad Avenue, 62100, Cuernavaca, Mexico
| | - Carla O Contreras-Ochoa
- Center for Infectious Diseases Research, National Institute of Public Health, 655 Universidad Avenue, 62100, Cuernavaca, Mexico
| | - Cinthya Estefhany Díaz Benítez
- Center for Infectious Diseases Research, National Institute of Public Health, 655 Universidad Avenue, 62100, Cuernavaca, Mexico
| | - Jesus Martinez-Barnetche
- Center for Infectious Diseases Research, National Institute of Public Health, 655 Universidad Avenue, 62100, Cuernavaca, Mexico
| | - Celia Alpuche-Aranda
- Center for Infectious Diseases Research, National Institute of Public Health, 655 Universidad Avenue, 62100, Cuernavaca, Mexico
| | - Vianney Ortiz-Navarrete
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, 2508 Instituto Politécnico Nacional Avenue, 07360, Mexico City, Mexico
| |
Collapse
|
7
|
Elkhamary A, Gerner I, Bileck A, Oreff GL, Gerner C, Jenner F. Comparative proteomic profiling of the ovine and human PBMC inflammatory response. Sci Rep 2024; 14:14939. [PMID: 38942936 PMCID: PMC11213919 DOI: 10.1038/s41598-024-66059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/26/2024] [Indexed: 06/30/2024] Open
Abstract
Understanding the cellular and molecular mechanisms of inflammation requires robust animal models. Sheep are commonly used in immune-related studies, yet the validity of sheep as animal models for immune and inflammatory diseases remains to be established. This cross-species comparative study analyzed the in vitro inflammatory response of ovine (oPBMCs) and human PBMCs (hPBMCs) using mass spectrometry, profiling the proteome of the secretome and whole cell lysate. Of the entire cell lysate proteome (oPBMCs: 4217, hPBMCs: 4574 proteins) 47.8% and in the secretome proteome (oPBMCs: 1913, hPBMCs: 1375 proteins) 32.8% were orthologous between species, among them 32 orthologous CD antigens, indicating the presence of six immune cell subsets. Following inflammatory stimulation, 71 proteins in oPBMCs and 176 in hPBMCs showed differential abundance, with only 7 overlapping. Network and Gene Ontology analyses identified 16 shared inflammatory-related terms and 17 canonical pathways with similar activation/inhibition patterns in both species, demonstrating significant conservation in specific immune and inflammatory responses. However, ovine PMBCs also contained a unique WC1+γδ T-cell subset, not detected in hPBMCs. Furthermore, differences in the activation/inhibition trends of seven canonical pathways and the sets of DAPs between sheep and humans, emphasize the need to consider interspecies differences in translational studies and inflammation research.
Collapse
Affiliation(s)
- A Elkhamary
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria
- Department for Surgery, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - I Gerner
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - A Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - G L Oreff
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria
| | - C Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - F Jenner
- Department for Companion Animals and Horses, Veterm, University Equine Hospital, Vetmeduni Vienna, Vienna, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
8
|
Seman SG, Bicer S, Julian MW, Mitchell JR, Kramer PJ, Crouser ED, Locke LW. Investigating cryopreserved PBMC functionality in an antigen-induced model of sarcoidosis granuloma formation. Biochem Biophys Res Commun 2024; 714:149993. [PMID: 38663096 DOI: 10.1016/j.bbrc.2024.149993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024]
Abstract
Sarcoidosis, a systemic inflammatory disease, poses challenges in understanding its etiology and variable clinical courses. Despite ongoing uncertainty about causative agents and genetic predisposition, granuloma formation remains its hallmark feature. To address this, we developed a validated in vitro human granuloma model using patient-derived peripheral blood mononuclear cells (PBMCs), offering a dynamic platform for studying early granuloma formation and sarcoidosis pathogenesis. However, a current limitation of this model is its dependence on freshly isolated PBMCs obtained from whole blood. While cryopreservation is a common method for long-term sample preservation, the biological effects of freezing and thawing PBMCs on granuloma formation remain unclear. This study aimed to assess the viability and functionality of cryopreserved sarcoidosis PBMCs within the granuloma model, revealing similar granulomatous responses to fresh cells and highlighting the potential of cryopreserved PBMCs as a valuable tool for studying sarcoidosis and related diseases.
Collapse
Affiliation(s)
- Sarah G Seman
- Biomedical Engineering Department, The Ohio State University College of Engineering, The Ohio State University, Columbus, OH, USA.
| | - Sabahattin Bicer
- Biomedical Engineering Department, The Ohio State University College of Engineering, The Ohio State University, Columbus, OH, USA.
| | - Mark W Julian
- Division of Pulmonary, Critical Care and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Jonah R Mitchell
- Biomedical Engineering Department, The Ohio State University College of Engineering, The Ohio State University, Columbus, OH, USA.
| | - Patrick J Kramer
- Division of Pulmonary, Critical Care and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Elliott D Crouser
- Division of Pulmonary, Critical Care and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| | - Landon W Locke
- Biomedical Engineering Department, The Ohio State University College of Engineering, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
9
|
Wei X, Tang N, Zhang L, Wang W, Li Y, Qin J, Yuan D, Wang Y. Optimizing peripheral blood chromosome analysis: effects of refrigeration time and blood volume. Am J Transl Res 2024; 16:1237-1245. [PMID: 38715818 PMCID: PMC11070348 DOI: 10.62347/vzbp5808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/29/2024] [Indexed: 01/06/2025]
Abstract
OBJECTIVE This study aims to investigate the impact of refrigeration time and blood volume on the success rate of peripheral blood chromosomal analysis using response surface methodology (RSM). METHODS Peripheral blood samples from 30 volunteers were subjected to chromosomal analysis under different refrigeration duration periods (≤7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days) along with different blood volumes (0.2 mL, 0.3 mL, 0.4 mL, 0.5 mL, 0.6 mL, 0.7 mL, and 0.8 mL). The effects of refrigeration time and blood volume on the success rate of peripheral blood chromosomal analysis were determined using the Chi-square test for trend, followed with Spearman's rank correlation coefficient, and RSM analysis to identify the optimal combination of refrigeration time and blood volume. RESULTS The refrigeration time within 10 days had a minor impact on the success rate, while refrigeration time more than 11 days significantly decreased the success rate. An increase in blood volume slightly improved the success rate. The success rate showed both linear and nonlinear changes with refrigeration time, while the effect of blood volume was primarily linear. The highest success rate was observed at a refrigeration time of ≤7 days and a blood volume of 0.8 mL. The interaction between refrigeration time and blood volume had a significant impact on the success rate. CONCLUSION It is recommended to keep the refrigeration time of blood samples within 7 days and control the blood volume at 0.8 mL to maximize the success rate of chromosomal analysis.
Collapse
Affiliation(s)
- Xiaoni Wei
- Department of Medical Genetics, Liuzhou Hospital of Guangzhou Women and Children’s Medical CenterLiuzhou 545000, Guangxi, China
- Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Maternity and Child Healthcare HospitalLiuzhou 545000, Guangxi, China
| | - Ning Tang
- Comprehensive Experimental Center, Liuzhou Hospital of Guangzhou Women and Children’s Medical CenterLiuzhou 545000, Guangxi, China
| | - Ling Zhang
- Department of Medical Genetics, Liuzhou Hospital of Guangzhou Women and Children’s Medical CenterLiuzhou 545000, Guangxi, China
- Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Maternity and Child Healthcare HospitalLiuzhou 545000, Guangxi, China
| | - Wendan Wang
- Department of Medical Genetics, Liuzhou Hospital of Guangzhou Women and Children’s Medical CenterLiuzhou 545000, Guangxi, China
- Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Maternity and Child Healthcare HospitalLiuzhou 545000, Guangxi, China
| | - Yaxing Li
- Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Maternity and Child Healthcare HospitalLiuzhou 545000, Guangxi, China
- Department of Medical Genetics, Liuzhou Maternity and Child Healthcare HospitalLiuzhou 545000, Guangxi, China
| | - Jiangfeng Qin
- Department of Medical Genetics, Liuzhou Hospital of Guangzhou Women and Children’s Medical CenterLiuzhou 545000, Guangxi, China
- Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Maternity and Child Healthcare HospitalLiuzhou 545000, Guangxi, China
| | - Dejian Yuan
- Department of Medical Genetics, Liuzhou Hospital of Guangzhou Women and Children’s Medical CenterLiuzhou 545000, Guangxi, China
- Liuzhou Key Laboratory of Birth Defects Prevention and Control, Liuzhou Maternity and Child Healthcare HospitalLiuzhou 545000, Guangxi, China
| | - Yujiang Wang
- Guangxi Transportation Industry Key Laboratory of Vehicle-Road-Cloud Integrated CooperationLiuzhou 545000, Guangxi, China
| |
Collapse
|
10
|
Yamada K, Menon JA, Kim Y, Cheng C, Chen W, Shih JA, Villasenor-Altamirano AB, Chen X, Tamura T, Merriam LT, Kim EY, Weissman AJ. Protocol for immunophenotyping out-of-hospital cardiac arrest patients. STAR Protoc 2024; 5:102874. [PMID: 38310512 PMCID: PMC10850743 DOI: 10.1016/j.xpro.2024.102874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/28/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Immunophenotyping of out-of-hospital cardiac arrest (OHCA) patients is of increasing interest but has challenges. Here, we describe steps for the design of the clinical cohort, planning patient enrollment and sample collection, and ethical review of the study protocol. We detail procedures for blood sample collection and cryopreservation of peripheral blood mononuclear cells (PBMCs). We detail steps to modulate immune checkpoints in OHCA PBMC ex vivo. This protocol also has relevance for immunophenotyping other types of critical illness. For complete details on the use and execution of this protocol, please refer to Tamura et al. (2023).1.
Collapse
Affiliation(s)
- Kohei Yamada
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Jaivardhan A Menon
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Yaunghyun Kim
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Changde Cheng
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wenan Chen
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jenny A Shih
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Ana B Villasenor-Altamirano
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tomoyoshi Tamura
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Louis T Merriam
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Edy Y Kim
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Alexandra J Weissman
- Department of Emergency Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
11
|
Müller S, Kröger C, Schultze JL, Aschenbrenner AC. Whole blood stimulation as a tool for studying the human immune system. Eur J Immunol 2024; 54:e2350519. [PMID: 38103010 DOI: 10.1002/eji.202350519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The human immune system is best accessible via tissues and organs not requiring major surgical intervention, such as blood. In many circumstances, circulating immune cells correlate with an individual's health state and give insight into physiological and pathophysiological processes. Stimulating whole blood ex vivo is a powerful tool to investigate immune responses. In the context of clinical research, the applications of whole blood stimulation include host immunity, disease characterization, diagnosis, treatment, and drug development. Here, we summarize different setups and readouts of whole blood assays and discuss applications for preclinical research and clinical practice. Finally, we propose combining whole blood stimulation with high-throughput technologies, such as single-cell RNA-sequencing, to comprehensively analyze the human immune system for the identification of biomarkers, therapeutic interventions as well as companion diagnostics.
Collapse
Affiliation(s)
- Sophie Müller
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Genomics & Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Charlotte Kröger
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- Genomics & Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
- Genomics & Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn, Bonn, Germany
| | - Anna C Aschenbrenner
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| |
Collapse
|
12
|
Satpathy S, Thomas BE, Pilcher WJ, Bakhtiari M, Ponder LA, Pacholczyk R, Prahalad S, Bhasin SS, Munn DH, Bhasin MK. The Simple prEservatioN of Single cElls method for cryopreservation enables the generation of single-cell immune profiles from whole blood. Front Immunol 2023; 14:1271800. [PMID: 38090590 PMCID: PMC10713715 DOI: 10.3389/fimmu.2023.1271800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Current multistep methods utilized for preparing and cryopreserving single-cell suspensions from blood samples for single-cell RNA sequencing (scRNA-seq) are time-consuming, requiring trained personnel and special equipment, so limiting their clinical adoption. We developed a method, Simple prEservatioN of Single cElls (SENSE), for single-step cryopreservation of whole blood (WB) along with granulocyte depletion during single-cell assay, to generate high quality single-cell profiles (SCP). Methods WB was cryopreserved using the SENSE method and peripheral blood mononuclear cells (PBMCs) were isolated and cryopreserved using the traditional density-gradient method (PBMC method) from the same blood sample (n=6). The SCPs obtained from both methods were processed using a similar pipeline and quality control parameters. Further, entropy calculation, differential gene expression, and cellular communication analysis were performed to compare cell types and subtypes from both methods. Results Highly viable (86.3 ± 1.51%) single-cell suspensions (22,353 cells) were obtained from the six WB samples cryopreserved using the SENSE method. In-depth characterization of the scRNA-seq datasets from the samples processed with the SENSE method yielded high-quality profiles of lymphoid and myeloid cell types which were in concordance with the profiles obtained with classical multistep PBMC method processed samples. Additionally, the SENSE method cryopreserved samples exhibited significantly higher T-cell enrichment, enabling deeper characterization of T-cell subtypes. Overall, the SENSE and PBMC methods processed samples exhibited transcriptional, and cellular communication network level similarities across cell types with no batch effect except in myeloid lineage cells. Discussion Comparative analysis of scRNA-seq datasets obtained with the two cryopreservation methods i.e., SENSE and PBMC methods, yielded similar cellular and molecular profiles, confirming the suitability of the former method's incorporation in clinics/labs for cryopreserving and obtaining high-quality single-cells for conducting critical translational research.
Collapse
Affiliation(s)
- Sarthak Satpathy
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
| | - Beena E. Thomas
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - William J. Pilcher
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
| | - Mojtaba Bakhtiari
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Lori A. Ponder
- Division of Rheumatology, Children’s Healthcare of Atlanta, Atlanta, GA, United States
| | - Rafal Pacholczyk
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, United States
| | - Sampath Prahalad
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- Division of Rheumatology, Children’s Healthcare of Atlanta, Atlanta, GA, United States
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Swati S. Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - David H. Munn
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
- Department of Pediatrics, Augusta University, Augusta, GA, United States
| | - Manoj K. Bhasin
- Aflac Cancer and Blood Disorders Center, Children Healthcare of Atlanta, Atlanta, GA, United States
- Department of Biomedical Informatics, Emory University, Atlanta, GA, United States
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| |
Collapse
|
13
|
Ejma-Multański A, Wajda A, Paradowska-Gorycka A. Cell Cultures as a Versatile Tool in the Research and Treatment of Autoimmune Connective Tissue Diseases. Cells 2023; 12:2489. [PMID: 37887333 PMCID: PMC10605903 DOI: 10.3390/cells12202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Cell cultures are an important part of the research and treatment of autoimmune connective tissue diseases. By culturing the various cell types involved in ACTDs, researchers are able to broaden the knowledge about these diseases that, in the near future, may lead to finding cures. Fibroblast cultures and chondrocyte cultures allow scientists to study the behavior, physiology and intracellular interactions of these cells. This helps in understanding the underlying mechanisms of ACTDs, including inflammation, immune dysregulation and tissue damage. Through the analysis of gene expression patterns, surface proteins and cytokine profiles in peripheral blood mononuclear cell cultures and endothelial cell cultures researchers can identify potential biomarkers that can help in diagnosing, monitoring disease activity and predicting patient's response to treatment. Moreover, cell culturing of mesenchymal stem cells and skin modelling in ACTD research and treatment help to evaluate the effects of potential drugs or therapeutics on specific cell types relevant to the disease. Culturing cells in 3D allows us to assess safety, efficacy and the mechanisms of action, thereby aiding in the screening of potential drug candidates and the development of novel therapies. Nowadays, personalized medicine is increasingly mentioned as a future way of dealing with complex diseases such as ACTD. By culturing cells from individual patients and studying patient-specific cells, researchers can gain insights into the unique characteristics of the patient's disease, identify personalized treatment targets, and develop tailored therapeutic strategies for better outcomes. Cell culturing can help in the evaluation of the effects of these therapies on patient-specific cell populations, as well as in predicting overall treatment response. By analyzing changes in response or behavior of patient-derived cells to a treatment, researchers can assess the response effectiveness to specific therapies, thus enabling more informed treatment decisions. This literature review was created as a form of guidance for researchers and clinicians, and it was written with the use of the NCBI database.
Collapse
Affiliation(s)
- Adam Ejma-Multański
- Department of Molecular Biology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland; (A.W.); (A.P.-G.)
| | | | | |
Collapse
|
14
|
Xu J, Lodge T, Kingdon C, Strong JWL, Maclennan J, Lacerda E, Kujawski S, Zalewski P, Huang WE, Morten KJ. Developing a Blood Cell-Based Diagnostic Test for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Using Peripheral Blood Mononuclear Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302146. [PMID: 37653608 PMCID: PMC10602530 DOI: 10.1002/advs.202302146] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/12/2023] [Indexed: 09/02/2023]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is characterized by debilitating fatigue that profoundly impacts patients' lives. Diagnosis of ME/CFS remains challenging, with most patients relying on self-report, questionnaires, and subjective measures to receive a diagnosis, and many never receiving a clear diagnosis at all. In this study, a single-cell Raman platform and artificial intelligence are utilized to analyze blood cells from 98 human subjects, including 61 ME/CFS patients of varying disease severity and 37 healthy and disease controls. These results demonstrate that Raman profiles of blood cells can distinguish between healthy individuals, disease controls, and ME/CFS patients with high accuracy (91%), and can further differentiate between mild, moderate, and severe ME/CFS patients (84%). Additionally, specific Raman peaks that correlate with ME/CFS phenotypes and have the potential to provide insights into biological changes and support the development of new therapeutics are identified. This study presents a promising approach for aiding in the diagnosis and management of ME/CFS and can be extended to other unexplained chronic diseases such as long COVID and post-treatment Lyme disease syndrome, which share many of the same symptoms as ME/CFS.
Collapse
Affiliation(s)
- Jiabao Xu
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
- Division of Biomedical Engineering, James Watt School of EngineeringUniversity of GlasgowGlasgowG12 8LTUK
| | - Tiffany Lodge
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordThe Women CentreJohn Radcliffe HospitalHeadley Way, HeadingtonOxfordOX3 9DUUK
| | - Caroline Kingdon
- Faculty of Infectious DiseasesLondon School of Hygiene and Tropical MedicineKeppel StLondonWC1E 7HTUK
| | - James W. L. Strong
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordThe Women CentreJohn Radcliffe HospitalHeadley Way, HeadingtonOxfordOX3 9DUUK
| | - John Maclennan
- Soft Cell Biological ResearchAttwood Innovation Center453 S 600 ESt. GeorgeUT84770USA
| | - Eliana Lacerda
- Faculty of Infectious DiseasesLondon School of Hygiene and Tropical MedicineKeppel StLondonWC1E 7HTUK
| | - Slawomir Kujawski
- Department of Exercise Physiology and Functional AnatomyCollegium Medicum in BydgoszczNicolaus Copernicus University in TorunSwietojanska 20Bydgoszcz85‐077Poland
| | - Pawel Zalewski
- Department of Exercise Physiology and Functional AnatomyCollegium Medicum in BydgoszczNicolaus Copernicus University in TorunSwietojanska 20Bydgoszcz85‐077Poland
- Department of Experimental and Clinical PhysiologyWarsaw Medical UniversityStefana Banacha 2aWarszawa02‐097Poland
| | - Wei E. Huang
- Department of Engineering ScienceUniversity of OxfordParks RoadOxfordOX1 3PJUK
| | - Karl J. Morten
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordThe Women CentreJohn Radcliffe HospitalHeadley Way, HeadingtonOxfordOX3 9DUUK
| |
Collapse
|
15
|
Ferreira RC, do Nascimento YM, de Araújo Loureiro PB, Martins RX, de Souza Maia ME, Farias DF, Tavares JF, Gonçalves JCR, da Silva MS, Sobral MV. Chemical Composition, In Vitro Antitumor Effect, and Toxicity in Zebrafish of the Essential Oil from Conyza bonariensis (L.) Cronquist (Asteraceae). Biomolecules 2023; 13:1439. [PMID: 37892120 PMCID: PMC10604947 DOI: 10.3390/biom13101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/29/2023] Open
Abstract
The essential oil from Conyza bonariensis (Asteraceae) aerial parts (CBEO) was extracted by hydrodistillation in a Clevenger-type apparatus and was characterized by gas chromatography-mass spectrometry. The antitumor potential was evaluated against human tumor cell lines (melanoma, cervical, colorectal, and leukemias), as well as non-tumor keratinocyte lines using the MTT assay. The effect of CBEO on the production of Reactive Oxygen Species (ROS) was evaluated by DCFH-DA assay, and a protection assay using the antioxidant N-acetyl-L-cysteine (NAC) was also performed. Moreover, the CBEO toxicity in the zebrafish model was assessed. The majority of the CBEO compound was (Z)-2-lachnophyllum ester (57.24%). The CBEO exhibited selectivity towards SK-MEL-28 melanoma cells (half maximal inhibitory concentration, IC50 = 18.65 ± 1.16 µg/mL), and induced a significant increase in ROS production. In addition, the CBEO's cytotoxicity against SK-MEL-28 cells was reduced after pretreatment with NAC. Furthermore, after 96 h of exposure, 1.5 µg/mL CBEO induced death of all zebrafish embryos. Non-lethal effects were observed after exposure to 0.50-1.25 µg/mL CBEO. Additionally, significant alterations in the activity of enzymes associated with oxidative stress in zebrafish larvae were observed. These results provide evidence that CBEO has a significant in vitro antimelanoma effect by increasing ROS production and moderate embryotoxicity in zebrafish.
Collapse
Affiliation(s)
- Rafael Carlos Ferreira
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Yuri Mangueira do Nascimento
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Paulo Bruno de Araújo Loureiro
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Rafael Xavier Martins
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Maria Eduarda de Souza Maia
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Davi Felipe Farias
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Josean Fechine Tavares
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Juan Carlos Ramos Gonçalves
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marcelo Sobral da Silva
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| |
Collapse
|
16
|
Bartkeviciene A, Jasukaitiene A, Zievyte I, Stukas D, Ivanauskiene S, Urboniene D, Maimets T, Jaudzems K, Vitkauskiene A, Matthews J, Dambrauskas Z, Gulbinas A. Association between AHR Expression and Immune Dysregulation in Pancreatic Ductal Adenocarcinoma: Insights from Comprehensive Immune Profiling of Peripheral Blood Mononuclear Cells. Cancers (Basel) 2023; 15:4639. [PMID: 37760608 PMCID: PMC10526859 DOI: 10.3390/cancers15184639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), has an immune suppressive environment that allows tumour cells to evade the immune system. The aryl-hydrocarbon receptor (AHR) is a transcription factor that can be activated by certain exo/endo ligands, including kynurenine (KYN) and other tryptophan metabolites. Once activated, AHR regulates the expression of various genes involved in immune responses and inflammation. Previous studies have shown that AHR activation in PDAC can have both pro-tumorigenic and anti-tumorigenic effects, depending on the context. It can promote tumour growth and immune evasion by suppressing anti-tumour immune responses or induce anti-tumour effects by enhancing immune cell function. In this study involving 30 PDAC patients and 30 healthy individuals, peripheral blood samples were analysed. PDAC patients were categorized into Low (12 patients) and High/Medium (18 patients) AHR groups based on gene expression in peripheral blood mononuclear cells (PBMCs). The Low AHR group showed distinct immune characteristics, including increased levels of immune-suppressive proteins such as PDL1, as well as alterations in lymphocyte and monocyte subtypes. Functional assays demonstrated changes in phagocytosis, nitric oxide production, and the expression of cytokines IL-1, IL-6, and IL-10. These findings indicate that AHR's expression level has a crucial role in immune dysregulation in PDAC and could be a potential target for early diagnostics and personalised therapeutics.
Collapse
Affiliation(s)
- Arenida Bartkeviciene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Aldona Jasukaitiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Inga Zievyte
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Darius Stukas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Sandra Ivanauskiene
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Daiva Urboniene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (D.U.); (A.V.)
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia;
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia;
| | - Astra Vitkauskiene
- Department of Laboratory Medicine, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (D.U.); (A.V.)
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 1046 Blindern, 0317 Oslo, Norway;
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Zilvinas Dambrauskas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| | - Antanas Gulbinas
- Laboratory of Surgical Gastroenterology, Institute for Digestive Research, Lithuanian University of Health Sciences, Eiveniu 4, 50103 Kaunas, Lithuania; (A.J.); (I.Z.); (D.S.); (S.I.); (Z.D.); (A.G.)
| |
Collapse
|
17
|
Monocyte antigen-presenting capacity to iNKT cells is influenced by the blood collection conditions. J Immunol Methods 2023; 513:113426. [PMID: 36638882 DOI: 10.1016/j.jim.2023.113426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
It is widely accepted that different blood collection conditions, including anticoagulants, influence leukocyte phenotype and function. Buffy Coats originated from a donated whole blood bag unit are commonly used in immunological research as a source of leukocytes. They are a residual product of healthy donor whole blood processing. The preservative solution present in the blood bag unit and consequently in the derived Buffy Coat is Citrate-Phosphate-Dextrose (CPD), in which citrate is the anticoagulant. There is a lack of information on the possible difference in the functionality of leukocytes from Buffy Coats originated from a blood bag unit vs leukocytes isolated from blood collection tubes with various anticoagulants. Herein, we aimed at studying monocyte function when the monocytes are isolated from Buffy Coats originated from a blood bag unit vs blood collection tube containing EDTA, CPD with adenine (CPDA), or sodium citrate. The function of monocytes, isolated 20 h after blood collection, to present lipid antigens to invariant Natural Killer T (iNKT) cells was investigated. iNKT cells are activated by lipids bound to CD1d, a non-polymorphic MHC-class I-like molecule, present on the surface of antigen-presenting cells. A striking result showed that monocytes isolated from EDTA blood tubes have a lower capacity to present lipid antigens to iNKT cells than monocytes isolated from Buffy Coats originated from a blood bag unit. No differences were found between monocytes isolated from sodium citrate or CPDA and the ones isolated from Buffy Coats originated from a blood bag unit. This was accompanied by a decrease in viability of the EDTA-isolated monocytes. Expression of the surface markers CD1d and CD86 was higher for monocytes isolated from EDTA than those isolated from Buffy Coats. In conclusion, EDTA-containing blood tubes are not the ideal choice of anticoagulant for monocyte antigen presentation assays. We advise that the blood collection condition and the time between biospecimen collection and analysis should be carefully considered when designing experimental procedures.
Collapse
|
18
|
Qu HQ, Kao C, Garifallou J, Wang F, Snyder J, Slater DJ, Hou C, March M, Connolly JJ, Glessner JT, Hakonarson H. Single Cell Transcriptome Analysis of Peripheral Blood Mononuclear Cells in Freshly Isolated versus Stored Blood Samples. Genes (Basel) 2023; 14:142. [PMID: 36672883 PMCID: PMC9859202 DOI: 10.3390/genes14010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Peripheral blood mononuclear cells (PBMCs) are widely used as a model in the study of different human diseases. There is often a time delay from blood collection to PBMC isolation during the sampling process, which can result in an experimental bias, particularly when performing single cell RNA-seq (scRNAseq) studies. METHODS This study examined the impact of different time periods from blood draw to PBMC isolation on the subsequent transcriptome profiling of different cell types in PBMCs by scRNAseq using the 10X Chromium Single Cell Gene Expression assay. RESULTS Examining the five major cell types constituting the PBMC cell population, i.e., CD4+ T cells, CD8+ T cells, NK cells, monocytes, and B cells, both common changes and cell-type-specific changes were observed in the single cell transcriptome profiling over time. In particular, the upregulation of genes regulated by NF-kB in response to TNF was observed in all five cell types. Significant changes in key genes involved in AP-1 signaling were also observed. RBC contamination was a major issue in stored blood, whereas RBC adherence had no direct impact on the cell transcriptome. CONCLUSIONS Significant transcriptome changes were observed across different PBMC cell types as a factor of time from blood draw to PBMC isolation and as a consequence of blood storage. This should be kept in mind when interpreting experimental results.
Collapse
Affiliation(s)
- Hui-Qi Qu
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Charlly Kao
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - James Garifallou
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Fengxiang Wang
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - James Snyder
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Diana J. Slater
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cuiping Hou
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael March
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - John J. Connolly
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Joseph T. Glessner
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Pulmonary Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| |
Collapse
|
19
|
Stabel JR, Wherry TLT. Comparison of methods to isolate peripheral blood mononuclear cells from cattle blood. J Immunol Methods 2023; 512:113407. [PMID: 36528086 DOI: 10.1016/j.jim.2022.113407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/23/2022] [Accepted: 12/12/2022] [Indexed: 12/16/2022]
Abstract
Peripheral blood mononuclear cells (PBMCs) are critical for assessment of host immune responses to infectious disease. The isolation of PBMCs from whole blood is a laborious process involving density gradients and multiple centrifugation steps. In the present study we compared a more traditional method of PBMC isolation used in our laboratory to two novel methods of cell isolation for efficiency, cell viability, and enumeration of cell subsets. Our laboratory method uses Histopaque-1077 density gradient in standard conical tubes and this was compared with isolation of cells using SepMate™ tubes, a novel conical tube containing an insert to separate the density gradient. Multiple experiments were performed to optimize the SepMate™ tubes for use with cattle blood. A final experiment was conducted to compare traditional methodology, the optimized SepMate™ method with a more novel method using cell preparation tubes (CPT-10 vacutainers containing density gradient). Results demonstrated that optimization of the SepMate™ tube methodology was necessary, including dilution of blood and addition of centrifugation steps to reduce platelet contamination. The CPT-10 tubes worked well but cell recovery was lower compared to other methods. Both of the newer methods were comparable to a modified version of our traditional laboratory method of PBMC isolation in terms of numbers of recovered viable cells and the frequency of immune cell subsets. Additionally, efficiency was improved, particularly with the SepMate™ tube method, resulting in reduced time in the laboratory as well as reduced usage of plasticware.
Collapse
Affiliation(s)
- Judith R Stabel
- USDA-ARS, National Animal Disease Center, Ames, IA 50010, USA.
| | - Taylor L T Wherry
- Department of Veterinary Pathology, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
20
|
Quek H, Cuní-López C, Stewart R, Lim YC, Roberts TL, White AR. A robust approach to differentiate human monocyte-derived microglia from peripheral blood mononuclear cells. STAR Protoc 2022; 3:101747. [PMID: 36201317 PMCID: PMC9535318 DOI: 10.1016/j.xpro.2022.101747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/24/2022] [Accepted: 09/12/2022] [Indexed: 01/26/2023] Open
Abstract
Microglia are implicated in most neurodegenerative diseases. Here, we present a robust and efficient protocol to differentiate monocyte-derived microglia-like cells (MDMi) from whole blood. The protocol consists of three parts. The first part will describe two methods for PBMC isolation. This will be followed by MDMi differentiation, and lastly, the characterization of MDMi by immunocytochemistry. MDMi can be used to investigate microglial-related responses in various age-related neurodegenerative diseases and can be applied to drug testing on a personalized basis. For complete details on the use and execution of this protocol, please refer to Quek et al. (2022).
Collapse
Affiliation(s)
- Hazel Quek
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia,School of Biomedical Science, The University of Queensland, Brisbane, QLD 4072, Australia,School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4059, Australia,Corresponding author
| | - Carla Cuní-López
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia,Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Romal Stewart
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Yi Chieh Lim
- Brain Tumor Biology, Danish Cancer Society, Copenhagen 2100, Denmark
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Anthony R. White
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia,School of Biomedical Science, The University of Queensland, Brisbane, QLD 4072, Australia,Corresponding author
| |
Collapse
|
21
|
Rules of thumb to obtain, isolate, and preserve porcine peripheral blood mononuclear cells. Vet Immunol Immunopathol 2022; 251:110461. [PMID: 35870231 DOI: 10.1016/j.vetimm.2022.110461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/24/2022]
Abstract
One of the most used biospecimens in immunology are peripheral blood mononuclear cells (PBMC). PBMC are particularly useful when evaluating immunity through responses of circulating B- and T-cells, during an infection, or after a vaccination. While several reviews and research papers have been published aiming to point out critical steps when sampling, isolating, and cryopreserving human PBMC -or even analyzing any parameter before sampling that could impair the immune assays' outcomes-, there are almost no publications in swine research dealing with these topics. As it has been demonstrated, several factors, such as stress, circadian rhythmicity, or the anticoagulant used have serious negative impact, not only on the separation performance of PBMC, but also on the ulterior immune assays. The present review aims to discuss studies carried out in humans that could shed some light for swine research. When possible, publications in pigs are also discussed. The main goal of the review is to encourage swine researchers to standardize protocols to obtain, manage and preserve porcine PBMC, as well as to minimize, or at least to consider, the bias that some parameters might induce in their studies before, during and after isolating PBMC.
Collapse
|
22
|
Guan L, Crasta KC, Maier AB. Assessment of cell cycle regulators in human peripheral blood cells as markers of cellular senescence. Ageing Res Rev 2022; 78:101634. [PMID: 35460888 DOI: 10.1016/j.arr.2022.101634] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022]
Abstract
Cellular senescence has gained increasing interest during recent years, particularly due to causal involvement in the aging process corroborated by multiple experimental findings. Indeed, cellular senescence considered to be one of the hallmarks of aging, is defined as a stable growth arrest predominantly mediated by cell cycle regulators p53, p21 and p16. Senescent cells have frequently been studied in the peripheral blood of humans due to its accessibility. This review summarizes ex vivo studies describing cell cycle regulators as markers of senescence in human peripheral blood cells, along with detection methodologies and associative studies examining demographic and clinical characteristics. The utility of techniques such as the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), microarray, RNA sequencing and nCounter technologies for detection at the transcriptional level, along with Western blotting, enzyme-linked immunosorbent assay and flow cytometry at the translational level, will be brought up at salient points throughout this review. Notably, housekeeping genes or proteins serving as controls such as GAPDH and β-Actin, were found not to be stably expressed in some contexts. As such, optimization and validation of such genes during experimental design were recommended. In addition, the expression of cell cycle regulators was found to vary not only between different types of blood cells such as T cells and B cells but also between stages of cellular differentiation such as naïve T cells and highly differentiated T cells. On the other hand, the associations of the presence of cell cycle regulators with demographics (age, gender, ethnicity, and socioeconomic status), clinical characteristics (body mass index, specific diseases, disease-related parameters) and lifestyle vary in groups of participants. One envisions that increased understanding and insights into the assessment of cell cycle regulators as markers of senescence in human peripheral blood cells will help inform prognostication and clinical intervention in elderly individuals.
Collapse
Affiliation(s)
- Lihuan Guan
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia.
| | - Karen C Crasta
- Healthy Longevity Translational Researc h Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Physiology, National University of Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Agency for Science, Technology & Research (A⁎STAR), Institute of Molecular and Cell Biology (IMCB), Singapore.
| | - Andrea B Maier
- Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia; Healthy Longevity Translational Researc h Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, the Netherlands.
| |
Collapse
|
23
|
Golke T, Mucher P, Schmidt P, Radakovics A, Repl M, Hofer P, Perkmann T, Fondi M, Schmetterer KG, Haslacher H. Delays during PBMC isolation have a moderate effect on yield, but severly compromise cell viability. Clin Chem Lab Med 2022; 60:701-706. [PMID: 35085430 DOI: 10.1515/cclm-2022-0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Peripheral blood mononuclear cells (PBMCs) are a versatile material for clinical routine as well as for research projects. However, their isolation via density gradient centrifugation is still time-consuming. When samples are taken beyond usual laboratory handling times, it may sometimes be necessary to pause the isolation process. Our aim was to evaluate the impact of delays up to 48 h after the density gradient centrifugation on PBMC yield, purity and viability. METHODS PBMCs were isolated from samples of 20 donors, either with BD Vacutainer CPT tubes (CPT) or with the standard Ficoll method. Isolation was paused after initial density gradient centrifugation for 0, 24, or 48 h. PBMC yield (% output/input), purity (% PBMCs/total cells) and viability (% Annexin V-/propidium iodide-) were compared. RESULTS The yield did not change significantly over time when CPT were used (55%/52%/47%), but did after isolation with the standard method (62%/40%[p<0.0001]/53%[p<0.01]). Purity was marginally affected if CPT were used (95%/93%[p=n.s./92%[p<0.05] vs. 97% for all time points with standard method). Whereas viable PBMCs decreased steadily for CPT isolates (62%/51%[p<0.001]/36%[p<0.0001]), after standard Ficoll gradient isolation, cell apoptosis was more pronounced already after 24 h delay, and viability did not further decrease after 48 h (64%/44%[p<0.0001]/40%[p<0.0001]). CONCLUSIONS In conclusion, our findings suggest that while post-centrifugation delays ≥24 h might have only a minor effect on cell yield and purity, their impact on cell viability is substantial, even when CPT are used.
Collapse
Affiliation(s)
- Tanja Golke
- FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | - Patrick Mucher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Patricia Schmidt
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Astrid Radakovics
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Manuela Repl
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Philipp Hofer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Perkmann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Martina Fondi
- FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | - Klaus G Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Tanaka R, Fujimura S, Kado M, Fukuta T, Arita K, Hirano-Ito R, Mita T, Watada H, Kato Y, Miyauchi K, Mizuno H. Phase I/IIa Feasibility Trial of Autologous Quality- and Quantity-Cultured Peripheral Blood Mononuclear Cell Therapy for Non-Healing Extremity Ulcers. Stem Cells Transl Med 2022; 11:146-158. [PMID: 35298656 PMCID: PMC8929435 DOI: 10.1093/stcltm/szab018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/24/2021] [Indexed: 11/24/2022] Open
Abstract
Non-healing wounds are among the main causes of morbidity and mortality. We recently described a novel, serum-free ex vivo expansion system, the quantity and quality culture system (QQc), which uses peripheral blood mononuclear cells (PBMNCs) for effective and noninvasive regeneration of tissue and vasculature in murine and porcine models. In this prospective clinical study, we investigated the safety and efficacy of QQ-cultured peripheral blood mononuclear cell (MNC-QQ) therapy for chronic non-healing ischemic extremity wounds. Peripheral blood was collected from 9 patients with 10 chronic (>1 month) non-healing wounds (8 males, 1 female; 64-74 years) corresponding to ischemic extremity ulcers. PBMNCs were isolated and cultured using QQc. Within a 20-cm area surrounding the ulcer, 2 × 107 cells were injected under local anesthesia. Wound healing was monitored photometrically every 2 weeks. The primary endpoint was safety, whereas the secondary endpoint was efficacy at 12-week post-injection. All patients remained ambulant, and no deaths, other serious adverse events, or major amputations were observed for 12 weeks after cell transplantation. Six of the 10 cases showed complete wound closure with an average wound closure rate of 73.2% ± 40.1% at 12 weeks. MNC-QQ therapy increased vascular perfusion, skin perfusion pressure, and decreased pain intensity in all patients. These results indicate the feasibility and safety of MNC-QQ therapy in patients with chronic non-healing ischemic extremity wounds. As the therapy involves transplanting highly vasculogenic cells obtained from a small blood sample, it may be an effective and highly vasculogenic strategy for limb salvage.
Collapse
Affiliation(s)
- Rica Tanaka
- Division of Regenerative Therapy, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Fujimura
- Division of Regenerative Therapy, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Makiko Kado
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Taro Fukuta
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Kayo Arita
- Division of Regenerative Therapy, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Rie Hirano-Ito
- Division of Regenerative Therapy, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoya Mita
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiteru Kato
- Department of Internal Medicine, Division of Cardiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Katsumi Miyauchi
- Department of Internal Medicine, Division of Cardiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroshi Mizuno
- Department of Plastic and Reconstructive Surgery, Juntendo University School of Medicine, Tokyo, Japan
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Abstract
To analyze immune cell populations accurately, a large number of Peripheral Blood Mononuclear Cells (PBMCs) must be obtained from blood samples. Traditional manual isolation and SepMateTM isolation of PBMCs consistently yield blood-stained plasma layers and overall low numbers of CD4+ and CD8+ cells. Here, we describe an optimized protocol, using PBS with EDTA to increase PBMC yield from pregnant patients. This protocol enables analysis of CD4+, CD8+, and Regulatory T Cells and is potentially applicable to any immune cell population. For complete details on the use and execution of this protocol, please refer to the SepMateTM website https://www.stemcell.com/products/brands/SepMateTM-pbmc-isolation.html. SepMateTM Tubes offer fast and efficient PBMC isolation Using PBS with 1 mM EDTA increases the yield from pregnant patients’ blood samples Careful freezing ensures increased viability of cells Achieves increased viability by following a step-by-step thawing process
Collapse
|
26
|
Abdel-Azim H, Dave H, Jordan K, Rawlings-Rhea S, Luong A, Wilson AL. Alignment of practices for data harmonization across multi-center cell therapy trials: a report from the Consortium for Pediatric Cellular Immunotherapy. Cytotherapy 2022; 24:193-204. [PMID: 34711500 PMCID: PMC8792313 DOI: 10.1016/j.jcyt.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 02/03/2023]
Abstract
Immune effector cell (IEC) therapies have revolutionized our approach to relapsed B-cell malignancies, and interest in the investigational use of IECs is rapidly expanding into other diseases. Current challenges in the analysis of IEC therapies include small sample sizes, limited access to clinical trials and a paucity of predictive biomarkers of efficacy and toxicity associated with IEC therapies. Retrospective and prospective multi-center cell therapy trials can assist in overcoming these barriers through harmonization of clinical endpoints and correlative assays for immune monitoring, allowing additional cross-trial analysis to identify biomarkers of failure and success. The Consortium for Pediatric Cellular Immunotherapy (CPCI) offers a unique platform to address the aforementioned challenges by delivering cutting-edge cell and gene therapies for children through multi-center clinical trials. Here the authors discuss some of the important pre-analytic variables, such as biospecimen collection and initial processing procedures, that affect biomarker assays commonly used in IEC trials across participating CPCI sites. The authors review the recent literature and provide data to support recommendations for alignment and standardization of practices that can affect flow cytometry assays measuring immune effector function as well as interpretation of cytokine/chemokine data. The authors also identify critical gaps that often make parallel comparisons between trials difficult or impossible.
Collapse
Affiliation(s)
- Hisham Abdel-Azim
- Cancer and Blood Disease Institute, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hema Dave
- Center for Cancer and Blood Disorders, Children's National Hospital, George Washington School of Medicine, Washington, DC, USA
| | - Kimberly Jordan
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Stephanie Rawlings-Rhea
- Seattle Children's Therapeutics, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Annie Luong
- Cancer and Blood Disease Institute, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ashley L Wilson
- Seattle Children's Therapeutics, Seattle Children's Research Institute, Seattle, Washington, USA.
| |
Collapse
|
27
|
Henklewska M, Pawlak A, Li RF, Yi J, Zbyryt I, Obmińska-Mrukowicz B. Benzyl Isothiocyanate, a Vegetable-Derived Compound, Induces Apoptosis via ROS Accumulation and DNA Damage in Canine Lymphoma and Leukemia Cells. Int J Mol Sci 2021; 22:ijms222111772. [PMID: 34769202 PMCID: PMC8583731 DOI: 10.3390/ijms222111772] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Treatment of neoplastic diseases in companion animals is one of the most important problems of modern veterinary medicine. Given the growing interest in substances of natural origin as potential anti-cancer drugs, our goal was to examine the effectiveness of benzyl isothiocyanate (BITC), a compound found in cruciferous vegetables, against canine lymphoma and leukemia. These are the one of the most common canine cancer types, and chemotherapy is the only treatment option. The study involved established cell lines originating from various hematopoietic malignancies: CLBL-1, GL-1, CLB70 and CNK-89, immortalized noncancerous cell lines: MDCK and NIH-3T3 and canine peripheral blood mononuclear cells (PBMCs). The cytotoxic activity of BITC, apoptosis induction, caspase activity and ROS generation were evaluated by flow cytometry. H2AX phosphorylation was assessed by western blot. The study showed that the compound was especially active against B lymphocyte-derived malignant cells. Their death resulted from caspase-dependent apoptosis. BITC induced ROS accumulation, and glutathione precursor N-acetyl-l-cysteine reversed the effect of the compound, thus proving the role of oxidative stress in BITC activity. In addition, exposure to the compound induced DNA damage in the tested cells. This is the first study that provides information on the activity of BITC in canine hematopoietic malignancies and suggests that the compound may be particularly useful in B-cell neoplasms treatment.
Collapse
Affiliation(s)
- Marta Henklewska
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
- Correspondence:
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| | - Rong-Fang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (R.-F.L.); (J.Y.)
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (R.-F.L.); (J.Y.)
| | - Iwona Zbyryt
- Department of Epizootiology and Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland;
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Wrocław University of Environmental and Life Sciences, C.K. Norwida 31, 50-375 Wrocław, Poland; (A.P.); (B.O.-M.)
| |
Collapse
|
28
|
Higdon LE, Gustafson CE, Ji X, Sahoo MK, Pinsky BA, Margulies KB, Maecker HT, Goronzy J, Maltzman JS. Association of Premature Immune Aging and Cytomegalovirus After Solid Organ Transplant. Front Immunol 2021; 12:661551. [PMID: 34122420 PMCID: PMC8190404 DOI: 10.3389/fimmu.2021.661551] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/26/2021] [Indexed: 12/19/2022] Open
Abstract
Immune function is altered with increasing age. Infection with cytomegalovirus (CMV) accelerates age-related immunological changes resulting in expanded oligoclonal memory CD8 T cell populations with impaired proliferation, signaling, and cytokine production. As a consequence, elderly CMV seropositive (CMV+) individuals have increased mortality and impaired responses to other infections in comparison to seronegative (CMV–) individuals of the same age. CMV is also a significant complication after organ transplantation, and recent studies have shown that CMV-associated expansion of memory T cells is accelerated after transplantation. Thus, we investigated whether immune aging is accelerated post-transplant, using a combination of telomere length, flow cytometry phenotyping, and single cell RNA sequencing. Telomere length decreased slightly in the first year after transplantation in a subset of both CMV+ and CMV– recipients with a strong concordance between CD57+ cells and short telomeres. Phenotypically aged cells increased post-transplant specifically in CMV+ recipients, and clonally expanded T cells were enriched for terminally differentiated cells post-transplant. Overall, these findings demonstrate a pattern of accelerated aging of the CD8 T cell compartment in CMV+ transplant recipients.
Collapse
Affiliation(s)
- Lauren E Higdon
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA, United States
| | - Claire E Gustafson
- Department of Medicine/Immunology & Rheumatology, Stanford University, Palo Alto, CA, United States
| | - Xuhuai Ji
- Human Immune Monitoring Center, Stanford University, Palo Alto, CA, United States
| | - Malaya K Sahoo
- Department of Pathology, Stanford University, Palo Alto, CA, United States
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University, Palo Alto, CA, United States.,Department of Medicine/Infectious Diseases and Geographic Medicine, Stanford University, Palo Alto, CA, United States
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Holden T Maecker
- Human Immune Monitoring Center, Stanford University, Palo Alto, CA, United States.,Department of Microbiology & Immunology, Stanford University, Palo Alto, CA, United States
| | - Jorg Goronzy
- Department of Medicine/Immunology & Rheumatology, Stanford University, Palo Alto, CA, United States.,Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Jonathan S Maltzman
- Department of Medicine/Nephrology, Stanford University, Palo Alto, CA, United States.,Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
29
|
Zhou M, Wang Y, Lin X, Wan J, Wen C. Specific TLR4 Blocking Effect of a Novel 3,4-Dihydropyrimidinone Derivative. Front Pharmacol 2021; 11:624059. [PMID: 33597886 PMCID: PMC7882735 DOI: 10.3389/fphar.2020.624059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Toll-like receptor 4 (TLR4) initiates both innate and adaptive immune responses, which plays an important protective role in self-defense mechanisms. Excessive or inappropriate TLR4 activation causes the development of many autoimmune diseases. Dihydropyrimidinone derivatives are medicinally important molecules with diverse pharmacological activities, including anti-inflammatory activity. The present study focused on novel synthesized 3,4-dihydropyrimidinone derivatives and evaluated their inhibitory effects on TLR4. Methods: A series of 3,4-dihydropyrimidinone derivatives were recently synthesized and evaluated for their TLR4 inhibition activities and cytotoxic on HEK-BlueTM hTLR4 cells with the help of QUANTI-Blue assay and MTS assay. Selected compound 3 was analyzed for its molecular docking with TLR4 by using Autodock vina 1.1.2. Its effect on the TLR4 pathway related cytokines was also evaluated in THP-1 cells and human peripheral blood mononuclear cells by using real-time PCR, ELISA and western blot. Results: Five compounds were synthesized and characterized for effectiveness based on 3,4-dihydropyrimidinone. Compound 3 was found to be the potent hybrid among the synthesized compounds, with high TLR4 inhibition activities and low cytotoxic activities against HEK-BlueTM hTLR4 cells. Molecular docking analysis showed that two hydrogen bonds between compound 3 and residues Asp209(TLR4) and Asp99(MD-2) mainly contribute to the TLR4 inhibition. In addition, compound 3 suppressed LPS-induced of the mRNA expression of TLR4, IP-10, TNF-α, IL-6, IL-12A, and IL-12B, the protein expression of pIRF3 and pNFκB and the secretion of IP-10, TNF-α in THP-1 cell line. Compound 3 also inhibited LPS-induced expression of TNF-α, IL-6, and IL-1β but increased IP-10 at mRNA levels in human peripheral blood mononuclear cells. Conclusion: Our study reveals compound 3, a novel 3,4-dihydropyrimidinone derivative, is a potential TLR4 antagonist, which opens up new research avenues for the development of promising therapeutic agents for inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Mingqian Zhou
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiqi Wang
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoying Lin
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jieping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Chengping Wen
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
30
|
Bonilauri B, Santos MDM, Camillo-Andrade AC, Bispo S, Nogueira FCS, Carvalho PC, Zanchin NIT, Fischer JDSDG. The impact of blood-processing time on the proteome of human peripheral blood mononuclear cells. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140581. [PMID: 33301959 DOI: 10.1016/j.bbapap.2020.140581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Human peripheral blood mononuclear cells (PBMC) are key to several diagnostics assays and basic science research. Blood pre-analytical variations that occur before obtaining the PBMC fraction can significantly impact the assays results, including viability, composition, integrity, and gene expression changes of immune cells. With this as motivation, we performed a quantitative shotgun proteomics analysis using Isobaric Tag for Relative and Absolute Quantitation (iTRAQ 8plex) labeling to compare PBMC obtained from 24 h-stored blood at room temperature versus freshly isolated. We identified a total of 3195 proteins, of which 245 were differentially abundant (101 upregulated and 144 downregulated). Our results revealed enriched pathways of downregulated proteins related to exocytosis, localization, vesicle-mediated transport, cell activation, and secretion. In contrast, pathways related to exocytosis, neutrophil degranulation and activation, granulocyte activation, leukocyte degranulation, and myeloid leukocyte activation involved in immune response were enriched in upregulated proteins, which may indicate probable granulocyte contamination and activation due to blood storage time and temperature. Examples of upregulated proteins in the 24 h-PBMC samples are CAMP, S100A8, LTA4H, RASAL3, and S100A6, which are involved in an adaptive immune system and antimicrobial activity, proinflammatory mediation, aminopeptidase activities, and naïve T cells survival. Moreover, examples of downregulated proteins are NDUFA5, TAGLN2, H3C1, TUBA8, and CCT2 that are related to the cytoskeleton, cell junction, mitochondrial respiratory chain. In conclusion, the delay in blood-processing time directly impacts the proteomic profile of human PBMC, possibly through granulocyte contamination and activation.
Collapse
Affiliation(s)
- Bernardo Bonilauri
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-PR, Brazil
| | - Marlon D M Santos
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz-PR, Brazil
| | | | - Saloê Bispo
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz-PR, Brazil
| | - Fabio C S Nogueira
- Proteomic Unit, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo C Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz-PR, Brazil
| | - Nilson I T Zanchin
- Laboratory for Structural Biology and Protein Engineering, Carlos Chagas Institute, Fiocruz-PR, Brazil.
| | - Juliana de S da G Fischer
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Fiocruz-PR, Brazil.
| |
Collapse
|
31
|
Haque N, Fareez IM, Fong LF, Mandal C, Kasim NHA, Kacharaju KR, Soesilawati P. Role of the CXCR4-SDF1-HMGB1 pathway in the directional migration of cells and regeneration of affected organs. World J Stem Cells 2020. [DOI: 10.4252/wjsc.v12.i9.0000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
32
|
Haque N, Fareez IM, Fong LF, Mandal C, Abu Kasim NH, Kacharaju KR, Soesilawati P. Role of the CXCR4-SDF1-HMGB1 pathway in the directional migration of cells and regeneration of affected organs. World J Stem Cells 2020; 12:938-951. [PMID: 33033556 PMCID: PMC7524697 DOI: 10.4252/wjsc.v12.i9.938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/18/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, several studies have reported positive outcomes of cell-based therapies despite insufficient engraftment of transplanted cells. These findings have created a huge interest in the regenerative potential of paracrine factors released from transplanted stem or progenitor cells. Interestingly, this notion has also led scientists to question the role of proteins in the secretome produced by cells, tissues or organisms under certain conditions or at a particular time of regenerative therapy. Further studies have revealed that the secretomes derived from different cell types contain paracrine factors that could help to prevent apoptosis and induce proliferation of cells residing within the tissues of affected organs. This could also facilitate the migration of immune, progenitor and stem cells within the body to the site of inflammation. Of these different paracrine factors present within the secretome, researchers have given proper consideration to stromal cell-derived factor-1 (SDF1) that plays a vital role in tissue-specific migration of the cells needed for regeneration. Recently researchers recognized that SDF1 could facilitate site-specific migration of cells by regulating SDF1-CXCR4 and/or HMGB1-SDF1-CXCR4 pathways which is vital for tissue regeneration. Hence in this study, we have attempted to describe the role of different types of cells within the body in facilitating regeneration while emphasizing the HMGB1-SDF1-CXCR4 pathway that orchestrates the migration of cells to the site where regeneration is needed.
Collapse
Affiliation(s)
- Nazmul Haque
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Ismail M Fareez
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Liew Fong Fong
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Selangor 42610, Malaysia
| | - Chanchal Mandal
- Biotechnology and Genetic Engineering Discipline, Life Science, Khulna University, Khulna 9208, Bangladesh
| | - Noor Hayaty Abu Kasim
- Faculty of Dentistry, University Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Faculty of Dental Medicine, Universitas Airlangga, Surabaya 411007, Indonesia
| | - Kranthi Raja Kacharaju
- Department of Conservative Dentistry, Faculty of Dentistry MAHSA University, Selangor 42610, Malaysia
| | - Pratiwi Soesilawati
- Department of Oral Biology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
33
|
Sioen S, Cloet K, Vral A, Baeyens A. The Cytokinesis-Block Micronucleus Assay on Human Isolated Fresh and Cryopreserved Peripheral Blood Mononuclear Cells. J Pers Med 2020; 10:jpm10030125. [PMID: 32937746 PMCID: PMC7564880 DOI: 10.3390/jpm10030125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
The cytokinesis-block micronucleus (CBMN) assay is a standardized method used for genotoxicity studies. Conventional whole blood cultures (WBC) are often used for this assay, although the assay can also be performed on isolated peripheral blood mononuclear cell (PBMC) cultures. However, the standardization of a protocol for the PBMC CBMN assay has not been investigated extensively. The aim of this study was to optimize a reliable CBMN assay protocol for fresh and cryopreserved peripheral blood mononuclear cells (PBMCS), and to compare micronuclei (MNi) results between WBC and PBMC cultures. The G0 CBMN assay was performed on whole blood, freshly isolated, and cryopreserved PBMCS from healthy human blood samples and five radiosensitive patient samples. Cells were exposed to 220 kV X-ray in vitro doses ranging from 0.5 to 2 Gy. The optimized PBMC CBMN assay showed adequate repeatability and small inter-individual variability. MNi values were significantly higher for WBC than for fresh PBMCS. Additionally, cryopreservation of PBMCS resulted in a significant increase of MNi values, while different cryopreservation times had no significant impact. In conclusion, our standardized CBMN assay on fresh and cryopreserved PBMCS can be used for genotoxicity studies, biological dosimetry, and radiosensitivity assessment.
Collapse
|
34
|
Dargahi N, Johnson J, Apostolopoulos V. Streptococcus thermophilus alters the expression of genes associated with innate and adaptive immunity in human peripheral blood mononuclear cells. PLoS One 2020; 15:e0228531. [PMID: 32045425 PMCID: PMC7012395 DOI: 10.1371/journal.pone.0228531] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Consumption of probiotics contributes to a healthy microbiome of the GIT leading to many health benefits. They also contribute to the modulation of the immune system and are becoming popular for the treatment of a number of immune and inflammatory diseases. The main objective of this study was to evaluate anti-inflammatory and modulatory properties of Streptococcus thermophilus. We used peripheral blood mononuclear cells from healthy donors and assessed modifications in the mRNA expression of their genes related to innate and adaptive immune system. Our results showed strong immune modulatory effects of S. thermophilus 285 to human peripheral blood mononuclear cells with an array of anti-inflammatory properties. S. thermophilus 285 reduced mRNA expression in a number of inflammatory immune mediators and markers, and upregulated a few of immune markers. S. thermophilus is used in the dairy industry, survives during cold storage, tolerates well upon ingesting, and their consumption may have beneficial effects with potential implications in inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Narges Dargahi
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Joshua Johnson
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|