1
|
Sönmez E, Tekin A, Oğuzhanasiltürk DÜ, Anlı E, Ayhan L, Dilbaz S, Öztürk A, Baş NS, Işık S, Çevik S. The effect of paraspinal muscle morphology on the development of osteoporotic lumbar vertebral fractures. J Back Musculoskelet Rehabil 2025:10538127251340350. [PMID: 40375820 DOI: 10.1177/10538127251340350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
BackgroundVertebral compression fractures associated with osteoporosis reduce daily living activities. The primary risk factor for osteoporotic vertebral fractures (OVCFs) is the severity of osteoporosis, defined as low bone mineral density (BMD) in both peripheral and central regions. In addition to BMD, sarcopenia is also thought to affect OVCFs by reducing paraspinal muscle mass and strength.ObjectiveWe aimed to evaluate the association between vertebral compression fractures and paraspinal/psoas muscle characteristics, including muscle mass and fatty degeneration, using quantitative MRI measurements.MethodsWe retrospectively enrolled 77 patients aged ≥60 years who were diagnosed with acute OVCF between January 2019 and August 2023. The control group consisted of age- and sex-matched patients with osteoporosis (BMD > -2.5) who were followed up without fractures for at least six months. Demographic characteristics, relative total cross-sectional area (rTCSA) and relative functional CSA (rFCSA) of the multifidus (MF), erector spinae (ES), and psoas major (PS) were measured at the L4-5 and L5-S levels on MRI.ResultsThe TCSA and rTCSA of the multifidus (MF) and erector spinae (ES) muscles at both the L4-5 and L5-S1 levels did not show significant differences between the control and OVCF groups. (all p value > 0.05) The mean FCSAL4-5 of the MF 8.97 ± 2.81, ES 16.73 ± 6.49, the mean FCSAL5-1 of the MF 9.43 ± 3.27, ES 10.76 ± 5.79 in the fracture group, while the mean FCSAL4-5 of the MF 11.39 ± 2.6, ES 19.35 ± 4.04, the mean FCSAL5-1 of the MF 13.42 ± 2.56, ES 14.11 ± 4.6 in the non-fracture group. (PMFL4-5 < 0.001, PMFL5-1 < 0.001, PESL4-5 = 0.003, PESL5-1 < 0.001) The mean TCSA of the psoas muscle was significantly higher in the fracture group (17.65 ± 6.21) than in the control group (15.9 ± 4.14) (p = 0.042). Despite the significantly larger total psoas muscle mass in the fracture group, the rFCSA of the psoas muscle was lower in the fracture group (0.81 ± 0.27) compared to the control group (0.89 ± 0.25) (p = 0.046).ConclusionsThe study shows that the functional muscle mass of the paraspinal muscles is significantly lower in patients with osteoporotic vertebral compression fractures (OVCF) as compared to those without fractures. Quantitative measurement of the functional capacity of the paraspinal muscles using MRI can effectively predict the risk of OVCF and enable early intervention and adopt preventive measures to reduce the incidence of these fractures.
Collapse
Affiliation(s)
- Evren Sönmez
- Department of Neurosurgery, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, University of Health Sciences, İstanbul, Türkiye
| | - Abdurrahim Tekin
- Department of Neurosurgery, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, University of Health Sciences, İstanbul, Türkiye
| | - Dilek Ün Oğuzhanasiltürk
- Department of Physical Therapy and Rehabilitation, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, University of Health Sciences, İstanbul, Türkiye
| | - Ergin Anlı
- Department of Neurosurgery, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, University of Health Sciences, İstanbul, Türkiye
| | - Lokman Ayhan
- Department of Neurosurgery, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, University of Health Sciences, İstanbul, Türkiye
| | - Suna Dilbaz
- Department of Neurosurgery, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, University of Health Sciences, İstanbul, Türkiye
| | - Akın Öztürk
- Department of Neurosurgery, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, University of Health Sciences, İstanbul, Türkiye
| | - Nuri Serdar Baş
- Department of Neurosurgery, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, University of Health Sciences, İstanbul, Türkiye
| | - Semra Işık
- Department of Neurosurgery, Ümraniye Training and Research Hospital, University of Health Sciences, İstanbul, Türkiye
| | - Serdar Çevik
- Department of Neurosurgery, İstanbul Kanuni Sultan Süleyman Training and Research Hospital, University of Health Sciences, İstanbul, Türkiye
| |
Collapse
|
2
|
Shin EH, Le Q, Barboza R, Morin A, Singh SM, Castellani CA. Mitochondrial transplantation: Triumphs, challenges, and impacts on nuclear genome remodelling. Mitochondrion 2025; 84:102042. [PMID: 40254118 DOI: 10.1016/j.mito.2025.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/24/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Mitochondria are membrane-bound organelles of eukaryotic cells that play crucial roles in cell functioning and homeostasis, including ATP generation for cellular energy. Mitochondrial function is associated with several complex diseases and disorders, including cardiovascular, cardiometabolic, neurodegenerative diseases and some cancers. The risk for these diseases and disorders is often associated with mitochondrial dysfunction, particularly the quantitative and qualitative features of the mitochondrial genome. Emerging results implicate mito-nuclear crosstalk as the mechanism by which mtDNA variation affects complex disease outcomes. Experimental approaches are emerging for the targeting of mitochondria as a potential therapeutic for several of these diseases, particularly in the form of mitochondrial transplantation. Current approaches to mitochondrial transplantation generally involve isolating healthy mitochondria from donor cells and introducing them to diseased recipients towards amelioration of mitochondrial dysfunction. Using such a protocol, several reports have shown recovery of mitochondrial function and improved disease outcomes post-mitochondrial transplantation, highlighting its potential as a therapeutic method for several complex, severe and debilitating diseases. Additionally, the mitochondrial genome can be modified prior to transplantation to target disease-associated site-specific mutations and to reduce the ratio of mutant-to-WT alleles. These promising results may underlie the potential impact of mitochondrial transplantation on mito-nuclear genome interactions in the setting of the disease. Further, we recommend that mitochondrial transplantation experimentation include an assessment of potential impacts on remodelling of the nuclear genome, particularly the nuclear epigenome and transcriptome. Herein, we review these and other triumphs and challenges of mitochondrial transplantation as a potential novel therapeutic for mitochondria-associated diseases.
Collapse
Affiliation(s)
- Elly H Shin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Quinn Le
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Rachel Barboza
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Amanda Morin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada
| | - Shiva M Singh
- Department of Biology, Western University, London N6A 3K7, Canada; Children's Health Research Institute, Lawson Research Institute, London, ON N6C 2R5, Canada
| | - Christina A Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada; Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London N6A 3K7, Canada; Children's Health Research Institute, Lawson Research Institute, London, ON N6C 2R5, Canada; McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Wang J, Peterson JT, Santos JDD, Chan AJS, Diaz-Miranda MA, Rahaman I, Flickinger J, Goldstein A, Bogush E, McCormick EM, Muraresku CC, Anderson VE, Dulik MC, Wallace DC, Xiao R, Falk MJ, Viaene AN, Zolkipli-Cunningham Z. Interpreting the clinical significance of multiple large-scale mitochondrial DNA deletions (MLSMD) in skeletal muscle tissue in the diagnostic evaluation of primary mitochondrial disease. Front Pharmacol 2025; 16:1507493. [PMID: 40271067 PMCID: PMC12015102 DOI: 10.3389/fphar.2025.1507493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/28/2025] [Indexed: 04/25/2025] Open
Abstract
Background and Objectives Improved detection sensitivity from combined Long-Range PCR (LR-PCR), Next-Generation Sequencing (NGS), and droplet digital PCR (ddPCR) to identify multiple large-scale mtDNA deletions (MLSMD) and quantify deletion heteroplasmy have introduced clinical interpretation challenges. We sought to evaluate clinical, biochemical, and histopathological phenotypes of a large clinical cohort harboring MLSMD in muscle to better understand their significance across a range of clinical phenotypes. Methods A single-site retrospective study was performed of 212 diagnostic muscle biopsies obtained from patients referred for Primary Mitochondrial Disease (PMD) evaluation with muscle mitochondrial (mt)DNA sequencing performed at our institution, including electronic medical record (EMR) review of symptoms, biochemical results, and Mitochondrial Myopathy Composite Assessment Tool (MM-COAST) scores. Results MLSMD were identified in 50 of 212 (24%) diagnostic tissue biopsies, and were universally present. in subjects ≥50 years (n = 18/18). In 45 of 50 (90%) subjects with MLSMD, no definitive genetic etiology was identified, despite clinical whole exome sequencing (WES) and/or whole genome sequencing (WGS). MLSMD heteroplasmy levels quantified by ddPCR ranged from 0% to 33%, exceeding 10% heteroplasmy in 5/45 (11%). Subjects with MLSMD (n = 45) were more likely to demonstrate mitochondrial abnormalities on histopathology, upregulation (≥150% of control mean) of one or more electron transport chain (ETC) complex enzyme activities, and reduced citrate synthase indicative of mitochondrial depletion (<60% of control mean) relative to subjects without MLSMD (n = 155). As clinical phenotypes varied across the MLSMD cohort, Bernier diagnostic criteria major/minor symptoms were used to discriminate 13 of 45 subjects with "suspected" PMD having unrevealing WES/WGS results and 32 of 45 subjects scored as "less likely" to have PMD. Relative to the "less likely" cohort, a significantly higher frequency of biochemical and muscle histopathological abnormalities (ragged red and COX negative fibers) were observed in the "suspected" cohort, further supporting a higher index of suspicion for PMD, p < 0.05. Discussion MLSMD in skeletal muscle tissue were a common molecular finding (24%) in our cohort and consistently present in subjects ≥50 years. Among those with genetically undiagnosed MLSMD (n = 45), the "suspected" PMD subset (n = 13/45) represent a promising cohort for novel gene discoveries.
Collapse
Affiliation(s)
- Jing Wang
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - James T. Peterson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Joaquim Diego D. Santos
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ada J. S. Chan
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Maria Alejandra Diaz-Miranda
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Imon Rahaman
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jean Flickinger
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Amy Goldstein
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily Bogush
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Colleen C. Muraresku
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Vernon E. Anderson
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Matthew C. Dulik
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Douglas C. Wallace
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Marni J. Falk
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
4
|
Xu J, Wakai M, Xiong K, Yang Y, Prabakaran A, Wu S, Ahrens D, Molina-Portela MDP, Ni M, Bai Y, Shavlakadze T, Glass DJ. The pro-inflammatory cytokine IL6 suppresses mitochondrial function via the gp130-JAK1/STAT1/3-HIF1α/ERRα axis. Cell Rep 2025; 44:115403. [PMID: 40056415 DOI: 10.1016/j.celrep.2025.115403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/07/2024] [Accepted: 02/14/2025] [Indexed: 03/10/2025] Open
Abstract
Chronic inflammation and a decline in mitochondrial function are hallmarks of aging. Here, we show that the two mechanisms may be linked. We found that interleukin-6 (IL6) suppresses mitochondrial function in settings where PGC1 (both PGC1α and PGC1β) expression is low. This suppression is mediated by the JAK1/STAT1/3 axis, which activates HIF1α through non-canonical mechanisms involving upregulation of HIF1A and ERRα transcription, and subsequent stabilization of the HIF1A protein by ERRα. HIF1α, in turn, inhibits ERRα, which is a master regulator of mitochondrial biogenesis, thus contributing to the inhibition of mitochondrial function. When expressed at higher levels, PGC1 rescues ERRα to boost baseline mitochondrial respiration, including under IL6-treated conditions. Our study suggests that inhibition of the IL6 signaling axis could be a potential treatment for those inflammatory settings where mitochondrial function is compromised.
Collapse
Affiliation(s)
- Jianing Xu
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA.
| | - Matthew Wakai
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Kun Xiong
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Yanfeng Yang
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Adithya Prabakaran
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Sophia Wu
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Diana Ahrens
- Research Flow Cytometry Core, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | | | - Min Ni
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Yu Bai
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA
| | - Tea Shavlakadze
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA.
| | - David J Glass
- Aging/Age-Related Diseases, Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY, USA.
| |
Collapse
|
5
|
Vandiver AR, Torres A, Sanden A, Nguyen TL, Gasilla J, Doan MT, Martirosian V, Hoang A, Wanagat J, Teitell MA. Increased mitochondrial mutation heteroplasmy induces aging phenotypes in pluripotent stem cells and their differentiated progeny. Aging Cell 2025; 24:e14402. [PMID: 39680477 PMCID: PMC11896400 DOI: 10.1111/acel.14402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 12/18/2024] Open
Abstract
The mitochondrial genome (mtDNA) is an important source of inherited extranuclear variation. Clonal increases in mtDNA mutation heteroplasmy have been implicated in aging and disease, although the impact of this shift on cell function is challenging to assess. Reprogramming to pluripotency affects mtDNA mutation heteroplasmy. We reprogrammed three human fibroblast lines with known heteroplasmy for deleterious mtDNA point or deletion mutations. Quantification of mutation heteroplasmy in the resulting 76 induced pluripotent stem cell (iPSC) clones yielded a bimodal distribution, creating three sets of clones with high levels or absent mutation heteroplasmy with matched nuclear genomes. iPSC clones with elevated deletion mutation heteroplasmy show altered growth dynamics, which persist in iPSC-derived progenitor cells. We identify transcriptomic and metabolic shifts consistent with increased investment in neutral lipid synthesis as well as increased epigenetic age in high mtDNA deletion mutation iPSC, consistent with changes occurring in cellular aging. Together, these data demonstrate that high mtDNA mutation heteroplasmy induces changes occurring in cellular aging.
Collapse
Affiliation(s)
- Amy R. Vandiver
- Division of Dermatology, Department of Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
| | - Alejandro Torres
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Amberly Sanden
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Department of BiologyCalifornia State University NorthridgeCaliforniaUSA
| | - Thang L. Nguyen
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Jasmine Gasilla
- Division of Dermatology, Department of Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Mary T. Doan
- Department of Molecular and Medical Pharmacology, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Vahan Martirosian
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Austin Hoang
- Division of Geriatrics, Department of Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Jonathan Wanagat
- Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
- Division of Geriatrics, Department of Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Michael A. Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Molecular Biology InstituteUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Department of Bioengineering, California Nano Systems Institute, and Broad Center for Regenerative Medicine and Stem Cell ResearchUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Department of Pediatrics, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Jonsson Comprehensive Cancer Center, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
6
|
Rimskaya B, Shebanov N, Entelis N, Mazunin I. Enzymatic tools for mitochondrial genome manipulation. Biochimie 2025; 229:114-128. [PMID: 39426703 DOI: 10.1016/j.biochi.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Mutations in mitochondrial DNA (mtDNA) can manifest phenotypically as a wide range of neuromuscular and neurodegenerative pathologies that are currently only managed symptomatically without addressing the root cause. A promising approach is the development of molecular tools aimed at mtDNA cutting or editing. Unlike nuclear DNA, a cell can have hundreds or even thousands of mitochondrial genomes, and mutations can be present either in all of them or only in a subset. Consequently, the developed tools are aimed at reducing the number of copies of mutant mtDNA or editing mutant nucleotides. Despite some progress in the field of mitochondrial genome editing in human cells, working with model animals is still limited due to the complexity of their creation. Furthermore, not all existing editing systems can be easily adapted to function within mitochondria. In this review, we evaluate the mtDNA editing tools available today, with a particular focus on specific mtDNA mutations linked to hereditary mitochondrial diseases, aiming to provide an in-depth understanding of both the opportunities and hurdles to the development of mitochondrial genome editing technologies.
Collapse
Affiliation(s)
- Beatrisa Rimskaya
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation
| | - Nikita Shebanov
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France
| | - Nina Entelis
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France.
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation.
| |
Collapse
|
7
|
Childs J, Gomes TB, Vincent AE, Golightly A, Lawless C. Bayesian classification of OXPHOS deficient skeletal myofibres. PLoS Comput Biol 2025; 21:e1012770. [PMID: 39970187 PMCID: PMC11838899 DOI: 10.1371/journal.pcbi.1012770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/07/2025] [Indexed: 02/21/2025] Open
Abstract
Mitochondria are organelles in most human cells which release the energy required for cells to function. Oxidative phosphorylation (OXPHOS) is a key biochemical process within mitochondria required for energy production and requires a range of proteins and protein complexes. Mitochondria contain multiple copies of their own genome (mtDNA), which codes for some of the proteins and ribonucleic acids required for mitochondrial function and assembly. Pathology arises from genetic defects in mtDNA and can reduce cellular abundance of OXPHOS proteins, affecting mitochondrial function. Due to the continuous turn-over of mtDNA, pathology is random and neighbouring cells can possess different OXPHOS protein abundance. Estimating the proportion of cells where OXPHOS protein abundance is too low to maintain normal function is critical to understanding disease severity and predicting disease progression. Currently, one method to classify single cells as being OXPHOS deficient is prevalent in the literature. The method compares a patient's OXPHOS protein abundance to that of a small number of healthy control subjects. If the patient's cell displays an abundance which differs from the abundance of the controls then it is deemed deficient. However, due to the natural variation between subjects and the low number of control subjects typically available, this method is inflexible and often results in a large proportion of patient cells being misclassified. These misclassifications have significant consequences for the clinical interpretation of these data. We propose a single-cell classification method using a Bayesian hierarchical mixture model, which allows for inter-subject OXPHOS protein abundance variation. The model accurately classifies an example dataset of OXPHOS protein abundances in skeletal muscle fibres (myofibres). When comparing the proposed and existing model classifications to manual classifications performed by experts, the proposed model results in estimates of the proportion of deficient myofibres that are consistent with expert manual classifications.
Collapse
Affiliation(s)
- Jordan Childs
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Newcastle University Translational and Clinical Research Institute, Newcastle-upon-Tyne, United Kingdom
| | - Tiago Bernardino Gomes
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Newcastle University Translational and Clinical Research Institute, Newcastle-upon-Tyne, United Kingdom
- NIHR Biomedical Research Centre, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle-upon-Tyne, United Kingdom
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Newcastle University Translational and Clinical Research Institute, Newcastle-upon-Tyne, United Kingdom
- NIHR Biomedical Research Centre, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Andrew Golightly
- Department of Mathematical Sciences, Durham University, Durham, United Kingdom
| | - Conor Lawless
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle-upon-Tyne, United Kingdom
- Newcastle University Translational and Clinical Research Institute, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
8
|
Musci RV, Fuqua JD, Peelor FF, Nguyen HVM, Richardson A, Choi S, Miller BF, Wanagat J. Age-induced changes in skeletal muscle mitochondrial DNA synthesis, quantity, and quality in genetically unique rats. GeroScience 2025; 47:851-862. [PMID: 39312152 PMCID: PMC11872842 DOI: 10.1007/s11357-024-01344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/05/2024] [Indexed: 01/11/2025] Open
Abstract
Mitochondrial genomic integrity is a key element of physiological processes and health. Changes in the half-life of the mitochondrial genome are implicated in the generation and accumulation of age-induced mitochondrial DNA (mtDNA) mutations, which are implicated in skeletal muscle aging and sarcopenia. There are conflicting data on the half-life of mtDNA, and there is limited information on how aging affects half-life in skeletal muscle. We hypothesized that skeletal muscle mtDNA synthesis rates would decrease with age in both female and male rats concomitant with changes in mtDNA integrity reflected in mtDNA copy number and mutation frequency. We measured mitochondrial genome half-life using stable isotope labeling over a period of 14 days and assessed mtDNA copy number and deletion mutation frequency using digital PCR in the quadriceps muscle of 9-month-old and 26-month-old male and female OKC-HET rats. We found a significant age-related increase in mtDNA half-life, from 132 days at 9 months to 216 days at 26 months of age in OKC-HET quadriceps. Concomitant with the increase in mtDNA half-life, we found an age-related increase in mtDNA deletion mutation frequency in both male and female rats. Notably, 26-month-old female rats had a lower mutation frequency than male rats, and there were no changes in mtDNA copy number with sex, age, or mitochondrial genotype. These data reveal several key findings: (1) mtDNA turnover in rat skeletal muscle decreases with age, (2) mtDNA half-lives in skeletal muscle are approximately an order of magnitude longer than what is reported for other tissues, and (3) muscle mtDNA turnover differs significantly from the turnover of other mitochondrial macromolecules including components of the mitochondrial nucleoid. These findings provide insight into the factors driving age-induced mtDNA mutation accumulation, which contribute to losses of mitochondrial genomic integrity and may play a role in skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Robert V Musci
- Department of Health and Human Sciences, Frank R Seaver College of Science and Engineering, Loyola Marymount University, 1 LMU Dr., Los Angeles, CA, 90045, USA.
| | - Jordan D Fuqua
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Frederick F Peelor
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Arlan Richardson
- Department of Biochemistry & Physiology, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Solbie Choi
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Jonathan Wanagat
- Department of Medicine, Division of Geriatrics, UCLA, Los Angeles, CA, USA
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
9
|
Vandiver AR, Herbst A, Stothard P, Wanagat J. Chimeric mitochondrial RNA transcripts predict mitochondrial genome deletion mutations in mitochondrial genetic diseases and aging. Genome Res 2025; 35:55-65. [PMID: 39603705 PMCID: PMC11789635 DOI: 10.1101/gr.279072.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Although it is well understood that mitochondrial DNA (mtDNA) deletion mutations cause incurable diseases and contribute to aging, little is known about the transcriptional products that arise from these DNA structural variants. We hypothesized that mitochondrial genomes containing deletion mutations express chimeric mitochondrial RNAs. To test this, we analyzed human and rat RNA sequencing data to identify, quantitate, and characterize chimeric mitochondrial RNAs. We observe increased chimeric mitochondrial RNA frequency in samples from patients with mitochondrial genetic diseases and in samples from aged humans. The spectrum of chimeric mitochondrial transcripts reflects the known pattern of mtDNA deletion mutations. To test the hypothesis that mtDNA deletions induce chimeric RNA transcripts, we treated 18 month old and 34 month old rats with guanidinopropionic acid to induce high levels of skeletal muscle mtDNA deletion mutations. With mtDNA deletion induction, we demonstrate that the chimeric mitochondrial transcript frequency also increases and correlates strongly with an orthogonal DNA-based mutation assay performed on identical samples. Further, we show that the frequency of chimeric mitochondrial transcripts predicts expression of both nuclear and mitochondrial genes central to mitochondrial function, demonstrating the utility of these events as metrics of age-induced metabolic change. Mapping and quantitation of chimeric mitochondrial RNAs provide an accessible, orthogonal approach to DNA-based mutation assays, offer a potential method for identifying mitochondrial pathology in widely accessible data sets, and open a new area of study in mitochondrial genetics and transcriptomics.
Collapse
Affiliation(s)
- Amy R Vandiver
- Department of Medicine, Division of Dermatology, University of California, Los Angeles, Los Angeles, California 90095, USA
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | - Allen Herbst
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Paul Stothard
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jonathan Wanagat
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA;
- Department of Medicine, Division of Geriatrics, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
10
|
Shi Y, Dong G, Pan H, Tai H, Zhou Y, Wang A, Niu S, Chen B, Wang X, Zhang Z. Stroke-like episodes in patients with adult-onset neuronal intranuclear inclusion disease and patients with late-onset MELAS: A comparative study. Ann Clin Transl Neurol 2024; 11:3125-3136. [PMID: 39367621 DOI: 10.1002/acn3.52219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 10/06/2024] Open
Abstract
OBJECTIVE To delineate the characteristics of stroke-like episodes (SLEs) in patients with adult-onset neuronal intranuclear inclusion disease (NIID) and to compare these characteristics with those of patients with MELAS. METHODS Twenty-three adult-onset NIID patients who presented with acute or subacute brain disorders and 13 late-onset MELAS patients were enrolled in the study. Patients with NIID were categorized into the SLEs group and the encephalopathy-like episodes (ELEs) group according to the associated stroke-like lesions (SLLs) findings. Clinical characteristics were compared between the SLEs group and the ELEs group among NIID patients and between NIID patients with SLEs and MELAS patients. RESULTS Eleven (47.8%) NIID patients who manifested acute or subacute brain disorders had detectable associated SLLs and were categorized into SLEs group. SLEs patients were more likely to report fever, headache, and seizures instead of sleep disorders than ELEs patients. Four (36.4%) NIID patients with SLEs absence of diagnostic or suggestive NIID imaging features. The clinical manifestations, laboratory test results, and neuroimaging and muscle biopsy histological features of NIID patients with SLEs majorly overlapped with those of late-onset MELAS patients. Older age at the first SLE (OR [95% CI], 1.203 [1.045-1.384]), symptoms of movement disorders on admission (OR [95% CI], 9.625 [1.378-67.246]), and white matter hyperintensity in corpus callosum (OR [95% CI], 16.00 [1.542-166.46]) associated with the NIID diagnosis in patients with SLEs. INTERPRETATION NIID patients with SLEs exhibit evident features of mitochondrial disorders. Interventions aimed at mitochondrial dysfunction might be a promising therapeutic approach for treating this disease.
Collapse
Affiliation(s)
- Yuzhi Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hua Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Disease, Beijing, China
| | - Hongfei Tai
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - An Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Songtao Niu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xingao Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zaiqiang Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Vaiasicca S, Balietti M, Bevilacqua L, Giorgetti B, Casoli T. Convergence between brain aging and Alzheimer's disease: Focus on mitochondria. Mech Ageing Dev 2024; 222:112001. [PMID: 39490933 DOI: 10.1016/j.mad.2024.112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) accounts for the majority of dementia cases, with aging being the primary risk factor for developing this neurodegenerative condition. Aging and AD share several characteristics, including the formation of amyloid plaques and neurofibrillary tangles, synaptic loss, and neuroinflammation. This overlap suggests that mechanisms driving the aging process might also promote AD; however, the underlying processes are not yet fully understood. In this narrative review, we will focus on the role of mitochondria, not only as the "powerhouse of the cell", but also in programmed cell death, immune response, macromolecular synthesis, and calcium regulation. We will explore both the common changes between aging and AD and the differences between them. Additionally, we will provide an overview of interventions aimed at maintaining mitochondrial function in an attempt to slow the progression of AD. This will include a discussion of antioxidant molecules, factors that trigger mitochondrial biogenesis, compounds capable of restoring the fission/fusion balance, and a particular focus on recent techniques for mitochondrial DNA gene therapy.
Collapse
Affiliation(s)
| | - Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona 60121, Italy.
| | - Lisa Bevilacqua
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona 60121, Italy
| | | | - Tiziana Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona 60121, Italy
| |
Collapse
|
12
|
Sato I, Hibino M, Takeda A, Harashima H, Yamada Y. Activation of Mitochondrial Oxygen Consumption Rate by Delivering Coenzyme Q 10 to Mitochondria of Rat Skeletal Muscle Cell (L6). J Pharm Sci 2024; 113:1836-1843. [PMID: 38325738 DOI: 10.1016/j.xphs.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Numerous mitochondria are present in skeletal muscle cells. Muscle disease and aging impair mitochondrial functioning in the skeletal muscle. However, there have been few reports of therapeutic intervention via drug delivery to mitochondria owing to methodological difficulties. We surmised that mitochondrial activation is associated with improved skeletal muscle function. In this study, we attempted to activate the mitochondrial respiratory capacity in rat skeletal muscle cells (L6 cells) by delivering Coenzyme Q10 (CoQ10), a mitochondrial functional activator, to mitochondria using MITO-Porter, a nanoparticle that facilitates mitochondria-targeted drug delivery. Cellular uptake was confirmed by measuring the amount of fluorescence-modified MITO-Porter taken up by cells using flow cytometry. Intracellular dynamics of MITO-Porter was observed using confocal laser scanning microscopy. Mitochondrial function was assessed by measuring the mitochondrial oxygen consumption rate using an extracellular flux analyzer. The results indicated MITO-Porter-assisted delivery of CoQ10 to the mitochondria activated mitochondrial respiratory capacity in L6 cells. We believe that our results indicate the possibility of skeletal muscle therapy using mitochondrial drug delivery.
Collapse
Affiliation(s)
- Itsumi Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan; Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mitsue Hibino
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Atsuhito Takeda
- Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan
| | - Yuma Yamada
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Kita-ku, Sapporo 060-0812, Japan; Fusion Oriented research for disruptive Science and Technology (FOREST) Program, Japan Science and Technology Agency (JST) Japan, Saitama, Japan.
| |
Collapse
|
13
|
Luo Y, Fujiwara-Tani R, Kawahara I, Goto K, Nukaga S, Nishida R, Nakashima C, Sasaki T, Miyagawa Y, Ogata R, Fujii K, Ohmori H, Kuniyasu H. Cancerous Conditions Accelerate the Aging of Skeletal Muscle via Mitochondrial DNA Damage. Int J Mol Sci 2024; 25:7060. [PMID: 39000167 PMCID: PMC11241065 DOI: 10.3390/ijms25137060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Skeletal muscle aging and sarcopenia result in similar changes in the levels of aging markers. However, few studies have examined cancer sarcopenia from the perspective of aging. Therefore, this study investigated aging in cancer sarcopenia and explored its causes in vitro and in vivo. In mouse aging, in vitro cachexia, and mouse cachexia models, skeletal muscles showed similar changes in aging markers including oxidative stress, fibrosis, reduced muscle differentiation potential, and telomere shortening. Furthermore, examination of mitochondrial DNA from skeletal muscle revealed a 5 kb deletion in the major arc; truncation of complexes I, IV, and V in the electron transport chain; and reduced oxidative phosphorylation (OXPHOS). The mouse cachexia model demonstrated high levels of high-mobility group box-1 (HMGB1) and tumor necrosis factor-α (TNFα) in cancer ascites. Continuous administration of neutralizing antibodies against HMGB1 and TNFα in this model reduced oxidative stress and abrogated mitochondrial DNA deletion. These results suggest that in cancer sarcopenia, mitochondrial oxidative stress caused by inflammatory cytokines leads to mitochondrial DNA damage, which in turn leads to decreased OXPHOS and the promotion of aging.
Collapse
Grants
- 21K06926 Ministry of Education, Culture, Sports, Science and Technology
- 19K16564 Ministry of Education, Culture, Sports, Science and Technology
- 22K11423 Ministry of Education, Culture, Sports, Science and Technology
- 22K17655 Ministry of Education, Culture, Sports, Science and Technology
- 23K16547 Ministry of Education, Culture, Sports, Science and Technology
- 21K11223 Ministry of Education, Culture, Sports, Science and Technology
- 23K10481 Ministry of Education, Culture, Sports, Science and Technology
- 20K21659 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Yi Luo
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Kei Goto
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Shota Nukaga
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Ryoichi Nishida
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Chie Nakashima
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Yoshihiro Miyagawa
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Ruiko Ogata
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Kiyomu Fujii
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara 634-8524, Japan
| |
Collapse
|
14
|
Carey AR, Miller NR, Cui H, Allis K, Balog A, Bai R, Vernon HJ. Myopathy and Ophthalmologic Abnormalities in Association With Multiple Skeletal Muscle Mitochondrial DNA Deletions. J Neuroophthalmol 2024; 44:247-252. [PMID: 37665646 DOI: 10.1097/wno.0000000000001984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
BACKGROUND Establishing a molecular diagnosis of mitochondrial diseases due to pathogenic mitochondrial DNA (mtDNA) variants can be difficult because of varying levels of tissue heteroplasmy, and identifying these variants is important for clinical management. Here, we present clinical and molecular findings in 8 adult patients with classical features of mitochondrial ophthalmologic and/or muscle disease and multiple mtDNA deletions isolated to muscle. METHODS The patients were identified via a retrospective review of patients seen in both a tertiary ophthalmology center and a genetics clinic with a clinical diagnosis of chronic progressive external ophthalmoplegia, optic nerve abnormalities, and/or mitochondrial myopathy. Age at onset of symptoms ranged from 18 to 61 years. Ocular manifestations included bilateral optic neuropathy in one patient, bilateral optic disc cupping without optic neuropathy in 2 patients, ptosis in 4 patients, and ocular motility deficits in 2 patients. Five patients had generalized weakness. RESULTS Pathogenic variants in mtDNA were not found in the blood or buccal sample from any patient, but 7 of 8 patients had multiple mtDNA deletions identified in muscle tissue. One patient had a single mtDNA deletion identified in the muscle. Heteroplasmy was less than 15% for all of the identified deletions, with the exception of one deletion that had a heteroplasmy of 50%-60%. None of the patients were found to have a nuclear gene variant known to be associated with mitochondrial DNA maintenance. CONCLUSIONS mtDNA deletions were identified in adult patients with ophthalmologic and/or musle abnormalities and may underlie their clinical presentations.
Collapse
Affiliation(s)
- Andrew R Carey
- Neuro-Ophthalmology Division (ARC, NRM), Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; GeneDx (HC, KA, AB, RB), Gaithersburg, Maryland; and Department of Genetic Medicine (HJV), Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | | | | | |
Collapse
|
15
|
Lin Y, Wang J, Xu R, Xu Z, Wang Y, Pan S, Zhang Y, Tao Q, Zhao Y, Yan C, Cao Z, Ji K. HiFi long-read amplicon sequencing for full-spectrum variants of human mtDNA. BMC Genomics 2024; 25:538. [PMID: 38822239 PMCID: PMC11141058 DOI: 10.1186/s12864-024-10433-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Mitochondrial diseases (MDs) can be caused by single nucleotide variants (SNVs) and structural variants (SVs) in the mitochondrial genome (mtDNA). Presently, identifying deletions in small to medium-sized fragments and accurately detecting low-percentage variants remains challenging due to the limitations of next-generation sequencing (NGS). METHODS In this study, we integrated targeted long-range polymerase chain reaction (LR-PCR) and PacBio HiFi sequencing to analyze 34 participants, including 28 patients and 6 controls. Of these, 17 samples were subjected to both targeted LR-PCR and to compare the mtDNA variant detection efficacy. RESULTS Among the 28 patients tested by long-read sequencing (LRS), 2 patients were found positive for the m.3243 A > G hotspot variant, and 20 patients exhibited single or multiple deletion variants with a proportion exceeding 4%. Comparison between the results of LRS and NGS revealed that both methods exhibited similar efficacy in detecting SNVs exceeding 5%. However, LRS outperformed NGS in detecting SNVs with a ratio below 5%. As for SVs, LRS identified single or multiple deletions in 13 out of 17 cases, whereas NGS only detected single deletions in 8 cases. Furthermore, deletions identified by LRS were validated by Sanger sequencing and quantified in single muscle fibers using real-time PCR. Notably, LRS also effectively and accurately identified secondary mtDNA deletions in idiopathic inflammatory myopathies (IIMs). CONCLUSIONS LRS outperforms NGS in detecting various types of SNVs and SVs in mtDNA, including those with low frequencies. Our research is a significant advancement in medical comprehension and will provide profound insights into genetics.
Collapse
Affiliation(s)
- Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jiayin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ran Xu
- GrandOmics Biosciences, No.56 Zhichun Road, Haidian District, Beijing, 100098, China
| | - Zhe Xu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yifan Wang
- GrandOmics Biosciences, No.56 Zhichun Road, Haidian District, Beijing, 100098, China
| | - Shirang Pan
- GrandOmics Biosciences, No.56 Zhichun Road, Haidian District, Beijing, 100098, China
| | - Yan Zhang
- GrandOmics Biosciences, No.56 Zhichun Road, Haidian District, Beijing, 100098, China
| | - Qing Tao
- GrandOmics Biosciences, No.56 Zhichun Road, Haidian District, Beijing, 100098, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, 266035, China
- Brain Science Research Institute, Shandong University, Jinan, Shandong, 250012, China
| | - Zhenhua Cao
- GrandOmics Biosciences, No.56 Zhichun Road, Haidian District, Beijing, 100098, China.
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Department of Neurology, Qilu Hospital, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
16
|
Tan DX. Mitochondrial dysfunction, a weakest link of network of aging, relation to innate intramitochondrial immunity of DNA recognition receptors. Mitochondrion 2024; 76:101886. [PMID: 38663836 DOI: 10.1016/j.mito.2024.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Aging probably is the most complexed process in biology. It is manifested by a variety of hallmarks. These hallmarks weave a network of aging; however, each hallmark is not uniformly strong for the network. It is the weakest link determining the strengthening of the network of aging, or the maximum lifespan of an organism. Therefore, only improvement of the weakest link has the chance to increase the maximum lifespan but not others. We hypothesize that mitochondrial dysfunction is the weakest link of the network of aging. It may origin from the innate intramitochondrial immunity related to the activities of pathogen DNA recognition receptors. These receptors recognize mtDNA as the PAMP or DAMP to initiate the immune or inflammatory reactions. Evidence has shown that several of these receptors including TLR9, cGAS and IFI16 can be translocated into mitochondria. The potentially intramitochondrial presented pathogen DNA recognition receptors have the capacity to attack the exposed second structures of the mtDNA during its transcriptional or especially the replicational processes, leading to the mtDNA mutation, deletion, heteroplasmy colonization, mitochondrial dysfunction, and alterations of other hallmarks, as well as aging. Pre-consumption of the intramitochondrial presented pathogen DNA recognition receptors by medical interventions including development of mitochondrial targeted small molecule which can neutralize these receptors may retard or even reverse the aging to significantly improve the maximum lifespan of the organisms.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| |
Collapse
|
17
|
Granic A, Suetterlin K, Shavlakadze T, Grounds M, Sayer A. Hallmarks of ageing in human skeletal muscle and implications for understanding the pathophysiology of sarcopenia in women and men. Clin Sci (Lond) 2023; 137:1721-1751. [PMID: 37986616 PMCID: PMC10665130 DOI: 10.1042/cs20230319] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Ageing is a complex biological process associated with increased morbidity and mortality. Nine classic, interdependent hallmarks of ageing have been proposed involving genetic and biochemical pathways that collectively influence ageing trajectories and susceptibility to pathology in humans. Ageing skeletal muscle undergoes profound morphological and physiological changes associated with loss of strength, mass, and function, a condition known as sarcopenia. The aetiology of sarcopenia is complex and whilst research in this area is growing rapidly, there is a relative paucity of human studies, particularly in older women. Here, we evaluate how the nine classic hallmarks of ageing: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication contribute to skeletal muscle ageing and the pathophysiology of sarcopenia. We also highlight five novel hallmarks of particular significance to skeletal muscle ageing: inflammation, neural dysfunction, extracellular matrix dysfunction, reduced vascular perfusion, and ionic dyshomeostasis, and discuss how the classic and novel hallmarks are interconnected. Their clinical relevance and translational potential are also considered.
Collapse
Affiliation(s)
- Antoneta Granic
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| | - Karen Suetterlin
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Centre for Life, Newcastle upon Tyne, U.K
| | - Tea Shavlakadze
- Regeneron Pharmaceuticals Inc., Tarrytown, New York, NY, U.S.A
| | - Miranda D. Grounds
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, the University of Western Australia, Perth, WA 6009, Australia
| | - Avan A. Sayer
- AGE Research Group, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, U.K
- NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, U.K
| |
Collapse
|
18
|
Volobaev VP, Kunizheva SS, Uralsky LI, Kupriyanova DA, Rogaev EI. Quantifying human genome parameters in aging. Vavilovskii Zhurnal Genet Selektsii 2023; 27:495-501. [PMID: 37808212 PMCID: PMC10551942 DOI: 10.18699/vjgb-23-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 10/10/2023] Open
Abstract
Healthy human longevity is a global goal of the world health system. Determining the causes and processes influencing human longevity is the primary fundamental goal facing the scientific community. Currently, the main efforts of the scientific community are aimed at identifying the qualitative characteristics of the genome that determine the trait. At the same time, when evaluating qualitative characteristics, there are many challenges that make it difficult to establish associations. Quantitative traits are burdened with such problems to a lesser extent, but they are largely overlooked in current genomic studies of aging and longevity. Although there is a wide repertoire of quantitative trait analyses based on genomic data, most opportunities are ignored by authors, which, along with the inaccessibility of published data, leads to the loss of this important information. This review focuses on describing quantitative traits important for understanding aging and necessary for analysis in further genomic studies, and recommends the inclusion of the described traits in the analysis. The review considers the relationship between quantitative characteristics of the mitochondrial genome and aging, longevity, and age-related neurodegenerative diseases, such as the frequency of extensive mitochondrial DNA (mtDNA) deletions, mtDNA half-life, the frequency of A>G replacements in the mtDNA heavy chain, the number of mtDNA copies; special attention is paid to the mtDNA methylation sign. A separate section of this review is devoted to the correlation of telomere length parameters with age, as well as the association of telomere length with the amount of mitochondrial DNA. In addition, we consider such a quantitative feature as the rate of accumulation of somatic mutations with aging in relation to the lifespan of living organisms. In general, it may be noted that there are quite serious reasons to suppose that various quantitative characteristics of the genome may be directly or indirectly associated with certain aspects of aging and longevity. At the same time, the available data are clearly insufficient for definitive conclusions and the determination of causal relationships.
Collapse
Affiliation(s)
- V P Volobaev
- Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences, Sochi, Russia
| | - S S Kunizheva
- Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences, Sochi, Russia Vavilov Institute of General Genetics, Russian Academy of Sciences, Department of Genomics and Human Genetics, Moscow, Russia Lomonosov Moscow State University, Center for Genetics and Genetic Technologies, Faculty of Biology, Moscow, Russia
| | - L I Uralsky
- Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences, Sochi, Russia Vavilov Institute of General Genetics, Russian Academy of Sciences, Department of Genomics and Human Genetics, Moscow, Russia
| | - D A Kupriyanova
- Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences, Sochi, Russia
| | - E I Rogaev
- Sirius University of Science and Technology, Scientific Center for Genetics and Life Sciences, Sochi, Russia Vavilov Institute of General Genetics, Russian Academy of Sciences, Department of Genomics and Human Genetics, Moscow, Russia Lomonosov Moscow State University, Center for Genetics and Genetic Technologies, Faculty of Biology, Moscow, Russia University of Massachusetts Chan Medical School, Department of Psychiatry, Shrewsbury, USA
| |
Collapse
|
19
|
Zhu Y, Zhou X, Zhu A, Xiong S, Xie J, Bai Z. Advances in exercise to alleviate sarcopenia in older adults by improving mitochondrial dysfunction. Front Physiol 2023; 14:1196426. [PMID: 37476691 PMCID: PMC10355810 DOI: 10.3389/fphys.2023.1196426] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Sarcopenia is a chronic degenerative disease affecting primarily older adults. A growing aging population is gradually increasing the number of patients suffering from sarcopenia, placing increasing financial pressure on patients' families and society in general. There is a strong link between mitochondrial dysfunction and sarcopenia pathogenesis. As a result, treating sarcopenia by improving mitochondrial dysfunction is an effective strategy. Numerous studies have demonstrated that exercise has a positive effect on mitochondrial dysfunction when treating sarcopenia. Exercise promotes mitochondrial biogenesis and mitochondrial fusion/division to add new mitochondria or improve dysfunctional mitochondria while maintaining mitochondrial calcium homeostasis, mitochondrial antioxidant defense system, and mitochondrial autophagy to promote normal mitochondrial function. Furthermore, exercise can reduce mitochondrial damage caused by aging by inhibiting mitochondrial oxidative stress, mitochondrial DNA damage, and mitochondrial apoptosis. Exercise effectiveness depends on several factors, including exercise duration, exercise intensity, and exercise form. Therefore, Moderate-intensity exercise over 4 weeks potentially mitigates sarcopenia in older adults by ameliorating mitochondrial dysfunction. HIIT has demonstrated potential as a viable approach to addressing sarcopenia in aged rats. However, further investigation is required to validate its efficacy in treating sarcopenia in older adults.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenmin Bai
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
20
|
Kim S, Park J, Kim DH, Sun J, Lee SY. Combined exercise and nutrition intervention for older women with spinal sarcopenia: an open-label single-arm trial. BMC Geriatr 2023; 23:346. [PMID: 37264334 PMCID: PMC10236709 DOI: 10.1186/s12877-023-04063-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
PURPOSE Spinal sarcopenia is a multifactorial disorder associated with atrophy and fatty changes in paraspinal muscles. Interventional studies for spinal sarcopenia are limited. We aimed to evaluate the effectiveness of a combined exercise and nutrition intervention for the treatment of spinal sarcopenia. METHODS 35 community-dwelling older women diagnosed with spinal sarcopenia in a previous cohort study were included. The 12-week combined intervention consisted of back extensor strengthening exercises and protein supplementation. The following outcomes were measured at baseline (week 0), after the intervention (week 12), and follow-up (week 24): conventional variables of sarcopenia (appendicular skeletal muscle mass, handgrip strength, 6-meter gait speed, and short physical performance battery); lumbar extensor muscle mass; lumbar extensor muscle volume and signal intensity; back extensor isokinetic strength; and back performance scale. We used the intention-to-treat analysis method, and repeated measures analysis of variance was used to analyze the data. RESULTS Of the total 35 potential participants, 26 older women participated in the study (mean age 72.5 ± 4.0 years old). After 12 weeks of combined exercise and nutrition intervention, there were no changes in the appendicular skeletal muscle mass, lumbar extensor muscle mass, volume, or signal intensity. Handgrip strength and back extensor isokinetic strength did not change significantly. Short physical performance battery significantly increased (P = 0.042) from 11.46 ± 0.86 to 11.77 ± 0.53 at week 12 and 11.82 ± 0.40 at week 24. The back performance scale sum score also significantly improved (P = 0.034) from 2.68 ± 1.81 to 1.95 ± 1.21 at week 12 and 2.09 ± 1.34 at week 24. CONCLUSION The combined exercise and nutrition intervention for community-dwelling older women with spinal sarcopenia could be feasible and helpful in improving the physical performance as well as back performance.
Collapse
Affiliation(s)
- Seungcheol Kim
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jinhee Park
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea
| | - Dong Hyun Kim
- Department of Radiology, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Jiyu Sun
- Integrated Biostatistics Branch, Division of Cancer Data Science, National Cancer Center, Goyang-si, Korea
| | - Sang Yoon Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, 20 Boramae-ro 5-gil, Dongjak-gu, Seoul, 07061, Republic of Korea.
| |
Collapse
|
21
|
Vandiver AR, Hoang AN, Herbst A, Lee CC, Aiken JM, McKenzie D, Teitell MA, Timp W, Wanagat J. Nanopore sequencing identifies a higher frequency and expanded spectrum of mitochondrial DNA deletion mutations in human aging. Aging Cell 2023; 22:e13842. [PMID: 37132288 PMCID: PMC10265159 DOI: 10.1111/acel.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 05/04/2023] Open
Abstract
Mitochondrial DNA (mtDNA) deletion mutations cause many human diseases and are linked to age-induced mitochondrial dysfunction. Mapping the mutation spectrum and quantifying mtDNA deletion mutation frequency is challenging with next-generation sequencing methods. We hypothesized that long-read sequencing of human mtDNA across the lifespan would detect a broader spectrum of mtDNA rearrangements and provide a more accurate measurement of their frequency. We employed nanopore Cas9-targeted sequencing (nCATS) to map and quantitate mtDNA deletion mutations and develop analyses that are fit-for-purpose. We analyzed total DNA from vastus lateralis muscle in 15 males ranging from 20 to 81 years of age and substantia nigra from three 20-year-old and three 79-year-old men. We found that mtDNA deletion mutations detected by nCATS increased exponentially with age and mapped to a wider region of the mitochondrial genome than previously reported. Using simulated data, we observed that large deletions are often reported as chimeric alignments. To address this, we developed two algorithms for deletion identification which yield consistent deletion mapping and identify both previously reported and novel mtDNA deletion breakpoints. The identified mtDNA deletion frequency measured by nCATS correlates strongly with chronological age and predicts the deletion frequency as measured by digital PCR approaches. In substantia nigra, we observed a similar frequency of age-related mtDNA deletions to those observed in muscle samples, but noted a distinct spectrum of deletion breakpoints. NCATS-mtDNA sequencing allows the identification of mtDNA deletions on a single-molecule level, characterizing the strong relationship between mtDNA deletion frequency and chronological aging.
Collapse
Affiliation(s)
- Amy R. Vandiver
- Division of Dermatology, Department of MedicineUCLALos AngelesCaliforniaUSA
- Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
| | - Austin N. Hoang
- Division of Geriatrics, Department of MedicineUCLALos AngelesCaliforniaUSA
| | - Allen Herbst
- US Geological Survey National Wildlife Health CenterMadisonWisconsinUSA
| | - Cathy C. Lee
- Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
- Division of Geriatrics, Department of MedicineUCLALos AngelesCaliforniaUSA
| | - Judd M. Aiken
- Department of Agricultural, Food and Nutritional SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Debbie McKenzie
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Michael A. Teitell
- Molecular Biology InstituteUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Department of Pathology and Laboratory Medicine, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Department of Bioengineering, California NanoSystems Institute, Broad Center for Regenerative Medicine and Stem Cell ResearchUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Department of Pediatrics, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
- Jonsson Comprehensive Cancer Center, David Geffen School of MedicineUniversity of California at Los AngelesLos AngelesCaliforniaUSA
| | - Winston Timp
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Genetic MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jonathan Wanagat
- Veterans Administration Greater Los Angeles Healthcare SystemLos AngelesCaliforniaUSA
- Division of Geriatrics, Department of MedicineUCLALos AngelesCaliforniaUSA
| |
Collapse
|
22
|
Saud Gany SL, Chin KY, Tan JK, Aminuddin A, Makpol S. Curcumin as a Therapeutic Agent for Sarcopenia. Nutrients 2023; 15:nu15112526. [PMID: 37299489 DOI: 10.3390/nu15112526] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Sarcopenia is the progressive loss of muscle mass, strength, and functions as we age. The pathogenesis of sarcopenia is underlined by oxidative stress and inflammation. As such, it is reasonable to suggest that a natural compound with both antioxidant and anti-inflammatory activities could prevent sarcopenia. Curcumin, a natural compound derived from turmeric with both properties, could benefit muscle health. This review aims to summarise the therapeutic effects of curcumin on cellular, animal, and human studies. The available evidence found in the literature showed that curcumin prevents muscle degeneration by upregulating the expression of genes related to protein synthesis and suppressing genes related to muscle degradation. It also protects muscle health by maintaining satellite cell number and function, protecting the mitochondrial function of muscle cells, and suppressing inflammation and oxidative stress. However, it is noted that most studies are preclinical. Evidence from randomised control trials in humans is lacking. In conclusion, curcumin has the potential to be utilised to manage muscle wasting and injury, pending more evidence from carefully planned human clinical trials.
Collapse
Affiliation(s)
- Siti Liyana Saud Gany
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
23
|
Herbst A, Aiken JM, Kim C, Gushue D, McKenzie D, Moore TM, Zhou J, Hoang AN, Choi S, Wanagat J. Age- and time-dependent mitochondrial genotoxic and myopathic effects of beta-guanidinopropionic acid, a creatine analog, on rodent skeletal muscles. GeroScience 2023; 45:555-567. [PMID: 36178599 PMCID: PMC9886740 DOI: 10.1007/s11357-022-00667-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/16/2022] [Indexed: 02/03/2023] Open
Abstract
Beta-guanidinopropionic acid (GPA) is a creatine analog suggested as a treatment for hypertension, diabetes, and obesity, which manifest primarily in older adults. A notable side effect of GPA is the induction of mitochondrial DNA deletion mutations. We hypothesized that mtDNA deletions contribute to muscle aging and used the mutation promoting effect of GPA to examine the impact of mtDNA deletions on muscles with differential vulnerability to aging. Rats were treated with GPA for up to 4 months starting at 14 or 30 months of age. We examined quadriceps and adductor longus muscles as the quadriceps exhibits profound age-induced deterioration, while adductor longus is maintained. GPA decreased body and muscle mass and mtDNA copy number while increasing mtDNA deletion frequency. The interactions between age and GPA treatment observed in the quadriceps were not observed in the adductor longus. GPA had negative mitochondrial effects in as little as 4 weeks. GPA treatment exacerbated mtDNA deletions and muscle aging phenotypes in the quadriceps, an age-sensitive muscle, while the adductor longus was spared. GPA has been proposed for use in age-associated diseases, yet the pharmacodynamics of GPA differ with age and include the detrimental induction of mtDNA deletions, a mitochondrial genotoxic stress that is pronounced in muscles that are most vulnerable to aging. Further research is needed to determine if the proposed benefits of GPA on hypertension, diabetes, and obesity outweigh the detrimental mitochondrial and myopathic side effects.
Collapse
Affiliation(s)
- Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
- US Geological Survey National Wildlife Health Center, Madison, WI, USA
| | - Judd M Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
| | - Chiye Kim
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Danielle Gushue
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Timothy M Moore
- Department of Medicine, Division of Cardiology, UCLA, Los Angeles, CA, USA
| | - Jin Zhou
- Department of Medicine, Statistics Core, UCLA, Los Angeles, CA, USA
- Department of Biostatistics, UCLA, Los Angeles, CA, USA
| | - Austin N Hoang
- Department of Medicine, Division of Geriatrics, UCLA, 10945 Le Conte Avenue, Suite 2339, Los Angeles, CA, 90095, USA
| | - Solbie Choi
- Department of Medicine, Division of Geriatrics, UCLA, 10945 Le Conte Avenue, Suite 2339, Los Angeles, CA, 90095, USA
| | - Jonathan Wanagat
- Department of Medicine, Division of Geriatrics, UCLA, 10945 Le Conte Avenue, Suite 2339, Los Angeles, CA, 90095, USA.
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| |
Collapse
|
24
|
Wang X, Mishra P. Fusion of dysfunction muscle stem cells with myofibers induces sarcopenia in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524967. [PMID: 36711602 PMCID: PMC9882337 DOI: 10.1101/2023.01.20.524967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sarcopenia, or age-associated muscle atrophy, is a progressive condition which affects ~10-30% of the human geriatric population (1, 2). A number of contributors to sarcopenia have been proposed, including the progressive loss of muscle stem cells (MuSCs) with age. However, studies in mice have provided evidence that MuSC depletion is not sufficient to induce sarcopenia (3, 4). We recently showed that in response to age-associated mitochondrial damage, MuSCs self-remove by fusing with neighboring myofibers, which depletes the stem cell population of damaged progenitors (5). Here, we show that MuSC-myofiber fusion is sufficient to initiate myofiber atrophy in mice, which limits their motor function and lifespan. Conversely, inhibition of MuSC-myofiber fusion blocks myofiber atrophy with age, with a concomitant increase in the maximum lifespan of animals. These findings suggest a model where the accumulation fusion of damaged MuSCs with adult myofibers is a key driving feature of sarcopenia, and resolves the findings that MuSC depletion on its own does not initiate myofiber atrophy.
Collapse
Affiliation(s)
- Xun Wang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Prashant Mishra
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 7390 USA
| |
Collapse
|
25
|
Bellanti F, Lo Buglio A, Vendemiale G. Muscle Delivery of Mitochondria-Targeted Drugs for the Treatment of Sarcopenia: Rationale and Perspectives. Pharmaceutics 2022; 14:2588. [PMID: 36559079 PMCID: PMC9782427 DOI: 10.3390/pharmaceutics14122588] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022] Open
Abstract
An impairment in mitochondrial homeostasis plays a crucial role in the process of aging and contributes to the incidence of age-related diseases, including sarcopenia, which is defined as an age-dependent loss of muscle mass and strength. Mitochondrial dysfunction exerts a negative impact on several cellular activities, including bioenergetics, metabolism, and apoptosis. In sarcopenia, mitochondria homeostasis is disrupted because of reduced oxidative phosphorylation and ATP generation, the enhanced production of reactive species, and impaired antioxidant defense. This review re-establishes the most recent evidence on mitochondrial defects that are thought to be relevant in the pathogenesis of sarcopenia and that may represent promising therapeutic targets for its prevention/treatment. Furthermore, we describe mechanisms of action and translational potential of promising mitochondria-targeted drug delivery systems, including molecules able to boost the metabolism and bioenergetics, counteract apoptosis, antioxidants to scavenge reactive species and decrease oxidative stress, and target mitophagy. Even though these mitochondria-delivered strategies demonstrate to be promising in preclinical models, their use needs to be promoted for clinical studies. Therefore, there is a compelling demand to further understand the mechanisms modulating mitochondrial homeostasis, to characterize powerful compounds that target muscle mitochondria to prevent sarcopenia in aged people.
Collapse
Affiliation(s)
| | | | - Gianluigi Vendemiale
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| |
Collapse
|
26
|
Herbst A, Choi S, Hoang AN, Kim C, Martinez Moreno D, McKenzie D, Aiken JM, Wanagat J. Remdesivir does not affect mitochondrial DNA copy number or deletion mutation frequency in aged male rats: A short report. PLoS One 2022; 17:e0271850. [PMID: 36288327 PMCID: PMC9605030 DOI: 10.1371/journal.pone.0271850] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Remdesivir is a leading therapy in patients with moderate to severe coronavirus 2 (SARS-CoV-2) infection; the majority of whom are older individuals. Remdesivir is a nucleoside analog that incorporates into nascent viral RNA, inhibiting RNA-directed RNA polymerases, including that of SARS-CoV-2. Less is known about remdesivir's effects on mitochondria, particularly in older adults where mitochondria are known to be dysfunctional. Furthermore, its effect on age-induced mitochondrial mutations and copy number has not been previously studied. We hypothesized that remdesivir adversely affects mtDNA copy number and deletion mutation frequency in aged rodents. To test this hypothesis, 30-month-old male F333BNF1 rats were treated with remdesivir for three months. To determine if remdesivir adversely affects mtDNA, we measured copy number and mtDNA deletion frequency in rat hearts, kidneys, and skeletal muscles using digital PCR. We found no effects from three months of remdesivir treatment on mtDNA copy number or deletion mutation frequency in 33-month-old rats. These data support the notion that remdesivir does not compromise mtDNA quality or quantity at old age in mammals. Future work should focus on examining additional tissues such as brain and liver, and extend testing to human clinical samples.
Collapse
Affiliation(s)
- Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
| | - Solbie Choi
- Division of Geriatrics, Department of Medicine, UCLA, Los Angeles, California, United States of America
| | - Austin N. Hoang
- Division of Geriatrics, Department of Medicine, UCLA, Los Angeles, California, United States of America
| | - Chiye Kim
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Judd M. Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
| | - Jonathan Wanagat
- Division of Geriatrics, Department of Medicine, UCLA, Los Angeles, California, United States of America
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, United States of America
| |
Collapse
|
27
|
Vozdova M, Kubickova S, Rubes J. Spectrum of sperm mtDNA deletions in men exposed to industrial air pollution. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 882:503538. [PMID: 36155140 DOI: 10.1016/j.mrgentox.2022.503538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Sperm mtDNA status can serve as a molecular marker of oxidative stress and environmental exposure. High levels of air pollution may be associated with increased mitochondrial DNA (mtDNA) deletion rates in sperm. We compared the length spectra of sperm mtDNA deletions in semen samples collected from city policemen exposed to traffic and industrial air pollution in two seasons with different levels of air pollution. We used long-range PCR to amplify a fragment of mtDNA (8066 bp) frequently affected by deletions, visualized the PCR products by gel electrophoresis, and analysed aberrant bands corresponding to deleted mtDNA, using gel documentation software. The predominance of undeleted sperm mtDNA was accompanied by a variety of shorter PCR product lengths in the vast majority of sperm samples, in both seasons. Sperm mtDNA molecules and bands corresponding to long deletions were more frequently detected than shorter deletions, in both seasons. We did not detect any difference in the total number of electrophoretic bands corresponding to deleted sperm mtDNA and in the number of deleted sperm mtDNA molecules between the two seasons. In our study, air pollution during sperm maturation did not induce formation of large mtDNA deletions detectable by long PCR and gel electrophoresis (>1 kb) in maturing sperm mtDNA.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic.
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology - Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
28
|
Impact of nutraceuticals and dietary supplements on mitochondria modifications in healthy aging: a systematic review of randomized controlled trials. Aging Clin Exp Res 2022; 34:2659-2674. [PMID: 35920994 DOI: 10.1007/s40520-022-02203-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/17/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND To date, the mitochondrial function has been related to several pathways involved in the cellular aging process. Dietary supplements might have reciprocal and multilevel interactions with mitochondria network; however, no systematic review assessed the role of different nutraceuticals in mitochondria modification of healthy older adults. AIM To assess the effects of different dietary supplements on mitochondria modifications in older adults. METHODS On February 22, 2022, PubMed, Scopus, Web of Science, and Cochrane were systematically searched from inception for randomized controlled trials (RCTs). According to PICO model, we considered healthy older adults as participants, nutraceutical treatment as intervention, any treatment as comparator, mitochondrial modifications as outcome. Jadad scale was used for the quality assessment. RESULTS Altogether, 8489 records were identified and screened until 6 studies were included. A total of 201 healthy older adults were included in the systematic review (mean age ranged from 67.0 ± 1.0 years to 76.0 ± 5.6 years). The dietary supplements assessed were sodium nitrite, N-3 polyunsaturated fatty acids, hydrogen-rich water, nicotinamide riboside, urolithin A, and whey protein powder. Positive effects were reported in terms of mitochondrial oxidative and antioxidant capacity, volume, bioenergetic capacity, and mitochondrial transcriptome based on the nutritional supplements. The quality assessment underlined that all the studies included were of good quality. DISCUSSION Although dietary supplements might provide positive effects on mitochondria modifications, few studies are currently available in this field. CONCLUSION Further studies are needed to better elucidate the reciprocal and multilevel interactions between nutraceuticals, mitochondria, and environmental stressors in healthy older adults.
Collapse
|
29
|
Kimoloi S, Sen A, Guenther S, Braun T, Brügmann T, Sasse P, Wiesner RJ, Pla-Martín D, Baris OR. Combined fibre atrophy and decreased muscle regeneration capacity driven by mitochondrial DNA alterations underlie the development of sarcopenia. J Cachexia Sarcopenia Muscle 2022; 13:2132-2145. [PMID: 35765148 PMCID: PMC9397496 DOI: 10.1002/jcsm.13026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction caused by mitochondrial (mtDNA) deletions have been associated with skeletal muscle atrophy and myofibre loss. However, whether such defects occurring in myofibres cause sarcopenia is unclear. Also, the contribution of mtDNA alterations in muscle stem cells (MuSCs) to sarcopenia remains to be investigated. METHODS We expressed a dominant-negative variant of the mitochondrial helicase, which induces mtDNA alterations, specifically in differentiated myofibres (K320Eskm mice) and MuSCs (K320Emsc mice), respectively, and investigated their impact on muscle structure and function by immunohistochemistry, analysis of mtDNA and respiratory chain content, muscle transcriptome and functional tests. RESULTS K320Eskm mice at 24 months of age had higher levels of mtDNA deletions compared with controls in soleus (SOL, 0.07673% vs. 0.00015%, P = 0.0167), extensor digitorum longus (EDL, 0.0649 vs. 0.000925, P = 0.0015) and gastrocnemius (GAS, 0.09353 vs. 0.000425, P = 0.0004). K320Eskm mice revealed a progressive increase in the proportion of cytochrome c oxidase deficient (COX- ) fibres in skeletal muscle cross sections, reaching a maximum of 3.03%, 4.36%, 13.58%, and 17.08% in EDL, SOL, tibialis anterior (TA) and GAS, respectively. However, mice did not show accelerated loss of muscle mass, muscle strength or physical performance. Histological analyses revealed ragged red fibres but also stimulated regeneration, indicating activation of MuSCs. RNAseq demonstrated enhanced expression of genes associated with protein synthesis, but also degradation, as well as muscle fibre differentiation and cell proliferation. In contrast, 7 days after destruction by cardiotoxin, regenerating TA of K320Emsc mice showed 30% of COX- fibres. Notably, regenerated muscle showed dystrophic changes, increased fibrosis (2.5% vs. 1.6%, P = 0.0003), increased abundance of fat cells (2.76% vs. 0.23%, P = 0.0144) and reduced muscle mass (regenerated TA: 40.0 mg vs. 60.2 mg, P = 0.0171). In contrast to muscles from K320Eskm mice, freshly isolated MuSCs from aged K320Emsc mice were completely devoid of mtDNA alterations. However, after passaging, mtDNA copy number as well as respiratory chain subunits and p62 levels gradually decreased. CONCLUSIONS Taken together, accumulation of large-scale mtDNA alterations in myofibres alone is not sufficient to cause sarcopenia. Expression of K320E-Twinkle is tolerated in quiescent MuSCs, but progressively leads to mtDNA and respiratory chain depletion upon activation, in vivo and in vitro, possibly caused by an increased mitochondrial removal. Altogether, our results suggest that the accumulation of mtDNA alterations in myofibres activates regeneration during aging, which leads to sarcopenia if such alterations have expanded in MuSCs as well.
Collapse
Affiliation(s)
- Sammy Kimoloi
- Institute of Vegetative Physiology, University of Cologne, Faculty of Medicine and University Clinics, Köln, Germany.,Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Ayesha Sen
- Institute of Vegetative Physiology, University of Cologne, Faculty of Medicine and University Clinics, Köln, Germany
| | - Stefan Guenther
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Tobias Brügmann
- Institute for Cardiovascular Physiology, University Medical Center, Göttingen, Germany.,Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Rudolf J Wiesner
- Institute of Vegetative Physiology, University of Cologne, Faculty of Medicine and University Clinics, Köln, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - David Pla-Martín
- Institute of Vegetative Physiology, University of Cologne, Faculty of Medicine and University Clinics, Köln, Germany
| | - Olivier R Baris
- Institute of Vegetative Physiology, University of Cologne, Faculty of Medicine and University Clinics, Köln, Germany.,Equipe MitoLab, UMR CNRS 6015, INSERM U1083, Institut MitoVasc, Université d'Angers, Angers, France
| |
Collapse
|
30
|
Long read mitochondrial genome sequencing using Cas9-guided adaptor ligation. Mitochondrion 2022; 65:176-183. [PMID: 35787470 DOI: 10.1016/j.mito.2022.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 06/19/2022] [Indexed: 11/21/2022]
Abstract
The mitochondrial genome (mtDNA) is an important source of disease-causing genetic variability, but existing sequencing methods limit understanding, precluding phased measurement of mutations and clear detection of large sporadic deletions. We adapted a method for amplification-free sequence enrichment using Cas9 cleavage to obtain full length nanopore reads of mtDNA. We then utilized the long reads to phase mutations in a patient with an mtDNA-linked syndrome and demonstrated that this method can map age-induced mtDNA deletions. We believe this method will offer deeper insight into our understanding of mtDNA variation.
Collapse
|
31
|
Lima T, Li TY, Mottis A, Auwerx J. Pleiotropic effects of mitochondria in aging. NATURE AGING 2022; 2:199-213. [PMID: 37118378 DOI: 10.1038/s43587-022-00191-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/07/2022] [Indexed: 04/30/2023]
Abstract
Aging is typified by a progressive decline in mitochondrial activity and stress resilience. Here, we review how mitochondrial stress pathways have pleiotropic effects on cellular and systemic homeostasis, which can comprise protective or detrimental responses during aging. We describe recent evidence arguing that defects in these conserved adaptive pathways contribute to aging and age-related diseases. Signaling pathways regulating the mitochondrial unfolded protein response, mitochondrial membrane dynamics, and mitophagy are discussed, emphasizing how their failure contributes to heteroplasmy and de-regulation of key metabolites. Our current understanding of how these processes are controlled and interconnected explains how mitochondria can widely impact fundamental aspects of aging.
Collapse
Affiliation(s)
- Tanes Lima
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Terytty Yang Li
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Adrienne Mottis
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
32
|
The Mitochondrial Genome in Aging and Disease and the Future of Mitochondrial Therapeutics. Biomedicines 2022; 10:biomedicines10020490. [PMID: 35203698 PMCID: PMC8962324 DOI: 10.3390/biomedicines10020490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Mitochondria are intracellular organelles that utilize nutrients to generate energy in the form of ATP by oxidative phosphorylation. Mitochondrial DNA (mtDNA) in humans is a 16,569 base pair double-stranded circular DNA that encodes for 13 vital proteins of the electron transport chain. Our understanding of the mitochondrial genome’s transcription, translation, and maintenance is still emerging, and human pathologies caused by mtDNA dysfunction are widely observed. Additionally, a correlation between declining mitochondrial DNA quality and copy number with organelle dysfunction in aging is well-documented in the literature. Despite tremendous advancements in nuclear gene-editing technologies and their value in translational avenues, our ability to edit mitochondrial DNA is still limited. In this review, we discuss the current therapeutic landscape in addressing the various pathologies that result from mtDNA mutations. We further evaluate existing gene therapy efforts, particularly allotopic expression and its potential to become an indispensable tool for restoring mitochondrial health in disease and aging.
Collapse
|
33
|
Impact of exercise training on muscle mitochondria modifications in older adults: a systematic review of randomized controlled trials. Aging Clin Exp Res 2022; 34:1495-1510. [PMID: 35079977 DOI: 10.1007/s40520-021-02073-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Previous evidence showed that cellular aging is a multifactorial process that is associated with decline in mitochondrial function. Physical exercise has been proposed as an effective and safe therapeutical intervention to improve the mitochondria network in the adult myocytes. AIMS The aim of this systematic review of randomized controlled trials (RCTs) was to assess the exercise-induced muscle mitochondria modifications in older adults, underlining the differences related to different exercise modalities. METHODS On November 28th, 2021, five databases (PubMed, Scopus, Web of Science, Cochrane, and PEDro) were systematically searched for RCTs to include articles with: healthy older people as participants; physical exercise (endurance training (ET), resistance training (RT), and combined training (CT)) as intervention; other different exercise modalities or physical inactivity as comparator; mitochondrial modifications (quality, density and dynamics, oxidative, and antioxidant capacity) as outcomes. The quality assessment was performed according to the PEDro scale; the bias risk was evaluated by Cochrane risk-of-bias assessment tool. RESULTS Out of 2940 records, 6 studies were included (2 assessing ET, 2 RT, 1 CT, and 1 both ET and RT). Taken together, 164 elderly subjects were included in the present systematic review. Significant positive effects were reported in terms of mitochondrial quality, density, dynamics, oxidative and antioxidant capacity, even though with different degrees according to the exercise type. The quality assessment reported one good-quality study, whereas the other five studies had a fair quality. DISCUSSION The overall low quality of the studies on this topic indicate that further research is needed. CONCLUSION RT seems to be the most studied physical exercise modality improving mitochondrial density and dynamics, while ET have been related to mitochondrial antioxidant capacity improvements. However, these exercise-induced specific effects should be better explored in older people.
Collapse
|
34
|
Morin AL, Win PW, Lin AZ, Castellani CA. Mitochondrial genomic integrity and the nuclear epigenome in health and disease. Front Endocrinol (Lausanne) 2022; 13:1059085. [PMID: 36419771 PMCID: PMC9678080 DOI: 10.3389/fendo.2022.1059085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Bidirectional crosstalk between the nuclear and mitochondrial genomes is essential for proper cell functioning. Mitochondrial DNA copy number (mtDNA-CN) and heteroplasmy influence mitochondrial function, which can influence the nuclear genome and contribute to health and disease. Evidence shows that mtDNA-CN and heteroplasmic variation are associated with aging, complex disease, and all-cause mortality. Further, the nuclear epigenome may mediate the effects of mtDNA variation on disease. In this way, mitochondria act as an environmental biosensor translating vital information about the state of the cell to the nuclear genome. Cellular communication between mtDNA variation and the nuclear epigenome can be achieved by modification of metabolites and intermediates of the citric acid cycle and oxidative phosphorylation. These essential molecules (e.g. ATP, acetyl-CoA, ɑ-ketoglutarate and S-adenosylmethionine) act as substrates and cofactors for enzymes involved in epigenetic modifications. The role of mitochondria as an environmental biosensor is emerging as a critical modifier of disease states. Uncovering the mechanisms of these dynamics in disease processes is expected to lead to earlier and improved treatment for a variety of diseases. However, the influence of mtDNA-CN and heteroplasmy variation on mitochondrially-derived epigenome-modifying metabolites and intermediates is poorly understood. This perspective will focus on the relationship between mtDNA-CN, heteroplasmy, and epigenome modifying cofactors and substrates, and the influence of their dynamics on the nuclear epigenome in health and disease.
Collapse
Affiliation(s)
- Amanda L. Morin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Phyo W. Win
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Angela Z. Lin
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Christina A. Castellani
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- *Correspondence: Christina A. Castellani,
| |
Collapse
|
35
|
Herbst A, Hoang A, Kim C, Aiken JM, McKenzie D, Goldwater DS, Wanagat J. Metformin Treatment in Old Rats and Effects on Mitochondrial Integrity. Rejuvenation Res 2021; 24:434-440. [PMID: 34779265 DOI: 10.1089/rej.2021.0052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Metformin, a commonly used well-tolerated treatment for type 2 diabetes, is being deployed in clinical trials to ameliorate aging in older nondiabetic humans. Concerningly, some experiments in model organisms have suggested that metformin use at old ages shortens life span and is toxic to mitochondria. The demonstrated safety of metformin therapy in humans and the conflicting data from model organisms compelled us to test the hypothesis that metformin treatment would be toxic to older rats. To define an effective dose in 30-month-old hybrid rats, we evaluated two doses of metformin (0.1%, 0.75% of the diet) and treated the rats for 4 months. Body mass decreased at the 0.75% dose. Neither dose affected mortality between 30 and 34 months of age. We assessed mitochondrial integrity by measuring mitochondrial DNA (mtDNA) copy number and deletion mutation frequency, and mitochondrial respiration in skeletal muscle and the heart. In skeletal muscle, we observed no effect of metformin on quadriceps mass, mtDNA copy number, or deletion frequency. In the heart, metformin-treated rats had higher mtDNA copy number, lower cardiac mass, with no change in mtDNA deletion frequency. Metformin treatment resulted in lower mitochondrial complex I-dependent respiration in the heart. We found that, in old rats, metformin did not compromise mtDNA integrity, did not affect mortality, and may have cardiac benefits. These data provide some reassurance that a metformin intervention in aged mammals is not toxic at appropriate doses.
Collapse
Affiliation(s)
- Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
| | - Austin Hoang
- Division of Geriatrics, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Chiye Kim
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Judd M Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Deena S Goldwater
- Division of Geriatrics, Department of Medicine, UCLA, Los Angeles, California, USA.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, USA.,Division of Cardiology, Department of Medicine, UCLA, Los Angeles, California, USA
| | - Jonathan Wanagat
- Division of Geriatrics, Department of Medicine, UCLA, Los Angeles, California, USA.,Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
36
|
Acin-Perez R, Benincá C, Shabane B, Shirihai OS, Stiles L. Utilization of Human Samples for Assessment of Mitochondrial Bioenergetics: Gold Standards, Limitations, and Future Perspectives. Life (Basel) 2021; 11:949. [PMID: 34575097 PMCID: PMC8467772 DOI: 10.3390/life11090949] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial bioenergetic function is a central component of cellular metabolism in health and disease. Mitochondrial oxidative phosphorylation is critical for maintaining energetic homeostasis, and impairment of mitochondrial function underlies the development and progression of metabolic diseases and aging. However, measurement of mitochondrial bioenergetic function can be challenging in human samples due to limitations in the size of the collected sample. Furthermore, the collection of samples from human cohorts is often spread over multiple days and locations, which makes immediate sample processing and bioenergetics analysis challenging. Therefore, sample selection and choice of tests should be carefully considered. Basic research, clinical trials, and mitochondrial disease diagnosis rely primarily on skeletal muscle samples. However, obtaining skeletal muscle biopsies requires an appropriate clinical setting and specialized personnel, making skeletal muscle a less suitable tissue for certain research studies. Circulating white blood cells and platelets offer a promising primary tissue alternative to biopsies for the study of mitochondrial bioenergetics. Recent advances in frozen respirometry protocols combined with the utilization of minimally invasive and non-invasive samples may provide promise for future mitochondrial research studies in humans. Here we review the human samples commonly used for the measurement of mitochondrial bioenergetics with a focus on the advantages and limitations of each sample.
Collapse
Affiliation(s)
- Rebeca Acin-Perez
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Cristiane Benincá
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Byourak Shabane
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Orian S. Shirihai
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| | - Linsey Stiles
- Department of Medicine, Endocrinology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (C.B.); (B.S.); (O.S.S.)
- Metabolism Theme, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
37
|
Xie WQ, He M, Yu DJ, Wu YX, Wang XH, Lv S, Xiao WF, Li YS. Mouse models of sarcopenia: classification and evaluation. J Cachexia Sarcopenia Muscle 2021; 12:538-554. [PMID: 33951340 PMCID: PMC8200444 DOI: 10.1002/jcsm.12709] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia is a progressive and widespread skeletal muscle disease that is related to an increased possibility of adverse consequences such as falls, fractures, physical disabilities and death, and its risk increases with age. With the deepening of the understanding of sarcopenia, the disease has become a major clinical disease of the elderly and a key challenge of healthy ageing. However, the exact molecular mechanism of this disease is still unclear, and the selection of treatment strategies and the evaluation of its effect are not the same. Most importantly, the early symptoms of this disease are not obvious and are easy to ignore. In addition, the clinical manifestations of each patient are not exactly the same, which makes it difficult to effectively study the progression of sarcopenia. Therefore, it is necessary to develop and use animal models to understand the pathophysiology of sarcopenia and develop therapeutic strategies. This paper reviews the mouse models that can be used in the study of sarcopenia, including ageing models, genetically engineered models, hindlimb suspension models, chemical induction models, denervation models, and immobilization models; analyses their advantages and disadvantages and application scope; and finally summarizes the evaluation of sarcopenia in mouse models.
Collapse
Affiliation(s)
- Wen-Qing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Miao He
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Deng-Jie Yu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Xiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, China
| | - Xiu-Hua Wang
- Xiang Ya Nursing School, The Central South University, Changsha, Hunan, China
| | - Shan Lv
- Department of Geriatric Endocrinology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen-Feng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Sheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
38
|
Herbst A, Prior SJ, Lee CC, Aiken JM, McKenzie D, Hoang A, Liu N, Chen X, Xun P, Allison DB, Wanagat J. Skeletal muscle mitochondrial DNA copy number and mitochondrial DNA deletion mutation frequency as predictors of physical performance in older men and women. GeroScience 2021; 43:1253-1264. [PMID: 33740224 DOI: 10.1007/s11357-021-00351-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial DNA (mtDNA) quality and quantity relate to two hallmarks of aging-genomic instability and mitochondrial dysfunction. Physical performance relies on mitochondrial integrity and declines with age, yet the interactions between mtDNA quantity, quality, and physical performance are unclear. Using a validated digital PCR assay specific for mtDNA deletions, we tested the hypothesis that skeletal muscle mtDNA deletion mutation frequency (i.e., a measure of mtDNA quality) or mtDNA copy number predicts physical performance in older adults. Total DNA was isolated from vastus lateralis muscle biopsies and used to quantitate mtDNA copy number and mtDNA deletion frequency by digital PCR. The biopsies were obtained from a cross-sectional cohort of 53 adults aged 50 to 86 years. Before the biopsy procedure, physical performance measurements were collected, including VO2max, modified physical performance test score, 6-min walk distance, gait speed, grip strength, and total lean and leg mass. Linear regression models were used to evaluate the relationships between age, sex, and the outcomes. We found that mtDNA deletion mutation frequency increased exponentially with advancing age. On average from ages 50 to 86, deletion frequency increased from 0.008 to 0.15%, an 18-fold increase. Females may have lower deletion frequencies than males at older ages. We also measured declines in VO2max and mtDNA copy number with age in both sexes. The mtDNA deletion frequency measured from single skeletal muscle biopsies predicted 13.3% of the variation in VO2max. Copy number explained 22.6% of the variation in mtDNA deletion frequency and 10.4% of the lean mass variation. We found predictive relationships between age, mtDNA deletion mutation frequency, mtDNA copy number, and physical performance. These data are consistent with a role for mitochondrial function and genome integrity in maintaining physical performance with age. Analyses of mtDNA quality and quantity in larger cohorts and longitudinal studies could extend our understanding of the importance of mitochondrial DNA in human aging and longevity.
Collapse
Affiliation(s)
- Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD, USA.,Baltimore Veterans Affairs Medical Center Geriatric Research, Education and Clinical Center, Baltimore, MD, USA
| | - Cathy C Lee
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Division of Geriatrics, Department of Medicine, University of California, Los Angeles, 650 Charles E. Young Drive South, Rm 34-115, Los Angeles, CA, 90095, USA
| | - Judd M Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Hoang
- Division of Geriatrics, Department of Medicine, University of California, Los Angeles, 650 Charles E. Young Drive South, Rm 34-115, Los Angeles, CA, 90095, USA
| | - Nianjun Liu
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Xiwei Chen
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Pengcheng Xun
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - David B Allison
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Jonathan Wanagat
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA. .,Division of Geriatrics, Department of Medicine, University of California, Los Angeles, 650 Charles E. Young Drive South, Rm 34-115, Los Angeles, CA, 90095, USA.
| |
Collapse
|
39
|
Bellanti F, Lo Buglio A, Vendemiale G. Mitochondrial Impairment in Sarcopenia. BIOLOGY 2021; 10:31. [PMID: 33418869 PMCID: PMC7825073 DOI: 10.3390/biology10010031] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 02/07/2023]
Abstract
Sarcopenia is defined by the age-related loss of skeletal muscle quality, which relies on mitochondrial homeostasis. During aging, several mitochondrial features such as bioenergetics, dynamics, biogenesis, and selective autophagy (mitophagy) are altered and impinge on protein homeostasis, resulting in loss of muscle mass and function. Thus, mitochondrial dysfunction contributes significantly to the complex pathogenesis of sarcopenia, and mitochondria are indicated as potential targets to prevent and treat this age-related condition. After a concise presentation of the age-related modifications in skeletal muscle quality and mitochondrial homeostasis, the present review summarizes the most relevant findings related to mitochondrial alterations in sarcopenia.
Collapse
Affiliation(s)
- Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, viale Pinto 1, 71122 Foggia, Italy; (A.L.B.); (G.V.)
| | | | | |
Collapse
|