1
|
Pattyn J, Geerts Danau M, De Ruysscher D, Roden S, Snoekx T, Masschelein J, Vaughan-Hirsch J, Van de Poel B. An assay for assessing 1-aminocyclopropane-1-carboxylate malonyl (MACC) transferase (AMT) activity and its regulation by ethylene. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 353:112401. [PMID: 39892708 DOI: 10.1016/j.plantsci.2025.112401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND N-malonyl 1-aminocyclopropane-1-carboxylic acid (MACC) is a major conjugate of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and may therefore play an important role in regulating ethylene production, as well as ethylene-independent ACC signalling. While the enzyme responsible for this derivatization, ACC malonyltransferase (AMT), has been studied in the past, its identity remains unknown. Methods to assay AMT activity are not well established, and no standardized assay has been described. RESULTS We optimized an AMT activity assay and investigated the biological implications of AMT. This assay can be divided into three parts: total protein extraction, in vitro AMT activity assay, and MACC detection. For these three parts, different parameters were optimized and combined into an integrated and robust protocol. We used gas chromatography for the indirect detection of MACC, which was compared to a direct LC-MS approach, indicating that the GC-based method is a good alternative readily available to most labs studying ethylene. Next, we used this in vitro AMT activity assay to study the biological function of MACC formation. We observed an ontogenetic, tissue-specific and an ethylene-mediated feedback effect on AMT activity in tomato and Arabidopsis. The feedback of ethylene on AMT activity seems to be important to regulate ethylene production levels. CONCLUSIONS The optimized and robust AMT activity assay presented here will enable other plant researchers to investigate the biochemistry of the ethylene biosynthesis pathway through ACC conjugation into MACC. Our AMT activity method was deployed both in tomato and Arabidopsis, and revealed that AMT activity is tightly controlled by ethylene itself in a tissue-specific way.
Collapse
Affiliation(s)
- J Pattyn
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, Leuven 3001, Belgium; KU Leuven Plant Institute (LPI), University of Leuven, Kasteelpark Arenberg 31, Leuven 3001, Belgium
| | - M Geerts Danau
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, Leuven 3001, Belgium
| | - D De Ruysscher
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, Leuven 3001, Belgium; Laboratory for Biomolecular Discovery and Engineering, Department of Biology, University of Leuven, Kasteelpark Arenberg 31, Heverlee 3001, Belgium
| | - S Roden
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, Leuven 3001, Belgium
| | - T Snoekx
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, Leuven 3001, Belgium
| | - J Masschelein
- VIB-KU Leuven Center for Microbiology, Kasteelpark Arenberg 31, Leuven 3001, Belgium; Laboratory for Biomolecular Discovery and Engineering, Department of Biology, University of Leuven, Kasteelpark Arenberg 31, Heverlee 3001, Belgium
| | - J Vaughan-Hirsch
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, Leuven 3001, Belgium; KU Leuven Plant Institute (LPI), University of Leuven, Kasteelpark Arenberg 31, Leuven 3001, Belgium.
| | - B Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Willem de Croylaan 42, Leuven 3001, Belgium; KU Leuven Plant Institute (LPI), University of Leuven, Kasteelpark Arenberg 31, Leuven 3001, Belgium.
| |
Collapse
|
2
|
Yan Y, Zhang W, Wang Y, Wang Y, Li C, Zhao N, Zhou L, Su J, Wang L, Jiang J, Chen S, Chen F. CmHRE2L-CmACS6 transcriptional cascade negatively regulates waterlogging tolerance in Chrysanthemum. MOLECULAR HORTICULTURE 2025; 5:15. [PMID: 40025601 PMCID: PMC11874658 DOI: 10.1186/s43897-024-00138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/11/2024] [Indexed: 03/04/2025]
Abstract
The role of ethylene as an initial signaling molecule in waterlogging stress is well-established. However, the complex molecular mechanisms underlying ethylene biosynthesis and its functional significance in chrysanthemums under waterlogging conditions have remained unclear. In this study, we observed an increase in the expression of 1-aminocyclopropane-1-carboxylate synthase 6 (CmACS6), which encodes a key enzyme responsible for ethylene biosynthesis, in response to waterlogging. This elevation increases ethylene production, induces leaf chlorosis, and enhances the chrysanthemum's sensitivity to waterlogging stress. Moreover, our analysis of upstream regulators revealed that the expression of CmACS6, in response to waterlogging, is directly upregulated by CmHRE2-like (Hypoxia Responsive ERF-like, CmHRE2L), an ethylene response factor. Notably, CmHRE2-L binds directly to the GCC-like motif in the promoter region of CmACS6. Genetic validation assays demonstrated that CmHRE2L was induced by waterlogging and contributed to ethylene production, consequently reducing waterlogging tolerance in a partially CmACS6-dependent manner. This study identified the regulatory module involving CmHRE2L and CmACS6, which governs ethylene biosynthesis in response to waterlogging stress.
Collapse
Affiliation(s)
- Yajun Yan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Wanwan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - You Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Yue Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Chuanwei Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Nan Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
3
|
Mushtaq N, Altaf MA, Shu H, Lu X, Cheng S, El-Sheikh MA, Ahmad P, Fu H, Wang Z. The induction of polyamines metabolism pathway and membrane stability with silicon alleviate the vanadium toxicity in pepper plants. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136665. [PMID: 39647327 DOI: 10.1016/j.jhazmat.2024.136665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/18/2024] [Accepted: 11/24/2024] [Indexed: 12/10/2024]
Abstract
The vanadium (V) toxicity predominantly is the primary limitation in restraining pepper growth. The silicon (Si) in pepper plants induced the transcript level of the polyamines metabolism pathway genes, including the arginase (CbARG), ornithine decarboxylase (CbODC), arginine decarboxylase (CbADC), N-carbamoylputrescine amidase (CbNCA), Spermidine synthase (CbSPDS), copper binding diamine oxidase (CbCuAO) to overcome the V toxicity. The polyamines, including the Spm, Spd, and Put, induced with Si about 41.37 %, 33.12 %, and 27.90 %, respectively, in V stress. Moreover, the Si application decline in the leaf and root V contents, which was around 49.5 % and 40.74 %, respectively, then the V stress plants. The soluble protein, proline, and Si level in root/leaf with Si treatment significantly induced around 55.55/50.22 %, 42.85/55.35 %, and 49.92/85.29 %, respectively, as compared to the V stress. Si also heightened the nitrate reductase (NR), phosphoenolpyruvate carboxylase (PEPC), and malate dehydrogenase (MDH) levels. Our study revealed that Si maintained the PSII integrity and induced PSII efficiency genes. Si preserves the membrane stability, as evidenced by less accumulation in EL, H2O2, and MDA levels. The Si also induces the AsA-GSH to eliminate the reactive oxygen species (ROS) in the pepper plants. In summary, our research elucidated that Si addition improved pepper plants' tolerance to V toxicity.
Collapse
Affiliation(s)
- Naveed Mushtaq
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Muhammad Ahsan Altaf
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Huangying Shu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xu Lu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shanhan Cheng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India
| | - Huizhen Fu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Zhiwei Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Mou W, Khare R, Polko JK, Taylor I, Xu J, Xue D, Benfey P, Van de Poel B, Chang C, Kieber JJ. Ethylene-independent modulation of root development by ACC via downregulation of WOX5 and group I CLE peptide expression. Proc Natl Acad Sci U S A 2025; 122:e2417735122. [PMID: 39908106 PMCID: PMC11831204 DOI: 10.1073/pnas.2417735122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/30/2024] [Indexed: 02/07/2025] Open
Abstract
In seed plants, the canonical role of 1-aminocyclopropane-1-carboxylic acid (ACC) is to serve as the precursor in the biosynthesis of the phytohormone ethylene, and indeed, ACC treatment is often used as a proxy for ethylene treatment. Increasing evidence suggests that ACC can also act independently of ethylene to regulate various aspects of plant growth and development. Here, we explore the effects of ACC on Arabidopsis thaliana root growth and the mechanisms by which it acts. ACC inhibits growth of the primary root in Arabidopsis seedlings when ethylene signaling is blocked, which becomes evident after 36 h of treatment with ACC. This reduced root growth is in part the result of suppressed cell proliferation in the root meristem resulting from altered expression of a key regulator of stem cell niche activity, WOX5. ACC also promotes lateral root (LR) development, in contrast to ethylene, which inhibits LR formation. Transcriptomic analysis of roots revealed no significant changes in gene expression after 45 min or 4 h of ACC treatment, but longer treatment times revealed a large number of differentially expressed genes, including the downregulation of the expression of a small group of phylogenetically related CLE peptides. Reduced expression of these group 1 CLEs in response to ACC leads to the activation of a transcription factor, LBD18, which promotes LR development. These results suggest that ACC acts to modulate multiple aspects of Arabidopsis root growth independently of ethylene via distinct transcriptional effects in the root meristem and LR precursor cells.
Collapse
Affiliation(s)
- Wangshu Mou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
- Department of Biosystems, University of Leuven, Leuven3001, Belgium
- Leuven Plant Institute, University of Leuven, Leuven3001, Belgium
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD20742
| | - Ria Khare
- Department of Biology, University of North Carolina, Chapel Hill, NC27599
| | - Joanna K. Polko
- Department of Biology, University of North Carolina, Chapel Hill, NC27599
| | - Isaiah Taylor
- Department of Biology, Duke University, Durham, NC27708
| | - Juan Xu
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou311121, China
| | - Philip Benfey
- Department of Biology, Duke University, Durham, NC27708
| | - Bram Van de Poel
- Department of Biosystems, University of Leuven, Leuven3001, Belgium
- Leuven Plant Institute, University of Leuven, Leuven3001, Belgium
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD20742
| | - Joseph J. Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC27599
| |
Collapse
|
5
|
Cao D, Depaepe T, Sanchez-Muñoz R, Janssens H, Lemière F, Willems T, Winne J, Prinsen E, Van Der Straeten D. A UPLC-MS/MS method for quantification of metabolites in the ethylene biosynthesis pathway and its biological validation in Arabidopsis. THE NEW PHYTOLOGIST 2024; 243:1262-1275. [PMID: 38849316 DOI: 10.1111/nph.19878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
The plant hormone ethylene is of vital importance in the regulation of plant development and stress responses. Recent studies revealed that 1-aminocyclopropane-1-carboxylic acid (ACC) plays a role beyond its function as an ethylene precursor. However, the absence of reliable methods to quantify ACC and its conjugates malonyl-ACC (MACC), glutamyl-ACC (GACC), and jasmonyl-ACC (JA-ACC) hinders related research. Combining synthetic and analytical chemistry, we present the first, validated methodology to rapidly extract and quantify ACC and its conjugates using ultra-high-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). Its relevance was confirmed by application to Arabidopsis mutants with altered ACC metabolism and wild-type plants under stress. Pharmacological and genetic suppression of ACC synthesis resulted in decreased ACC and MACC content, whereas induction led to elevated levels. Salt, wounding, and submergence stress enhanced ACC and MACC production. GACC and JA-ACC were undetectable in vivo; however, GACC was identified in vitro, underscoring the broad applicability of the method. This method provides an efficient tool to study individual functions of ACC and its conjugates, paving the road toward exploration of novel avenues in ACC and ethylene metabolism, and revisiting ethylene literature in view of the recent discovery of an ethylene-independent role of ACC.
Collapse
Affiliation(s)
- Da Cao
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Raul Sanchez-Muñoz
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Hilde Janssens
- Department of Organic Chemistry, Polymer Chemistry Research Group and Laboratory for Organic Synthesis, Ghent University, 9000, Ghent, Belgium
| | - Filip Lemière
- Department of Chemistry, Biomolecular and Analytical Mass Spectrometry, University of Antwerp, 2020, Antwerp, Belgium
| | - Tim Willems
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
| | - Johan Winne
- Department of Organic Chemistry, Polymer Chemistry Research Group and Laboratory for Organic Synthesis, Ghent University, 9000, Ghent, Belgium
| | - Els Prinsen
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020, Antwerp, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
6
|
Basu S, Monika, Kumari S, Kumar G. Sub1 QTL confers submergence tolerance in rice through nitro-oxidative regulation and phytohormonal signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108682. [PMID: 38714133 DOI: 10.1016/j.plaphy.2024.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Constant change in global climate has become the most important limiting factor to crop productivity. Asymmetrical precipitations are causing recurrent flood events around the world. Submergence is one of the most detrimental abiotic stresses for sustainable rice production in the rainfed ecosystems of Southeast Asia. Therefore, the development of submergence-tolerant rice is an essential requirement to encounter food security. Submergence tolerance in rice is governed by the major quantitative trait locus (QTL) designated as Submergence1 (Sub1) near the centromere of chromosome 9. The introduction of the Sub1 in high-yielding rice varieties producing near-isogenic lines (NILs) has shown extreme submergence tolerance. The present study aimed to understand the responses of rice genotype IR64 and its Sub1 NIL IR64 Sub1 following one week of complete submergence treatment. Submergence imposed severe nitro-oxidative stress in both the rice genotypes, consequently disrupting the cellular redox homeostasis. In this study, IR64 exhibited higher NADPH oxidase activity accompanied by increased reactive oxygen species, reactive nitrogen species, and malondialdehyde buildups and cell death under submergence. Higher accumulations of 1-Aminocyclopropane-1-carboxylic acid, gibberellic acid, and Indole-3-acetic acid were also observed in IR64 which accelerated the plant growth and root cortical aerenchyma development following submergence. In contrast, IR64 Sub1 had enhanced submergence tolerance associated with an improved antioxidant defense system with sustainable morpho-physiological activities and restricted root aerenchyma formation. The comprehensive analyses of the responses of rice genotypes with contrasting submergence tolerance may demonstrate the intricacies of rice under complete submergence and may potentially contribute to improving stress resilience by advancing our understanding of the mechanisms of submergence tolerance in rice.
Collapse
Affiliation(s)
- Sahana Basu
- Department of Life Science, Central University of South Bihar, Gaya, 824236, Bihar, India
| | - Monika
- Department of Life Science, Central University of South Bihar, Gaya, 824236, Bihar, India
| | - Surbhi Kumari
- Department of Life Science, Central University of South Bihar, Gaya, 824236, Bihar, India
| | - Gautam Kumar
- Department of Life Science, Central University of South Bihar, Gaya, 824236, Bihar, India.
| |
Collapse
|
7
|
Karady M, Hladík P, Cermanová K, Jiroutová P, Antoniadi I, Casanova-Sáez R, Ljung K, Novák O. Profiling of 1-aminocyclopropane-1-carboxylic acid and selected phytohormones in Arabidopsis using liquid chromatography-tandem mass spectrometry. PLANT METHODS 2024; 20:41. [PMID: 38493175 PMCID: PMC10943774 DOI: 10.1186/s13007-024-01165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/27/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Gaseous phytohormone ethylene levels are directly influenced by the production of its immediate non-volatile precursor 1-aminocyclopropane-1-carboxylic acid (ACC). Owing to the strongly acidic character of the ACC molecule, its quantification has been difficult to perform. Here, we present a simple and straightforward validated method for accurate quantification of not only ACC levels, but also major members of other important phytohormonal classes - auxins, cytokinins, jasmonic acid, abscisic acid and salicylic acid from the same biological sample. RESULTS The presented technique facilitates the analysis of 15 compounds by liquid chromatography coupled with tandem mass spectrometry. It was optimized and validated for 10 mg of fresh weight plant material. The extraction procedure is composed of a minimal amount of necessary steps. Accuracy and precision were the basis for evaluating the method, together with process efficiency, recovery and matrix effects as validation parameters. The examined compounds comprise important groups of phytohormones, their active forms and some of their metabolites, including six cytokinins, four auxins, two jasmonates, abscisic acid, salicylic acid and 1-aminocyclopropane-1-carboxylic acid. The resulting method was used to examine their contents in selected Arabidopsis thaliana mutant lines. CONCLUSION This profiling method enables a very straightforward approach for indirect ethylene study and explores how it interacts, based on content levels, with other phytohormonal groups in plants.
Collapse
Affiliation(s)
- Michal Karady
- Laboratory of Growth Regulators, Institute of Experimental Botany, Palacký University, The Czech Academy of Sciences & Faculty of Science, Olomouc, CZ-783 71, Czechia.
| | - Pavel Hladík
- Laboratory of Growth Regulators, Institute of Experimental Botany, Palacký University, The Czech Academy of Sciences & Faculty of Science, Olomouc, CZ-783 71, Czechia
| | - Kateřina Cermanová
- Laboratory of Growth Regulators, Institute of Experimental Botany, Palacký University, The Czech Academy of Sciences & Faculty of Science, Olomouc, CZ-783 71, Czechia
| | - Petra Jiroutová
- Laboratory of Growth Regulators, Institute of Experimental Botany, Palacký University, The Czech Academy of Sciences & Faculty of Science, Olomouc, CZ-783 71, Czechia
| | - Ioanna Antoniadi
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Rubén Casanova-Sáez
- Department of Plant Physiology, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, SE-901 87, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, Palacký University, The Czech Academy of Sciences & Faculty of Science, Olomouc, CZ-783 71, Czechia
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, SE-901 83, Sweden
| |
Collapse
|
8
|
Alshamsi AAA, Sheteiwy MS, AbuQamar SF, El-Tarabily KA. Enhancement of mangrove growth performance using fish emulsion and halotolerant plant growth-promoting actinobacteria for sustainable management in the UAE. MARINE POLLUTION BULLETIN 2024; 199:115916. [PMID: 38150978 DOI: 10.1016/j.marpolbul.2023.115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 12/29/2023]
Abstract
The combination of fish emulsion (FE) and the actinobacterial isolate, Streptomyces griseorubens UAE1 (Sg) capable of producing plant growth regulators (PGRs) and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, was evaluated on mangrove (Avicennia marina) in the United Arab Emirates. Under greenhouse and field conditions, sediments amended with the biostimulant FE effectively enhanced mangrove growth compared to those inoculated with Sg only. Plant growth promotion by Sg was more pronounced in the presence of FE (+FE/+Sg) than in individual applications. Our data showed that Sg appeared to use FE as a source of nutrients and precursors for plant growth promotion. Thus, in planta PGR levels following the combined +FE/+Sg were significantly induced. This is the first report in the field of marine agriculture that uses FE as a nutrient base for soil microorganisms to promote mangrove growth. This study will support mangrove restoration along the Arabian Gulf coastline as a nature-based solution to changing climate and economic activities.
Collapse
Affiliation(s)
- Al Anoud A Alshamsi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Mohamed S Sheteiwy
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| |
Collapse
|
9
|
Vrobel O, Tarkowski P. Can plant hormonomics be built on simple analysis? A review. PLANT METHODS 2023; 19:107. [PMID: 37833752 PMCID: PMC10576392 DOI: 10.1186/s13007-023-01090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
The field of plant hormonomics focuses on the qualitative and quantitative analysis of the hormone complement in plant samples, akin to other omics sciences. Plant hormones, alongside primary and secondary metabolites, govern vital processes throughout a plant's lifecycle. While active hormones have received significant attention, studying all related compounds provides valuable insights into internal processes. Conventional single-class plant hormone analysis employs thorough sample purification, short analysis and triple quadrupole tandem mass spectrometry. Conversely, comprehensive hormonomics analysis necessitates minimal purification, robust and efficient separation and better-performing mass spectrometry instruments. This review summarizes the current status of plant hormone analysis methods, focusing on sample preparation, advances in chromatographic separation and mass spectrometric detection, including a discussion on internal standard selection and the potential of derivatization. Moreover, current approaches for assessing the spatiotemporal distribution are evaluated. The review touches on the legitimacy of the term plant hormonomics by exploring the current status of methods and outlining possible future trends.
Collapse
Affiliation(s)
- Ondřej Vrobel
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic.
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic.
| |
Collapse
|
10
|
López-Gómez A, Navarro-Martínez A, Garre A, Iguaz A, Martínez-Hernández GB. The Potential of Essential Oils from Active Packaging to Reduce Ethylene Biosynthesis in Plant Products. Part 2: Fruits (Blueberries and Blackberries). PLANTS (BASEL, SWITZERLAND) 2023; 12:3418. [PMID: 37836158 PMCID: PMC10574652 DOI: 10.3390/plants12193418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Plant essential oils (EOs) have an important ability to inhibit ethylene biosynthesis. Nevertheless, the effects of EOs on the key components of ethylene biosynthesis (l-aminocyclopropane-1-carboxylic (ACC) oxidase activity, ACC synthase activity, and ACC content) have not yet been thoroughly studied. Accordingly, this study focused on the effects of emitted EOs from active packaging (EO doses from 100 to 1000 mg m-2) on the key components of ethylene biosynthesis of blueberries and blackberries under several storage temperatures. Anise EO and lemon EO active packaging induced the greatest inhibitory effects (60-76%) on the ethylene production of blueberries and blackberries, respectively, even at high storage temperatures (22 °C). In terms of EO doses, active packaging with 1000 mg m-2 of anise EO or lemon EO led to the highest reduction of ethylene production, respectively. At 22 °C, the investigated EO active packing reduced the activities of ACC synthase and ACC oxidase up to 50%. In order to minimise ethylene biosynthesis in blueberries and blackberries when they are stored even under improper temperature scenarios at high temperatures, this EO active packaging is a natural and efficient technological solution.
Collapse
Affiliation(s)
- Antonio López-Gómez
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain; (A.L.-G.); (A.N.-M.); (A.I.)
- Institute of Plant Biotechnology, Camouys Muralla del Mar (Universidad Politécnica de Cartagena), 30202 Cartagena, Spain
| | - Alejandra Navarro-Martínez
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain; (A.L.-G.); (A.N.-M.); (A.I.)
| | - Alberto Garre
- Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartegan, Spain;
| | - Asunción Iguaz
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain; (A.L.-G.); (A.N.-M.); (A.I.)
| | - Ginés Benito Martínez-Hernández
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Spain; (A.L.-G.); (A.N.-M.); (A.I.)
- Institute of Plant Biotechnology, Camouys Muralla del Mar (Universidad Politécnica de Cartagena), 30202 Cartagena, Spain
| |
Collapse
|
11
|
López-Gómez A, Navarro-Martínez A, Garre A, Artés-Hernández F, Villalba P, Martínez-Hernández GB. The Potential of Essential Oils from Active Packaging to Reduce Ethylene Biosynthesis in Plant Products. Part 1: Vegetables (Broccoli and Tomato). PLANTS (BASEL, SWITZERLAND) 2023; 12:3404. [PMID: 37836143 PMCID: PMC10574596 DOI: 10.3390/plants12193404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Essential oils (EOs) extracted from plants have a high potential to reduce ethylene biosynthesis, although their effects have not been deeply studied yet on the key components of the ethylene biosynthesis pathway: l-aminocyclopropane-1-carboxylic (ACC) oxidase activity, ACC synthase activity, and ACC content. Hence, the present study aimed to elucidate the effects of released EOs from active packaging (with different EO doses ranging from 100 to 1000 mg m-2) on the ethylene biosynthesis key components of broccoli and tomato under different storage temperature scenarios. The largest ethylene inhibitory effects on broccoli and tomatoes were demonstrated by grapefruit EO and thyme essential EO (up to 63%), respectively, which were more pronounced at higher temperatures. Regarding EO doses, active packaging with a thyme EO dose of 1000 mg m-2 resulted in the strongest reduction (33-38%) of ethylene production in tomatoes. For broccoli, identical results were shown with a lower grapefruit EO dose of 500 mg m-2. The studied EO-active packaging decreased ACC synthase and ACC oxidase activities by 40-50% at 22 °C. Therefore, this EO-active packaging is a natural and effective technology to reduce ethylene biosynthesis in broccoli and tomatoes when they are stored, even in unsuitable scenarios at high temperatures.
Collapse
Affiliation(s)
- Antonio López-Gómez
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Murcia, Spain; (A.L.-G.); (A.N.-M.); (P.V.)
- Institute of Plant Biotechnology, Campus Muralla del Mar (Universidad Politécnica de Cartagena), 30202 Cartagena, Murcia, Spain;
| | - Alejandra Navarro-Martínez
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Murcia, Spain; (A.L.-G.); (A.N.-M.); (P.V.)
| | - Alberto Garre
- Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Murcia, Spain;
| | - Francisco Artés-Hernández
- Institute of Plant Biotechnology, Campus Muralla del Mar (Universidad Politécnica de Cartagena), 30202 Cartagena, Murcia, Spain;
- Postharvest and Refrigeration Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Murcia, Spain
| | - Pedro Villalba
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Murcia, Spain; (A.L.-G.); (A.N.-M.); (P.V.)
| | - Ginés Benito Martínez-Hernández
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, 30203 Cartagena, Murcia, Spain; (A.L.-G.); (A.N.-M.); (P.V.)
- Institute of Plant Biotechnology, Campus Muralla del Mar (Universidad Politécnica de Cartagena), 30202 Cartagena, Murcia, Spain;
| |
Collapse
|
12
|
Xu Y, Huo L, Zhao K, Li Y, Zhao X, Wang H, Wang W, Shi H. Salicylic acid delays pear fruit senescence by playing an antagonistic role toward ethylene, auxin, and glucose in regulating the expression of PpEIN3a. FRONTIERS IN PLANT SCIENCE 2023; 13:1096645. [PMID: 36714736 PMCID: PMC9875596 DOI: 10.3389/fpls.2022.1096645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/26/2022] [Indexed: 06/18/2023]
Abstract
Salicylic acid (SA) and ethylene (ET) are crucial fruit senescence hormones. SA inhibited ET biosynthesis. However, the mechanism of SA delaying fruit senescence is less known. ETHYLENE INSENSITIVE 3 (EIN3), a key positive switch in ET perception, functions as a transcriptional activator and binds to the primary ET response element that is present in the promoter of the ETHYLENE RESPONSE FACTOR1 gene. In this study, a gene encoding putative EIN3 protein was cloned from sand pear and designated as PpEIN3a. The deduced PpEIN3a contains a conserved EIN3 domain. The evolutionary analysis results indicated that PpEIN3a belonged to the EIN3 superfamily. Real-time quantitative PCR analysis revealed that the accumulation of PpEIN3a transcripts were detected in all tissues of this pear. Moreover, PpEIN3a expression was regulated during fruit development. Interestingly, the expression of PpEIN3a was downregulated by SA but upregulated by ET, auxin, and glucose. Additionally, the contents of free and conjugated SA were higher than those of the control after SA treatment. While the content of ET and auxin (indole-3-acetic acid, IAA) dramatically decreased after SA treatment compared with control during fruit senescence. The content of glucose increased when fruit were treated by SA for 12 h and then there were no differences between SA treatment and control fruit during the shelf life. SA also delayed the decrease in sand pear (Pyrus pyrifolia Nakai. 'Whangkeumbae') fruit firmness. The soluble solid content remained relatively stable between the SA treated and control fruits. This study showed that SA plays an antagonistic role toward ET, auxin, and glucose in regulating the expression of PpEIN3a to delay fruit senescence.
Collapse
|
13
|
Li D, Dierschke T, Roden S, Chen K, Bowman JL, Chang C, Van de Poel B. A transporter of 1-aminocyclopropane-1-carboxylic acid affects thallus growth and fertility in Marchantia polymorpha. THE NEW PHYTOLOGIST 2022; 236:2103-2114. [PMID: 36151927 DOI: 10.1111/nph.18510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
In seed plants, 1-aminocyclopropane-1-carboxylic acid (ACC) is the precursor of the plant hormone ethylene but also has ethylene-independent signaling roles. Nonseed plants produce ACC but do not efficiently convert it to ethylene. In Arabidopsis thaliana, ACC is transported by amino acid transporters, LYSINE HISTIDINE TRANSPORTER 1 (LHT1) and LHT2. In nonseed plants, LHT homologs have been uncharacterized. Here, we isolated an ACC-insensitive mutant (Mpain) that is defective in ACC uptake in the liverwort Marchantia polymorpha. Mpain contained a frameshift mutation (1 bp deletion) in the MpLHT1 coding sequence, and was complemented by expression of a wild-type MpLHT1 transgene. Additionally, ACC insensitivity was re-created in CRISPR/Cas9-Mplht1 knockout mutants. We found that MpLHT1 can also transport l-hydroxyproline and l-histidine. We examined the physiological functions of MpLHT1 in vegetative growth and reproduction based on mutant phenotypes. Mpain and Mplht1 plants were smaller and developed fewer gemmae cups compared to wild-type plants. Mplht1 mutants also had reduced fertility, and archegoniophores displayed early senescence. These findings reveal that MpLHT1 serves as an ACC and amino acid transporter in M. polymorpha and has diverse physiological functions. We propose that MpLHT1 contributes to homeostasis of ACC and other amino acids in M. polymorpha growth and reproduction.
Collapse
Affiliation(s)
- Dongdong Li
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, 3001, Leuven, Belgium
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, MD, 20742, USA
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, 310058, Hangzhou, China
| | - Tom Dierschke
- School of Biological Sciences, Monash University, 3800, Melbourne, Vic., Australia
| | - Stijn Roden
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, 3001, Leuven, Belgium
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, 310058, Hangzhou, China
| | - John L Bowman
- School of Biological Sciences, Monash University, 3800, Melbourne, Vic., Australia
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, MD, 20742, USA
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, 3001, Leuven, Belgium
- KU Leuven Plant Institute (LPI), University of Leuven, 3001, Leuven, Belgium
| |
Collapse
|
14
|
Li Q, Chai L, Tong N, Yu H, Jiang W. Potential Carbohydrate Regulation Mechanism Underlying Starvation-Induced Abscission of Tomato Flower. Int J Mol Sci 2022; 23:ijms23041952. [PMID: 35216070 PMCID: PMC8876634 DOI: 10.3390/ijms23041952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/16/2022] Open
Abstract
Tomato flower abscission is a critical agronomic problem directly affecting yield. It often occurs in greenhouses in winter, with the weak light or hazy weather leading to insufficient photosynthates. The importance of carbohydrate availability in flower retention has been illustrated, while relatively little is understood concerning the mechanism of carbohydrate regulation on flower abscission. In the present study, we analyzed the responding pattern of nonstructural carbohydrates (NSC, including total soluble sugars and starch) and the potential sugar signal pathway involved in abscission regulation in tomato flowers under shading condition, and their correlations with flower abscission rate and abscission-related hormones. The results showed that, when plants suffer from short-term photosynthesis deficiency, starch degradation in flower organs acts as a self-protection mechanism, providing a carbon source for flower growth and temporarily alleviating the impact on flower development. Trehalose 6-phosphate (T6P) and sucrose non-fermenting-like kinase (SnRK1) signaling seems to be involved in adapting the metabolism to sugar starvation stress through regulating starch remobilization and crosstalk with IAA, ABA, and ethylene in flowers. However, a continuous limitation of assimilating supply imposed starch depletion in flowers, which caused flower abscission.
Collapse
Affiliation(s)
| | | | | | - Hongjun Yu
- Correspondence: (H.Y.); (W.J.); Tel.: +86-10-8210-8797 (H.Y. & W.J.)
| | - Weijie Jiang
- Correspondence: (H.Y.); (W.J.); Tel.: +86-10-8210-8797 (H.Y. & W.J.)
| |
Collapse
|
15
|
Liu J, Zhang S, Xie P, Wang L, Xue JY, Zhang Y, Lu R, Hang Y, Wang Y, Sun X. Fitness benefits play a vital role in the retention of the Pi-ta susceptible alleles. Genetics 2022; 220:6526399. [PMID: 35143673 PMCID: PMC8982021 DOI: 10.1093/genetics/iyac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/26/2022] [Indexed: 11/13/2022] Open
Abstract
In plants, large numbers of R genes, which segregate as loci with alternative alleles conferring different levels of disease resistance to pathogens, have been maintained over a long period of evolution. The reason why hosts harbor susceptible alleles in view of their null contribution to resistance is unclear. In rice, a single copy gene, Pi-ta, segregates for 2 expressed clades of alleles, 1 resistant and the other susceptible. We simulated loss-of-function of the Pi-ta susceptible allele using the CRISPR/Cas9 system to detect subsequent fitness changes and obtained insights into fitness effects related to the retention of the Pi-ta susceptible allele. Our creation of an artificial knockout of the Pi-ta susceptible allele suffered fitness-related trait declines of up to 49% in terms of filled grain yield upon the loss of Pi-ta function. The Pi-ta susceptible alleles might serve as an off-switch to downstream immune signaling, thus contributing to the fine-tuning of plant defense responses. The results demonstrated that the susceptible Pi-ta alleles should have evolved pleiotropic functions, facilitating their retention in populations. As Pi-ta is a single copy gene with no paralogs in the genome, its function cannot be compensated by an alternative gene; whereas most other R genes form gene clusters by tandem duplications, and the function could be compensated by paralogs with high sequence similarity. This attempt to evaluate the fitness effects of the R gene in crops indicates that not all disease resistance genes incur fitness costs, which also provides a plausible explanation for how host genomes can tolerate the possible genetic load associated with a vast repertoire of R genes.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Suobing Zhang
- Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Nanjing 210014, China
| | - Pengfei Xie
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Long Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jia-Yu Xue
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China,College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanmei Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ruisen Lu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yueyu Hang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yue Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China,Corresponding author: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China. ; Corresponding author: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Xiaoqin Sun
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China,Corresponding author: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China. ; Corresponding author: Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
16
|
Xu C, Hao B, Sun G, Mei Y, Sun L, Sun Y, Wang Y, Zhang Y, Zhang W, Zhang M, Zhang Y, Wang D, Rao Z, Li X, Shen QJ, Wang NN. Dual activities of ACC synthase: Novel clues regarding the molecular evolution of ACS genes. SCIENCE ADVANCES 2021; 7:eabg8752. [PMID: 34757795 PMCID: PMC8580319 DOI: 10.1126/sciadv.abg8752] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Ethylene plays profound roles in plant development. The rate-limiting enzyme of ethylene biosynthesis is 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), which is generally believed to be a single-activity enzyme evolving from aspartate aminotransferases. Here, we demonstrate that, in addition to catalyzing the conversion of S-adenosyl-methionine to the ethylene precursor ACC, genuine ACSs widely have Cβ-S lyase activity. Two N-terminal motifs, including a glutamine residue, are essential for conferring ACS activity to ACS-like proteins. Motif and activity analyses of ACS-like proteins from plants at different evolutionary stages suggest that the ACC-dependent pathway is uniquely developed in seed plants. A putative catalytic mechanism for the dual activities of ACSs is proposed on the basis of the crystal structure and biochemical data. These findings not only expand our current understanding of ACS functions but also provide novel insights into the evolutionary origin of ACS genes.
Collapse
Affiliation(s)
- Chang Xu
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Bowei Hao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Gongling Sun
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Mei
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lifang Sun
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunmei Sun
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yibo Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongyan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wei Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengyuan Zhang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yue Zhang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | - Ning Ning Wang
- Department of Plant Biology and Ecology, Tianjin Key Laboratory of Protein Sciences, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
17
|
Rao YR, Ansari MW, Sahoo RK, Wattal RK, Tuteja N, Kumar VR. Salicylic acid modulates ACS, NHX1, sos1 and HKT1;2 expression to regulate ethylene overproduction and Na + ions toxicity that leads to improved physiological status and enhanced salinity stress tolerance in tomato plants cv. Pusa Ruby. PLANT SIGNALING & BEHAVIOR 2021; 16:1950888. [PMID: 34252347 PMCID: PMC8526040 DOI: 10.1080/15592324.2021.1950888] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/06/2021] [Accepted: 06/26/2021] [Indexed: 05/30/2023]
Abstract
Tomato is an important crop for its high nutritional and medicinal properties. The role of salicylic acid (SA) in 1-aminocyclopropane-1-carboxylate synthase (ACS), sodium-hydrogen exchanger (NHX1), salt overly sensitive 1 (sos1) and high-affinity K+ transporter (HKT1;2) transcripts, and ACS enzyme activity and ethylene (ET) production, and growth and physiological attributes was evaluated in tomato cv. Pusa Ruby under salinity stress. Thirty days-old seedlings treated with 0 mM NaCl, 250 mM NaCl, 250 mM NaCl plus 100 µM SA were assessed for different growth and physiological parameters at 45 DAS. Results showed ACS, NHX1, sos1 and HKT1;2 transcripts were significantly changed in SA treated plants. The ACS enzyme activity and ET content were considerably decreased in SA treated plants. Shoot length (SL), root length (RL), number of leaves (NL), leaf area per plant (LA), shoot fresh weight (SFW) and root fresh weight (RFW) were also improved under SA treatment. Conversely, the electrolyte leakage and sodium ion (Na+) content were significantly reduced in SA treated plants. In addition, the endogenous proline and potassium ion (K+) content, and K+/Na+ ratio were considerably increased under SA treatment. Likewise, antioxidant enzymes (SOD, CAT, APX and GR) profile were better in SA treated plant. The present findings suggest that SA reverse the negative effects of salinity stress and stress induced ET production by modulating ACS, NHX, sos1 and HKT1;2 transcript level, and improving various growth and physiological parameters, and antioxidants enzymes profile. This will contribute to a better understanding of salinity stress tolerance mechanisms of tomato plants involving SA and ET cross talk and ions homeostasis to develop more tolerant plant.
Collapse
Affiliation(s)
- Yalaga Rama Rao
- Department of Biotechnology, Vignan University, Vadlamudi, India
| | - Mohammad Wahid Ansari
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Ranjan Kumar Sahoo
- Department of Biotechnology, Centurion University of Technology and Management, Bhubaneswar, India
| | - Ratnum Kaul Wattal
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | |
Collapse
|
18
|
Effectiveness of Augmentative Biological Control of Streptomyces griseorubens UAE2 Depends on 1-Aminocyclopropane-1-Carboxylic Acid Deaminase Activity against Neoscytalidium dimidiatum. J Fungi (Basel) 2021; 7:jof7110885. [PMID: 34829174 PMCID: PMC8618148 DOI: 10.3390/jof7110885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
To manage stem canker disease on royal poinciana, actinobacterial isolates were used as biological control agents (BCAs) based on their strong in vitro inhibitory effects against Neoscytalidiumdimidiatum. Streptomyces griseorubens UAE2 and Streptomyces wuyuanensis UAE1 had the ability to produce antifungal compounds and cell-wall-degrading enzymes (CWDEs). Only S. griseorubens, however, restored the activity of 1-aminocyclopropane-1-carboxylate (ACC) deaminase (ACCD). In vivo apple fruit bioassay showed that lesion development was successfully constrained by either isolates on fruits inoculated with N. dimidiatum. In our greenhouse and container nursery experiments, S. griseorubens showed almost complete suppression of disease symptoms. This was evident when the preventive treatment of S. griseorubens significantly (p < 0.05) reduced the numbers of conidia of N. dimidiatum and defoliated leaves of royal poinciana seedlings to lesser levels than when S. wuyuanensis was applied, but comparable to control treatments (no pathogen). The disease management of stem canker was also associated with significant (p < 0.05) decreases in ACC levels in royal poinciana stems when S. griseorubens was applied compared to the non-ACCD-producing S. wuyuanensis. This study is the first to report the superiority of antagonistic actinobacteria to enhance their effectiveness as BCAs not only for producing antifungal metabolites and CWDEs but also for secreting ACCD.
Collapse
|
19
|
Katayose A, Kanda A, Kubo Y, Takahashi T, Motose H. Distinct Functions of Ethylene and ACC in the Basal Land Plant Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2021; 62:858-871. [PMID: 33768225 DOI: 10.1093/pcp/pcab042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 05/16/2023]
Abstract
Ethylene is a gaseous phytohormone involved in various physiological processes, including fruit ripening, senescence, root hair development and stress responses. Recent genomics studies have suggested that most homologous genes of ethylene biosynthesis and signaling are conserved from algae to angiosperms, whereas the function and biosynthesis of ethylene remain unknown in basal plants. Here, we examined the physiological effects of ethylene, an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) and an inhibitor of ethylene perception, silver thiosulfate (STS), in a basal land plant, Marchantia polymorpha. M. polymorpha plants biosynthesized ethylene, and treatment with high concentrations of ACC slightly promoted ethylene production. ACC remarkably suppressed the growth of thalli (vegetative organs) and rhizoids (root-hair-like cells), whereas exogenous ethylene slightly promoted thallus growth. STS suppressed thallus growth and induced ectopic rhizoid formation on the dorsal surface of thalli. Thus, ACC and ethylene have different effects on the vegetative growth of M. polymorpha. We generated single and double mutants of ACC synthase-like (ACSL) genes, MpACSL1 and MpACSL2. The mutants did not show obvious defects in thallus growth, ACC content and ethylene production, indicating that MpACSL genes are not essential for the vegetative growth and biosynthesis of ACC and ethylene. Gene expression analysis suggested the involvement of MpACSL1 and MpACSL2 in stress responses. Collectively, our results imply ethylene-independent function of ACC and the absence of ACC-mediated ethylene biosynthesis in M. polymorpha.
Collapse
Affiliation(s)
- Asuka Katayose
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan
| | - Asaka Kanda
- Department of Biological Science, Graduate School of Natural Science Technology, Okayama University, Okayama, 700-8530 Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530 Japan
| | - Taku Takahashi
- Department of Biology, Faculty of Science, Okayama University, Okayama, 700-8530 Japan
- Department of Biological Science, Graduate School of Natural Science Technology, Okayama University, Okayama, 700-8530 Japan
| | | |
Collapse
|
20
|
Al Murad M, Razi K, Benjamin LK, Lee JH, Kim TH, Muneer S. Ethylene regulates sulfur acquisition by regulating the expression of sulfate transporter genes in oilseed rape. PHYSIOLOGIA PLANTARUM 2021; 171:533-545. [PMID: 32588442 DOI: 10.1111/ppl.13157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 05/25/2023]
Abstract
To manage nutrient deficiencies, plants develop both morphological and physiological responses. The studies on the regulation of these responses are limited; however, certain hormones and signaling components have been largely implicated. Several studies depicted ethylene as a regulator of the response of some nutrient deficiencies like iron, phosphorous and potassium. The present study focused on the response of sulfur in the presence and absence of ethylene. The experiments were performed in hydroponic nutrient media, using oilseed rape grown with or without sulfur deficiency and ethylene treatments for 10 days. The ACC oxidase and ACC synthase were observed significantly reduced in sulfur-deficient plants treated with ethylene compared to control. The biomass and photosynthetic parameters, including the expression of multicomplex thylakoidal proteins showed a significant increase in sulfur deficient plants supplemented with ethylene. The enzymes related to sulfur regulation such as sulfate adenyltransferase, glutamine synthetase and O-acetylserine (thiol)lyase also showed similar results as shown by the morphological data. The relative expression of the sulfur transporter genes BnSultr1, 1, BnSultr1, 2, BnSultr4,1, BnSultr 4,2, ATP sulfurylase and OASTL increased in sulfur-deficient plants, whereas their expression decreased when ethylene was given to the plants. Fe and S nutritional correlations are already known; therefore, Fe-transporters like IRT1 and FRO1 were also evaluated, and similar results as for the sulfur transporter genes were observed. The overall results indicated that ethylene regulates sulfur acquisition by regulating the expression of sulfur transporter genes in oilseed rape (Brassica napus).
Collapse
Affiliation(s)
- Musa Al Murad
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
- School of Bio Sciences and Biotechnology, Vellore Institute of Technology, Vellore, India
| | - Kaukab Razi
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
- School of Bio Sciences and Biotechnology, Vellore Institute of Technology, Vellore, India
| | - Lincy Kirubhadharsini Benjamin
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| | - Jeong Hyun Lee
- Department of Horticulture, College of Agricultural Sciences, Chonnam National University, Guwangju, South Korea
| | - Tae Hwan Kim
- Department of Animal Science, College of Agricultural Sciences, Chonnam National University, Guwangju, South Korea
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
21
|
Luo W, Gong Y, Tang Y, Pu P, Yang X, Zhou C, Lv J, Yan X. Glutathione and ethylene biosynthesis reveal that the glume and lemma have better tolerance to water deficit in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:120-129. [PMID: 33485150 DOI: 10.1016/j.plaphy.2021.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
As senescence progresses, the sensitivity of wheat organs to plant hormones during the grain-filling stages cannot be ignored. Especially under water deficit situation, non-leaf organs (spikes) have better photosynthesis and drought-tolerance traits than flag leaves. However, the mechanism of ethylene synthesis in wheat organs under water deficit remains unclear. We have studied the influence of water deficit in wheat flag leaves and spike bracts on photosynthetic parameters and on the expression of key enzymes involved in the ethylene biosynthesis pathway during the late grain-filling stages. More stable chlorophyll content (Chl), maximum PSII quantum yield (Fv/Fm), nonphotochemical quenching (NPQ) and maximal efficiency of PSII photochemistry under light adaptation (Fv'/Fm') were observed in the spike bracts than that in the flag leaves during the late grain-filling stages. In addition, the activity of glutathione reductase (GR), γ-glutamylcysteine synthetase (γ-ECS), 1-aminocyclopropane-1-carboxylic (ACC) acid synthase (ACS), and ACC oxidase (ACO) induced ethylene synthesis and influenced plant growth. Further analysis of genes encoding cysteine-ethylene related proteins (γ-ECS, GR, ACO, ACS1, and ASC2) demonstrated that ear organs and flag leaves exhibited different expression patterns. These findings will facilitate future investigations of the regulatory senescence response mechanisms of cysteine interaction with ethylene in wheat under conditions of drought stress.
Collapse
Affiliation(s)
- Wen Luo
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yanzhen Gong
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yan Tang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Peng Pu
- College of Vveterinary Mmedicine, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiangna Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Chunju Zhou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jinyin Lv
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Xia Yan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
22
|
Lv Y, Shao G, Jiao G, Sheng Z, Xie L, Hu S, Tang S, Wei X, Hu P. Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield. MOLECULAR PLANT 2021; 14:344-351. [PMID: 33220510 DOI: 10.1016/j.molp.2020.11.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/02/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Under conditions of labor or resource scarcity, direct seeding, rather than transplantation, is the preferred mode of rice (Oryza sativa) cultivation. This approach requires varieties that exhibit uniform seedling emergence. Mesocotyl elongation (ME), the main driver of rapid emergence of rice seedlings from soil, is enhanced by darkness and inhibited by light. Plant polyamine oxidases (PAOs) oxidize polyamines (PAs) and release H2O2. Here, we established that OsPAO5 expression in rice seedlings is increased in the presence of light and inhibited by darkness. To determine its role in ME, we created OsPAO5 mutants using CRISPR/Cas9. Compared with the wild type, pao5 mutants had longer mesocotyls, released less H2O2, and synthesized more ethylene. The mutant seedlings emerged at a higher and more uniform rate, indicating their potential for use in direct seeding. Nucleotide polymorphism analysis revealed that an SNP (PAO5-578G/A) located 578 bp upstream of the OsPAO5 start codon alters its expression, and was selected during rice mesocotyl domestication. The PAO5-578G genotype conferring a long mesocotyl mainly exists in wild rice, most Aus accessions, and some Geng (Japonica) accessions. Intriguingly, knocking out OsPAO5 can remarkably increase the grain weight, grain number, and yield potential. In summary, we developed a novel strategy to obtain elite rice with higher emergence vigor and yield potential, which can be conveniently and widely used to breed varieties of direct-seeding rice.
Collapse
Affiliation(s)
- Yusong Lv
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
23
|
Bender RJ, Brecht JK, Sargent SA. Low storage temperature for tree ripe mangoes under controlled atmospheres with elevated CO 2 concentrations. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1161-1166. [PMID: 32785943 DOI: 10.1002/jsfa.10727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Tree-ripe mangoes are of a better quality than the more commonly marketed mature-green fruit. However, the postharvest life of tree-ripe mangoes at the chilling threshold temperature for mature-green fruit of 12 °C is insufficient to allow long distance transport for international marketing. Because the chilling sensitivity often decreases as fruit ripen, lower temperatures (5 and 8 °C) in combination with a controlled atmosphere of 5 kPa O2 plus 10 or 25 kPa CO2 were tested to determine whether the quality of tree-ripe mangoes could be maintained longer without chilling injury (CI). RESULTS Tree-ripe 'Tommy Atkins' and 'Keitt' mangoes were stored for 14 or 21 days, respectively, in air or controlled atmosphere (CA) at 5 or 8 °C. Respiration rates were below 10 mL kg-1 h-1 during CA storage and increased three-fold during a 3-day shelf life period at 20 °C. Ethanol synthesis of fruit stored in 25 kPa CO2 , but not 10 kPa CO2 , increased during storage and remained high during shelf life, indicating physiological stress. Elevated electrolyte leakage and 1-aminocyclopropane-1-carboxylic acid concentrations in both cultivars stored in 25 kPa CO2 also indicated that mesocarp tissues were injured by the higher CO2 level. No CI symptoms were observed in air or CA at either 5 or 8 °C. CONCLUSION Storage of tree-ripe mangoes in 5 kPa O2 plus 10 kPa CO2 at either 5 or 8 °C best maintained the quality of Tommy Atkins and Keitt fruit for 14 or 21 days, respectively, without evidence of either atmosphere injury or CI. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Renar João Bender
- Laboratório de Pós Colheita, Departamento de Horticultura e Silvicultura, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jeffrey K Brecht
- Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Steven A Sargent
- Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Kaulfürst-Soboll H, Mertens-Beer M, Brehler R, Albert M, von Schaewen A. Complex N-Glycans Are Important for Normal Fruit Ripening and Seed Development in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:635962. [PMID: 33767719 PMCID: PMC7985349 DOI: 10.3389/fpls.2021.635962] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/25/2021] [Indexed: 05/09/2023]
Abstract
Complex N-glycan modification of secretory glycoproteins in plants is still not well understood. Essential in animals, where a lack of complex N-glycans is embryo-lethal, their presence in plants seemed less relevant for a long time mostly because Arabidopsis thaliana cgl1 mutants lacking N-acetyl-glucosaminyltransferase I (GNTI, the enzyme initiating complex N-glycan maturation in the Golgi apparatus) are viable and showed only minor impairments regarding stress tolerance or development. A different picture emerged when a rice (Oryza sativa) gntI T-DNA mutant was found to be unable to reach the reproductive stage. Here, we report on tomato (Solanum lycopersicum) lines that showed severe impairments upon two RNA interference (RNAi) approaches. Originally created to shed light on the role of core α1,3-fucose and β1,2-xylose residues in food allergy, plants with strongly reduced GNTI activity developed necrotic fruit-attached stalks and early fruit drop combined with patchy incomplete ripening. Correspondingly, semiquantitative RT-PCR of the abscission zone (az) revealed an increase of abscission markers. Also, GNTI-RNA interference (RNAi) plants were more susceptible to sporadic infection. To obtain vital tomatoes with comparable low allergenic potential, Golgi α-mannosidase II (MANII) was chosen as the second target. The resulting phenotypes were oppositional: MANII-reduced plants carried normal-looking fruits that remained attached for extended time without signs of necrosis. Fruits contained no or only few, but enlarged, seeds. Furthermore, leaves developed rolled-up rims simultaneously during the reproductive stage. Trials to cross MANII-reduced plants failed, while GNTI-reduced plants could be (back-)crossed, retaining their characteristic phenotype. This phenotype could not be overcome by ethephon or indole-3-acetic acid (IAA) application, but the latter was able to mimic patchy fruit ripening in wild-type. Phytohormones measured in leaves and 1-aminocyclopropane-1-carboxylic acid (ACC) contents in fruits showed no significant differences. Together, the findings hint at altered liberation/perception of protein-bound N-glycans, known to trigger auxin-like effects. Concomitantly, semiquantitative RT-PCR analysis revealed differences in auxin-responsive genes, indicating the importance of complex N-glycan modification for hormone signaling/crosstalk. Another possible role of altered glycoprotein life span seems subordinate, as concluded from transient expression of Arabidopsis KORRIGAN KOR1-GFP fusion proteins in RNAi plants of Nicotiana benthamiana. In summary, our analyses stress the importance of complex N-glycan maturation for normal plant responses, especially in fruit-bearing crops like tomato.
Collapse
Affiliation(s)
| | | | - Randolf Brehler
- Department of Dermatology, University of Münster, Münster, Germany
| | - Markus Albert
- Molekulare Pflanzenphysiologie, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antje von Schaewen
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- *Correspondence: Antje von Schaewen, ;
| |
Collapse
|
25
|
López-Gómez A, Navarro-Martínez A, Martínez-Hernández GB. Active Paper Sheets Including Nanoencapsulated Essential Oils: A Green Packaging Technique to Control Ethylene Production and Maintain Quality in Fresh Horticultural Products-A Case Study on Flat Peaches. Foods 2020; 9:foods9121904. [PMID: 33352681 PMCID: PMC7766106 DOI: 10.3390/foods9121904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 11/29/2022] Open
Abstract
Plant essential oils (EOs) have several bioactive properties, highlighting their high antimicrobial and antioxidant capacities. As such, the use of EOs in active packaging has received special attention in the last few years. Nevertheless, the inhibitory effect of EOs on quality-degrading enzymatic systems of plant products during postharvest life has not been deeply studied. The effects of an EO active paper sheet on ethylene biosynthesis and quality (and related quality-degrading enzymes) of flat peach (Prunus persica var. platycarpa) samples were studied during 5 days (continental terrestrial transport) or 26 days (long maritime transport) storage at 2 or 8 °C, both followed by commercialization simulations (4 days at 22 °C). EOs released from active packaging reduced ethylene production by 40–50%, and by up to 70% after commercialization periods. These results were correlated with lower 1-aminocyclopropanecarboxylic acid (ACC) content and ACC-oxidase activity. Physicochemical fruit quality (as indicated by soluble solids content, titratable acidity, color, and firmness) was also better preserved by EO active sheets due to enzymatic inhibition (polygalacturonase and polyphenoloxidase). Furthermore, phenolic compounds (mainly catechin and cyanidin-3 glucoside) and total antioxidant capacity were increased (by up to 30 and 70%, respectively) in EO-packaged samples after 8 °C storage and the subsequent commercialization period. Conclusively, EO active paper sheets controlled ethylene production in flat peaches, maintained fruit quality, and even increased health-promoting bioactive compounds.
Collapse
Affiliation(s)
- Antonio López-Gómez
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain;
- Biotechnological Processes Technology and Engineering Lab, Campus Muralla del Mar, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Edif I+D+I, 30202 Cartagena, Murcia, Spain
- Correspondence: (A.L.-G.); (G.B.M.-H.); Tel.: +34-968325516 (A.L.-G.)
| | - Alejandra Navarro-Martínez
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain;
| | - Ginés Benito Martínez-Hernández
- Food Safety and Refrigeration Engineering Group, Department of Agricultural Engineering, Universidad Politécnica de Cartagena, Paseo Alfonso XIII 48, 30203 Cartagena, Murcia, Spain;
- Biotechnological Processes Technology and Engineering Lab, Campus Muralla del Mar, Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Edif I+D+I, 30202 Cartagena, Murcia, Spain
- Correspondence: (A.L.-G.); (G.B.M.-H.); Tel.: +34-968325516 (A.L.-G.)
| |
Collapse
|
26
|
Poonsri W. Effect of modified and controlled atmosphere storage on enzyme activity and senescence of Dendrobium orchids. Heliyon 2020; 6:e05070. [PMID: 33033773 PMCID: PMC7534180 DOI: 10.1016/j.heliyon.2020.e05070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/29/2020] [Accepted: 09/23/2020] [Indexed: 11/15/2022] Open
Abstract
This research investigated the effect of different atmosphere storage conditions on 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase enzyme activity; and senescence of cut Dendrobium orchid flowers. The atmosphere storage conditions under study were normal atmosphere, modified atmosphere packaging, and controlled atmosphere. Under the normal atmosphere, carbon dioxide (CO2) and oxygen (O2) concentrations were 0.03 and 21 %, respectively. For the modified atmosphere packaging, cut orchid flowers were wrapped in polypropylene film prior to filling with 5 % CO2 and 2 % O2, while under the controlled atmosphere, CO2 and O2 concentrations were maintained at 5 and 2 %, respectively. The storage temperature and relative humidity were 13 °C and 95 %, respectively. The ACC synthase and ACC oxidase activity and ethylene-induced electrolyte leakage were determined and results compared. The controlled atmosphere substantially lowered ACC synthase and ACC oxidase activity and was effective in delaying senescence of cut orchid flowers, as indicated by the longest storage life of 28.33 days, followed by the modified atmosphere packaging (18.15 days) and normal atmosphere (11.67 days). The longer storage life enables suppliers of orchid flowers to efficiently manage the demand and supply and also provides exporters with new opportunities to expand into distant overseas markets. The novelty of this research lies in the use of different storage environments to investigate the senescence mechanisms at tissue level of Dendrobium orchid flowers in response to ACC synthase and ACC oxidase enzyme activity.
Collapse
Affiliation(s)
- Warinthon Poonsri
- Department of Agricultural Products Processing Engineering, Faculty of Agricultural Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
| |
Collapse
|
27
|
Zhang H, Yang Y, Sun C, Liu X, Lv L, Hu Z, Yu D, Zhang D. Up-regulating GmETO1 improves phosphorus uptake and use efficiency by promoting root growth in soybean. PLANT, CELL & ENVIRONMENT 2020; 43:2080-2094. [PMID: 32515009 DOI: 10.1111/pce.13816] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/26/2020] [Indexed: 05/21/2023]
Abstract
Soybean is a high inorganic phosphate (Pi) demanding crop; its production is strongly suppressed when Pi is deficient in soil. However, the regulatory mechanism of Pi deficiency tolerance in soybean is still largely unclear. Here, our findings highlighted the pivotal role of the ethylene-associated pathway in soybean tolerance to Pi deficiency by comparatively studying transcriptome changes between a representative Pi-deficiency-tolerant soybean genotype NN94156 and a sensitive genotype Bogao under different Pi supplies. By further integrating high-confident linkage and association mapping, we identified that Ethylene-Overproduction Protein 1 (GmETO1), an essential ethylene-biosynthesis regulator, underlies the major quantitative trait locus (QTL) q14-2 controlling Pi uptake. GmETO1 was also the representative member of ETO1 family members that was strongly induced by Pi deficiency. Overexpressing GmETO1 significantly enhanced Pi deficiency tolerance by increasing proliferation and elongation of hairy roots, Pi uptake and use efficiency, and conversely, silencing of GmETO1 led to opposite findings. We further demonstrated that Pi-deficiency inducible genes critical for root morphological and physiological traits including GmACP1/2, Pht1;4, Expansin-A7 and Root Primordium Defective 1 functioned downstream of GmETO1. Our study provides comprehensive insight into the complex regulatory mechanism of Pi deficiency tolerance in soybean and a potential way to genetically improve soybean low-Pi tolerance.
Collapse
Affiliation(s)
- Hengyou Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
- The Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Yuming Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Chongyuan Sun
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xiaoqian Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Lingling Lv
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhenbin Hu
- The Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
28
|
Velázquez-López AA, De La Cruz-Medina J, García HS, Vela-Gutiérrez G, Torres-Palacios C, León-García E. Lipoxygenase and Its Relationship with Ethylene During Ripening of Genetically Modified Tomato ( Solanum lycopersicum). Food Technol Biotechnol 2020; 58:223-229. [PMID: 32831574 PMCID: PMC7416120 DOI: 10.17113/ftb.58.02.20.6207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Research background TomloxB is the main isoform of lipoxygenase associated with ripening and senescence of fruits. On the other hand, ethylene, a gaseous hormone, is essential for the regulation of ripening in climacteric fruits like tomatoes. However, the relationship between TomloxB and ethylene production has not been thoroughly studied. Therefore, we aim to assess the effect of exogenous ethylene in transgenic tomatoes that contain a silenced TomloxB gene, and subsequently evaluate lipoxygenase activity, 1-aminocyclopropane-1-carboxylic acid oxidase and ethylene production; as well as to quantify the expression of the genes encoding 1-aminocyclopropane-1-carboxylic acid oxidase and TomloxB. Experimental approach To investigate the effect of lipoxygenase and 1-aminocyclopropane-1-carboxylic acid oxidase activity, fruits harvested at the stages of break, turning and pink were used. Tomatoes at break stage collected from transgenic and wild type plants were used to determine ethylene production and gene expression. Genetically modified and wild type tomato fruits were exposed to 100 μL/L exogenous ethylene. Lipoxygenase activity was measured spectrophotometrically. Activity of 1-aminocyclopropane-1-carboxylic acid oxidase and ethylene production were determined by gas chromatography. Oligonucleotides for differentially expressed genes: 1-aminocyclopropane-1-carboxylic acid oxidase and TomloxB were used to determine gene expression by real-time PCR. Results and conclusions The data showed that silencing of TomloxB caused a reduction in lipoxygenase activity and ethylene production in tomato fruits, and also reduced 1-aminocyclopropane-1-carboxylic acid oxidase activity. Hence, the addition of exogenous ethylene increased lipoxygenase activity in all treatments and 1-aminocyclopropane-1-carboxylic acid oxidase activity only in transgenic lines at break stage, consequently there was a positive regulation between TomloxB and ethylene, as increasing the amount of ethylene increased the activity of lipoxygenase. The results suggest that lipoxygenase may be a regulator of 1-aminocyclopropane-1-carboxylic acid oxidase and production of ethylene at break stage. Novelty and scientific contribution These results lead to a better understanding of the metabolic contribution of TomloxB in fruit ripening and how it is linked to the senescence-related process, which can lead to a longer shelf life of fruits. Understanding this relationship between lipoxygenase and ethylene can be useful for better post-harvest handling of tomatoes.
Collapse
Affiliation(s)
| | - Javier De La Cruz-Medina
- Mexican National Technology/Technological Institute of Veracruz, 2779 M.A. de Quevedo, 91897 Veracruz, Mexico
| | - Hugo Sergio García
- Mexican National Technology/Technological Institute of Veracruz, 2779 M.A. de Quevedo, 91897 Veracruz, Mexico
| | - Gilber Vela-Gutiérrez
- Faculty of Food and Nutrition Sciences, University of Science and Arts of Chiapas, 1150 Northwest bypass, 29000 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Cristóbal Torres-Palacios
- Mexican National Technology/Technological Institute of Veracruz, 2779 M.A. de Quevedo, 91897 Veracruz, Mexico
| | - Elizabeth León-García
- National Institute of Forestry, Agricultural and Livestock Research, La Posta Experimental Field, Km 22.5 Federal Highway Veracruz-Córdoba, Medellín de Bravo, 94277 Veracruz, Mexico
| |
Collapse
|
29
|
Mathew BT, Torky Y, Amin A, Mourad AHI, Ayyash MM, El-Keblawy A, Hilal-Alnaqbi A, AbuQamar SF, El-Tarabily KA. Halotolerant Marine Rhizosphere-Competent Actinobacteria Promote Salicornia bigelovii Growth and Seed Production Using Seawater Irrigation. Front Microbiol 2020; 11:552. [PMID: 32308651 PMCID: PMC7145952 DOI: 10.3389/fmicb.2020.00552] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Salicornia bigelovii is a promising halophytic cash crop that grows in seawater of the intertidal zone of the west-north coast of the UAE. This study assess plant growth promoting (PGP) capabilities of halotolerant actinobacteria isolated from rhizosphere of S. bigelovii to be used as biological inoculants on seawater-irrigated S. bigelovii plants. Under laboratory conditions, a total of 39 actinobacterial strains were isolated, of which 22 were tolerant to high salinity (up to 8% w/v NaCl). These strains were further screened for their abilities to colonize S. bigelovii roots in vitro; the most promising ones that produced indole-3-acetic acid, polyamines (PA) or 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCD) were selected for rhizosphere-competency under naturally competitive environment. Three outstanding rhizosphere-competent isolates, Streptomyces chartreusis (Sc), S. tritolerans (St), and S. rochei (Sr) producing auxins, PA and ACCD, respectively, were investigated individually and as consortium (Sc/St/Sr) to determine their effects on the performance of S. bigelovii in the greenhouse. Individual applications of strains on seawater-irrigated plants significantly enhanced shoot and root dry biomass by 32.3-56.5% and 42.3-71.9%, respectively, in comparison to non-inoculated plants (control). In addition, plants individually treated with Sc, St and Sr resulted in 46.1, 60.0, and 69.1% increase in seed yield, respectively, when compared to control plants. Thus, the synergetic combination of strains had greater effects on S. bigelovii biomass (62.2 and 77.9% increase in shoot and root dry biomass, respectively) and seed yield (79.7% increase), compared to the control treatment. Our results also showed significant (P < 0.05) increases in the levels of photosynthetic pigments, endogenous auxins and PA, but a reduction in the levels of ACC in tissues of plants inoculated with Sc/St/Sr. We conclude that the consortium of isolates was the most effective treatment on S. bigelovii growth; thus confirmed by principal component and correlation analyses. To this best of our knowledge, this is the first report about halotolerant rhizosphere-competent PGP actinobacteria thriving in saline soils that can potentially contribute to promoting growth and increasing yield of S. bigelovii. These halotolerant actinobacterial strains could potentially be exploited as biofertilizers to sustain crop production in arid coastal areas.
Collapse
Affiliation(s)
- Betty T. Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Yaser Torky
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Abdel-Hamid I. Mourad
- Department of Mechanical Engineering, College of Engineering, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Mutamed M. Ayyash
- Department of Food, Nutrition and Health Sciences, College of Food and Agriculture, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Ali El-Keblawy
- Department of Applied Biology, University of Sharjah, Sharjah, United Arab Emirates
| | | | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
30
|
Reichardt S, Piepho HP, Stintzi A, Schaller A. Peptide signaling for drought-induced tomato flower drop. Science 2020; 367:1482-1485. [PMID: 32217727 DOI: 10.1126/science.aaz5641] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022]
Abstract
The premature abscission of flowers and fruits limits crop yield under environmental stress. Drought-induced flower drop in tomato plants was found to be regulated by phytosulfokine (PSK), a peptide hormone previously known for its growth-promoting and immune-modulating activities. PSK formation in response to drought stress depends on phytaspase 2, a subtilisin-like protease of the phytaspase subtype that generates the peptide hormone by aspartate-specific processing of the PSK precursor in the tomato flower pedicel. The mature peptide acts in the abscission zone where it induces expression of cell wall hydrolases that execute the abscission process. Our results provide insight into the molecular control of abscission as regulated by proteolytic processing to generate a small plant peptide hormone.
Collapse
Affiliation(s)
- S Reichardt
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, Germany
| | - H-P Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - A Stintzi
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, Germany.
| | - A Schaller
- Department of Plant Physiology and Biochemistry, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
31
|
Chen J, Wang X, Zhang W, Zhang S, Zhao FJ. Protein phosphatase 2A alleviates cadmium toxicity by modulating ethylene production in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2020; 43:1008-1022. [PMID: 31916592 DOI: 10.1111/pce.13716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 05/24/2023]
Abstract
Cadmium (Cd) is phytotoxic and detoxified primarily via phytochelatin (PC) complexation in Arabidopsis. Here, we explore Cd toxicity responses and defence mechanisms beyond the PC pathway using forward genetics approach. We isolated an Arabidopsis thaliana Cd-hypersensitive mutant, Cd-induced short root 1 (cdsr1) in the PC synthase mutant (cad1-3) background. Using genomic resequencing and complementation, we identified PP2A-4C as the causal gene for the mutant phenotype, which encodes a catalytic subunit of protein phosphatase 2A (PP2A). Root and shoot growth of cdsr1 cad1-3 and cdsr1 were more sensitive to Cd than their respective wild-type cad1-3 and Col-0. A mutant of the PP2A scaffolding subunit 1A was also more sensitive to Cd. PP2A-4C was localized in the cytoplasm and nucleus and PP2A-4C expression was downregulated by Cd in cad1-3. PP2A enzyme activity was decreased in cdsr1 and cdsr1 cad1-3 under Cd stress. The expression of 1-aminocyclopropane-1-carboxylic acid synthase genes ACS2 and ACS6 was upregulated by Cd more in cad1-3 and cdsr1 cad1-3 than in Col-0 and the double mutant had a higher ACS activity. cdsr1 cad1-3 and cdsr1 overproduced ethylene under Cd stress. The results suggest that PP2A containing 1A and 4C subunits alleviates Cd-induced growth inhibition by modulating ethylene production.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenwen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuqun Zhang
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri, U.S.A
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
32
|
Ethylene Biosynthesis Inhibition Combined with Cyanide Degradation Confer Resistance to Quinclorac in Echinochloa crus-galli var. mitis. Int J Mol Sci 2020; 21:ijms21051573. [PMID: 32106618 PMCID: PMC7084851 DOI: 10.3390/ijms21051573] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 11/18/2022] Open
Abstract
Echinochloa crus-galli var. mitis has rarely been reported for herbicide resistance, and no case of quinclorac resistance has been reported so far. Synthetic auxin-type herbicide quinclorac is used extensively to control rice weeds worldwide. A long history of using quinclorac in Chinese rice fields escalated the resistance in E. crus-galli var. mitis against this herbicide. Bioassays in Petri plates and pots exhibited four biotypes that evolved into resistance to quinclorac ranking as JS01-R > AH01-R > JS02-R > JX01-R from three provinces of China. Ethylene production in these biotypes was negatively correlated with resistance level and positively correlated with growth inhibition. Determination of the related ethylene response pathway exhibited resistance in biotypes that recorded a decline in 1-aminocyclopropane-1-carboxylic acid (ACC) content, ACC synthase oxidase activities, and less inducible ACS and ACO genes expressions than the susceptible biotype, suggesting that there was a positive correlation between quinclorac resistance and ethylene biosynthesis inhibition. Cyanides produced during the ethylene biosynthesis pathway mainly degraded by the activity of β-cyanoalanine synthase (β-CAS). Resistant biotypes exhibited higher β-CAS activity than the susceptible ones. Nucleotide changes were found in the EcCAS gene of resistant biotypes as compared to sensitive ones that caused three amino acid substitutions (Asn-105-Lys, Gln-195-Glu, and Gly-298-Val), resulting in alteration of enzyme structure, increased binding residues in the active site with its cofactor, and decreased binding free energy; hence, its activity was higher in resistant biotypes. Moreover, these mutations increased the structural stability of the enzyme. In view of the positive correlation between ethylene biosynthesis inhibition and cyanide degradation with resistance level, it is concluded that the alteration in ethylene response pathway or at least variation in ACC synthase and ACC oxidase enzyme activities—due to less relative expression of ACS and ACO genes and enhanced β-CAS activity, as well as mutation and increased relative expression of EcCAS gene—can be considered as a probable mechanism of quinclorac resistance in E. crus-galli var. mitis.
Collapse
|
33
|
Li L, Shuai L, Sun J, Li C, Yi P, Zhou Z, He X, Ling D, Sheng J, Kong K, Zheng F, Li J, Liu G, Xin M, Li Z, Tang Y. The Role of 1-Methylcyclopropene in the regulation of ethylene biosynthesis and ethylene receptor gene expression in Mangifera indica L. (Mango Fruit). Food Sci Nutr 2020; 8:1284-1294. [PMID: 32148834 PMCID: PMC7020288 DOI: 10.1002/fsn3.1417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 11/29/2022] Open
Abstract
Mango (Mangifera indica L.) is respiratory climacteric fruit that ripens and decomposes quickly following their harvest. 1-methylcyclopropene (1-MCP) is known to affect the ripening of fruit, delaying the decay of mango stored under ambient conditions. The objective of this study was to clarify the role of 1-MCP in the regulation of ethylene biosynthesis and ethylene receptor gene expression in mango. 1-MCP significantly inhibited the 1-aminocyclopropane-1-carboxylic acid (ACC) content. The activity of ACC oxidase (ACO) increased on days 6, 8, and 10 of storage, whereas delayed ACC synthase (ACS) activity increased after day 4. The two homologous ethylene receptor genes, ETR1 and ERS1 (i.e., MiETR1 and MiERS1), were obtained and deposited in GenBank® (National Center for Biotechnology Information-National Institutes of Health [NCBI-NIH]) (KY002681 and KY002682). The MiETR1 coding sequence was 2,220 bp and encoded 739 amino acids (aa). The MiERS1 coding sequence was 1,890 bp and encoded 629 aa, similar to ERS1 in other fruit. The tertiary structures of MiETR1 and MiERS1 were also predicted. MiERS1 lacks a receiver domain and shares a low homology with MiETR1 (44%). The expression of MiETR1 and MiERS1 mRNA was upregulated as the storage duration extended and reached the peak expression on day 6. Treatment with 1-MCP significantly reduced the expression of MiETR1 on days 4, 6, and 10 and inhibited the expression of MiETR1 on days 2, 4, 6, and 10. These results indicated that MiETR1 and MiERS1 had important functions in ethylene signal transduction. Treatment with 1-MCP might effectively prevent the biosynthesis of ethylene, as well as ethylene-induced ripening and senescence. This study presents an innovative method for prolonging the storage life of mango after their harvest through the regulation of MiETR1 and MiERS1 expression.
Collapse
Affiliation(s)
- Li Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Liang Shuai
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Jian Sun
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Changbao Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Ping Yi
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Zhugui Zhou
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Xuemei He
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Dongning Ling
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Jinfeng Sheng
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Kin‐Weng Kong
- Department of Molecular MedicineFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Fengjin Zheng
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Jiemin Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
- Guangxi Key Laboratory of Fruits and Vegetables Storage‐processing TechnologyNanningChina
| | - Guoming Liu
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ming Xin
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Zhichun Li
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Yayuan Tang
- Agro‐food Science and Technology Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| |
Collapse
|
34
|
Sami A, Riaz MW, Zhou X, Zhu Z, Zhou K. Alleviating dormancy in Brassica oleracea seeds using NO and KAR1 with ethylene biosynthetic pathway, ROS and antioxidant enzymes modifications. BMC PLANT BIOLOGY 2019; 19:577. [PMID: 31870301 PMCID: PMC6929364 DOI: 10.1186/s12870-019-2118-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/05/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Seed dormancy is a prevailing condition in which seeds are unable to germinate, even under favorable environmental conditions. Harvested Brassica oleracea (Chinese cabbage) seeds are dormant and normally germinate (poorly) at 21 °C. This study investigated the connections between ethylene, nitric oxide (NO), and karrikin 1 (KAR1) in the dormancy release of secondary dormant Brassica oleracea seeds. RESULTS NO and KAR1 were found to induce seed germination, and stimulated the production of ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC), and both ethylene biosynthesis enzyme ACC oxidase (ACO) [1] and ACC synthase (ACS) [2]. In the presence of NO and KAR1, ACS and ACO activity reached maximum levels after 36 and 48 h, respectively. The inhibitor of ethylene 2,5-norbornadiene (NBD) had an adverse effect on Brassica oleracea seed germination (inhibiting nearly 50% of germination) in the presence of NO and KAR1. The benefits from NO and KAR1 in the germination of secondary dormant Brassica oleracea seeds were also associated with a marked increase in reactive oxygen species (ROS) (H2O2 and O2˙-) and antioxidant enzyme activity at early germination stages. Catalase (CAT) and glutathione reductase (GR) activity increased 2 d and 4 d, respectively, after treatment, while no significant changes were observed in superoxide dismutase (SOD) activity under NO and KAR1 applications. An increase in H2O2 and O2˙- levels were observed during the entire incubation period, which increasing ethylene production in the presence of NO and KAR1. Abscisic acid (ABA) contents decreased and glutathione reductase (GA) contents increased in the presence of NO and KAR1. Gene expression studies were carried out with seven ethylene biosynthesis ACC synthases (ACS) genes, two ethylene receptors (ETR) genes and one ACO gene. Our results provide more evidence for the involvement of ethylene in inducing seed germination in the presence of NO and KAR1. Three out of seven ethylene biosynthesis genes (BOACS7, BOACS9 and BOACS11), two ethylene receptors (BOETR1 and BOETR2) and one ACO gene (BOACO1) were up-regulated in the presence of NO and KAR1. CONCLUSION Consequently, ACS activity, ACO activity and the expression of different ethylene related genes increased, modified the ROS level, antioxidant enzyme activity, and ethylene biosynthesis pathway and successfully removed (nearly 98%) of the seed dormancy of secondary dormant Brassica olereace seeds after 7 days of NO and KAR1 application.
Collapse
Affiliation(s)
- Abdul Sami
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | | | - Xiangyu Zhou
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Zonghe Zhu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Kejin Zhou
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
35
|
Cyanide produced with ethylene by ACS and its incomplete detoxification by β-CAS in mango inflorescence leads to malformation. Sci Rep 2019; 9:18361. [PMID: 31797981 PMCID: PMC6892883 DOI: 10.1038/s41598-019-54787-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
Malformation of mango inflorescences (MMI) disease causes severe economic losses worldwide. Present research investigates the underlying causes of MMI. Results revealed significantly higher levels of cyanide, a by-product of ethylene biosynthesis, in malformed inflorescences (MI) of mango cultivars. There was a significant rise in ACS transcripts, ACS enzyme activity and cyanide and ethylene levels in MI as compared to healthy inflorescences (HI). Significant differences in levels of methionine, phosphate, S-adenosyl-L-methionine, S-adenosyl-L-homocysteine, ascorbate and glutathione, and activities of dehydroascorbate reductase and glutathione reductase were seen in MI over HI. Further, a lower expression of β-cyanoalanine synthase (β-CAS) transcript was associated with decreased cellular β-CAS activity in MI, indicating accumulation of unmetabolized cyanide. TEM studies showed increased gum-resinosis and necrotic cell organelles, which might be attributed to unmetabolized cyanide. In field trials, increased malformed-necrotic-inflorescence (MNI) by spraying ethrel and decreased MNI by treating with ethylene inhibitors (silver and cobalt ions) further confirmed the involvement of cyanide in MMI. Implying a role for cyanide in MMI at the physiological and molecular level, this study will contribute to better understanding of the etiology of mango inflorescence malformation, and also help manipulate mango varieties genetically for resistance to malformation.
Collapse
|
36
|
Zhu L, Du H, Wang W, Zhang W, Shen Y, Wan C, Chen J. Synergistic effect of nitric oxide with hydrogen sulfide on inhibition of ripening and softening of peach fruits during storage. SCIENTIA HORTICULTURAE 2019; 256:108591. [DOI: 10.1016/j.scienta.2019.108591] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Liao Y, Cui R, Yuan T, Xie Y, Gao Y. Cysteine and methionine contribute differentially to regulate alternative oxidase in leaves of poplar (Populus deltoides x Populus euramericana 'Nanlin 895') seedlings exposed to different salinity. JOURNAL OF PLANT PHYSIOLOGY 2019; 240:153017. [PMID: 31376640 DOI: 10.1016/j.jplph.2019.153017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 05/25/2023]
Abstract
The effects of different doses of NaCl on the expression profiles of genes involved in the mitochondrial electron transport chain (miETC), H2O2 and O2- levels, and antioxidant enzymes and amino acid metabolism were investigated in the leaves of poplar (Populus deltoides x Populus euramericana 'Nanlin 895'). In the miETC, complexes II and III and bypasses of the cytochrome c pathway including AOX and UCP displayed higher transcript abundance, whereas COX6b encoding cytochrome c oxidase were suppressed at 200 and 400 mM. H2O2 accumulated at 200 mM NaCl but O2- was generated at 400 mM. Accordingly, CAT was enhanced at 200 and 400 mM, while G-POD strengthened only at 400 mM. In addition, cysteine was reduced at 400 mM but did not change at 200 mM, although methionine was accumulated at 200 mM but not altered at 400 mM. Exogenous cysteine accumulated H2S and methionine increased ACC at 200 mM NaCl. At 400 mM NaCl, cysteine elevated the expression of CGS encoding cystathionine gamma-synthase and MS2 encoding methionine synthase as well as ACC and H2S levels, and methionine increased ACC content with repressed CGS and MS2. Moreover, exogenous KCN decreased cysteine levels, with an augment in H2S and up-regulation of CYS C1 encoding β-cyanoalanine synthase at all salinity conditions, whereas antimycin A (AA) and salicylhydroxamic acid (SHAM) affected neither the levels of cysteine or H2S, nor the CYS C1 expression. However, neither KCN, AA nor SHAM affected ACC content. AOX1b was induced both by exogenous cysteine and methionine as well as KCN and AA but suppressed by SHAM at 200 and 400 mM NaCl, in negative correlation with MDA content. These results suggest that poplar leaf evolved diverse strategies in amino acid metabolism of manipulating the AOX pathway to defend against different levels of salt stress.
Collapse
Affiliation(s)
- Yangwenke Liao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, China.
| | - Rongrong Cui
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Tingting Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yinfeng Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, China; College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yongxin Gao
- College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| |
Collapse
|
38
|
El-Tarabily KA, AlKhajeh AS, Ayyash MM, Alnuaimi LH, Sham A, ElBaghdady KZ, Tariq S, AbuQamar SF. Growth Promotion of Salicornia bigelovii by Micromonospora chalcea UAE1, an Endophytic 1-Aminocyclopropane-1-Carboxylic Acid Deaminase-Producing Actinobacterial Isolate. Front Microbiol 2019; 10:1694. [PMID: 31396194 PMCID: PMC6668420 DOI: 10.3389/fmicb.2019.01694] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 07/09/2019] [Indexed: 11/21/2022] Open
Abstract
Salicornia bigelovii is a promising halophytic crop for saline soils in semi-arid regions. This study was designed to characterize isolates of endophytic actinobacteria from S. bigelovii roots and evaluate the effects associated with plant growth promotion. Twenty-eight endophytic isolates obtained from surface-sterilized roots of S. bigelovii were initially selected based on their production of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase in vitro in a chemically defined medium. Application of Micromonospora chalcea UAE1, possessing the highest ACC deaminase activity, to S. bigelovii seedlings significantly enhanced the plant growth under gnotobiotic and greenhouse conditions. This was clear from the increases in the dry weight and length of both shoot and root, and seed yield compared to the non-ACC deaminase-producing isolate Streptomyces violaceorectus, or control treatment. The growth promotion was also supported by significant increases in the content of photosynthetic pigments and the levels of auxins, but significant decreases in the levels of ACC in planta. Under greenhouse conditions, M. chalcea recovered from inside the inoculated roots in all samplings (up to 12 weeks post inoculation), suggesting that the roots of healthy S. bigelovii are a suitable habitat for the endophytic actinobacterial isolates. Pure cultures of M. chalcea were not capable of producing auxins, gibberellic acid, cytokinins or polyamines in vitro. This indicates that the growth promotion is most likely to be due to the reduction of the endogenous levels of the stress hormone ethylene. Our findings suggest that growth and yields of S. bigelovii can be enhanced by the field application of the endophyte M. chalcea UAE1. This study is the first to report potential endophytic non-streptomycete actinobacteria to promote the growth of halophytic plants in semi-arid zones under greenhouse conditions.
Collapse
Affiliation(s)
- Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Abdulmajeed S. AlKhajeh
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mutamed M. Ayyash
- Department of Food, Nutrition and Health Sciences, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Latifa H. Alnuaimi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Arjun Sham
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled Z. ElBaghdady
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Saeed Tariq
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
39
|
Tsolakidou MD, Pantelides LS, Tzima AK, Kang S, Paplomatas EJ, Tsaltas D. Disruption and Overexpression of the Gene Encoding ACC (1-Aminocyclopropane-1-Carboxylic Acid) Deaminase in Soil-Borne Fungal Pathogen Verticillium dahliae Revealed the Role of ACC as a Potential Regulator of Virulence and Plant Defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:639-653. [PMID: 30520678 DOI: 10.1094/mpmi-07-18-0203-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
It has been suggested that some microorganisms, including plant growth-promoting rhizobacteria, manipulate the level of ethylene in plants by degrading 1-aminocyclopropane-1-carboxylic acid (ACC), an ethylene precursor, into α-ketobutyrate and ammonia, using ACC deaminase (ACCd). Here, we investigated whether ACCd of Verticillium dahliae, a soil-borne fungal pathogen of many important crops, is involved in causing vascular wilt disease. Overexpression of the V. dahliae gene encoding this enzyme, labeled as ACCd, significantly increased virulence in both tomato and eggplant, while disruption of ACCd reduced virulence. Both types of mutant produced more ethylene than a wild-type (70V-WT) strain, although they significantly differed in ACC content. Overexpression strains lowered ACC levels in the roots of infected plants, while the amount of ACC in the roots of plants infected with deletion mutants increased. To test the hypothesis that ACC acts as a signal for controlling defense, roots of WT and Never-ripe (Nr) tomato plants were treated with ACC before V. dahliae inoculation. Plants pretreated with ACC displayed less severe symptoms than untreated controls. Collectively, our results suggest a novel role of ACC as a regulator of both plant defense and pathogen virulence.
Collapse
Affiliation(s)
- Maria-Dimitra Tsolakidou
- 1 Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus
| | - Lakovos S Pantelides
- 1 Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus
| | - Aliki K Tzima
- 2 Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece; and
| | - Seogchan Kang
- 3 Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Epaminondas J Paplomatas
- 2 Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos, 11855, Athens, Greece; and
| | - Dimitris Tsaltas
- 1 Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus
| |
Collapse
|
40
|
Chatterjee P, Kanagendran A, Samaddar S, Pazouki L, Sa TM, Niinemets Ü. Methylobacterium oryzae CBMB20 influences photosynthetic traits, volatile emission and ethylene metabolism in Oryza sativa genotypes grown in salt stress conditions. PLANTA 2019; 249:1903-1919. [PMID: 30877435 PMCID: PMC6875431 DOI: 10.1007/s00425-019-03139-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/12/2019] [Indexed: 05/05/2023]
Abstract
MAIN CONCLUSION Inoculation of endophytic Methylobacterium oryzae CBMB20 in salt-stressed rice plants improves photosynthesis and reduces stress volatile emissions due to mellowing of ethylene-dependent responses and activating vacuolar H+-ATPase. The objective of this study was to analyze the impact of ACC (1-aminocyclopropane-1-carboxylate) deaminase-producing Methylobacterium oryzae CBMB20 in acclimation of plant to salt stress by controlling photosynthetic characteristics and volatile emission in salt-sensitive (IR29) and moderately salt-resistant (FL478) rice (Oryza sativa L.) cultivars. Saline levels of 50 mM and 100 mM NaCl with and without bacteria inoculation were applied, and the temporal changes in stress response and salinity resistance were assessed by monitoring photosynthetic characteristics, ACC accumulation, ACC oxidase activity (ACO), vacuolar H+ ATPase activity, and volatile organic compound (VOC) emissions. Salt stress considerably reduced photosynthetic rate, stomatal conductance, PSII efficiency and vacuolar H+ ATPase activity, but it increased ACC accumulation, ACO activity, green leaf volatiles, mono- and sesquiterpenes, and other stress volatiles. These responses were enhanced with increasing salt stress and time. However, rice cultivars treated with CBMB20 showed improved plant vacuolar H+ ATPase activity, photosynthetic characteristics and decreased ACC accumulation, ACO activity and VOC emission. The bacteria-dependent changes were greater in the IR29 cultivar. These results indicate that decreasing photosynthesis and vacuolar H+ ATPase activity rates and increasing VOC emission rates in response to high-salinity stress were effectively mitigated by M. oryzae CBMB20 inoculation.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Department of Biology, University of Louisville, Louisville, KY, 40292, USA
| | - Tong-Min Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia.
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia.
| |
Collapse
|
41
|
Ruduś I, Cembrowska-Lech D, Jaworska A, Kępczyński J. Involvement of ethylene biosynthesis and perception during germination of dormant Avena fatua L. caryopses induced by KAR 1 or GA 3. PLANTA 2019; 249:719-738. [PMID: 30370496 DOI: 10.1007/s00425-018-3032-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/19/2018] [Indexed: 05/07/2023]
Abstract
Germination of primary dormant wild oat caused by KAR1 or GA3 is associated with ACC accumulation and increased ethylene production shortly before radicle protrusion as a result of the non-transcriptional and transcriptional activation of ACS and ACO enzymes, respectively. Response to both compounds involves the modulation of ethylene sensitivity through ethylene receptor genes. Harvested Avena fatua caryopses are primary dormant and, therefore, germinated poorly at 20 °C. Karrikin 1 (KAR1), which action probably requires endogenous gibberellins (GAs), and gibberellin A3 (GA3) was found to induce dormant caryopses to germinate. The stimulatory effects were accompanied by the activation of the ethylene biosynthesis pathway and depended on undisturbed ethylene perception. KAR1 and GA3 promoted 1-aminocyclopropane-1-carboxylic acid (ACC) accumulation during coleorhizae emergence and ethylene production shortly prior to the radicle protrusion, which resulted from the enhanced activity of two ethylene biosynthesis enzymes, ACC synthase (ACS) and ACC oxidase (ACO). The inhibitor of ACS adversely affected beneficial impacts of both KAR1 and GA3 on A. fatua caryopses germination, while the inhibitor of ACO more efficiently impeded the GA3 effect. The inhibitors of ethylene action markedly lowered germination in response to KAR1 and GA3. Gene expression studies preceded by the identification of several genes related to ethylene biosynthesis (AfACS6, AfACO1, and AfACO5) and perception (AfERS1b, AfERS1c, AfERS2, AfETR2, AfETR3, and AfETR4) provided further evidence for the engagement of ethylene in KAR1 and GA3 induced germination of A. fatua caryopses. Both AfACO1 and AfACO5 were upregulated, whereas AfACS6 remained unaffected by the treatment. This suggests the existence of different regulatory mechanisms of enzymatic activity, transcriptional for ACO and non-transcriptional for ACS. During imbibition in water, AfERS1b was stronger expressed than other receptor genes. In the presence of KAR1 or GA3, the expression of AfETR3 was substantially induced. Differential expression of ethylene receptor genes implies the modulation of caryopses sensitivity adjusted to ethylene availability and suggests the functional diversification of individual receptors.
Collapse
Affiliation(s)
- Izabela Ruduś
- Department of Plant Physiology and Genetic Engineering, Faculty of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Danuta Cembrowska-Lech
- Department of Plant Physiology and Genetic Engineering, Faculty of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Anna Jaworska
- Department of Plant Physiology and Genetic Engineering, Faculty of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Jan Kępczyński
- Department of Plant Physiology and Genetic Engineering, Faculty of Biology, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| |
Collapse
|
42
|
Yu J, Niu L, Yu J, Liao W, Xie J, Lv J, Feng Z, Hu L, Dawuda MM. The Involvement of Ethylene in Calcium-Induced Adventitious Root Formation in Cucumber under Salt Stress. Int J Mol Sci 2019; 20:E1047. [PMID: 30823363 PMCID: PMC6429442 DOI: 10.3390/ijms20051047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/22/2019] [Accepted: 02/23/2019] [Indexed: 11/17/2022] Open
Abstract
Calcium and ethylene are essential in plant growth and development. In this study, we investigated the effects of calcium and ethylene on adventitious root formation in cucumber explants under salt stress. The results revealed that 10 μM calcium chloride (CaCl₂) or 0.1 μM ethrel (ethylene donor) treatment have a maximum biological effect on promoting the adventitious rooting in cucumber under salt stress. Meanwhile, we investigated that removal of ethylene suppressed calcium ion (Ca2+)-induced the formation of adventitious root under salt stress indicated that ethylene participates in this process. Moreover, the application of Ca2+ promoted the activities of 1-aminocyclopropane-l-carboxylic acid synthase (ACS) and ACC Oxidase (ACO), as well as the production of 1-aminocyclopropane-l-carboxylic acid (ACC) and ethylene under salt stress. Furthermore, we discovered that Ca2+ greatly up-regulated the expression level of CsACS3, CsACO1 and CsACO2 under salt stress. Meanwhile, Ca2+ significantly down-regulated CsETR1, CsETR2, CsERS, and CsCTR1, but positively up-regulated the expression of CsEIN2 and CsEIN3 under salt stress; however, the application of Ca2+ chelators or channel inhibitors could obviously reverse the effects of Ca2+ on the expression of the above genes. These results indicated that Ca2+ played a vital role in promoting the adventitious root development in cucumber under salt stress through regulating endogenous ethylene synthesis and activating the ethylene signal transduction pathway.
Collapse
Affiliation(s)
- Jian Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Lijuan Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Zhi Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Linli Hu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Mohammed Mujitaba Dawuda
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
- Horticulture Department, FoA University For Development Studies, Box TL 1350 Tamale, Ghana.
| |
Collapse
|
43
|
Chatterjee P, Kanagendran A, Samaddar S, Pazouki L, Sa TM, Niinemets Ü. Inoculation of Brevibacterium linens RS16 in Oryza sativa genotypes enhanced salinity resistance: Impacts on photosynthetic traits and foliar volatile emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 645:721-732. [PMID: 30031330 PMCID: PMC6354898 DOI: 10.1016/j.scitotenv.2018.07.187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/14/2018] [Accepted: 07/14/2018] [Indexed: 05/05/2023]
Abstract
The emission of volatiles in response to salt stress in rice cultivars has not been studied much to date. Studies addressing the regulation of stress induced volatile emission by halotolerant plant growth promoting bacteria containing ACC (1-aminocyclopropane-1-carboxylate) deaminase are also limited. The objective of the present study was to investigate the salt alleviation potential of bacteria by regulating photosynthetic characteristics and volatile emissions in rice cultivars, and to compare the effects of the bacteria inoculation and salt responses between two rice genotypes. The interactive effects of soil salinity (0, 50, and 100 mM NaCl) and inoculation with Brevibacterium linens RS16 on ACC accumulation, ACC oxidase activity, carbon assimilation and stress volatile emissions after stress application were studied in the moderately salt resistant (FL478) and the salt-sensitive (IR29) rice (Oryza sativa L.) cultivars. It was observed that salt stress reduced foliage photosynthetic rate, but induced foliage ACC accumulation, foliage ACC oxidase activity, and the emissions of all the major classes of volatile organic compounds (VOCs) including the lipoxygenase pathway volatiles, light-weight oxygenated volatiles, long-chained saturated aldehydes, benzenoids, geranylgeranyl diphosphate pathway products, and mono- and sesquiterpenes. All these characteristics scaled up quantitatively with increasing salt stress. The effects of salt stress were more pronounced in the salt-sensitive genotype IR29 compared to the moderately salt resistant FL478 genotype. However, the bacterial inoculation significantly enhanced photosynthesis, and decreased ACC accumulation and the ACC oxidase activity, and VOC emissions both in control and salt-treated plants. Taken together, these results suggested that the ACC deaminase-containing Brevibacterium linens RS16 reduces the temporal regulation of VOC emissions and increases the plant physiological activity by reducing the availability of ethylene precursor ACC and the ACC oxidase activity under salt stress.
Collapse
Affiliation(s)
- Poulami Chatterjee
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia
| | - Sandipan Samaddar
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Tong-Min Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51006, Estonia; Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia.
| |
Collapse
|
44
|
Valdenegro M, Huidobro C, Monsalve L, Bernales M, Fuentes L, Simpson R. Effects of ethrel, 1-MCP and modified atmosphere packaging on the quality of 'Wonderful' pomegranates during cold storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4854-4865. [PMID: 29573436 DOI: 10.1002/jsfa.9015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Pomegranate (Punica granatum) is a non-climacteric fruit susceptible to chilling injury (CI) at temperatures below 5 °C. To understand the influences of ethylene and modified atmosphere on CI physiological disorders of pomegranate, exogenous ethrel (0.5, 1 and 1.5 µg L-1 ) treatments, 1-methylcyclopropene (1-MCP) (1 µL L-1 ) exposure, packaging in a modified atmosphere (MAP) (XTend™ bags; StePac, São Paulo, Brazil), a MAP/1-MCP combination, and packaging in macro-perforated bags (MPB) were applied. The treated fruits were cold stored (2 ± 1 °C; 85% relative humidity) and sampled during 120 + 3 days at 20 °C. RESULTS During cold storage, CI symptoms started at 20 days in MPB and at 60 days for all exogenous ethylene treatments, and were delayed to 120 days in MAP, 1-MCP and MAP/1-MCP treatments. MPB and ethylene treatments induced significant electrolyte leakage, oxidative damage, lipid peroxidation, ethylene and CO2 production, and 1-aminocyclopropane-1-carboxylic acid oxidase activity, without any change in total soluble solids, titratable acidity or skin and aril colours. Conversely, MAP by itself, or in combination with 1-MCP application, effectively delayed CI symptoms. CONCLUSION During long-term cold storage of this non-climacteric fruit, ethrel application induced endogenous ethylene biosynthesis, accelerating the appearance of CI symptoms in contrast to the observations made for MAP and 1-MCP treatments. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mónika Valdenegro
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Casilla 4D, Quillota, Chile
| | - Camila Huidobro
- Instituto de Química, Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Liliam Monsalve
- Centro Regional de Estudios en Alimentos Saludables (CREAS), CONICYT-Regional GORE Valparaíso Project R17A10001. Avenida Universidad 330, Placilla, Curauma. Valparaíso, Chile
| | - Maricarmen Bernales
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Casilla 4D, Quillota, Chile
| | - Lida Fuentes
- Centro Regional de Estudios en Alimentos Saludables (CREAS), CONICYT-Regional GORE Valparaíso Project R17A10001. Avenida Universidad 330, Placilla, Curauma. Valparaíso, Chile
| | - Ricardo Simpson
- Centro Regional de Estudios en Alimentos Saludables (CREAS), CONICYT-Regional GORE Valparaíso Project R17A10001. Avenida Universidad 330, Placilla, Curauma. Valparaíso, Chile
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso, Chile
| |
Collapse
|
45
|
Zhang G, Sun Y, Sheng H, Li H, Liu X. Effects of the inoculations using bacteria producing ACC deaminase on ethylene metabolism and growth of wheat grown under different soil water contents. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 125:178-184. [PMID: 29459286 DOI: 10.1016/j.plaphy.2018.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 05/21/2023]
Abstract
Crop growth and productivity are often impacted by the increased ethylene content induced by adverse environmental conditions such drought. Inoculations with bacteria producing ACC deaminase is considered as a potential biological approach to improve the growth and tolerance of stressed plants by lowering endogenous ethylene level. In this study, germinated wheat seeds were inoculated using three species of the rhizobacteria, which were isolated from the rhizosphere of wheat growing in dryland, and sown in pots. After three weeks, wheat seedlings were exposed to non-limiting water condition, medium drought and severe drought, respectively, for six weeks. The results showed that, irrespective of rhizobacterial inoculations, decreased soil water contents stimulated wheat ethylene metabolism, which was reflected by the significantly increased activity of ACC synthetase and ACC oxidase, besides an increased content of ACC both in the roots and leaves, and an enhanced capacity of leaves to release ethylene, concomitant with a significant decline in shoot and roots biomass. The inoculations of all three rhizobacterial species under each water condition reduced ACC content in wheat leaves, but effects of the inoculations on ACC synthase and ACC oxidase activity in the leaves and roots, ACC content in the roots, the capacity of leaves to release ethylene, and wheat growth varied with water conditions and bacterial species. Hence, both soil water conditions and rhizobacterial inoculations acted on all the processes of ethylene metabolism, with the former being dominant. The inoculations under non-limiting water condition and medium drought promoted shoot and root growth of wheat plants.
Collapse
Affiliation(s)
- Guozhuang Zhang
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Yonglin Sun
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Hao Sheng
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Haichao Li
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Xiping Liu
- College of Life Sciences, Northwest A&F University, 712100 Yangling, Shaanxi, China.
| |
Collapse
|
46
|
Marino G, Brunetti C, Tattini M, Romano A, Biasioli F, Tognetti R, Loreto F, Ferrini F, Centritto M. Dissecting the role of isoprene and stress-related hormones (ABA and ethylene) in Populus nigra exposed to unequal root zone water stress. TREE PHYSIOLOGY 2017; 37:1637-1647. [PMID: 28981861 DOI: 10.1093/treephys/tpx083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/06/2017] [Indexed: 05/24/2023]
Abstract
Isoprene is synthesized through the 2-C-methylerythritol-5-phosphate (MEP) pathway that also produces abscisic acid (ABA). Increases in foliar free ABA concentration during drought induce stomatal closure and may also alter ethylene biosynthesis. We hypothesized a role of isoprene biosynthesis in protecting plants challenged by increasing water deficit, by influencing ABA production and ethylene evolution. We performed a split-root experiment on Populus nigra L. subjected to three water treatments: well-watered (WW) plants with both root sectors kept at pot capacity, plants with both root compartments allowed to dry for 5 days (DD) and plants with one-half of the roots irrigated to pot capacity, while the other half did not receive water (WD). WD and WW plants were similar in photosynthesis, water relations, foliar ABA concentration and isoprene emission, whereas these parameters were significantly affected in DD plants: leaf isoprene emission increased despite the fact that photosynthesis declined by 85% and the ABA-glucoside/free ABA ratio decreased significantly. Enhanced isoprene biosynthesis in water-stressed poplars may have contributed to sustaining leaf ABA biosynthesis by keeping the MEP pathway active. However, this enhancement in ABA was accompanied by no change in ethylene biosynthesis, likely confirming the antagonistic role between ABA and ethylene. These results may indicate a potential cross-talk among isoprene, ABA and ethylene under drought.
Collapse
Affiliation(s)
- Giovanni Marino
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy
| | - Cecilia Brunetti
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze Viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Massimiliano Tattini
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Andrea Romano
- Dipartimento Qualità Alimentare e Nutrizione, Centro Ricerca e Innovazione, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige (TN), Italy
| | - Franco Biasioli
- Dipartimento Qualità Alimentare e Nutrizione, Centro Ricerca e Innovazione, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige (TN), Italy
| | - Roberto Tognetti
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy
| | - Francesco Loreto
- Dipartimento di Scienze Bio-Agroalimentari, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 7, 00185 Roma, Italy
| | - Francesco Ferrini
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze Viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Mauro Centritto
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
47
|
Vilanova L, Vall-Llaura N, Torres R, Usall J, Teixidó N, Larrigaudière C, Giné-Bordonaba J. Penicillium expansum (compatible) and Penicillium digitatum (non-host) pathogen infection differentially alter ethylene biosynthesis in apple fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 120:132-143. [PMID: 29028545 DOI: 10.1016/j.plaphy.2017.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 05/23/2023]
Abstract
The role of ethylene on inducing plant resistance or susceptibility to certain fungal pathogens clearly depends on the plant pathogen interaction with little or no-information available focused on the apple-Penicillium interaction. Taken advantage that Penicillium expansum is the compatible pathogen and P. digitatum is the non-host of apples, the present study aimed at deciphering how each Penicillium spp. could interfere in the fruit ethylene biosynthesis at the biochemical and molecular level. The infection capacity and different aspects related to the ethylene biosynthesis were conducted at different times post-inoculation. The results show that the fruit ethylene biosynthesis was differently altered during the P. expansum infection than in response to other biotic (non-host pathogen P. digitatum) or abiotic stresses (wounding). The first symptoms of the disease due to P. expansum were visible before the initiation of the fruit ethylene climacteric burst. Indeed, the ethylene climacteric burst was reduced in response to P. expansum concomitant to an important induction of MdACO3 gene expression and an inhibition (ca. 3-fold) and overexpression (ca. 2-fold) of ACO (1-Aminocyclopropane-1-carboxylic acid oxidase) and ACS (1-Aminocyclopropane-1-carboxylic acid synthase) enzyme activities, indicating a putative role of MdACO3 in the P. expansum-apple interaction which may, in turn, be related to System-1 ethylene biosynthesis. System-1 is auto-inhibited by ethylene and is characteristic of non-climateric or pre-climacteric fruit. Accordingly, we hypothesise that P. expansum may 'manipulate' the endogenous ethylene biosynthesis in apples, leading to the circumvention or suppression of effective defences hence facilitating its colonization.
Collapse
Affiliation(s)
- Laura Vilanova
- IRTA, XaRTA-Postharvest, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003, Lleida, Catalonia, Spain
| | - Núria Vall-Llaura
- IRTA, XaRTA-Postharvest, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003, Lleida, Catalonia, Spain
| | - Rosario Torres
- IRTA, XaRTA-Postharvest, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003, Lleida, Catalonia, Spain
| | - Josep Usall
- IRTA, XaRTA-Postharvest, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003, Lleida, Catalonia, Spain
| | - Neus Teixidó
- IRTA, XaRTA-Postharvest, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003, Lleida, Catalonia, Spain
| | - Christian Larrigaudière
- IRTA, XaRTA-Postharvest, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003, Lleida, Catalonia, Spain
| | - Jordi Giné-Bordonaba
- IRTA, XaRTA-Postharvest, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Edifici Fruitcentre, 25003, Lleida, Catalonia, Spain.
| |
Collapse
|
48
|
Zhao S, Hong W, Wu J, Wang Y, Ji S, Zhu S, Wei C, Zhang J, Li Y. A viral protein promotes host SAMS1 activity and ethylene production for the benefit of virus infection. eLife 2017; 6. [PMID: 28994391 PMCID: PMC5634785 DOI: 10.7554/elife.27529] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/08/2017] [Indexed: 11/25/2022] Open
Abstract
Ethylene plays critical roles in plant development and biotic stress response, but the mechanism of ethylene in host antiviral response remains unclear. Here, we report that Rice dwarf virus (RDV) triggers ethylene production by stimulating the activity of S-adenosyl-L-methionine synthetase (SAMS), a key component of the ethylene synthesis pathway, resulting in elevated susceptibility to RDV. RDV-encoded Pns11 protein specifically interacted with OsSAMS1 to enhance its enzymatic activity, leading to higher ethylene levels in both RDV-infected and Pns11-overexpressing rice. Consistent with a counter-defense role for ethylene, Pns11-overexpressing rice, as well as those overexpressing OsSAMS1, were substantially more susceptible to RDV infection, and a similar effect was observed in rice plants treated with an ethylene precursor. Conversely, OsSAMS1-knockout mutants, as well as an osein2 mutant defective in ethylene signaling, resisted RDV infection more robustly. Our findings uncover a novel mechanism which RDV manipulates ethylene biosynthesis in the host plants to achieve efficient infection. Rice provides food for billions of people all over the world, but diseases caused by plant-infecting viruses cause serious risks to the production of rice. As a result, there is an urgent demand for developing new and impactful ways to help defend rice plants from harmful viruses. Toward this goal, it will be important to better understand how viruses actually cause diseases in plants. Plants make chemicals known as hormones to control their own development, and hormone production is often disturbed when viruses infect rice plants. Many viruses cause infected plants to make more of a gaseous hormone called ethylene, which benefits the viruses. Yet, it is still not known how virus infection induces the production of more ethylene. Zhao, Hong et al. have exposed rice plants to infection with a virus called rice dwarf virus. Infected plants made more ethylene than normal, which did indeed help the virus to infect. Further experiments then showed that an enzyme that makes one of the building blocks needed to produce ethylene became more active after infection with this virus. Next, Zhao, Hong et al. engineered rice plants to make more or less of this building block – which is known as S-adenosyl-L-methionine or SAM for short. Plants with too much SAM were less able to defend themselves against the virus, while plants that lacked SAM were better able to fight off viral infection. Zhao, Hong et al. suggest that engineering rice plants to make less of the SAM-producing enzyme could make them more resistant to viruses. Further work will also be needed to find out why ethylene benefits viral infection, and to confirm whether ethylene also performs similar roles when rice is infected with other viruses.
Collapse
Affiliation(s)
- Shanshan Zhao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Wei Hong
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China.,The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jianguo Wu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Shaoyi Ji
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Shuyi Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Chunhong Wei
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Jinsong Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
49
|
Kovaleva LV, Zakharova EV, Voronkov AS, Timofeeva GV. Auxin abolishes inhibitory effects of methylcyclopropen and amino oxyacetic acid on pollen grain germination, pollen tube growth, and the synthesis of ACC in petunia. Russ J Dev Biol 2017. [DOI: 10.1134/s1062360417020059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Abts W, Vandenbussche B, De Proft MP, Van de Poel B. The Role of Auxin-Ethylene Crosstalk in Orchestrating Primary Root Elongation in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2017; 8:444. [PMID: 28424722 PMCID: PMC5371662 DOI: 10.3389/fpls.2017.00444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/14/2017] [Indexed: 05/05/2023]
Abstract
It is well-established in Arabidopsis and other species that ethylene inhibits root elongation through the action of auxin. In sugar beet (Beta vulgaris L.) ethylene promotes root elongation in a concentration dependent manner. However, the crosstalk between ethylene and auxin remains unknown during sugar beet seedling development. Our experiments have shown that exogenously applied auxin (indole-3-acetic acid; IAA) also stimulates root elongation. We also show that auxin promotes ethylene biosynthesis leading to longer roots. We have further demonstrated that the auxin treatment stimulates ethylene production by redirecting the pool of available 1-aminocyclopropane-1-carboxylic acid (ACC) toward ethylene instead of malonyl-ACC (MACC) resulting in a prolonged period of high rates of ethylene production and subsequently a longer root. On the other hand we have also shown that endogenous IAA levels were not affected by an ACC treatment during germination. All together our findings suggest that the general model for auxin-ethylene crosstalk during early root development, where ethylene controls auxin biosynthesis and transport, does not occur in sugar beet. On the contrary, we have shown that the opposite, where auxin stimulates ethylene biosynthesis, is true for sugar beet root development.
Collapse
Affiliation(s)
- Willem Abts
- Division of Crop Biotechnics, Department of Biosystems, University of LeuvenLeuven, Belgium
| | | | - Maurice P. De Proft
- Division of Crop Biotechnics, Department of Biosystems, University of LeuvenLeuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of LeuvenLeuven, Belgium
| |
Collapse
|