1
|
Rhea EM, Babin A, Thomas P, Omer M, Weaver R, Hansen K, Banks WA, Talbot K. Brain uptake pharmacokinetics of albiglutide, dulaglutide, tirzepatide, and DA5-CH in the search for new treatments of Alzheimer's and Parkinson's diseases. Tissue Barriers 2024; 12:2292461. [PMID: 38095516 PMCID: PMC11583597 DOI: 10.1080/21688370.2023.2292461] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND A number of peptide incretin receptor agonists (IRAs) show promise as therapeutics for Alzheimer's disease (AD) and Parkinson's disease (PD). Transport across the blood-brain barrier (BBB) is one way for IRAs to act directly within the brain. To determine which IRAs are high priority candidates for treating these disorders, we have studied their brain uptake pharmacokinetics. METHODS We quantitatively measure the ability of four IRAs to cross the BBB. We injected adult male CD-1 mice intravenously with 125I- or 14C-labeled albiglutide, dulaglutide, DA5-CH, or tirzepatide and used multiple-time regression analyses to measure brain kinetics up to 1 hour. For those IRAs failing to enter the brain 1 h after intravenous injection, we also investigated their ability to enter over a longer time frame (i.e., 6 h). RESULTS Albiglutide and dulaglutide had the fastest brain uptake rates within 1 hour. DA5-CH appears to enter the brain rapidly, reaching equilibrium quickly. Tirzepatide does not appear to cross the BBB within 1 h after iv injection but like albumin, did so slowly over 6 h, presumably via the extracellular pathways. CONCLUSIONS We find that IRAs can cross the BBB by two separate processes; one that is fast and one that is slow. Three of the four IRAs investigated here have fast rates of transport and should be taken into consideration for testing as AD and PD therapeutics as they would have the ability to act quickly and directly on the brain as a whole.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Alice Babin
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Peter Thomas
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Mohamed Omer
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Riley Weaver
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - Kim Hansen
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
2
|
Rhea EM, Banks WA. Insulin and the blood-brain barrier. VITAMINS AND HORMONES 2024; 126:169-190. [PMID: 39029972 DOI: 10.1016/bs.vh.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The blood-brain barrier (BBB) predominantly regulates insulin transport into and levels within the brain. The BBB is also an important site of insulin binding and mediator of insulin receptor (INSR) signaling. The insulin transporter is separate from the INSR, highlighting the important, unique role of each protein in this structure. After a brief introduction on the structure of insulin and the INSR, we discuss the importance of insulin interactions at the BBB, the properties of the insulin transporter and the role of the BBB insulin transporter in various physiological conditions. We go on to further describe insulin BBB signaling and the impact not only within brain endothelial cells but also the cascade into other cell types within the brain. We close with future considerations to advance our knowledge about the importance of insulin at the BBB.
Collapse
Affiliation(s)
- Elizabeth M Rhea
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States.
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, United States; Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
3
|
Abstract
The blood-brain barrier (BBB) was first noted for its ability to prevent the unregulated exchange of substances between the blood and the central nervous system (CNS). Over time, its characterization as an interface that enables regulated exchanges between the CNS and substances that are carried in the blood in a hormone-like fashion have emerged. Therefore, communication between the CNS, BBB and peripheral tissues has many endocrine-like properties. In this Review, I examine the various ways in which the BBB exhibits endocrine-related properties. The BBB is a target for hormones, such as leptin and insulin, that affect many of its functions. The BBB is also a secretory body, releasing substances either into the blood or the interstitial fluid of the brain. The BBB selectively allows classical and non-classical hormones entry to and exit from the CNS, thus allowing the CNS to be both an endocrine target and a secretory tissue. The BBB is affected by endocrine diseases such as diabetes mellitus and can cause or participate in endocrine diseases, including those related to thyroid hormones and obesity. The endocrine-like mechanisms of the BBB can extend the definition of endocrine disease to include neurodegenerative conditions, including Alzheimer disease, and of hormones to include cytokines, triglycerides and fatty acids.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
4
|
Pike AF, Kramer NI, Blaauboer BJ, Seinen W, Brands R. An alkaline phosphatase transport mechanism in the pathogenesis of Alzheimer's disease and neurodegeneration. Chem Biol Interact 2014; 226:30-9. [PMID: 25500268 DOI: 10.1016/j.cbi.2014.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/23/2014] [Accepted: 12/03/2014] [Indexed: 12/19/2022]
Abstract
Systemic inflammation is associated with loss of blood-brain barrier integrity and neuroinflammation that lead to the exacerbation of neurodegenerative diseases. It is also associated specifically with the characteristic amyloid-β and tau pathologies of Alzheimer's disease. We have previously proposed an immunosurveillance mechanism for epithelial barriers involving negative feedback-regulated alkaline phosphatase transcytosis as an acute phase anti-inflammatory response that hangs in the balance between the resolution and the progression of inflammation. We now extend this model to endothelial barriers, particularly the blood-brain barrier, and present a literature-supported mechanistic explanation for Alzheimer's disease pathology with this system at its foundation. In this mechanism, a switch in the role of alkaline phosphatase from its baseline duties to a stopgap anti-inflammatory function results in the loss of alkaline phosphatase from cell membranes into circulation, thereby decreasing blood-brain barrier integrity and functionality. This occurs with impairment of both amyloid-β efflux and tau dephosphorylating activity in the brain as alkaline phosphatase is replenished at the barrier by receptor-mediated transport. We suggest systemic alkaline phosphatase administration as a potential therapy for the resolution of inflammation and the prevention of Alzheimer's disease pathology as well as that of other inflammation-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Adrianne F Pike
- AMRIF B.V., Agro Business Park 10, 6708PW Wageningen, The Netherlands.
| | - Nynke I Kramer
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands
| | - Bas J Blaauboer
- Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands
| | - Willem Seinen
- AMRIF B.V., Agro Business Park 10, 6708PW Wageningen, The Netherlands; Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands
| | - Ruud Brands
- AMRIF B.V., Agro Business Park 10, 6708PW Wageningen, The Netherlands; Institute for Risk Assessment Sciences, Utrecht University, P.O. Box 80177, 3508TD Utrecht, The Netherlands
| |
Collapse
|
5
|
Blázquez E, Velázquez E, Hurtado-Carneiro V, Ruiz-Albusac JM. Insulin in the brain: its pathophysiological implications for States related with central insulin resistance, type 2 diabetes and Alzheimer's disease. Front Endocrinol (Lausanne) 2014; 5:161. [PMID: 25346723 PMCID: PMC4191295 DOI: 10.3389/fendo.2014.00161] [Citation(s) in RCA: 346] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/21/2014] [Indexed: 12/21/2022] Open
Abstract
Although the brain has been considered an insulin-insensitive organ, recent reports on the location of insulin and its receptors in the brain have introduced new ways of considering this hormone responsible for several functions. The origin of insulin in the brain has been explained from peripheral or central sources, or both. Regardless of whether insulin is of peripheral origin or produced in the brain, this hormone may act through its own receptors present in the brain. The molecular events through which insulin functions in the brain are the same as those operating in the periphery. However, certain insulin actions are different in the central nervous system, such as hormone-induced glucose uptake due to a low insulin-sensitive GLUT-4 activity, and because of the predominant presence of GLUT-1 and GLUT-3. In addition, insulin in the brain contributes to the control of nutrient homeostasis, reproduction, cognition, and memory, as well as to neurotrophic, neuromodulatory, and neuroprotective effects. Alterations of these functional activities may contribute to the manifestation of several clinical entities, such as central insulin resistance, type 2 diabetes mellitus (T2DM), and Alzheimer's disease (AD). A close association between T2DM and AD has been reported, to the extent that AD is twice more frequent in diabetic patients, and some authors have proposed the name "type 3 diabetes" for this association. There are links between AD and T2DM through mitochondrial alterations and oxidative stress, altered energy and glucose metabolism, cholesterol modifications, dysfunctional protein O-GlcNAcylation, formation of amyloid plaques, altered Aβ metabolism, and tau hyperphosphorylation. Advances in the knowledge of preclinical AD and T2DM may be a major stimulus for the development of treatment for preventing the pathogenic events of these disorders, mainly those focused on reducing brain insulin resistance, which is seems to be a common ground for both pathological entities.
Collapse
Affiliation(s)
- Enrique Blázquez
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
- *Correspondence: Enrique Blázquez, Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Madrid 28040, Spain e-mail:
| | - Esther Velázquez
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| | - Verónica Hurtado-Carneiro
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| | - Juan Miguel Ruiz-Albusac
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdiSSC), Madrid, Spain
| |
Collapse
|
6
|
Banks WA, Owen JB, Erickson MA. Insulin in the brain: there and back again. Pharmacol Ther 2012; 136:82-93. [PMID: 22820012 PMCID: PMC4134675 DOI: 10.1016/j.pharmthera.2012.07.006] [Citation(s) in RCA: 403] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 12/12/2022]
Abstract
Insulin performs unique functions within the CNS. Produced nearly exclusively by the pancreas, insulin crosses the blood-brain barrier (BBB) using a saturable transporter, affecting feeding and cognition through CNS mechanisms largely independent of glucose utilization. Whereas peripheral insulin acts primarily as a metabolic regulatory hormone, CNS insulin has an array of effects on brain that may more closely resemble the actions of the ancestral insulin molecule. Brain endothelial cells (BECs), the cells that form the vascular BBB and contain the transporter that translocates insulin from blood to brain, are themselves regulated by insulin. The insulin transporter is altered by physiological and pathological factors including hyperglycemia and the diabetic state. The latter can lead to BBB disruption. Pericytes, pluripotent cells in intimate contact with the BECs, protect the integrity of the BBB and its ability to transport insulin. Most of insulin's known actions within the CNS are mediated through two canonical pathways, the phosphoinositide-3 kinase (PI3)/Akt and Ras/mitogen activated kinase (MAPK) cascades. Resistance to insulin action within the CNS, sometimes referred to as diabetes mellitus type III, is associated with peripheral insulin resistance, but it is possible that variable hormonal resistance syndromes exist so that resistance at one tissue bed may be independent of that at others. CNS insulin resistance is associated with Alzheimer's disease, depression, and impaired baroreceptor gain in pregnancy. These aspects of CNS insulin action and the control of its entry by the BBB are likely only a small part of the story of insulin within the brain.
Collapse
Affiliation(s)
- William A Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care Center, Seattle, WA, USA.
| | | | | |
Collapse
|
7
|
Banks WA. Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology 2012; 153:4111-9. [PMID: 22778219 PMCID: PMC3423627 DOI: 10.1210/en.2012-1435] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/19/2012] [Indexed: 12/30/2022]
Abstract
The blood-brain barrier (BBB) separates the central nervous system (CNS) from the peripheral tissues. However, this does not prevent hormones from entering the brain, but shifts the main control of entry to the BBB. In general, steroid hormones cross the BBB by transmembrane diffusion, a nonsaturable process resulting in brain levels that reflect blood levels, whereas thyroid hormones and many peptides and regulatory proteins cross using transporters, a saturable process resulting in brain levels that reflect blood levels and transporter characteristics. Protein binding, brain-to-blood transport, and pharmacokinetics modulate BBB penetration. Some hormones have the opposite effect within the CNS than they do in the periphery, suggesting that these hormones cross the BBB to act as their own counterregulators. The cells making up the BBB are also endocrine like, both responding to circulating substances and secreting substances into the circulation and CNS. By dividing a hormone's receptors into central and peripheral pools, the former of which may not be part of the hormone's negative feed back loop, the BBB fosters the development of variable hormone resistance syndromes, as exemplified by evidence that altered insulin action in the CNS can contribute to Alzheimer's disease. In summary, the BBB acts as a regulatory interface in an endocrine-like, humoral-based communication between the CNS and peripheral tissues.
Collapse
Affiliation(s)
- William A Banks
- Veterans Affairs Puget Sound Health Care System and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
8
|
Banks WA. Drug delivery to the brain in Alzheimer's disease: consideration of the blood-brain barrier. Adv Drug Deliv Rev 2012; 64:629-39. [PMID: 22202501 DOI: 10.1016/j.addr.2011.12.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 12/09/2011] [Accepted: 12/09/2011] [Indexed: 12/21/2022]
Abstract
The successful treatment of Alzheimer's disease (AD) will require drugs that can negotiate the blood-brain barrier (BBB). However, the BBB is not simply a physical barrier, but a complex interface that is in intimate communication with the rest of the central nervous system (CNS) and influenced by peripheral tissues. This review examines three aspects of the BBB in AD. First, it considers how the BBB may be contributing to the onset and progression of AD. In this regard, the BBB itself is a therapeutic target in the treatment of AD. Second, it examines how the BBB restricts drugs that might otherwise be useful in the treatment of AD and examines strategies being developed to deliver drugs to the CNS for the treatment of AD. Third, it considers how drug penetration across the AD BBB may differ from the BBB of normal aging. In this case, those differences can complicate the treatment of CNS diseases such as depression, delirium, psychoses, and pain control in the AD population.
Collapse
Affiliation(s)
- William A Banks
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA , USA.
| |
Collapse
|
9
|
Banks WA. The blood-brain barrier: connecting the gut and the brain. ACTA ACUST UNITED AC 2008; 149:11-4. [PMID: 18486244 DOI: 10.1016/j.regpep.2007.08.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2007] [Accepted: 08/20/2007] [Indexed: 01/27/2023]
Abstract
The BBB prevents the unrestricted exchange of substances between the central nervous system (CNS) and the blood. The blood-brain barrier (BBB) also conveys information between the CNS and the gastrointestinal (GI) tract through several mechanisms. Here, we review three of those mechanisms. First, the BBB selectively transports some peptides and regulatory proteins in the blood-to-brain or the brain-to-blood direction. The ability of GI hormones to affect functions of the BBB, as illustrated by the ability of insulin to alter the BBB transport of amino acids and drugs, represents a second mechanism. A third mechanism is the ability of GI hormones to affect the secretion by the BBB of substances that themselves affect feeding and appetite, such as nitric oxide and cytokines. By these and other mechanisms, the BBB regulates communications between the CNS and GI tract.
Collapse
Affiliation(s)
- William A Banks
- GRECC, Veterans Affairs Medical Center-St. Louis and Saint Louis University School of Medicine, Division of Geriatrics, Department of Internal Medicine, WAB, 915 N. Grand Blvd, St. Louis, MO 63106, USA.
| |
Collapse
|
10
|
Banks WA, Dohgu S, Lynch JL, Fleegal-DeMotta MA, Erickson MA, Nakaoke R, Vo TQ. Nitric oxide isoenzymes regulate lipopolysaccharide-enhanced insulin transport across the blood-brain barrier. Endocrinology 2008; 149:1514-23. [PMID: 18187549 PMCID: PMC2276709 DOI: 10.1210/en.2007-1091] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Insulin transported across the blood-brain barrier (BBB) has many effects within the central nervous system. Insulin transport is not static but altered by obesity and inflammation. Lipopolysaccharide (LPS), derived from the cell walls of Gram-negative bacteria, enhances insulin transport across the BBB but also releases nitric oxide (NO), which opposes LPS-enhanced insulin transport. Here we determined the role of NO synthase (NOS) in mediating the effects of LPS on insulin BBB transport. The activity of all three NOS isoenzymes was stimulated in vivo by LPS. Endothelial NOS and inducible NOS together mediated the LPS-enhanced transport of insulin, whereas neuronal NOS (nNOS) opposed LPS-enhanced insulin transport. This dual pattern of NOS action was found in most brain regions with the exception of the striatum, which did not respond to LPS, and the parietal cortex, hippocampus, and pons medulla, which did not respond to nNOS inhibition. In vitro studies of a brain endothelial cell (BEC) monolayer BBB model showed that LPS did not directly affect insulin transport, whereas NO inhibited insulin transport. This suggests that the stimulatory effect of LPS and NOS on insulin transport is mediated through cells of the neurovascular unit other than BECs. Protein and mRNA levels of the isoenzymes indicated that the effects of LPS are mainly posttranslational. In conclusion, LPS affects insulin transport across the BBB by modulating NOS isoenzyme activity. NO released by endothelial NOS and inducible NOS acts indirectly to stimulate insulin transport, whereas NO released by nNOS acts directly on BECs to inhibit insulin transport.
Collapse
Affiliation(s)
- William A Banks
- Division of Geriatrics, Department of Internal Medicine, Veterans Affairs Medical Center, 915 North Grand Boulevard, St. Louis, MO 63106, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Abstract
Insulin and its receptor are found throughout the central nervous system (CNS). Insulin administered into the CNS can exert powerful effects, yet the consensus is that little or no insulin is produced in the CNS. Therefore, CNS insulin is essentially dependent on the ability of peripheral insulin to cross the blood-brain barrier (BBB). Insulin is known to cross the BBB by a saturable transport mechanism. This transporter shows some thematic similarities to other transporters for peptides or regulatory proteins. It is unevenly distributed throughout the CNS with the olfactory bulbs having the fastest transport rate of any brain region. It is partially saturated at euglycemic levels, suggesting that its main signaling function occurs at physiological blood levels, rather than as a brake to hypoglycemic events. One probable function of the BBB transporter is to allow CNS insulin to act as a counter-regulatory hormone to peripheral insulin. The transporter is regulated, with the transport rate of insulin being altered during development and by fasting, obesity, hibernation, diabetes mellitus and Alzheimer's disease. Enhancement of insulin transport by lipopolysaccharide could be the basis for the insulin resistance seen with bacterial infections. Inhibition of insulin transport across the BBB by dexamethasone could be the basis for the enhanced appetite seen with glucocorticoid treatments. Insulin itself also has effects on the BBB, altering enzymatic and transporter functions. Overall, BBB transport of insulin provides a mechanism for peripheral insulin to act within the CNS as a regulatory peptide.
Collapse
Affiliation(s)
- William A Banks
- Research Service (151), GRECC, Veterans Affairs Medical Center-St. Louis and Saint Louis University School of Medicine, Division of Geriatrics, Department of Internal Medicine, WAB, 915 N. Grand Boulevard, St. Louis, MO 63106, USA.
| |
Collapse
|
13
|
Banks WA, Farr SA, Morley JE. Permeability of the blood-brain barrier to albumin and insulin in the young and aged SAMP8 mouse. J Gerontol A Biol Sci Med Sci 2000; 55:B601-6. [PMID: 11129390 DOI: 10.1093/gerona/55.12.b601] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The decrease in the insulin cerebrospinal fluid/serum ratio seen in Alzheimer's disease has been suggested as a mechanism by which brain glucose utilization could be perturbed. Insulin is transported across the blood-brain barrier (BBB) by a system that is altered by pathophysiological events. We used SAMP8 mice, a strain that by 8-12 months of age develops severe deficits in learning and memory, to determine whether the insulin transporter or BBB integrity was altered with aging. BBB integrity was measured by injecting radioactive albumin intravenously, washing out the vascular space up to 17 hours later, and measuring brain/serum ratios. This very sensitive method found no increase in the permeability of the BBB to albumin in young and aged SAMP8 mice. This compares with previous studies in humans with Alzheimer's disease and in other colonies of SAMP8 mice that have found evidence for BBB disruption. For radioactively labeled insulin, we used multiple-time regression analysis to measure both the unidirectional influx rate (Ki) and the reversible binding to brain endothelium (Vi). A non-significant decrease in the transport rate for whole brain occurred in aged SAMP8 mice. Ki and Vi values significantly varied among brain regions and the Ki for the thalamus and the Vi for the cerebellum and thalamus were higher in aged mice. We conclude that alterations in BBB integrity or the activity of the BBB insulin transporter do not underlie the deficits in learning and memory seen in the aged SAMP8 mouse.
Collapse
Affiliation(s)
- W A Banks
- GRECC, Veterans Affairs Medical Center-St. Louis and Saint Louis University School of Medicine, Department of Internal Medicine, Missouri, USA.
| | | | | |
Collapse
|
14
|
Shi F, Audus KL. Biochemical characteristics of primary and passaged cultures of primate brain microvessel endothelial cells. Neurochem Res 1994; 19:427-33. [PMID: 7915010 DOI: 10.1007/bf00967320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rhesus macaque monkey brain microvessel endothelial cells (BMECs) were isolated and grown in culture in an effort to establish an appropriate primate in vitro model of the endothelial component of the blood-brain barrier. The presence of Factor VIII antigen, alkaline phosphatase, gamma-glutamyl transpeptidase, lactate dehydrogenase, total protein, and the passive permeability properties was documented for both primary and passaged cultures. Primate BMECs were shown to exhibit similar morphological and biochemical properties described for other BMEC culture systems derived from other species. In addition, the passaged primate BMECs were particularly notable for the changes in enzyme activities and total protein that parallel age-dependent changes in brain capillary endothelia. This study provides further support for the possible application of BMEC culture systems in investigations of blood-brain barrier functions under normal, aging, and diseased conditions.
Collapse
Affiliation(s)
- F Shi
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Kansas Lawrence 66045
| | | |
Collapse
|
15
|
Van Hoof VO, De Broe ME. Interpretation and clinical significance of alkaline phosphatase isoenzyme patterns. Crit Rev Clin Lab Sci 1994; 31:197-293. [PMID: 7818774 DOI: 10.3109/10408369409084677] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alkaline phosphatase (ALP, EC 3.1.3.1) is a membrane-bound metalloenzyme that consists of a group of true isoenzymes, all glycoproteins, encoded for by at least four different gene loci: tissue-nonspecific, intestinal, placental, and germ-cell ALP. Through posttranslational modifications of the tissue-nonspecific gene, for example, through differences in carbohydrate composition, bone and liver ALP are formed. Nowadays, most commercially available methods for separating or measuring ALP isoenzymes are easy to perform and sensitive and allow for reproducible and quantitative results. As more isoenzymes and isoforms have been characterized, confusion has arisen due to the many different names they were given. For the sake of simplicity and because of structural analogies, we propose an alternative nomenclature for the ALP isoenzymes and isoforms based on their structural characteristics: soluble, dimeric (Sol), anchor-bearing (Anch), and membrane-bound (Mem) liver, bone, intestinal, and placental ALP. Together with lipoprotein-bound liver ALP and immunoglobulin-bound ALP, these names largely fit the many forms of ALP one can encounter in human serum and tissues. The clinically relevant isoenzymes are sol-liver, Mem-liver, lipoprotein-bound liver, and Sol-intestinal ALP in liver diseases, and Sol-bone and Anch-bone ALP in bone diseases. Many different isoenzyme patterns can be found in malignancies and renal diseases. This test provides the clinician with valuable information for diagnostic purposes as well as for follow-up of patients and monitoring of treatment. However, ALP isoenzyme determination will only provide clinically useful information if the patterns are correctly interpreted. In this respect, care should be taken to use the proper reference ranges, taking into account the age and sex of the patient. A normal total ALP activity does not rule out the presence of an abnormal isoenzyme pattern, particularly in children. Separating ALP into its isoenzymes adds considerable value to the mere assay of total ALP activity.
Collapse
Affiliation(s)
- V O Van Hoof
- Department of Clinical Chemistry, University Hospital Antwerp, Edegem/Antwerpen, Belgium
| | | |
Collapse
|
16
|
Abstract
Ever since the discovery of Paul Ehrlich (1885 Das Sauerstoff-bedürfnis des Organismus: Hirschwald, Berlin) about the restricted material exchange, existing between the blood and the brain, the ultimate goal of subsequent studies has been mainly directed towards the elucidation of relative importance of different cellular compartments in the peculiar penetration barrier consisting the structural basis of the blood-brain barrier (BBB). It is now generally agreed that, in most vertebrates, the endothelial cells of the central nervous system (CNS) are responsible for the unique penetration barrier, which restricts the free passage of nutrients, hormones, immunologically relevant molecules and drugs to the brain. After an era of studying with endogenous or exogenous tracers the unique permeability properties of cerebral endothelial cells in vivo, the next generation, i.e. the in vitro blood-brain barrier model system was introduced in 1973. Recent advances in our knowledge of the BBB have in part been made by studying the properties and function of cerebral endothelial cells (CEC) with this in vitro approach. This review summarizes the results obtained on isolated brain microvessels in the second decade of its advent.
Collapse
Affiliation(s)
- F Joó
- Laboratory of Molecular Neurobiology, Biological Research Center, Szeged, Hungary
| |
Collapse
|
17
|
Gerozissis K, Orosco M, Rouch C, Nicolaidis S. Basal and hyperinsulinemia-induced immunoreactive hypothalamic insulin changes in lean and genetically obese Zucker rats revealed by microdialysis. Brain Res 1993; 611:258-63. [PMID: 8334519 DOI: 10.1016/0006-8993(93)90511-k] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lean and genetically obese Zucker rats were implanted with permanent intravenous catheters and a guide cannula was aimed at the region of the ventromedial (VMH) and paraventricular (PVN) nuclei to measure immunoreactive insulin collected by means of microdialysis. Preliminary experiments assessed the validity of a novel assay of insulin in microdialysates by a sensitized radioimmunoassay technique. This method was then used to measure basal levels of insulin and those induced by i.v. infusion of 0.5 U of insulin over 30 min in both lean and obese rats. Basal hypothalamic immunoreactive insulin levels were lower in the obese rats than in the lean Zucker rats. When insulin was infused i.v. for 30 min, hypothalamic immunoreactive insulin showed an increase in the 30-60 min sample, which was twice as great in the obese rats. Two facts suggest that the insulin found in the microdialysates was of cerebral, not vascular origin: the short latency in the response and the finding that the response was greater in obese rats.
Collapse
|
18
|
Catalán RE, Martínez AM, Aragonés MD, Fernández I, Miguel BG. Inhibitory effect of insulin and cytoplasmic factor(s) on brain (Na(+) + K+) ATPase. Neurosci Res 1992; 13:139-45. [PMID: 1316592 DOI: 10.1016/0168-0102(92)90094-s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
(Na+ + K+)ATPase activity in cerebral cortex was modulated by insulin action depending on the Mg2+ concentration. Thus, in homogenates in the presence of 1-3 mM Mg2+, insulin stimulated the enzyme, whereas in the presence of 4-6 mM Mg2+ inhibition was observed. Exposure of synaptosomal membranes to the soluble fraction resulted in inhibition of ATPase activity in a dose-dependent manner. The inhibitory effect of insulin was regulated by a cytoplasmic factor in a dose-dependent manner. Similar variations to those obtained with a crude synaptosomal fraction were obtained by using a partially purified ATPase. These results indicated the importance of soluble factors in the modulation of ATPase by insulin and add more evidence in support for a role of insulin as a neuromodulator.
Collapse
Affiliation(s)
- R E Catalán
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Spain
| | | | | | | | | |
Collapse
|
19
|
Catalán RE, Martínez AM, Aragonés MD, Fernández I. Substance P stimulates translocation of protein kinase C in brain microvessels. Biochem Biophys Res Commun 1989; 164:595-600. [PMID: 2479374 DOI: 10.1016/0006-291x(89)91501-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The action of substance P on protein kinase C in cerebral microvessels, isolated from bovine, was investigated. We found that in untreated microvessels 85% of the total activity was localized to the cytosolic fraction. Substance P caused a shift of activity to the membrane fraction, accompanied by a loss of activity in the cytosolic fraction. This effect resulted in dose-dependence and it was evident after 5 min treatment. These data suggest that substance P may be involved in the regulation of processes underlying protein phosphorylation in the blood-brain barrier.
Collapse
Affiliation(s)
- R E Catalán
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Gazzarrini C, Stagni N, Pollesello P, D'Andrea P, De Bernard B. Possible mechanism of inhibition of cartilage alkaline phosphatase by insulin. ACTA DIABETOLOGICA LATINA 1989; 26:321-7. [PMID: 2698041 DOI: 10.1007/bf02624644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The inhibition of alkaline phosphatase by insulin is a finding reported by many researchers but the mechanism of this inhibition has not been studied. Since alkaline phosphatase is an important factor in the mechanism of calcification and an impairment of mineralisation has been observed in diabetes mellitus, a study was carried out to assess the effect of the hormone on alkaline phosphatase measured in chondrocytes, in matrix vesicles and in a purified enzyme preparation. Enzyme activity was inhibited by insulin. The lowest active concentration was 10(-6) M and maximal inhibition was obtained at about 10(-4) M. The inhibition is of the uncompetitive type. Full recovery of the hormone-inhibited enzyme was obtained with 10(-4) M 2-mercaptoethanol. Data suggest direct interaction between the alkaline phosphatase and insulin molecules, involving either disulfide cross linkages or the metal chelating activity of insulin.
Collapse
Affiliation(s)
- C Gazzarrini
- Dipartimento di Biochimica, Biofisica e Chimica delle Macromolecole, Università di Trieste
| | | | | | | | | |
Collapse
|
21
|
Catalán RE, Martínez AM, Aragonés MD, Díaz G. Evidence for a regulatory action of vanadate on protein phosphorylation in brain microvessels. Biochem Biophys Res Commun 1989; 163:771-9. [PMID: 2783120 DOI: 10.1016/0006-291x(89)92289-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We investigated the action of vanadate on protein phosphorylation in microvessels isolated from rat brain. We found that a stimulation of protein phosphorylation from 32P-ATP occurs, in the presence of different concentrations of vanadate, 10(-3) M being the most effective dose. This action was time-dependent, and it was more evident after 60 s of treatment. The contribution of ATPase inhibition caused by vanadate appears to be negligible. In addition a stimulation of cAMP-dependent protein kinase activity was observed. The pattern of protein phosphorylation showed that exposure to 10(-3) M vanadate resulted in a nonspecific stimulation of protein phosphorylation concomitantly with a selective inhibition of the 55 KDa protein phosphorylation. The nature of this protein is also discussed.
Collapse
Affiliation(s)
- R E Catalán
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Romero G, Luttrell L, Rogol A, Zeller K, Hewlett E, Larner J. Phosphatidylinositol-glycan anchors of membrane proteins: potential precursors of insulin mediators. Science 1988; 240:509-11. [PMID: 3282305 DOI: 10.1126/science.3282305] [Citation(s) in RCA: 166] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BC3H1 myocytes release membrane-bound alkaline phosphatase to the incubation medium upon stimulation with insulin, following a time course that is consistent with the generation of dimyristoylglycerol and the appearance of a putative insulin mediator in the extracellular medium. The use of specific blocking agents shows, however, that alkaline phosphatase release and dimyristoylglycerol production are independent processes and that the blockade of either event inhibits the production of insulin mediator. These experiments suggest a new model of insulin action.
Collapse
Affiliation(s)
- G Romero
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville 22908
| | | | | | | | | | | |
Collapse
|