1
|
Ryu T, Yang K, Choi BY, Cho WG, Chung BS. Co-administration of polyethylene glycol with binge ethanol reduces markers of intestinal and hepatic inflammation in C57BL/6J mice by diminishing ethanol absorption through the intestinal wall. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:291-300. [PMID: 39761949 PMCID: PMC11828973 DOI: 10.1111/acer.15527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/12/2024] [Indexed: 02/16/2025]
Abstract
BACKGROUND Therapeutic options for managing intestinal and hepatic inflammation associated with alcohol consumption, a prevalent health problem worldwide, remain unavailable. This study examines the potential efficacy of polyethylene glycol (PEG) in mitigating the intestinal and hepatic damage, employing a mouse model for assessment. METHODS First, the mixture of ethanol (4 g/kg body weight) and PEG (2 g/kg body weight) or an equivalent volume of vehicle was administered orally alcohol consumption. RESULTS Acute alcohol consumption was found to damage not only the liver but also the small intestine, as evidenced by histological findings and mRNA expression analysis of inflammatory cytokines. We also identified impaired motor function in the mouse model of binge drinking. Interestingly, PEG significantly mitigated both the impaired motor function and the injury and inflammation of the small intestine following binge drinking in mice. Furthermore, PEG exhibited hepatoprotective effects, as indicated by reduced hepatic enzyme levels in serum, less liver injury observed through H & E staining, and decreased neutrophil infiltration within the liver. CONCLUSIONS Collectively, these findings suggest that co-administration of PEG with binge ethanol could serve as an effective therapeutic strategy to prevent intestinal and hepatic inflammation.
Collapse
Affiliation(s)
- Tom Ryu
- Department of Internal Medicine, Institute for Digestive Research, Digestive Disease CenterSoonchunhyang University College of MedicineSeoulKorea
| | - Keungmo Yang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, College of MedicineThe Catholic University of KoreaSeoulKorea
| | - Byung Young Choi
- Department of AnatomyYonsei University Wonju College of MedicineWonjuKorea
| | - Won Gil Cho
- Department of AnatomyYonsei University Wonju College of MedicineWonjuKorea
| | - Beom Sun Chung
- Department of AnatomyYonsei University Wonju College of MedicineWonjuKorea
| |
Collapse
|
2
|
Wismayer R, Kiwanuka J, Wabinga H, Odida M. Risk Factors for Colorectal Adenocarcinoma in an Indigenous Population in East Africa. Cancer Manag Res 2022; 14:2657-2669. [PMID: 36097505 PMCID: PMC9464000 DOI: 10.2147/cmar.s381479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction The incidence of colorectal cancer (CRC) is increasing in East Africa. Changes in lifestyle and dietary changes, particularly alcohol consumption, smoking, and consumption of cooked meats with a reduction in fibre in the diet may be responsible. The objective of our study was to determine the risk factors responsible for CRC in Uganda. Methods We recruited 129 participants with histologically proven colorectal adenocarcinoma and 258 control participants from four specialized hospitals in central Uganda from 2019 to 2021. Controls were block matched for age (±5 years) and sex of the case participants. The risk factor variables included; area of residence, tribe, body mass index (BMI), smoking, alcohol consumption and family history of gastrointestinal cancer. We used conditional or ordinal logistic regression to obtain crude and adjusted odds ratios for risk factors associated with CRC. Results In bivariate analysis, case participants were more likely to be associated with urban residence (cOR:62.11; p<0.001); family history of GI cancer (cOR: 14.34; p=0.001); past smokers (cOR: 2.10; p=0.080); past alcohol drinkers (cOR: 2.35; p=0.012); current alcohol drinkers (cOR: 3.55; p<0.001); high BMI 25–29.9 kg/m2 (cOR: 2.49; p<0.001); and high BMI ≥30kg/m2 (cOR: 2.37; p=0.012). In the multivariate analysis, urban residence (aOR: 82.79; p<0.001), family history of GI cancer (aOR: 61.09; p<0.001) and past smoking (aOR: 4.73; p=0.036) were independently associated with a higher risk of developing CRC. Conclusion A family history of gastrointestinal cancer was a risk factor for CRC. While population-based CRC screening may not be feasible in low income-countries, targeted CRC screening for first-degree relatives with CRC should be considered in East Africa. Molecular genetic studies need to be carried out to determine the role of hereditary factors in our population. Prevention strategies should be adopted to avoid smoking in our population which was associated with an increased risk of CRC.
Collapse
Affiliation(s)
- Richard Wismayer
- Department of Surgery, Masaka Regional Referral Hospital, Masaka, Uganda.,Department of Surgery, Faculty of Health Sciences, Habib Medical School, IUIU University, Kampala, Uganda.,Department of Pathology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Julius Kiwanuka
- Department of Epidemiology and Biostatistics, School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Henry Wabinga
- Department of Pathology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Michael Odida
- Department of Pathology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda.,Department of Pathology, Faculty of Medicine, Gulu University, Gulu, Uganda
| |
Collapse
|
3
|
Teschke R. Alcoholic Liver Disease: Alcohol Metabolism, Cascade of Molecular Mechanisms, Cellular Targets, and Clinical Aspects. Biomedicines 2018; 6:E106. [PMID: 30424581 PMCID: PMC6316574 DOI: 10.3390/biomedicines6040106] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/13/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease is the result of cascade events, which clinically first lead to alcoholic fatty liver, and then mostly via alcoholic steatohepatitis or alcoholic hepatitis potentially to cirrhosis and hepatocellular carcinoma. Pathogenetic events are linked to the metabolism of ethanol and acetaldehyde as its first oxidation product generated via hepatic alcohol dehydrogenase (ADH) and the microsomal ethanol-oxidizing system (MEOS), which depends on cytochrome P450 2E1 (CYP 2E1), and is inducible by chronic alcohol use. MEOS induction accelerates the metabolism of ethanol to acetaldehyde that facilitates organ injury including the liver, and it produces via CYP 2E1 many reactive oxygen species (ROS) such as ethoxy radical, hydroxyethyl radical, acetyl radical, singlet radical, superoxide radical, hydrogen peroxide, hydroxyl radical, alkoxyl radical, and peroxyl radical. These attack hepatocytes, Kupffer cells, stellate cells, and liver sinusoidal endothelial cells, and their signaling mediators such as interleukins, interferons, and growth factors, help to initiate liver injury including fibrosis and cirrhosis in susceptible individuals with specific risk factors. Through CYP 2E1-dependent ROS, more evidence is emerging that alcohol generates lipid peroxides and modifies the intestinal microbiome, thereby stimulating actions of endotoxins produced by intestinal bacteria; lipid peroxides and endotoxins are potential causes that are involved in alcoholic liver injury. Alcohol modifies SIRT1 (Sirtuin-1; derived from Silent mating type Information Regulation) and SIRT2, and most importantly, the innate and adapted immune systems, which may explain the individual differences of injury susceptibility. Metabolic pathways are also influenced by circadian rhythms, specific conditions known from living organisms including plants. Open for discussion is a 5-hit working hypothesis, attempting to define key elements involved in injury progression. In essence, although abundant biochemical mechanisms are proposed for the initiation and perpetuation of liver injury, patients with an alcohol problem benefit from permanent alcohol abstinence alone.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Leimenstrasse 20, D-63450 Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, Frankfurt/Main, Germany.
| |
Collapse
|
4
|
Na HK, Lee JY. Molecular Basis of Alcohol-Related Gastric and Colon Cancer. Int J Mol Sci 2017; 18:E1116. [PMID: 28538665 PMCID: PMC5485940 DOI: 10.3390/ijms18061116] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/04/2017] [Accepted: 05/06/2017] [Indexed: 02/06/2023] Open
Abstract
Many meta-analysis, large cohort studies, and experimental studies suggest that chronic alcohol consumption increases the risk of gastric and colon cancer. Ethanol is metabolized by alcohol dehydrogenases (ADH), catalase or cytochrome P450 2E1 (CYP2E1) to acetaldehyde, which is then further oxidized to acetate by aldehyde dehydrogenase (ALDH). Acetaldehyde has been classified by the International Agency for Research on Cancer (IARC) as a Group 1 carcinogen to humans. The acetaldehyde level in the stomach and colon is locally influenced by gastric colonization by Helicobacter pylori or colonic microbes, as well as polymorphisms in the genes encoding tissue alcohol metabolizing enzymes, especially ALDH2. Alcohol stimulates the uptake of carcinogens and their metabolism and also changes the composition of enteric microbes in a way to enhance the aldehyde level. Alcohol also undergoes chemical coupling to membrane phospholipids and disrupts organization of tight junctions, leading to nuclear translocation of β-catenin and ZONAB, which may contributes to regulation of genes involved in proliferation, invasion and metastasis. Alcohol also generates reactive oxygen species (ROS) by suppressing the expression of antioxidant and cytoprotective enzymes and inducing expression of CYP2E1 which contribute to the metabolic activation of chemical carcinogens. Besides exerting genotoxic effects by directly damaging DNA, ROS can activates signaling molecules involved in inflammation, metastasis and angiogenesis. In addition, alcohol consumption induces folate deficiency, which may result in aberrant DNA methylation profiles, thereby influencing cancer-related gene expression.
Collapse
Affiliation(s)
- Hye-Kyung Na
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Korea.
| | - Ja Young Lee
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Korea.
| |
Collapse
|
5
|
Müller MF, Zhou Y, Adams DJ, Arends MJ. Effects of long-term ethanol consumption and Aldh1b1 depletion on intestinal tumourigenesis in mice. J Pathol 2017; 241:649-660. [PMID: 28026023 DOI: 10.1002/path.4869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
Abstract
Ethanol and its metabolite acetaldehyde have been classified as carcinogens for the upper aerodigestive tract, liver, breast, and colorectum. Whereas mechanisms related to oxidative stress and Cyp2e1 induction seem to prevail in the liver, and acetaldehyde has been proposed to play a crucial role in the upper aerodigestive tract, pathological mechanisms in the colorectum have not yet been clarified. Moreover, all evidence for a pro-carcinogenic role of ethanol in colorectal cancer is derived from correlations observed in epidemiological studies or from rodent studies with additional carcinogen application or tumour suppressor gene inactivation. In the current study, wild-type mice and mice with depletion of aldehyde dehydrogenase 1b1 (Aldh1b1), an enzyme which has been proposed to play an important role in acetaldehyde detoxification in the intestines, received ethanol in drinking water for 1 year. Long-term ethanol consumption led to intestinal tumour development in wild-type and Aldh1b1-depleted mice, but no intestinal tumours were observed in water-treated controls. Moreover, a significant increase in DNA damage was detected in the large intestinal epithelium of ethanol-treated mice of both genotypes compared with the respective water-treated groups, along with increased proliferation of the small and large intestinal epithelium. Aldh1b1 depletion led to increased plasma acetaldehyde levels in ethanol-treated mice, to a significant aggravation of ethanol-induced intestinal hyperproliferation, and to more advanced features of intestinal tumours, but it did not affect intestinal tumour incidence. These data indicate that ethanol consumption can initiate intestinal tumourigenesis without any additional carcinogen treatment or tumour suppressor gene inactivation, and we provide evidence for a role of Aldh1b1 in protection of the intestines from ethanol-induced damage, as well as for both carcinogenic and tumour-promoting functions of acetaldehyde, including increased progression of ethanol-induced tumours. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mike F Müller
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Ying Zhou
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Mark J Arends
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| |
Collapse
|
6
|
Koehler BC, Arslic-Schmitt T, Peccerella T, Scherr AL, Schulze-Bergkamen H, Bruckner T, Gdynia G, Jäger D, Mueller S, Bartsch H, Seitz HK. Possible Mechanisms of Ethanol-Mediated Colorectal Carcinogenesis: The Role of Cytochrome P4502E1, Etheno-DNA Adducts, and the Anti-Apoptotic Protein Mcl-1. Alcohol Clin Exp Res 2016; 40:2094-2101. [PMID: 27581253 DOI: 10.1111/acer.13180] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/20/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chronic alcohol consumption is a risk factor for colorectal cancer. The mechanisms by which ethanol (EtOH) exerts its carcinogenic effect on the colorectal mucosa are not clear and may include oxidative stress with the action of reactive oxygen species (ROS) generated through EtOH metabolism via cytochrome P4502E1 (CYP2E1) leading to carcinogenic etheno-DNA adducts. ROS may also induce apoptosis. However, the effect of chronic EtOH consumption on CYP2E1, etheno-DNA adducts as well as anti-apoptotic proteins in the colorectal mucosa of heavy drinkers without colorectal inflammation is still not known. METHODS Rectal biopsies from 32 alcoholics (>60 g EtOH/d) and from 12 controls (<20 g EtOH/d) were histologically examined, and immunohistochemistry for CYP2E1 and etheno-DNA adducts was performed. Apoptosis (cleaved PARP) as well as anti-apoptotic proteins including Bcl-xL , Bcl-2, and Mcl-1 were immunohistochemically determined. RESULTS No significant difference in mucosal CYP2E1 or etheno-DNA adducts was observed between alcoholics and control patients. However, CYP2E1 and etheno-DNA adducts correlated significantly when both groups were combined (p < 0.001). In addition, although apoptosis was found not to be significantly affected by EtOH, the anti-apoptotic protein Mcl-1, but neither Bcl-xL nor Bcl-2, was found to be significantly increased in heavy drinkers as compared to controls (p = 0.014). CONCLUSIONS Although colorectal CYP2E1 was not found to be significantly increased in alcoholics, CYP2E1 correlated overall with the level of etheno-DNA adducts in the colorectal mucosa, which identifies CYP2E1 as an important factor in colorectal carcinogenesis. Most importantly, however, is the up-regulation of the anti-apoptotic protein Mcl-1 in heavy drinkers counteracting apoptosis and possibly stimulating cancer development.
Collapse
Affiliation(s)
| | - Tatjana Arslic-Schmitt
- Centre of Alcohol Research (CAR), University of Heidelberg, Heidelberg, Germany.,Department of Medicine, Salem Medical Centre, Heidelberg, Germany
| | - Theresa Peccerella
- Centre of Alcohol Research (CAR), University of Heidelberg, Heidelberg, Germany
| | - Anna-Lena Scherr
- National Tumor Centre, University of Heidelberg, Heidelberg, Germany
| | | | - Thomas Bruckner
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Georg Gdynia
- Department of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Dirk Jäger
- National Tumor Centre, University of Heidelberg, Heidelberg, Germany
| | - Sebastian Mueller
- Centre of Alcohol Research (CAR), University of Heidelberg, Heidelberg, Germany.,Department of Medicine, Salem Medical Centre, Heidelberg, Germany
| | - Helmut Bartsch
- Erstwhile: Division of Toxicology and Cancer Risk Factors, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Helmut K Seitz
- Centre of Alcohol Research (CAR), University of Heidelberg, Heidelberg, Germany. .,Department of Medicine, Salem Medical Centre, Heidelberg, Germany.
| |
Collapse
|
7
|
Woolbright BL, Jaeschke H. Xenobiotic and Endobiotic Mediated Interactions Between the Cytochrome P450 System and the Inflammatory Response in the Liver. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:131-61. [PMID: 26233906 DOI: 10.1016/bs.apha.2015.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The liver is a unique organ in the body as it has significant roles in both metabolism and innate immune clearance. Hepatocytes in the liver carry a nearly complete complement of drug metabolizing enzymes, including numerous cytochrome P450s. While a majority of these enzymes effectively detoxify xenobiotics, or metabolize endobiotics, a subportion of these reactions result in accumulation of metabolites that can cause either direct liver injury or indirect liver injury through activation of inflammation. The liver also contains multiple populations of innate immune cells including the resident macrophages (Kupffer cells), a relatively large number of natural killer cells, and blood-derived neutrophils. While these cells are primarily responsible for clearance of pathogens, activation of these immune cells can result in significant tissue injury during periods of inflammation. When activated chronically, these inflammatory bouts can lead to fibrosis, cirrhosis, cancer, or death. This chapter will focus on interactions between how the liver processes xenobiotic and endobiotic compounds through the cytochrome P450 system, and how these processes can result in a response from the innate immune cells of the liver. A number of different clinically relevant diseases, as well as experimental models, are currently available to study mechanisms related to the interplay of innate immunity and cytochrome P450-mediated metabolism. A major focus of the chapter will be to evaluate currently understood mechanisms in the context of these diseases, as a way of outlining mechanisms that dictate the interactions between the P450 system and innate immunity.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
8
|
Intestinal CYP2E1: A mediator of alcohol-induced gut leakiness. Redox Biol 2014; 3:40-6. [PMID: 25462064 PMCID: PMC4297927 DOI: 10.1016/j.redox.2014.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023] Open
Abstract
Chronic alcohol use can result in many pathological effects including alcoholic liver disease (ALD). While alcohol is necessary for the development of ALD, only 20-30% of alcoholics develop alcoholic steatohepatitis (ASH) with progressive liver disease leading to cirrhosis and liver failure (ALD). This suggests that while chronic alcohol consumption is necessary it is not sufficient to induce clinically relevant liver damage in the absence of a secondary risk factor. Studies in rodent models and alcoholic patients show that increased intestinal permeability to microbial products like endotoxin play a critical role in promoting liver inflammation in ALD pathogenesis. Therefore identifying mechanisms of alcohol-induced intestinal permeability is important in identifying mechanisms of ALD and for designing new avenues for therapy. Cyp2e1 is a cytochrome P450 enzyme that metabolizes alcohol has been shown to be upregulated by chronic alcohol use and to be a major source of oxidative stress and liver injury in alcoholics and in animal and in vitro models of chronic alcohol use. Because Cyp2e1 is also expressed in the intestine and is upregulated by chronic alcohol use, we hypothesized it could play a role in alcohol-induced intestinal hyperpermeability. Our in vitro studies with intestinal Caco-2 cells and in mice fed alcohol showed that circadian clock proteins CLOCK and PER2 are required for alcohol-induced permeability. We also showed that alcohol increases Cyp2e1 protein and activity but not mRNA in Caco-2 cells and that an inhibitor of oxidative stress or siRNA knockdown of Cyp2e1 prevents the increase in CLOCK or PER2 proteins and prevents alcohol-induced hyperpermeability. With our collaborators we have also shown that Cyp2e1 knockout mice are resistant to alcohol-induced gut leakiness and liver inflammation. Taken together our data support a novel Cyp2e1-circadian clock protein mechanism for alcohol-induced gut leakiness that could provide new avenues for therapy of ALD.
Collapse
|
9
|
Megaraj V, Ding X, Fang C, Kovalchuk N, Zhu Y, Zhang QY. Role of hepatic and intestinal p450 enzymes in the metabolic activation of the colon carcinogen azoxymethane in mice. Chem Res Toxicol 2014; 27:656-62. [PMID: 24552495 PMCID: PMC4002058 DOI: 10.1021/tx4004769] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
P450-mediated
bioactivation of azoxymethane (AOM), a colon carcinogen,
leads to the formation of DNA adducts, of which O6-methylguanine (O6-mG) is the most mutagenic
and contributes to colon tumorigenesis. To determine whether P450
enzymes of the liver and intestine both contribute to AOM bioactivation in vivo, we compared tissue levels of AOM-induced DNA adducts,
microsomal AOM metabolic activities, and incidences of colonic aberrant
crypt foci (ACF) among wild-type (WT), liver-specific P450 reductase
(Cpr)-null (LCN), and intestinal epithelium-specific Cpr-null (IECN)
mice. At 6 h following AOM treatment (at 14 mg/kg, s.c.), O6-mG and N7-mG levels were highest in the liver, followed
by the colon, and then small intestine in WT mice. As expected, hepatic
adduct levels were significantly lower (by >60%) in LCN mice but
unchanged
in IECN mice, whereas small-intestinal adduct levels were unchanged
or increased in LCN mice but lower (by >50%) in IECN mice compared
to that in WT mice. However, colonic adduct levels were unchanged
in IECN mice compared to that in WT mice and increased in LCN mice
(by 1.5–2.9-fold). The tissue-specific impact of the CPR loss
in IECN and LCN mice on microsomal AOM metabolic activity was confirmed
by rates of formation of formaldehyde and N7-mG in vitro. Furthermore, the incidence of ACF, a lesion preceding
colon cancer, was similar in the three mouse strains. Thus, AOM-induced
colonic DNA damage and ACF formation is not solely dependent on either
hepatic or intestinal microsomal P450 enzymes. P450 enzymes in both
the liver and intestine likely contribute to AOM-induced colon carcinogenesis.
Collapse
Affiliation(s)
- Vandana Megaraj
- Wadsworth Center, New York State Department of Health, and School of Public Health, State University of New York at Albany , Albany, New York 12201, United States
| | | | | | | | | | | |
Collapse
|
10
|
Plewka D, Plewka A, Szczepanik T, Morek M, Bogunia E, Wittek P, Kijonka C. Expression of selected cytochrome P450 isoforms and of cooperating enzymes in colorectal tissues in selected pathological conditions. Pathol Res Pract 2014; 210:242-9. [PMID: 24485758 DOI: 10.1016/j.prp.2013.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/20/2013] [Accepted: 12/16/2013] [Indexed: 01/28/2023]
Abstract
The current interest in CYP expression in the colon results from its uniqueness as a target organ for cancer. To date, the CYP expression profiles in the colon have not yet been subject of comprehensive research. In this study, we investigated 40 patients with Crohn's disease, 40 with ulcerative colitis, and 40 healthy subjects as a control group. Colon tissues were fixed, dehydrated, cleared in xylene and embedded in paraffin. Sections were prepared from paraffin blocks for immunohistochemical staining with specific antibodies. We used antibodies to the human CYP1A1, CYP2B6, CYP2C9, CYP2E1 and CYP3A4 isoforms, as well as antibodies to the human glycoprotein P, glutathione-S transferase and antibody to the UDP-glucuronosyltransferase. The sections were stained immunohistochemically and examined using light microscopy. Cellular localization was determined, and computer image analysis was used. In all cases with Crohn's disease, the proteins studied showed at least a twofold expression. Ulcerative colitis showed a much weaker influence regarding the expression of the proteins studied but in case of CYP2C9 and UDP-glucuronosyltransferase, a decrease of expression was observed.
Collapse
Affiliation(s)
- Danuta Plewka
- Department of Histology, Medical University of Silesia, Katowice, Poland
| | - Andrzej Plewka
- Department of Proteomics, Medical University of Silesia, Sosnowiec, Poland.
| | - Tomasz Szczepanik
- Department of Proteomics, Medical University of Silesia, Sosnowiec, Poland
| | - Michał Morek
- Department of Proteomics, Medical University of Silesia, Sosnowiec, Poland
| | - Edyta Bogunia
- Department of Proteomics, Medical University of Silesia, Sosnowiec, Poland
| | - Piotr Wittek
- Department of Proteomics, Medical University of Silesia, Sosnowiec, Poland
| | - Czarosław Kijonka
- Department of Proteomics, Medical University of Silesia, Sosnowiec, Poland
| |
Collapse
|
11
|
Abdelmegeed MA, Banerjee A, Jang S, Yoo SH, Yun JW, Gonzalez FJ, Keshavarzian A, Song BJ. CYP2E1 potentiates binge alcohol-induced gut leakiness, steatohepatitis, and apoptosis. Free Radic Biol Med 2013; 65:1238-1245. [PMID: 24064383 PMCID: PMC3859835 DOI: 10.1016/j.freeradbiomed.2013.09.009] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 02/07/2023]
Abstract
Ethanol-inducible cytochrome P450 2E1 (CYP2E1) contributes to increased oxidative stress and steatosis in chronic alcohol-exposure models. However, its role in binge ethanol-induced gut leakiness and hepatic injury is unclear. This study was aimed at investigating the role of CYP2E1 in binge alcohol-induced gut leakiness and the mechanisms of steatohepatitis. Female wild-type (WT) and Cyp2e1-null mice were treated with three doses of binge ethanol (WT-EtOH or Cyp2e1-null-EtOH) (6g/kg oral gavage at 12-h intervals) or dextrose (negative control). Intestinal histology of only WT-EtOH exhibited epithelial alteration and blebbing of lamina propria, and liver histology obtained at 6h after the last ethanol dose showed elevated steatosis with scattered inflammatory foci. These were accompanied by increased levels of serum endotoxin, hepatic enterobacteria, and triglycerides. All these changes, including the intestinal histology and hepatic apoptosis, determined by TUNEL assay, were significantly reversed when WT-EtOH mice were treated with the specific inhibitor of CYP2E1 chlormethiazole and the antioxidant N-acetylcysteine, both of which suppressed oxidative markers including intestinal CYP2E1. WT-EtOH also exhibited elevated amounts of serum TNF-α, hepatic cytokines, CYP2E1, and lipid peroxidation, with decreased levels of mitochondrial superoxide dismutase and suppressed aldehyde dehydrogenase 2 activity. Increased hepatocyte apoptosis with elevated levels of proapoptotic proteins and decreased levels of active (phosphorylated) p-AKT, p-AMPK, and peroxisome proliferator-activated receptor-α, all of which are involved in fat metabolism and inflammation, were observed in WT-EtOH. These changes were significantly attenuated in the corresponding Cyp2e1-null-EtOH mice. These data indicate that both intestinal and hepatic CYP2E1 induced by binge alcohol seems critical in binge alcohol-mediated increased nitroxidative stress, gut leakage, and endotoxemia; altered fat metabolism; and inflammation contributing to hepatic apoptosis and steatohepatitis.
Collapse
Affiliation(s)
- Mohamed A Abdelmegeed
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Atrayee Banerjee
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Sehwan Jang
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Seong-Ho Yoo
- Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun-Won Yun
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ali Keshavarzian
- Division of Gastroenterology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA.
| |
Collapse
|
12
|
Forsyth CB, Voigt RM, Shaikh M, Tang Y, Cederbaum AI, Turek FW, Keshavarzian A. Role for intestinal CYP2E1 in alcohol-induced circadian gene-mediated intestinal hyperpermeability. Am J Physiol Gastrointest Liver Physiol 2013; 305:G185-95. [PMID: 23660503 PMCID: PMC3725682 DOI: 10.1152/ajpgi.00354.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have shown that alcohol increases Caco-2 intestinal epithelial cell monolayer permeability in vitro by inducing the expression of redox-sensitive circadian clock proteins CLOCK and PER2 and that these proteins are necessary for alcohol-induced hyperpermeability. We hypothesized that alcohol metabolism by intestinal Cytochrome P450 isoform 2E1 (CYP2E1) could alter circadian gene expression (Clock and Per2), resulting in alcohol-induced hyperpermeability. In vitro Caco-2 intestinal epithelial cells were exposed to alcohol, and CYP2E1 protein, activity, and mRNA were measured. CYP2E1 expression was knocked down via siRNA and alcohol-induced hyperpermeability, and CLOCK and PER2 protein expression were measured. Caco-2 cells were also treated with alcohol or H₂O₂ with or without N-acetylcysteine (NAC) anti-oxidant, and CLOCK and PER2 proteins were measured at 4 or 2 h. In vivo Cyp2e1 protein and mRNA were also measured in colon tissue from alcohol-fed mice. Alcohol increased CYP2E1 protein by 93% and enzyme activity by 69% in intestinal cells in vitro. Alcohol feeding also increased mouse colonic Cyp2e1 protein by 73%. mRNA levels of Cyp2e1 were not changed by alcohol in vitro or in mouse intestine. siRNA knockdown of CYP2E1 in Caco-2 cells prevented alcohol-induced hyperpermeability and induction of CLOCK and PER2 proteins. Alcohol-induced and H₂O₂-induced increases in intestinal cell CLOCK and PER2 were significantly inhibited by treatment with NAC. We concluded that our data support a novel role for intestinal CYP2E1 in alcohol-induced intestinal hyperpermeability via a mechanism involving CYP2E1-dependent induction of oxidative stress and upregulation of circadian clock proteins CLOCK and PER2.
Collapse
Affiliation(s)
- Christopher B. Forsyth
- Departments of 1Internal Medicine, Division of Digestive Diseases and Nutrition, ,2Biochemistry,
| | - Robin M. Voigt
- Departments of 1Internal Medicine, Division of Digestive Diseases and Nutrition,
| | - Maliha Shaikh
- Departments of 1Internal Medicine, Division of Digestive Diseases and Nutrition,
| | - Yueming Tang
- Departments of 1Internal Medicine, Division of Digestive Diseases and Nutrition,
| | - Arthur I. Cederbaum
- 3Mount Sinai School of Medicine, Department of Pharmacology and System Therapeutics, New York, New York;
| | - Fred W. Turek
- 8Northwestern University Feinberg School of Medicine, Chicago; ,4Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois;
| | - Ali Keshavarzian
- Departments of 1Internal Medicine, Division of Digestive Diseases and Nutrition, ,5Pharmacology, and ,6Molecular Biophysics and Physiology, Rush University Medical Center, Chicago; ,7Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
Tatematsu K, Koide A, Morimura K, Fukushima S, Mori Y. The enhancing effect of ethanol on the mutagenic activation of N-nitrosomethylbenzylamine by cytochrome P450 2A in the rat oesophagus. Mutagenesis 2013; 28:161-9. [PMID: 23325793 DOI: 10.1093/mutage/ges066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alcohol consumption is frequently associated with various cancers and the enhancement of the metabolic activation of carcinogens has been proposed as a mechanism underlying this relationship. The ethanol-induced enhancement of N-nitrosodiethylamine (DEN)-mediated carcinogenesis can be attributed to an increase in hepatic activity. However, the mechanism of elevation of N-nitrosomethylbenzylamine (NMBA)-induced tumorigenesis remains unclear. To elucidate the mechanism underlying the role of ethanol in the enhancement of NMBA-induced oesophageal carcinogenesis, we evaluated the hepatic and extrahepatic levels of the cytochrome P450 (CYP) and mutagenic activation of environmental carcinogens by immunoblot analyses and Ames preincubation test, respectively, in F344 rats treated with ethanol. Five weeks of treatment with 10% ethanol added to the drinking water or two intragastric treatments with 50% ethanol, both resulted in elevated levels of CYP2E1 (1.5- to 2.3-fold) and mutagenic activities of DEN, N-nitrosodimethylamine and N-nitrosopyrrolidine in the presence of rat liver S9 (1.5- to 2.4-fold). This was not the case with CYP1A1/2, CYP2A1/2, CYP2B1/2 or CYP3A2, nor with the activities of 2-amino-3-methylimidazo[4,5-f]quinoline, 3-amino-1-methyl-5H-pyrido[4,3-b]indole, aflatoxin B(1) or other N-nitroso compounds (NOCs), including NMBA. Ethanol-induced elevations of CYP2A and CYP2E1 were observed in the oesophagus (up to 1.7- and 2.3-fold) and kidney (up to 1.5- and 1.8-fold), but not in the lung or colon. In oesophagus and kidney, the mutagenic activities of NMBA and four NOCs were markedly increased (1.3- to 2.4-fold) in treated rats. The application of several CYP inhibitors revealed that CYP2A were likely to contribute to the enhancing effect of ethanol on NMBA activation in the rat oesophagus and kidney, but that CYP2E1 failed to do so. These results showed that the enhancing effect of ethanol on NMBA-induced oesophageal carcinogenesis could be attributed to an increase in the metabolic activation of NMBA by oesophageal CYP2A during the initiation phase, and that this occurred independently of CYP2E1.
Collapse
Affiliation(s)
- Kenjiro Tatematsu
- Laboratory of Radiochemistry, Gifu Pharmaceutical University, 6-1, Mitahora-higashi 5-chome, Gifu 502-8585, Japan
| | | | | | | | | |
Collapse
|
14
|
Yang H, Zhou Y, Zhou Z, Liu J, Yuan X, Matsuo K, Takezaki T, Tajima K, Cao J. A novel polymorphism rs1329149 of CYP2E1 and a known polymorphism rs671 of ALDH2 of alcohol metabolizing enzymes are associated with colorectal cancer in a southwestern Chinese population. Cancer Epidemiol Biomarkers Prev 2009; 18:2522-7. [PMID: 19706845 DOI: 10.1158/1055-9965.epi-09-0398] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To screen for tagging single nucleotide polymorphisms (tagSNP) in the major alcohol metabolizing enzymes: ADH1B, ALDH2, and CYP2E1, and to evaluate the association between these tagSNPs and colorectal cancer (CRC) in a southwestern Chinese population. METHODS A hospital-based case-control study of 440 CRC patients and 800 cancer-free controls was conducted. Personal information was collected by a Semi-Quantitative Food Frequency Questionnaire. The tagSNPs were screened in the HapMap with Haploview by setting the minor allele frequency at 0.03 with the highest score of r(2) form each block. Genotypes were identified by using the SNPLex System. Both crude and adjusted odds ratio (OR) and 95% confidence interval (CI) were used to evaluate the risk of each SNP. RESULTS Sixteen tagSNPs were selected, and 13 were successfully genotyped. A novel CYP2E1 locus rs1329149 and a known ALDH2 locus rs671 were found to be significantly associated with CRC risk. The adjusted OR was 1.86 (95% CI, 1.12-3.09) for the rs671 A/A genotype and 4.04 for the rs1329149 T/T genotype (95% CI, 2.44-6.70), compared with their common homozygous genotypes. Interaction was found between alcohol consumption and gene polymorphisms on CRC, the adjusted OR was 7.17 (95% CI, 2.01-25.53) for drinking habits combined with rs671 A/A or rs1329149 T/T genotype. CONCLUSION The results of this study suggest that rs671 A/A and the first reported locus rs1329149 T/T genotypes increase the susceptibility to CRC, and gene-environmental interaction between the two loci and alcohol use existed for CRC in Southwestern Chinese. Larger studies are warranted to verify our findings.
Collapse
Affiliation(s)
- Huan Yang
- Department of Hygienic Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Morita M, Le Marchand L, Kono S, Yin G, Toyomura K, Nagano J, Mizoue T, Mibu R, Tanaka M, Kakeji Y, Maehara Y, Okamura T, Ikejiri K, Futami K, Maekawa T, Yasunami Y, Takenaka K, Ichimiya H, Imaizumi N. Genetic polymorphisms of CYP2E1 and risk of colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Epidemiol Biomarkers Prev 2009; 18:235-41. [PMID: 19124503 DOI: 10.1158/1055-9965.epi-08-0698] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cytochrome P450 2E1 (CYP2E1) is involved in the metabolic activation of a wide variety of potential carcinogens, and functional polymorphisms in the CYP2E1 gene have been investigated in relation to colorectal cancer. We examined the relation of the CYP2E1 RsaI and 96-bp insertion polymorphisms to colorectal cancer risk and the interaction between these polymorphisms and some lifestyle risk factors. Subjects were 685 incident cases of colorectal cancer and 778 community controls. Statistical adjustment was made for alcohol use, body mass index, physical activity, and other factors. The RsaI c2 allele was associated with a decreased risk of rectal cancer [adjusted odds ratio for at least one c2 allele, 0.71; 95% confidence interval (95% CI), 0.53-0.95], and an increased risk of rectal cancer was observed among individuals having one or two 96-bp insertion alleles (adjusted odds ratio, 1.40; 95% CI, 1.06-1.85). Individuals with two 96-bp insertion alleles showed a 2.28-fold increase in colon cancer risk (95% CI, 1.29-4.01). The two polymorphisms were in almost complete linkage disequilibrium (D' = 0.94). A positive association between alcohol intake and colorectal cancer was observed only in individuals without RsaI c2 allele (P(trend) = 0.03) or in those without 96-bp insertion allele (P(trend) = 0.009). Colon cancer risk was increased in relation to red meat intake only in individuals having one or two 96-bp insertion alleles (P(interaction) = 0.03). The present study suggests that variation in activity and inducibility of CYP2E1, in relation to alcohol or red meat intake, contributes to the development of colorectal cancer.
Collapse
Affiliation(s)
- Makiko Morita
- Department of Preventive Medicine, Graduate School of Medical Sciences, Kyushu University, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Morita M, Tabata S, Tajima O, Yin G, Abe H, Kono S. Genetic polymorphisms of CYP2E1 and risk of colorectal adenomas in the Self Defense Forces Health Study. Cancer Epidemiol Biomarkers Prev 2008; 17:1800-7. [PMID: 18628434 DOI: 10.1158/1055-9965.epi-08-0314] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
CYP2E1 is an enzyme involved in the metabolism of N-nitrosamines and other carcinogenic substances. Functional RsaI and 96-bp insertion polymorphisms in 5'-flanking region have drawn interest in relation to the risk of colorectal cancer. We investigated the relation of these genetic polymorphisms and colorectal adenoma, a well-established precursor lesion of colorectal cancer. Subjects were 455 cases of colorectal adenomas and 1,052 controls of normal colonoscopy among men receiving a preretirement health examination in the Self Defense Forces. Genotypes were determined by either PCR-RFLP or PCR method. Statistical adjustment was made for smoking, alcohol use, body mass index, physical activity, and others. Individuals with RsaI c2 allele showed a decreased risk of proximal colon adenomas; adjusted odds ratios (95% confidence interval) of proximal and distal adenomas for the c1/c2 or c2/c2 genotype versus c1/c1 was 0.61 (0.41-0.88) and 0.95 (0.71-1.27), respectively. CYP2E1 96-bp insertion allele was associated with an increased risk of large (> or = 5 mm) adenomas; adjusted odds ratios (95% confidence interval) of large and small adenomas for having at least one insertion allele were 1.41 (1.03-1.94) and 0.94 (0.71-1.25), respectively. A suggestive effect modification was noted for alcohol consumption on the association between RsaI polymorphism and proximal adenomas (P(interaction) = 0.09) as well as on the association between 96-bp insertion and large adenomas (P(interaction) = 0.05). These findings indicate that variation in activity and inducibility of CYP2E1 contribute to the development of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Makiko Morita
- Department of Preventive Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Bergheim I, Wolfgarten E, Bollschweiler E, Hölscher AH, Bode C, Parlesak A. Cytochrome P450 levels are altered in patients with esophageal squamous-cell carcinoma. World J Gastroenterol 2007; 13:997-1002. [PMID: 17373732 PMCID: PMC4146886 DOI: 10.3748/wjg.v13.i7.997] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of cytochrome P450 (CYP) in the carcinogenesis of squamous-cell carcinoma (SCC) in human esophagus by determining expression patterns and protein levels of representative CYPs in esophageal tissue of patients with SCC and controls.
METHODS: mRNA expression of CYP2E1, CYP2C, CYP3A4, and CYP3A5 was determined using RT-PCR in both normal and malignant esophageal tissues of patients with untreated esophageal SCC (n = 21) and in controls (n = 10). Protein levels of CYP2E1, CYP2C8, CYP3A4, and CYP3A5 were measured by Western blot.
RESULTS: Within the group of SCC patients, mRNA expression of CYP 3A4 and CYP2C was significantly lower in malignant tissue (-39% and -74%, respectively, P < 0.05) than in normal tissue. Similar results were found in CYP3A4 protein levels. Between groups, CYP3A4, CYP3A5, and CYP2C8 protein concentration was significantly higher in non-malignant tissue of SCC patients (4.8-, 2.9-, and 1.9-fold elevation, P < 0.05) than in controls. In contrast, CYP2E1 protein levels were significantly higher in controls than in SCC patients (+46%, P < 0.05).
CONCLUSION: Significant differences exist in protein levels of certain CYPs in non-malignant esophageal tissue (e.g. CYP2C8, CYP3A4, CYP3A5, and CYP2E1) between SCC patients and healthy subjects and may contribute to the development of SCC in the esophagus.
Collapse
Affiliation(s)
- I Bergheim
- Hohenheim University (140b), Fruwirthstrasse 12, Stuttgart 70599, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Mori Y, Tatematsu K, Koide A, Sugie S, Tanaka T, Mori H. Modification by curcumin of mutagenic activation of carcinogenic N-nitrosamines by extrahepatic cytochromes P-450 2B1 and 2E1 in rats. Cancer Sci 2006; 97:896-904. [PMID: 16805852 PMCID: PMC11159237 DOI: 10.1111/j.1349-7006.2006.00261.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To elucidate the mechanism underlying suppression by curcumin of esophageal carcinogenesis induced by NMBA, we evaluated the CYP level and mutagenic activation of environmental carcinogens, by immunoblot analyses and Ames preincubation test, respectively, and bilirubin, 4-nitrophenol and testosterone UDPGT activities in F344 rats treated with curcumin and/or NMBA. No significant alterations in the hepatic levels of constitutive CYP proteins, mutagenic activation by liver S9 or hepatic UDPGT activities were produced by subcutaneous treatment with 0.5 mg/kg NMBA for 5 weeks and/or feeding of 0.05% and 0.2% curcumin for 6 weeks. In contrast, gavage of 0.2% curcumin decreased esophageal CYP2B1 and 2E1 by up to 60%, compared with vehicle control. Similarly, intragastric treatment with 270 mg/kg curcumin decreased esophageal and gastric CYP2B1 and CYP2E1, but not in lung, kidney or intestine. Conversely, large intestinal CYP2B1 was 2.8-fold higher in the treated rats than in control rats. Mutagenic activities of NOC, including NMBA, in the presence of esophagus and stomach S9 were markedly decreased in the treated rats, whereas those in the presence of large intestine S9 were 2.2-3.0-fold above control. These results show that modifying effects of curcumin on esophageal carcinogenesis can be attributed to a decrease in metabolic activation of NMBA by esophageal CYP2B1 during the initiation phase, without the contribution of metabolic activation and inactivation by liver. Further, the present findings suggest the potential of curcumin for modification of gastric and intestinal carcinogenesis initiated with NOC.
Collapse
Affiliation(s)
- Yukio Mori
- Institute of Biological Pharmacy, Gifu Pharmaceutical University, 6-1, Mitahora-higashi 5-chome, Gifu 502-8585, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Bergheim I, Bode C, Parlesak A. Decreased expression of cytochrome P450 protein in non-malignant colonic tissue of patients with colonic adenoma. BMC Gastroenterol 2005; 5:34. [PMID: 16281975 PMCID: PMC1310537 DOI: 10.1186/1471-230x-5-34] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Accepted: 11/10/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in both the elimination and activation of (pro-)carcinogens. To estimate the role of cytochrome P450 in carcinogenesis of the colon, expression patterns and protein levels of four representative CYPs (CYP2C, CYP2E1, CYP3A4 and CYP3A5) were determined in colon mucosa of normal and adenomatous colonic tissue of patients with adenomas and disease-free controls. METHODS Expression of CYP2C, CYP2E1, CYP3A4, and CYP3A5 in colon mucosa of normal and adenomatous colonic tissue of patients with adenoma and disease-free controls was determined by RT-PCR. Protein concentration of CYPs was determined using Western blot. RESULTS With the exception of CYP3A5, expression of CYP mRNA was similar among groups and tissues (e.g. normal colon mucosa and adenoma). CYP3A5 mRNA expression was significantly higher in adenoma in comparison to normal tissue of patients with adenoma (approximately 48%). When comparing protein concentrations of CYPs measured in adenomas with neighboring normal colonic mucosa no differences were found. However, in normal tissue of patients with adenomas, protein levels of CYP2C8, CYP3A4 and CYP3A5, but not that of CYP2E1, were significantly lower than in biopsies obtained from disease-free controls. Specifically, in normal colonic mucosa of patients protein concentrations of CYP2C8, CYP3A4, and CYP3A5 were approximately 86%, approximately 69%, and approximately 54%, respectively, lower than in disease-free controls. CONCLUSION In conclusion, among other factors, the altered protein levels of certain CYPs (e.g. CYP2C8, CYP3A4 and CYP3A5) in colon mucosa might contribute to the development of neoplasia in the colon.
Collapse
Affiliation(s)
- Ina Bergheim
- Hohenheim University (140), Department Physiology of Nutrition, Stuttgart, Germany
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - Christiane Bode
- Hohenheim University (140), Department Physiology of Nutrition, Stuttgart, Germany
| | - Alexandr Parlesak
- Hohenheim University (140), Department Physiology of Nutrition, Stuttgart, Germany
| |
Collapse
|
20
|
Bergheim I, Bode C, Parlesak A. Distribution of cytochrome P450 2C, 2E1, 3A4, and 3A5 in human colon mucosa. BMC CLINICAL PHARMACOLOGY 2005; 5:4. [PMID: 16253141 PMCID: PMC1291361 DOI: 10.1186/1472-6904-5-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 10/27/2005] [Indexed: 12/16/2022]
Abstract
Background Despite the fact that the alimentary tract is part of the body's first line of defense against orally ingested xenobiotica, little is known about the distribution and expression of cytochrome P450 (CYP) enzymes in human colon. Therefore, expression and protein levels of four representative CYPs (CYP2C(8), CYP2E1, CYP3A4, and CYP3A5) were determined in human colon mucosa biopsies obtained from ascending, descending and sigmoid colon. Methods Expression of CYP2C, CYP2E1, CYP3A4, and CYP3A5 mRNA in colon mucosa was determined by RT-PCR. Protein concentration of CYPs was determined using Western blot methods. Results Extensive interindividual variability was found for the expression of most of the genes. However, expression of CYP2C mRNA levels were significantly higher in the ascending colon than in the sigmoid colon. In contrast, mRNA levels of CYP2E1 and CYP3A5 were significantly lower in the ascending colon in comparison to the descending and sigmoid colon. In sigmoid colon protein levels of CYP2C8 were significantly higher by ~73% than in the descending colon. In contrast, protein concentration of CYP2E1 was significantly lower by ~81% in the sigmoid colon in comparison to the descending colon. Conclusion The current data suggest that the expression of CYP2C, CYP2E1, and CYP3A5 varies in different parts of the colon.
Collapse
Affiliation(s)
- Ina Bergheim
- Hohenheim University (140), Dep. Physiology of Nutrition, Stuttgart, Germany
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY, USA
| | - Christiane Bode
- Hohenheim University (140), Dep. Physiology of Nutrition, Stuttgart, Germany
| | - Alexandr Parlesak
- Hohenheim University (140), Dep. Physiology of Nutrition, Stuttgart, Germany
| |
Collapse
|
21
|
Jabloński J, Hołownia A, Jabłońska E, Moniuszko-Jakoniuk J, Braszko J, Iwanowska J, Marcińczyk M. The effect of ethanol and nitric oxide on the N-nitrosodimethylamine formation in HepG2 cells overexpressing CYP2E1. Hum Exp Toxicol 2005; 24:447-52. [PMID: 16235733 DOI: 10.1191/0960327105ht557oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The influence of lipopolysaccharide (LPS) and the nitric oxide synthase (iNOS) inhibitor--N-nitro-L-arginine methyl ester (L-NAME)--on the formation of N-nitrosodimethylamine (NDMA) by HepG2 cells, engineered to overexpress CYP2E1, was assessed and compared with data from empty vector-transfected cells. HepG2 cells produced significant amounts of NDMA but its levels in the culture media of cells overexpressing CYP2E1 was significantly lower than in empty-vector transfected cells. LPS increased the formation of NDMA, the expression of the iNOS and the production of the nitric oxide (NO). On the other hand, L-NAME significantly decreased NDMA levels. The results above indicate that the synthesis of NDMA by HepG2 cells depends on NO production. Furthermore, ethanol did not affect iNOS expression but decreased NDMA levels in CYP2E1-transfected cells below the detection limit. It is probably caused by the increased N-nitrosodimethylamine metabolism. In conclusion, HepG2 cells' ability to synthesize NO with simultaneous CYP2E1 activation may lead to an increase of carcinogenic products of the NDMA metabolism.
Collapse
Affiliation(s)
- Jakub Jabloński
- Department of Toxicology, Medical University of Bialystok, Bialystok, Poland.
| | | | | | | | | | | | | |
Collapse
|
22
|
Su LJ, Arab L. Alcohol consumption and risk of colon cancer: evidence from the national health and nutrition examination survey I epidemiologic follow-up study. Nutr Cancer 2005; 50:111-9. [PMID: 15623458 DOI: 10.1207/s15327914nc5002_1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The epidemiologic findings on the relationship between alcohol consumption and colon cancer are inconsistent. The National Health and Nutrition Examination Survey (NHANES) I Epidemiologic Follow-Up Study (NHEFS) included a prospective cohort population representative of the general U.S. population, which had not been fully utilized for examining the risk between colon cancer and alcohol drinking. The NHEFS consisted of 10,220 participants prospectively followed over a decade. Alcohol consumption, amount and type of beverage, and drinking patterns at baseline were considered in examination of the effect of alcohol consumption on the risk of colon cancer. The consumption of one or more alcoholic beverages a day at baseline was associated with approximately a 70% greater risk of colon cancer [relative risk (RR)=1.69; 95% confidence interval (CI)=1.03, 2.79], with a strong positive dose-response relationship (P=0.04). This association appeared to be exclusively related to daily drinking of one or more drinks of liquor (RR=2.48; 95% CI=1.66, 4.53). Additionally, more than a 70% increased risk of colon cancer was observed for more than 34 yr of alcohol drinking history compared with nondrinkers (RR=1.73; 95% CI=1.08, 2.78). Overall, alcohol consumption was significantly associated with increased risk of colon cancer. The most important factor for colon cancer seems to be liquor consumption.
Collapse
Affiliation(s)
- Lihchyun Joseph Su
- Stanley S. Scott Cancer Center and School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| | | |
Collapse
|
23
|
Abstract
Alcohol-induced diseases of the gastrointestinal tract play an important role in clinical gastroenterology. However, the precise pathophysiological mechanisms are still largely unknown. Alcohol research depends essentially on animal models due to the fact that controlled experimental studies of ethanol-induced diseases in humans are unethical. Animal models have already been successfully applied to disclose and analyze molecular mechanisms in alcohol-induced diseases, partially by using knockout technology. Because of a lack of transferability of some animal models to the human condition, results have to be interpreted cautiously. For some alcohol-related diseases like chronic alcoholic pancreatitis, the ideal animal model does not yet exist. Here we provide an overview of the most commonly used animal models in gastrointestinal alcohol research. We will also briefly discuss the findings based on animal models as well as the current concepts of pathophysiological mechanisms involved in acute and chronic alcoholic damage of the esophagus, stomach, small and large intestine, pancreas and liver.
Collapse
Affiliation(s)
- Soren V Siegmund
- Department of Medicine II (Gastroenterology, Hepatology, Infectious Diseases), University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | | | | |
Collapse
|
24
|
Maekawa SJ, Aoyama N, Shirasaka D, Kuroda K, Tamura T, Kuroda Y, Kasuga M. Excessive alcohol intake enhances the development of synchronous cancerous lesion in colorectal cancer patients. Int J Colorectal Dis 2004; 19:171-5. [PMID: 12827412 DOI: 10.1007/s00384-003-0516-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2003] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS We examined the potential impact of alcohol drinking on the incidence of synchronous colorectal cancer. PATIENTS AND METHODS This study comprised 191 men with colorectal cancer who had undergone surgical resection. Synchronous colorectal cancer was found in 16 patients (8.4%). The relationship between synchronous colorectal cancer and alcohol intake was analyzed by multivariate methods. Cumulative alcohol intake was assessed by the drinking index (weekly average multiplied by years of drinking). RESULTS There was higher incidence of associated adenoma in the synchronous cancer group. Heavy cumulative intake (drinking index 9800 or higher) was associated with significantly higher risk synchronous colorectal cancer than in nondrinkers (odds ratio 6.8). The association of alcohol intake with the risk of synchronous colorectal cancer was not affected by the type of alcohol beverages. CONCLUSION This study demonstrated that excessive alcohol intake might be an independent risk factor for synchronous colorectal cancer. The screening program based on this information may prevent the synchronous lesions being missed.
Collapse
Affiliation(s)
- Shu-ji Maekawa
- Division of Diabetes, Digestive, and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Hyogo, 650-0017 Kobe, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Lindell M, Lang M, Lennernäs H. Expression of genes encoding for drug metabolising cytochrome P450 enzymes and P-glycoprotein in the rat small intestine; comparison to the liver. Eur J Drug Metab Pharmacokinet 2003; 28:41-8. [PMID: 14503663 DOI: 10.1007/bf03190865] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The level of expression of genes encoding for nine major xenobiotic metabolising Cytochrome P450s (CYPs) and the P-glycoprotein (Pgp) was determined in three different regions of the small intestine of male and female Sprague Dawley rats and the expression was compared with that in the liver. A semi-quantitative RT-PCR method, using the total RNA from the tissues, was established for the determination of the level of gene expression. Four of the CYP genes: the CYP2B1, CYP2C6, CYP2C11 and CYP2D1 and the Pgp were expressed at as high levels in the small intestine as in the liver. The expression of the other CYP genes was remarkably different in the two organs. The CYP1A2, CYP2A3, CYP2E1 and CYP3A1 showed a strong expression in the liver but only a comparatively weak or no expression in the small intestine. The CYP1A1 on the other hand exhibited a stronger expression in the small intestine than in the liver. With the exception of the CYP2A3, none of the genes showed a clear regional distribution in their small intestinal expression. Furthermore, no obvious sex difference in the expression of the CYP and Pgp genes could be observed. Our results indicate that several of the enzymes, central for drug metabolism are differently expressed in the liver and in the small intestine of the rat which should be taken into account when using rat as a model for the bioavailability and organ specific toxicity studies of orally administered xenobiotics. The apparently strong small intestinal expression of the CYP2C genes suggests that these enzymes could play a key role in the intestinal drug metabolism in rats and therefore affect the bioavailability of those orally used drugs which are substrates of the CYP2Cs. This possibility should be investigated in more detail both in rats and humans.
Collapse
Affiliation(s)
- Monica Lindell
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | | | | |
Collapse
|
26
|
Siegmund S, Haas S, Schneider A, Singer MV. Animal models in gastrointestinal alcohol research-a short appraisal of the different models and their results. Best Pract Res Clin Gastroenterol 2003; 17:519-42. [PMID: 12828953 DOI: 10.1016/s1521-6918(03)00033-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alcohol-related diseases of the gastrointestinal tract play an important role in clinical gastroenterology. However, the mechanisms and pathophysiology underlying the effects of ethanol on the organs of the digestive tract are not yet completely understood. Animal models represent an essential tool for investigating alcohol-related diseases because they give researchers the opportunity to use methods that cannot be used in humans, such as knockout technology. However, there is still a need for new animal models resembling the human condition, since for some alcohol-related diseases such as chronic alcoholic pancreatitis, the ideal animal model does not yet exist. In this chapter, we provide an overview of the most commonly used animal models in gastrointestinal alcohol research. We will also briefly discuss the current concepts of the pathophysiological mechanisms involved in acute and chronic alcoholic damage of the oesophagus, stomach, small and large intestine, pancreas and liver.
Collapse
Affiliation(s)
- Sören Siegmund
- Department of Medicine II (Gastroenterology, Hepatology and Infectious Diseases), University Hospital of Heidelberg at Mannheim, Theodor-Kutzer-Ufer 1-3, Manneheim 68135, Germany
| | | | | | | |
Collapse
|
27
|
Povey AC, Hall CN, Badawi AF, Cooper DP, Guppy MJ, Jackson PE, O'Connor PJ, Margison GP. Host determinants of DNA alkylation and DNA repair activity in human colorectal tissue: O(6)-methylguanine levels are associated with GSTT1 genotype and O(6)-alkylguanine-DNA alkyltransferase activity with CYP2D6 genotype. Mutat Res 2001; 495:103-15. [PMID: 11448648 DOI: 10.1016/s1383-5718(01)00203-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
There is increasing evidence that alkylating agent exposure may increase large bowel cancer risk and factors which either alter such exposure or its effects may modify risk. Hence, in a cross-sectional study of 78 patients with colorectal disease, we have examined whether (i) metabolic genotypes (GSTT1, GSTM1, CYP2D6, CYP2E1) are associated with O(6)-methyldeoxyguanosine (O(6)-MedG) levels, O(6)-alkylguanine-DNA alkyltransferase (ATase) activity or K-ras mutations, and (ii) there was an association between ATase activity and O(6)-MedG levels. Patients with colon tumours and who were homozygous GSTT1(*)2 genotype carriers were more likely than patients who expressed GSTT1 to have their DNA alkylated (83 versus 32%, P=0.03) and to have higher O(6)-MedG levels (0.178+/-0.374 versus 0.016+/-0.023 micromol O(6)-MedG/mol dG, P=0.04) in normal, but not tumour, DNA. No such association was observed between the GSTT1 genotype and the frequency of DNA alkylation or O(6)-MedG levels in patients with benign colon disease or rectal tumours. Patients with colon tumours or benign colon disease who were CYP2D6-poor metabolisers had higher ATase activity in normal tissue than patients who were CYP2D6 extensive metabolisers or CYP2D6 heterozygotes. Patients with the CYP2E1 Dra cd genotype were less likely to have a K-ras mutation: of 55 patients with the wild-type CYP2E1 genotype (dd), 23 had K-ras mutations, whereas none of the 7 individuals with cd genotype had a K-ras mutation (P=0.04). No other associations were observed between GSTT1, GSTM1, CYP2D6 and CYP2E1 Pst genotypes and adduct levels, ATase activity or mutational status. O(6)-MedG levels were not associated with ATase activity in either normal or tumour tissue. However, in 15 patients for whom both normal and tumour DNA contained detectable O(6)-MedG levels, there was a strong positive association between the normal DNA/tumour DNA adduct ratio and the normal tissue/tumour tissue ATase ratio (r(2)=0.66, P=0.001). These results indicate that host factors can affect levels both of the biologically effective dose arising from methylating agent exposure and of a susceptibility factor, the DNA repair phenotype.
Collapse
Affiliation(s)
- A C Povey
- Cancer Research Campaign Carcinogenesis Group, Paterson Institute for Cancer Research, Manchester M20 9BX, UK.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Smith C, Stamm SC, Riggs JE, Stauber W, Harsh V, Gannett PM, Hobbs G, Miller MR. Ethanol-mediated CYP1A1/2 induction in rat skeletal muscle tissue. Exp Mol Pathol 2000; 69:223-32. [PMID: 11115363 DOI: 10.1006/exmp.2000.2328] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The causes of non-trauma-mediated rhabdomyolysis are not well understood. It has been speculated that ethanol-associated rhabdomyolysis may be attributed to ethanol induction of skeletal muscle cytochrome P450(s), causing drugs such as acetaminophen or cocaine to be metabolized to myotoxic compounds. To examine this possibility, the hypothesis that feeding ethanol induces cytochrome P450 in skeletal muscle was tested. To this end, rats were fed an ethanol-containing diet and skeletal muscle tissue was assessed for induction of CYP2E1 and CYP1A1/2 by immunohistochemical procedures; liver was examined as a positive control tissue. Enzymatic assays and Western blot analyses were also performed on these tissues. In one feeding system, ethanol-containing diets induced CYP1A1/2 in soleus, plantaris, and diaphragm muscles, with immunohistochemical staining predominantly localized to capillaries surrounding myofibers. Antibodies to CYP2E1 did not react with skeletal muscle tissue from animals receiving a control or ethanol-containing diet. However, neither skeletal muscle CYP1A1/2 nor CYP2E1 was induced when ethanol diets were administered by a different feeding system. Ethanol consumption can induce some cytochrome P450 isoforms in skeletal muscle tissue; however, the mechanism of CYP induction is apparently complex and appears to involve factors in addition to ethanol, per se.
Collapse
Affiliation(s)
- C Smith
- Department of Anatomy, West Virginia University Health Sciences Center, Morgantown 26506, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Plastaras JP, Guengerich FP, Nebert DW, Marnett LJ. Xenobiotic-metabolizing cytochromes P450 convert prostaglandin endoperoxide to hydroxyheptadecatrienoic acid and the mutagen, malondialdehyde. J Biol Chem 2000; 275:11784-90. [PMID: 10766802 DOI: 10.1074/jbc.275.16.11784] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclooxygenases catalyze the oxygenation of arachidonic acid to prostaglandin endoperoxides. Cyclooxygenase-2- and the xenobiotic-metabolizing cytochrome P450s 1A and 3A are all aberrantly expressed during colorectal carcinogenesis. To probe for a role of P450s in prostaglandin endoperoxide metabolism, we studied the 12-hydroxyheptadecatrienoate (HHT)/malondialdehyde (MDA) synthase activity of human liver microsomes and purified P450s. We found that human liver microsomes have HHT/MDA synthase activity that is concentration-dependent and inhibited by the P450 inhibitors, ketoconazole and clotrimazole with IC(50) values of 1 and 0.4 microM, respectively. This activity does not require P450 reductase. HHT/MDA synthase activity was present in purified P450s but not in heme alone or other heme proteins. The catalytic activities of various purified P450s were determined by measuring rates of MDA production from prostaglandin endoperoxide. At 50 microM substrate, the catalytic activities of purified human P450s varied from 10 +/- 1 to 0.62 +/- 0.02 min(-1), 3A4 >> 2E1 > 1A2. Oxabicycloheptane analogs of prostaglandin endoperoxide, U-44069 and U-46619, induced spectral changes in human P450 3A4 with K(s) values of 240 +/- 20 and 130 +/- 10 microM, respectively. These results suggest that co-expression of cyclooxygenase-2 and P450s in developing cancers may contribute to genomic instability due to production of the endogenous mutagen, MDA.
Collapse
Affiliation(s)
- J P Plastaras
- A. B. Hancock Jr. Memorial Laboratory for Cancer Research, Department of Biochemistry, Center in Molecular Toxicology and The Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
31
|
Oinonen T, Ronis M, Wigell T, Tohmo K, Badger T, Lindros KO. Growth hormone-regulated periportal expression of CYP2C7 in rat liver. Biochem Pharmacol 2000; 59:583-9. [PMID: 10660124 DOI: 10.1016/s0006-2952(99)00344-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Most drug- and steroid-metabolizing cytochrome P450 (CYP) enzymes are expressed in the mammalian liver in a characteristic zonated pattern, with high expression in the downstream perivenous (centrilobular) region. Here, we report that CYP2C7, a member of the rat CYP2 family, is expressed preferentially in the opposite, periportal region. CYP2C7 mRNA, as detected by reverse transcription-polymerase chain reaction, was detected almost exclusively in cell lysates obtained from the periportal region, indicating a very steep acinar gradient. The amount of immunoreactive CYP2C7 protein in periportal cell lysates was also higher than in samples from the perivenous region. This gradient was reversed by hypophysectomy, which markedly and selectively reduced the periportal CYP2C7 protein content. Subsequent growth hormone infusion by osmotic minipumps restored the zonation by selectively increasing the amount of periportal CYP2C7 protein. Although hypophysectomy suppressed CYP2C7 mRNA and growth hormone counteracted it, regulation at this level did not appear to occur in a zone-specific fashion. This indicates that growth hormone-mediated zonal regulation of CYP2C7 protein has additional translational or posttranslational components. Ethanol treatment, which has been shown to affect growth hormone levels, significantly induced CYP2C7 mRNA, but not zone specifically. Our results demonstrate that growth hormone up-regulates the CYP2C7 gene by enhancing the expression of the protein specifically in the periportal liver region. Growth hormone may up-regulate other periportally expressed liver genes in a similar fashion.
Collapse
Affiliation(s)
- T Oinonen
- Alcohol Research Center, National Public Health Institute, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
32
|
Lieber CS. Microsomal Ethanol-Oxidizing System (MEOS): The First 30 Years (1968-1998)-A Review. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04217.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Wang E, Spitzer JJ, Chamulitrat W. Differential regulation of inducible nitric oxide synthase gene expression by ethanol in the human intestinal epithelial cell line DLD-1. Nitric Oxide 1999; 3:244-53. [PMID: 10442856 DOI: 10.1006/niox.1999.0230] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have examined the regulation of inducible nitric oxide synthase (iNOS) gene expression by ethanol in monolayers of DLD-1 cells, an epithelial cell line derived from human intestinal adenocarcinoma. Optimum induction of iNOS mRNA in these cells was obtained with IFN-gamma and IL-1beta treatment, while further addition of TNF-alpha did not have significant effect. In a set of experiments to study ethanol effects, DLD-1 monolayers were pretreated with ethanol for 24 h and were then treated with IFN-gamma + IL-1beta for an additional 24 h. Cells pretreated with ethanol showed decreased iNOS mRNA levels, indicating that ethanol may inhibit cytokine-induced iNOS transcription or affect mRNA destabilization. The suppression was ethanol-dose dependent with an IC50 of 50 mM. In another set of experiments to study ethanol effects, DLD-1 monolayers were pretreated with 66 mM ethanol for 24 h. These cells showed significant upregulation of IL-1beta mRNA and protein as detected in the supernatants. Aliquoted supernatants from these cells (i.e., conditioned media) were added to naive DLD-1 monolayers together with IFN-gamma. Conditioned medium from ethanol-treated cells increased the IFN-gamma-induced iNOS mRNA of naive cells by threefold. Two different effects of ethanol are now reported: (a) ethanol inhibits IFN-gamma + IL-1beta-induced iNOS mRNA of the same DLD-1 cells and (b) ethanol induces cellular paracrine signals by releasing IL-1beta into the medium, which in combination with IFN-gamma increases iNOS mRNA levels of the recipient naive DLD-1 cells. Because IFN-gamma and IL-1beta are produced by intestinal immune cells, these findings may have implications for differential in vivo regulation of epithelial iNOS genes by ethanol, depending on the inflammatory and immune status of the host.
Collapse
Affiliation(s)
- E Wang
- Department of Physiology and Alcohol Research Center, Louisiana State University Medical Center, New Orleans 70112-1393, USA
| | | | | |
Collapse
|
34
|
Ronis MJ, Celander M, Badger TM. Cytochrome P450 enzymes in the kidney of the bobwhite quail (Colinus virginianus): induction and inhibition by ergosterol biosynthesis inhibiting fungicides. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 121:221-9. [PMID: 9972464 DOI: 10.1016/s0742-8413(98)10043-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Metabolism of testosterone and the alkoxyresorufins was examined in kidney microsomes from male Bobwhite quail (Colinus virginianus) and was compared with that in kidney microsomes prepared from the male rat. In addition, cross-reactivity studies were conducted with a number of antibodies prepared against cytochrome P450 (CYP) enzymes purified from rat and trout liver. The effects of treatment with the fungicides: propiconazole, vinclozolin, clotrimazole and ketoconazole were examined. While kidney microsomes from both quail and rat catalyzed testosterone metabolism at multiple positions, the pattern of hydroxylated metabolites differed. Treatment with vinclozolin resulted in significant induction of testosterone 2 beta- and 15 beta-hydroxylase activity in quail kidney accompanied by increases in expression of P450 enzymes cross-reactive with antibodies raised against a CYP 3A-like protein in teleost fish. In contrast, ketoconazole treatment resulted in inhibition of testosterone hydroxylation at positions 15 beta- and 6 alpha-. Propiconazole and vinclozolin significantly induced a CYP 1A1 cross-reactive P450 enzyme in quail kidney 2-3-fold unaccompanied by significant increases in alkoxyresorufin O-dealkylase activity. These activities were significantly inhibited by ketoconazole treatment. Quail kidney microsomes also expressed high levels of a CYP 4A1 cross-reactive apoprotein which was inducible 3-4-fold by ketoconazole. Thus, quail kidney possesses cytochrome P450 enzymes related to forms found in mammalian gene families 1, 3 and 4. Fungicide treatment results in mixed patterns of induction and inhibition of kidney P450 enzymes different from those previously reported in quail liver.
Collapse
Affiliation(s)
- M J Ronis
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital Research Institute, Little Rock 72205, USA.
| | | | | |
Collapse
|
35
|
Ronis MJ, Huang J, Longo V, Tindberg N, Ingelman-Sundberg M, Badger TM. Expression and distribution of cytochrome P450 enzymes in male rat kidney: effects of ethanol, acetone and dietary conditions. Biochem Pharmacol 1998; 55:123-9. [PMID: 9448734 DOI: 10.1016/s0006-2952(97)00381-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ethanol, acetone, diet and starvation, known modulators of the hepatic cytochrome P450 (CYP)-dependent microsomal monooxygenase system, were assessed for their effects on cytochrome P450 isozyme content and monooxygenase activities in the male rat kidney. In acute experiments, rats were either treated with acetone, fasted or given a combination of the two treatments. Acetone treatment alone induced CYP2E1-dependent p-nitrophenol hydroxylase activity in kidney microsomes by 8-fold. This was accompanied by a 6-fold increase in CYP2E1 apoprotein as determined by Western blot analysis. There was, however, no significant increase in steady-state levels of CYP2E1 mRNA as measured by Northern blot analysis. Starvation also induced CYP2E1 apoprotein in the kidney and, as has been reported previously in the liver, had a synergistic inductive effect with acetone. CYP2B and CYP3A apoproteins were also induced by acetone, starvation and starvation/acetone combinations in the kidney. Immunohistochemical analysis revealed localization of CYP2E1 and CYP2B principally in the cortex associated with tubular cells. This distribution was maintained upon starvation/acetone treatment. Two induction experiments were performed in which the ethanol was administered as part of a system of total enteral nutrition (TEN). A short-term study was conducted in which ethanol was administered for 8 days in two liquid diets of different composition, and a chronic experiment was performed in which ethanol was administered for 35 days. A diet-independent 6-fold increase in CYP2E1 apoprotein was observed in the short-term experiment. Expression of CYP3A and CYP2A cross-reactive apoproteins in kidney microsomes appeared to be affected by alterations in diet but, were unaffected by ethanol treatment. In the chronic 35-day ethanol exposure experiment, CYP2E1 apoprotein was also elevated 6-fold and this was found to be accompanied by a significant 3-fold increase in CYP2E1 mRNA. In the same study, no ethanol effects were apparent on expression of CYP2B and CYP3A apoproteins. Thus, acetone induced a variety of renal cytochrome P450 forms in addition to CYP2E1, while ethanol appeared to be a much more specific renal CYP2E1 inducer. Furthermore, as reported in the liver, acetone and ethanol appeared to induce CYP2E1 in the kidney by different mechanisms.
Collapse
Affiliation(s)
- M J Ronis
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | | | | | | | | | | |
Collapse
|
36
|
Hakkak R, Korourian S, Ronis MJ, Badger TM. Effects of diet and ethanol treatment on azoxymethane-induced liver and gastrointestinal neoplasia of male rats. Cancer Lett 1996; 107:257-64. [PMID: 8947522 DOI: 10.1016/0304-3835(96)04379-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epidemiological and animal studies have shown that diet and excessive alcohol consumption are major risk factors for liver and gastrointestinal cancers. This study investigated the effects of diet and alcohol consumption on azoxymethane (AOM)-induced liver and gastrointestinal neoplasia in male rats. Rats were infused intragastrically with control or ethanol-containing diets. After 35 days of dietary acclimatization, all rats received two intragastric infusions of AOM (15 mg/kg) separated by 1 week and then were maintained on standard rat food for 26 weeks. Results suggest that liver and duodenum are the major target organs when AOM is given orally and ethanol pre-exposure potentiates the AOM-induced hepatic and duodenal dysplasia.
Collapse
Affiliation(s)
- R Hakkak
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | | | | | | |
Collapse
|