1
|
Signaling pathways underlying changes in the contractility of the stomach fundus smooth muscle in diabetic rats. Arch Pharm Res 2020; 43:666-675. [PMID: 32607942 DOI: 10.1007/s12272-020-01244-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/25/2020] [Indexed: 10/24/2022]
Abstract
Dysfunction of gastrointestinal (GI) motility is a common complication in patients with diabetes mellitus (DM). Studies related to changes in fundus contraction induced by inhibitors in DM are not well known. Therefore, this study aimed to investigate the signaling pathways involved in the changes in the contraction of fundus smooth muscle obtained from control and DM rats. DM was induced by injecting streptozotocin (65 mg/kg) into Sprague-Dawley rats. The rats were sacrificed after 14 days. Fundus smooth muscle contraction was stimulated using electrical field stimulation (amplitude, 50 V; duration, 1 min; frequency, 2-20 Hz) and acetylcholine (0.1 mM). The inhibitor-mediated cell membrane was pre-treated with atropine, verapamil, methysergide, ketanserin, ondansetron, and GR 113808. Inhibitors related to intracellular signaling, such as U73122, chelerythrine, L-NNA, were also used. ML-9 and Y-27632 were identified as inhibitors of factors of myosin light chain (MLC). The contractility was observed to be lower in the DM group than in the control group. Further, the activities of phospholipase C (PLC), protein kinase C (PKC), and myosin light chain kinase (MLCK) were decreased in the DM group. DM reduced the activity of PLC, PKC, and MLCK, which resulted in a decrease in the contractility of the fundus smooth muscle. Therefore, our results present the mechanism of this DM-mediated GI disorder.
Collapse
|
2
|
Naganuma S, Shiina T, Yasuda S, Suzuki Y, Shimizu Y. Histamine-enhanced contractile responses of gastric smooth muscle via interstitial cells of Cajal in the Syrian hamster. Neurogastroenterol Motil 2018; 30:e13255. [PMID: 29159902 DOI: 10.1111/nmo.13255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/28/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Gastric motility is controlled by the autonomic and enteric nervous systems and by interstitial cells of Cajal (ICCs). Although histamine is known to be released from enterochromaffin-like cells in the gastric mucosa, its regulatory roles in gastric motility are still controversial. Therefore, we investigated the functional roles of histamine in gastric motility. METHODS Stomach preparations from hamsters were used because the stomach of hamsters can be easily separated into the forestomach and the glandular stomach. A whole preparation of the stomach was mounted in a Magnus tube, and mechanical responses were recorded using a force transducer. KEY RESULTS Exogenous application of histamine had little effect on contractile activity of the glandular stomach. In contrast, the monoamine evoked regular, periodic contractions in the forestomach. An H1 receptor agonist reproduced the contractile responses and an H1 receptor antagonist blocked histamine-evoked contractions. Atropine and tetrodotoxin did not affect the histamine-evoked contractions. Pretreatment with drugs that inhibit the activity of ICCs abolished the effects of histamine. CONCLUSION & INFERENCES The findings suggest that histamine regulates gastric motility by acting on ICCs via H1 receptors in the hamster. The remarkable ability of histamine to induce rhythmic contractions would be useful for treatment of gastric dysmotility.
Collapse
Affiliation(s)
- S Naganuma
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - T Shiina
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - S Yasuda
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Y Suzuki
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Y Shimizu
- Department of Basic Veterinary Science, Laboratory of Physiology, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| |
Collapse
|
3
|
Dai C, Qian W, Liu N, Gong J, Chen W, Hou X. Simo Decoction Stimulates Contractions of Antral Longitudinal Smooth Muscle via Multitudinous Mechanisms. J Evid Based Complementary Altern Med 2013; 18:113-120. [PMID: 31216611 DOI: 10.1177/2156587212469207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The aim of the study was to investigate Simo decoction-induced contractions of antral smooth muscles of rats and its mechanisms. The contractile responses of longitudinal strips to consecutive concentrations of Simo decoction were characterized by atropine, gallamine, 4-diphenylacetoxy-N-methylpiperidine methiodide, and adrenaline, hexamethonium, L-arginine, and nifedipine and compared with Krebs solution (control) and acetylcholine-induced contractions. Simo decoction dose-dependently increased contractions of antral strips (P = .000 vs control); its maximal effect was higher than acetylcholine (10-3 mol L-1; P < .05); Simo decoction-induced contractions were completely inhibited by atropine, 4-diphenylacetoxy-N-methylpiperidine methiodide, or 4-diphenylacetoxy-N-methylpiperidine methiodide + gallamine (P = .000 for all) but were partly suppressed by gallamine, adrenaline, hexamethonium, L-arginine, and nifedipine (P = .000 for all). Simo decoction promotes the contractions of antral strips mainly through activation of muscarinic M3 receptor, while partly through activation of M2 receptor, Ca2+ channel, nicotinic receptor, and inhibition of adrenergic receptor as well as release of nitric oxide.
Collapse
Affiliation(s)
- Chibing Dai
- Co-first author
- Present position: Renhe Hospital of Three Gorges University
- 1 Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Qian
- Co-first author
- 1 Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Liu
- 1 Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- 1 Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenmei Chen
- 1 Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Hou
- 1 Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Dai C, Liu N, Chen W, Qian W, Hou X. Simo decoction promotes contraction of antral circular smooth muscle mainly via muscarinic M3 receptor. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:270-276. [PMID: 23022322 DOI: 10.1016/j.jep.2012.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/01/2012] [Accepted: 09/03/2012] [Indexed: 05/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Simo Decoction (SMD), a traditional Chinese medicine, included four elements, such as Fructus aurantii, Radix aucklandiae, Semen arecae and Radix linderae. It has been used to improve gastrointestinal dysmotility in clinical practice for a long history in China. However, the explicit mechanisms are unclear. The aim of this study was to investigate the effect of SMD on contractions of antral circular smooth muscle strips of Sprague-Dawley (SD) rats and its underlying mechanism. MATERIALS AND METHODS The antral circular strips were prepared in the organ bath under baseline or to be incubated with muscarinic receptor antagonist atropine (10(-6)M), muscarinic M3 receptor antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) (0.4×10(-6)M), muscarinic M2 receptor antagonist gallamine (10(-6)M), adrenergic receptor agonist adrenaline (10(-7)M), exogenous nitric oxide (NO) donor l-arginine (10(-4)M), nicotinic receptor antagonist hexamethonium chloride (10(-4)M) and Ca(2+) channel antagonist nifedipine (30nM), and consecutive concentrations of SMD were added to the bath to observe the strip responses. As a control, the responses of strips after administration with the same volume of Krebs solution as SMD were also noted. The strip responses to acetylcholine (10(-7)-10(-3)M) were also noted in organ bath to compare with SMD-induced contraction. RESULTS SMD dose-dependently evoked hypercontractility of antral circular strips, and the maximal contractile effect of circular smooth muscle induced by SMD was significantly higher than that induced by acetylcholine (10(-3)M). The responses of antral circular strips to SMD were completely antagonized by atropine, 4-DAMP or 4-DAMP+gallamine, but partly inhibited by gallamine and partly suppressed by adrenaline, l-arginine, hexamethonium chloride and nifedipine. CONCLUSIONS SMD promotes contractions of antral circular strips in rats mainly via activation of muscarinic M3 receptor, but partly via activation of muscarinic M2 receptor, Ca(2+) channel and nicotinic receptor, inhibition of adrenergic receptor and releasing of NO.
Collapse
Affiliation(s)
- Chibing Dai
- Division of Gastroenterology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, China.
| | | | | | | | | |
Collapse
|
5
|
Ackbar R, Malvasio V, Holzer P, Saxena AK. In vitro effect of bethanechol and suberyldicholine on regions of guinea pig esophagus. J Surg Res 2012; 174:56-61. [PMID: 21227463 DOI: 10.1016/j.jss.2010.11.899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/29/2010] [Accepted: 11/16/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND Tissue engineering and regenerative medicine is envisaged as the future option for esophageal replacement; however, engineering of a functional esophagus is impeded by the limited understanding of the anatomical complexity of this dynamic muscular organ. The aim of this study was to characterize the function of native esophageal tissue and determine differences in functional response to stimulation between anatomical sites. MATERIALS AND METHODS The in-vitro response of guinea pig esophageal preparations, from various anatomical sites, to muscle agonists was investigated. Esophageal strips were exposed to bethanechol, an agonist of muscarinic receptors located on smooth muscle, and suberyldicholine, an agonist of nicotinic receptors located on striated muscle, within a Schuler organ bath, to determine the contractile response on the various segments of the esophagus. RESULTS The esophagus responded in a reliable and consistent manner to agonist stimulation. Bethanechol dose response curves were constructed with doses of 10 to 300 μM. The average maximal contractions to bethanechol exposure were 4.51, 4.80, 5.55, and 9.15 mN for upper, upper middle, lower middle, and lower esophageal segments, respectively. Responses to singular stimulation with 30 μM suberyldicholine in the presence of tetrodotoxin (100 μM) gave average contractions of 1.07, 0.84, 2.60, and 3.02 mN for upper, upper middle, lower middle, and lower esophageal segments, respectively. Bethanechol and suberyldicholine-induced responses were greater in the lower esophagus in comparison to the upper esophageal segments. CONCLUSION These findings pave the way for the use of an in-vitro bethanechol and suberyldicholine-induced contraction model for future assessment of engineered esophageal tissue.
Collapse
Affiliation(s)
- Richard Ackbar
- Experimental Fetal Surgery and Tissue Engineering Unit, Department of Pediatric and Adolescent Surgery, Medical University of Graz, Austria
| | | | | | | |
Collapse
|
6
|
Ehlert FJ. Pharmacological Analysis of the Contractile Role of M 2 and M 3 Muscarinic Receptors in Smooth Muscle. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
Di Sotto A, Vitalone A, Nicoletti M, Piccin A, Mazzanti G. Pharmacological and phytochemical study on a Sisymbrium officinale Scop. extract. JOURNAL OF ETHNOPHARMACOLOGY 2010; 127:731-736. [PMID: 19969059 DOI: 10.1016/j.jep.2009.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 11/26/2009] [Accepted: 12/01/2009] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The aerial parts of Sisymbrium officinale Scop. are commonly used to treat airway ailments, moreover in antiquity the herbal drug was reputed to possess anticancer properties. The results obtained in present work support the traditional use and the properties ascribed to Sisymbrium officinale. AIM OF THE STUDY In order to give a scientific basis to the traditional uses of Sisymbrium officinale, this study was aimed to evaluate in vitro the myorelaxant activity, the antimicrobial properties and the antimutagenic effect of an aqueous dry extract of the aerial parts of the plant. A phytochemical characterization of the extract was also performed. MATERIALS AND METHODS The myorelaxant activity was studied against the contractions induced by carbachol, histamine and leukotriene C(4), in isolated guinea-pig trachea. The antimicrobial activity was tested against six bacteria and one yeast. The Ames test, performed by the preincubation method, was used to study the antimutagenic activity of the extract by its capability to inhibit the mutagenic effect of 2-nitrofluorene, sodium azide, methyl methanesulfonate and 2-aminoanthracene, in Salmonella typhimurium TA98, Salmonella typhimurium TA100 and Escherichia coli WP2uvrA strains. The chemical composition of the extract was analyzed by TLC and HPLC. RESULTS Sisymbrium officinale showed to reduce the chemically-induced contractions of isolated guinea-pig trachea with major potency against leukotriene C(4) and histamine. The extract did not show any antibacterial activity. The Ames test showed a strong antimutagenic activity against 2-aminoanthracene, in Escherichia coli WP2uvrA and in Salmonella typhimurium TA98 strains. The phytochemical study highlighted the presence of putranjivine, the glucosinolate marker of Sisymbrium officinale, and of proline. CONCLUSIONS The myorelaxant activity of Sisymbrium officinale offers a scientific basis to its use in traditional medicine. The strong antimutagenic effect suggests further studies to evaluate its possible chemopreventive activity.
Collapse
Affiliation(s)
- A Di Sotto
- Department of Physiology and Pharmacology V. Erspamer, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
8
|
Griffin MT, Matsui M, Ostrom RS, Ehlert FJ. The guinea pig ileum lacks the direct, high-potency, M(2)-muscarinic, contractile mechanism characteristic of the mouse ileum. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2009; 380:327-35. [PMID: 19582435 PMCID: PMC2749929 DOI: 10.1007/s00210-009-0434-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/11/2009] [Accepted: 06/16/2009] [Indexed: 11/03/2022]
Abstract
We explored whether the M(2) muscarinic receptor in the guinea pig ileum elicits a highly potent, direct-contractile response, like that from the M(3) muscarinic receptor knockout mouse. First, we characterized the irreversible receptor-blocking activity of 4-DAMP mustard in ileum from muscarinic receptor knockout mice to verify its M(3) selectivity. Then, we used 4-DAMP mustard to inactivate M(3) responses in the guinea pig ileum to attempt to reveal direct, M(2) receptor-mediated contractions. The muscarinic agonist, oxotremorine-M, elicited potent contractions in ileum from wild-type, M(2) receptor knockout, and M(3) receptor knockout mice characterized by negative log EC(50) (pEC (50)) values +/- SEM of 6.75 +/- 0.03, 6.26 +/- 0.05, and 6.99 +/- 0.08, respectively. The corresponding E (max) values in wild-type and M(2) receptor knockout mice were approximately the same, but that in the M(3) receptor knockout mouse was only 36% of wild type. Following 4-DAMP mustard treatment, the concentration-response curve of oxotremorine-M in wild-type ileum resembled that of the M(3) knockout mouse in terms of its pEC (50), E (max), and inhibition by selective muscarinic antagonists. Thus, 4-DAMP mustard treatment appears to inactivate M(3) responses selectively and renders the muscarinic contractile behavior of the wild-type ileum similar to that of the M(3) knockout mouse. Following 4-DAMP mustard treatment, the contractile response of the guinea pig ileum to oxotremorine-M exhibited low potency and a competitive-antagonism profile consistent with an M(3) response. The guinea pig ileum, therefore, lacks a direct, highly potent, M(2)-contractile component but may have a direct, lower potency M(2) component.
Collapse
MESH Headings
- Animals
- Diphenylacetic Acids/pharmacology
- Dose-Response Relationship, Drug
- Guinea Pigs
- Ileum/drug effects
- Ileum/metabolism
- In Vitro Techniques
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscarinic Agonists/pharmacology
- Muscarinic Antagonists/pharmacology
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/metabolism
- Oxotremorine/analogs & derivatives
- Oxotremorine/pharmacology
- Piperidines/pharmacology
- Receptor, Muscarinic M2/drug effects
- Receptor, Muscarinic M2/genetics
- Receptor, Muscarinic M2/metabolism
- Receptor, Muscarinic M3/drug effects
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/metabolism
- Species Specificity
Collapse
Affiliation(s)
| | - Minoru Matsui
- Department of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025 Japan
| | - Rennolds S. Ostrom
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Frederick J. Ehlert
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, CA 92697-4625 USA
| |
Collapse
|
9
|
Braverman AS, Miller LS, Vegesna AK, Tiwana MI, Tallarida RJ, Ruggieri MR. Quantitation of the contractile response mediated by two receptors: M2 and M3 muscarinic receptor-mediated contractions of human gastroesophageal smooth muscle. J Pharmacol Exp Ther 2009; 329:218-24. [PMID: 19126780 PMCID: PMC2670594 DOI: 10.1124/jpet.108.148106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 01/05/2009] [Indexed: 11/22/2022] Open
Abstract
Although muscarinic receptors are known to mediate tonic contraction of human gastrointestinal tract smooth muscle, the receptor subtypes that mediate the tonic contractions are not entirely clear. Whole human stomachs with attached esophagus were procured from organ transplant donors. Cholinergic contractile responses of clasp, sling, lower esophageal circular (LEC), midesophageal circular (MEC), and midesophageal longitudinal (MEL) muscle strips were determined. Sling fibers contracted greater than the other fibers. Total, M(2) and M(3) muscarinic receptor density was determined for each of these dissections by immunoprecipitation. M(2) receptor density is greatest in the sling fibers, followed by clasp, LEC, MEC, and then MEL, whereas M(3) density is greatest in LEC, followed by MEL, MEC, sling, and then clasp. The potency of subtype-selective antagonists to inhibit bethanechol-induced contraction was calculated by Schild analysis to determine which muscarinic receptor subtypes contribute to contraction. The results suggest both M(2) and M(3) receptors mediate contraction in clasp and sling fibers. Thus, this type of analysis in which multiple receptors mediate the contractile response is inappropriate, and an analysis method relating dual occupation of M(2) and M(3) receptors to contraction is presented. Using this new method of analysis, it was found that the M(2) muscarinic receptor plays a greater role in mediating contraction of clasp and sling fibers than in LEC, MEC, and MEL muscles in which the M(3) receptor predominantly mediates contraction.
Collapse
Affiliation(s)
- Alan S Braverman
- Department of Urology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
10
|
Ontsouka EC, Bruckmaier RM, Steiner A, Blum JW, Meylan M. Messenger RNA Levels and Binding Sites of Muscarinic Acetylcholine Receptors in Gastrointestinal Muscle Layers from Healthy Dairy Cows. J Recept Signal Transduct Res 2008; 27:147-66. [PMID: 17613726 DOI: 10.1080/10799890701417741] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Acetylcholine interacts with muscarinic receptors (M) to mediate gastrointestinal (GI) smooth muscle contractions. We have compared mRNA levels and binding sites of M(1)to M(5) in muscle tissues from fundus abomasi, pylorus, ileum, cecum, proximal loop of the ascending colon (PLAC), and external loop of the spiral colon (ELSC) of healthy dairy cows. The mRNA levels were measured by quantitative RT-PCR. The inhibition of [(3)H]-QNB (1-quinuclidinyl-[phenyl-4-(3)H]-benzilate) binding by M antagonists [atropine (M(1 - 5)), pirenzepine (M(1)), methoctramine (M(2)), 4-DAMP (M(3)), and tropicamide (M(4))] was used to identify receptors at the functional level. Maximal binding (B(max)) was determined through saturation binding with atropine as a competitor. The mRNA levels of M(1), M(2), M(3), and M(5) represented 0.2, 48, 50, and 1.8%, respectively, of the total M population, whereas mRNA of M(4) was undetectable. The mRNA levels of M(2) and of M(3) in the ileum were lower (P < 0.05) than in other GI locations, which were similar among each other. Atropine, pirenzepine, methoctramine, and 4-DAMP inhibited [(3)H]-QNB binding according to an either low- or high-affinity receptor pattern, whereas tropicamide had no effect on [(3)H]-QNB binding. The [(3)H]-QNB binding was dose-dependent and saturable. B(max) in fundus, pylorus, and PLAC was lower (P < 0.05) than in the ELSC, and in the pylorus lower (P < 0.05) than in the ileum. B(max) and mRNA levels were negatively correlated (r = -0.3; P < 0.05). In conclusion, densities of M are different among GI locations, suggesting variable importance of M for digestive functions along the GI tract.
Collapse
Affiliation(s)
- E C Ontsouka
- Clinic for Ruminants, Vetsuisse Faculty, University of Berne, CH-3012 Berne. Switzerland.
| | | | | | | | | |
Collapse
|
11
|
Braverman AS, Doumanian LR, Ruggieri MR. M2 and M3 muscarinic receptor activation of urinary bladder contractile signal transduction. II. Denervated rat bladder. J Pharmacol Exp Ther 2006; 316:875-80. [PMID: 16243962 DOI: 10.1124/jpet.105.094961] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Normal rat bladder contractions are mediated by the M(3) muscarinic receptor subtype. The M(2) receptor subtype mediates contractions of the denervated, hypertrophied bladder. This study determined signal transduction mechanisms mediating contraction of the denervated rat bladder. Denervated bladder muscle strips were exposed to inhibitors of enzymes thought to be involved in signal transduction in vitro followed by a cumulative carbachol concentration-response curve. Outcome measures were the maximal contraction, the potency of carbachol, and the affinity of darifenacin for inhibition of contraction. Inhibition of phosphoinositide-specific phospholipase C (PI-PLC) with 1-O-octadecyl-2-O-methyl-sn-glycero-3-phosphorylcholine (ET-18-OCH(3)) has no effect on denervated bladder contractions, whereas inhibition of phosphatidyl choline-specific phospholipase C (PC-PLC) with O-tricyclo[5.2.1.02,6]dec-9-yl dithiocarbonate potassium salt (D609) attenuates the carbachol maximum and potency. Inhibition of rho kinase with (R)-(+)-trans-4-(1-aminoethyl)-N-(4-pyridyl)cyclohexanecarboxamide dihydrochloride (Y-27632) reduces carbachol maximum, carbachol potency, and increases darifenacin affinity. Inhibition of rho kinase, protein kinase A (PKA), and protein kinase G (PKG) with 1-(5-isoquinolinesulfonyl)-homopiperazine.HCl (HA-1077) reduces the carbachol maximum and potency. Inhibition of PKC with chelerythrine increases darifenacin affinity, whereas inhibition of rho kinase, PKA, PKG, and protein kinase C (PKC) with 1-(5-isoquinolinesulfonyl)-2-methylpiperazine.2HCl (H7) reduces the carbachol potency while increasing darifenacin affinity. Inhibition of rho kinase, PKA, and PKG with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide.2HCl (H89) increases darifenacin affinity. This study demonstrates that different signal transduction mechanisms mediate the contractile response in the denervated rat bladder than in normal rat bladder. In normal rat bladder, PI-PLC and PC-PLC mediate the contraction, but in denervated bladder only PC-PLC is involved. In the denervated bladder, the rho kinase pathway is more dominant than in normal bladders. PKA seems to mediate a contractile response in normal bladders, whereas it seems to inhibit contraction in denervated bladders.
Collapse
MESH Headings
- Animals
- Benzofurans/pharmacology
- Carbachol/pharmacology
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Female
- In Vitro Techniques
- Muscarinic Agonists/pharmacology
- Muscarinic Antagonists/pharmacology
- Muscle Contraction/drug effects
- Muscle Denervation
- Muscle, Smooth/drug effects
- Muscle, Smooth/enzymology
- Muscle, Smooth/innervation
- Muscle, Smooth/metabolism
- Pyrrolidines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Muscarinic M2/agonists
- Receptor, Muscarinic M2/antagonists & inhibitors
- Receptor, Muscarinic M2/metabolism
- Receptor, Muscarinic M3/agonists
- Receptor, Muscarinic M3/antagonists & inhibitors
- Receptor, Muscarinic M3/metabolism
- Signal Transduction/drug effects
- Urinary Bladder/drug effects
- Urinary Bladder/enzymology
- Urinary Bladder/innervation
- Urinary Bladder/metabolism
Collapse
Affiliation(s)
- Alan S Braverman
- Department of Urology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
12
|
Ehlert FJ, Griffin MT, Abe DM, Vo TH, Taketo MM, Manabe T, Matsui M. The M2 muscarinic receptor mediates contraction through indirect mechanisms in mouse urinary bladder. J Pharmacol Exp Ther 2005; 313:368-78. [PMID: 15608083 DOI: 10.1124/jpet.104.077909] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the contractile role of M2 muscarinic receptors in mouse urinary bladder. When measured in the absence of other agents, contractions elicited to the muscarinic agonist oxotremorine-M exhibited properties consistent with that expected for an M3 response in urinary bladder from wild-type and M2 knockout (KO) mice. Evidence for a minor M2 receptor-mediated contraction was revealed by a comparison of responses in M3 knockout and M2/M3 double knockout mice. Treatment of wild-type and M2 knockout urinary bladder with N-2-chloroethyl-4-piperidinyl diphenylacetate (4-DAMP mustard) caused a large inhibition of the muscarinic contractile response. The residual contractions were much smaller in M2 knockout bladder compared with wild type, suggesting that M2 receptors rescue the muscarinic contractile response in wild-type bladder following inactivation of M3 receptors with 4-DAMP mustard. When measured in the presence of prostaglandin F2alpha and isoproterenol or forskolin, oxotremorine-M mediated a potent contractile response in urinary bladder from M3 KO mice. This response exhibited an M2 profile in competitive antagonism studies and was completely absent in M2/M3 KO mice. Following 4-DAMP mustard treatment, oxotremorine-M elicited a contractile response in wild-type urinary bladder in the presence of KCl and isoproterenol or forskolin, and this response was diminished in M2 KO mice. Our results show that the M2 receptor mediates contractions indirectly in the urinary bladder by enhancing M3 receptor-mediated contractions and inhibiting relaxation. We also show that it is difficult to detect M2 receptor function in competitive antagonism studies under conditions where a simultaneous activation of M2 and M3 receptors occurs.
Collapse
Affiliation(s)
- Frederick J Ehlert
- Department of Pharmacology, College of Medicine, University of California Irvine, Irvine, CA 92697-4625, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kortezova NI, Shikova LI, Milusheva EA, Itzev DE, Bagaev VA, Mizhorkova ZN. Muscarinic modulation of nitrergic neurotransmission in guinea-pig gastric fundus. Neurogastroenterol Motil 2004; 16:155-65. [PMID: 15086869 DOI: 10.1111/j.1365-2982.2004.00514.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Muscarinic receptor activation by (4-Hydroxy-2-butynyl)-1-trimethylammonium-m-chlorocarbanilate chloride (McN-A-343) was investigated both on NADPH-d staining and on electrically induced responses in guinea-pig gastric fundus. McN-A-343 (10 micromol L(-1)) significantly increased the optical density of NADPH-d positive neurones, while blockade of nitric oxide synthase with N(omega)-nitro-L-arginine (L-NA) decreased it, suggesting facilitation of nitric oxide (NO) production. Electrical field stimulation (EFS; 2 Hz, 0.2 ms, supramaximal current intensity, 10 s train duration) elicited on-contraction followed by off-relaxation in the circular muscle strips. McN-A-343 (10 micromol L(-1)) transformed the EFS-evoked response from on-contraction into on-relaxation, which was neurogenic, tetrodotoxin-sensitive and hexamethonium-resistant. L-NA partly reduced the EFS-evoked relaxation, revealing two components: a nitrergic and a non-nitrergic one. The effect of McN-A-343 on the amplitude of the EFS-evoked relaxation was not changed by the M(3) receptor antagonist para-fluoro-hexahydro-sila-difenidol hydrochloride, but was significantly enhanced by M(1) receptor blockade with telenzepine. In the presence of telenzepine, the L-NA-dependent nitrergic component of the EFS-induced relaxation predominates. We suggest that cholinergic receptor activation has a dual effect on nitrergic neurotransmission: (i) stimulation of NOS by muscarinic receptor(s) different from M(1) and M(3) subtype, (ii) prejunctional inhibition of NO-mediated relaxation via M(1) receptors. In addition, M(1) receptors may facilitate the non-nitrergic relaxation.
Collapse
Affiliation(s)
- N I Kortezova
- Institute of Physiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | | | | | | | | | | |
Collapse
|
14
|
Ehlert FJ. Contractile role of M2 and M3 muscarinic receptors in gastrointestinal, airway and urinary bladder smooth muscle. Life Sci 2004; 74:355-66. [PMID: 14607264 DOI: 10.1016/j.lfs.2003.09.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Both M(2) and M(3) muscarinic receptors are expressed in smooth muscle and influence contraction through distinct signaling pathways. M(3) receptors interact with G(q) to trigger phosphoinositide hydrolysis, Ca(2+) mobilization and a direct contractile response. In contrast, M(2) receptors interact with G(i) and G(o) to inhibit adenylyl cyclase and Ca(2+)-activated K(+) channels and to potentiate a Ca(2+)-dependent, nonselective cation conductance. Ultimately, these mechanisms lead to the prediction that the influence of the M(2) receptor on contraction should be conditional upon mobilization of Ca(2+) by another receptor such as the M(3). Mathematical modeling studies of these mechanisms show that the competitive antagonism of a muscarinic response mediated through activation of both M(2) and M(3) receptors should resemble the profile of the directly acting receptor (i.e., the M(3)) and not that of the conditionally acting receptor (i.e., the M(2)). Using a combination of pharmacological and genetic approaches, we have identified two mechanisms for the M(2) receptor in contraction: 1) a high potency inhibition of the relaxation elicited by agents that increase cytosolic cAMP and 2) a low potency potentiation of contractions elicited by the M(3) receptor. The latter mechanism may be involved in muscarinic agonist-mediated heterologous desensitization of smooth muscle, which requires activation of both M(2) and M(3) receptors.
Collapse
Affiliation(s)
- Frederick J Ehlert
- Department of Pharmacology, College of Medicine, University of California, Irvine, Irvine, CA 92697-4625, USA.
| |
Collapse
|
15
|
Braverman AS, Ruggieri MR. Hypertrophy changes the muscarinic receptor subtype mediating bladder contraction from M3 toward M2. Am J Physiol Regul Integr Comp Physiol 2003; 285:R701-8. [PMID: 12763741 PMCID: PMC3277086 DOI: 10.1152/ajpregu.00009.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Major pelvic ganglion electrocautery (MPGE) and spinal cord injury in the rat induce bladder hypertrophy and a change in muscarinic receptor subtypes mediating bladder contraction from predominantly M3 to a combination of M2 and M3. To determine whether this is a result of bladder hypertrophy or denervation, we studied the following groups: sham-operated controls, urinary diversion (DIV), MPGE together with urinary diversion (DIV-DEN), bilateral MPGE (DEN), bladder outlet obstruction (BOO), and MPG decentralization (MPGDEC). The degree of bladder denervation was determined by the maximal carbachol response normalized to the response to electric field stimulation. Receptor subtype density was determined by immunoprecipitation. The affinity of subtype-selective muscarinic antagonists for inhibition of carbachol-induced contractions was used to determine the subtype-mediating contraction. DEN, MPG-DEC, and BOO bladders were hypertrophic whereas DIV bladders were atrophic compared with sham operated. Bladder contraction in sham-operated, DIV, and DIV-DEN was mediated by the M3 receptor subtype, whereas the M2 subtype participated in contraction in the DEN, MPG-DEC, and BOO groups. The hypertrophied bladders had an increase in total and M2 receptor density while all experimental groups showed a reduction in M3 receptor density. Thus bladder hypertrophy, independent from bladder denervation, causes a shift in the muscarinic receptor subtype mediating bladder contraction from M3 toward M2.
Collapse
Affiliation(s)
- Alan S Braverman
- Temple Univ. School of Medicine, 3400 N. Broad St., 715 OMS, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
16
|
Matsui M, Griffin MT, Shehnaz D, Taketo MM, Ehlert FJ. Increased relaxant action of forskolin and isoproterenol against muscarinic agonist-induced contractions in smooth muscle from M2 receptor knockout mice. J Pharmacol Exp Ther 2003; 305:106-13. [PMID: 12649358 DOI: 10.1124/jpet.102.044701] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ability of forskolin and isoproterenol to inhibit the contractile action of the muscarinic agonist, oxotremorine-M, was investigated in smooth muscle from wild-type and M(2) muscarinic receptor knockout mice. Forskolin (5.0 micro M) caused a significant reduction in the contractile activity of oxotremorine-M in ileum, trachea, and urinary bladder from both wild-type and M(2) muscarinic receptor knockout mice. This reduction in contractile activity was characterized by decreases in potency or maximal response, but not always both. Similar results were obtained with isoproterenol (1.0 micro M). The relaxant effects of forskolin in ileum, trachea, and urinary bladder from M(2) receptor knockout mice were approximately 3- to 9-fold greater than those observed in the same tissues from wild-type mice. Similar results were obtained with isoproterenol in ileum and urinary bladder, although the differences between wild-type and M(2) receptor knockout tissues were less than those observed with forskolin. In contrast, there was no significant difference between the relaxant effect of isoproterenol in trachea from wild-type and M(2) receptor knockout mice. In contrast to the results observed with oxotremorine-M as the contractile agent, forskolin and isoproterenol did not exhibit greater relaxant activity against KCl-induced contractions in M(2) receptor knockout mice compared with wild-type mice. These results suggest that a component of the contractile response to muscarinic agonists in smooth muscle involves an M(2) muscarinic receptor-mediated inhibition of the relaxant effects of agents that increase cAMP levels.
Collapse
Affiliation(s)
- Minoru Matsui
- Department of Environmental and Chemical Sciences, Chapman University, Orange, California 92697-4625, USA
| | | | | | | | | |
Collapse
|
17
|
Braverman AS, Tallarida RJ, Ruggieri MR. Interaction between muscarinic receptor subtype signal transduction pathways mediating bladder contraction. Am J Physiol Regul Integr Comp Physiol 2002; 283:R663-8. [PMID: 12185001 PMCID: PMC3277793 DOI: 10.1152/ajpregu.00116.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
M(3) muscarinic receptors mediate cholinergic-induced contraction in most smooth muscles. However, in the denervated rat bladder, M(2) receptors participate in contraction because M(3)-selective antagonists [para-fluoro-hexahydro-sila-diphenidol (p-F-HHSiD) and 4-DAMP] have low affinities. However, the affinity of the M(2)-selective antagonist methoctramine in the denervated bladder is consistent with M(3) receptor mediating contraction. It is possible that two pathways interact to mediate contraction: one mediated by the M(2) receptor and one by the M(3) receptor. To determine whether an interaction exists, the inhibitory potencies of combinations of methoctramine and p-F-HHSiD for reversing cholinergic contractions were measured. In normal bladders, all combinations gave additive effects. In denervated bladders, synergistic effects were seen with the 10:1 and 1:1 (methoctramine:p-F-HHSiD wt/wt) combinations. After application of the sarcoplasmic reticulum ATPase inhibitor thapsigargin to normal tissue, the 10:1 and 1:1 ratios became synergistic, mimicking denervated tissue. Thus in normal bladders both M(2) and M(3) receptors can induce contraction. In the denervated bladder, the M(2) and the M(3) receptors interact in a facilitatory manner to mediate contraction.
Collapse
Affiliation(s)
- Alan S Braverman
- Department of Urology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
18
|
Hsieh JT, Farley JM. Characterization of contractile function and expression of muscarinic receptors, G proteins and adenylate cyclase in cultured tracheal smooth muscle of Swine. J Biomed Sci 2002; 9:339-47. [PMID: 12145532 DOI: 10.1007/bf02256590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Smooth muscle cells lose their contractile function and phenotype very rapidly when placed in culture. During organ culture of smooth muscle strips, phenotype is lost more slowly. In the present studies, we established an organ culture model to study contractile function and expression of muscarinic receptors, G proteins and adenylyl cyclase in different serum concentrations in tracheal smooth muscle from swine. The results show that contractile function and the amounts of M(3) receptors, G proteins and adenylyl cyclase were maintained for up to 5 days in culture. The expression of M(2) receptors was significantly decreased in culture when compared to freshly isolated muscles. Maximal isometric tension was significantly increased in cultured muscles compared with freshly isolated muscles. Different serum concentrations did not significantly affect contractile function and expression of muscarinic receptors, G proteins and adenylyl cyclase. In conclusion, our studies suggest that cultured smooth muscle might be used as a model to study the regulation of contractile function of smooth muscle by various signal transduction pathways.
Collapse
Affiliation(s)
- Jen-Tsung Hsieh
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | |
Collapse
|
19
|
Singer CA, Vang S, Gerthoffer WT. Coupling of M(2) muscarinic receptors to Src activation in cultured canine colonic smooth muscle cells. Am J Physiol Gastrointest Liver Physiol 2002; 282:G61-8. [PMID: 11751158 DOI: 10.1152/ajpgi.00100.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The purpose of this study was to determine whether Src tyrosine kinases are one of the signaling intermediaries linking M(2) receptor stimulation to extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) in cultures of canine colonic smooth muscle cells (CSMC). RT-PCR studies demonstrate expression of multiple Src tyrosine kinases, including Src, Fyn, and Yes, in CSMC. Muscarinic stimulation of CSMC with 10 microM ACh results in a twofold increase in Src activity within 10 min but does not increase the activity of Fyn. Treatment with the M(2) antagonist AF-DX 116 (10 microM) blocks ACh-stimulated Src activation in primary CSMC cultures that express both M(2) and M(3) receptors and in first-passage CSMC cultures that express predominantly M(2) receptors. Alkylation of M(3) receptors with 100 nM N,N-dimethyl-4-piperidinyl diphenylacetate mustard has no effect on Src activity. Treatment with the pyrazolopyrimidine Src inhibitor PP1 (10 microM) or AF-DX 116 (10 microM) blocks ACh-stimulated ERK phosphorylation. Together these results indicate that M(2) receptors are coupled to Src tyrosine kinase and subsequent activation of ERK in cultured CSMC.
Collapse
Affiliation(s)
- Cherie A Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada 89557-0046, USA.
| | | | | |
Collapse
|
20
|
Li M, Bullock CM, Knauer DJ, Ehlert FJ, Zhou QY. Identification of two prokineticin cDNAs: recombinant proteins potently contract gastrointestinal smooth muscle. Mol Pharmacol 2001; 59:692-8. [PMID: 11259612 DOI: 10.1124/mol.59.4.692] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The motility of gastrointestinal tract is regulated by classical neurotransmitters, neuropeptides, and humoral agents. Two novel human cDNAs have been cloned based on their sequence similarity to a frog skin secretion protein, Bv8, and a nontoxic protein of mamba snake venom. These human cDNAs encode two secreted proteins of 86 and 81 amino acids. Northern blot hybridization has revealed that these cDNAs are expressed in gastrointestinal tract, particularly the stomach. Recombinant proteins with authentic N-terminal sequences have been produced in Escherichia coli and refolded into functional proteins by careful control of protein aggregation. Mass spectrometry has confirmed the formation of five pairs of disulfide bonds. The refolded recombinant proteins potently contract gastrointestinal smooth muscle with EC(50) values in the subnanomolar range. The contractile effects of the recombinant proteins are specific for gastrointestinal smooth muscle, because they have no effect on vascular or respiratory smooth muscle. To reflect their potent and specific effects on gastrointestinal smooth muscle cells, we have named these recombinant proteins prokineticins. Ligand binding studies with iodinated prokineticin revealed the presence of a high-affinity site in ileal smooth muscle. The displacement of specific binding by GTP gamma S suggests that the prokineticin receptor may belong to the family of G protein-coupled receptors. Experiments with verapamil and nifedipine revealed that calcium influx is essential for the contractile activity of prokineticins on gastrointestinal smooth muscle. In summary, we have identified two novel endogenous regulators of gastrointestinal motility. The availability of recombinant prokineticins should provide novel therapeutic agents for disorders involving impaired gastrointestinal motility.
Collapse
MESH Headings
- Animals
- Binding, Competitive/drug effects
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Dose-Response Relationship, Drug
- Gastrointestinal Hormones/biosynthesis
- Gastrointestinal Hormones/genetics
- Gastrointestinal Hormones/pharmacology
- Guanosine 5'-O-(3-Thiotriphosphate)/pharmacology
- Guinea Pigs
- Humans
- Ileum/drug effects
- Ileum/physiology
- In Vitro Techniques
- Molecular Sequence Data
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Neuropeptides
- Organ Specificity
- Protein Folding
- Receptors, Cell Surface/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Recombinant Proteins/pharmacology
- Sequence Homology, Amino Acid
- Vascular Endothelial Growth Factor, Endocrine-Gland-Derived
Collapse
Affiliation(s)
- M Li
- Department of Pharmacology, University of California, Irvine, California 92697, USA
| | | | | | | | | |
Collapse
|
21
|
Jung KY, Choo YK, Kim HM, Choi BK. Radish extract stimulates motility of the intestine via the muscarinic receptors. J Pharm Pharmacol 2000; 52:1031-6. [PMID: 11007076 DOI: 10.1211/0022357001774769] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The effects of radish (Brassica oleraceae, Cruciferae) on gastrointestinal motility were examined using rat intestinal segments with myenteric plexus in-vitro and measuring the intestinal transit of charcoal in-vivo. Radish extract (10 microg mL(-1) to 2 mg mL(-1)) caused a dose-dependent increase in contractions of the duodenum, jejunum and ileum, and 1 mg mL(-1) was the maximum effective dose. The largest contraction by the extract was found in ileal segments. The extract-induced (0.5 mg mL(-1)) ileal contraction was remarkably inhibited by pretreatment of segments with atropine (10(-7) M) for 10 min, but not by hexamethonium (0.5 mM). Moreover, antagonists of the muscarinic receptor reduced the radish-induced ileal contraction by a different ratio. The rank order of inhibitory effects was 4-diphenylacetoxy-N-methyl-(2-chloroethyl)-piperidine methiodide (90.5% of control) > tropicamide (67.4%) > pirenzepine (42.8%) > methoctramine (16.7%). Oral administration of radish extract (300-500 mg kg(-1) body weight) to mice remarkably improved the intestinal transit of charcoal, and this was significantly attenuated by co-administration of atropine (50 mg kg(-1)). Taken together, these results suggest that radish extract stimulates gastrointestinal motility through activation of muscarinic pathways.
Collapse
Affiliation(s)
- K Y Jung
- Department of Pharmacology, School of Medicine, Wonkwang University, Iksan, Chonbuk, Korea.
| | | | | | | |
Collapse
|
22
|
Cook AK, Carty M, Singer CA, Yamboliev IA, Gerthoffer WT. Coupling of M(2) muscarinic receptors to ERK MAP kinases and caldesmon phosphorylation in colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol 2000; 278:G429-37. [PMID: 10712263 DOI: 10.1152/ajpgi.2000.278.3.g429] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Coupling of M(2) and M(3) muscarinic receptors to activation of mitogen-activated protein (MAP) kinases and phosphorylation of caldesmon was studied in canine colonic smooth muscle strips in which M(3) receptors were selectively inactivated by N, N-dimethyl-4-piperidinyl diphenylacetate (4-DAMP) mustard (40 nM). ACh elicited activation of extracellular signal-regulated kinase (ERK) 1, ERK2, and p38 MAP kinases in control muscles and increased phosphorylation of caldesmon (Ser(789)), a putative downstream target of MAP kinases. Alkylation of M(3) receptors with 4-DAMP had only a modest inhibitory effect on ERK activation, p38 MAP kinase activation, and caldesmon phosphorylation. Subsequent treatment with 1 microM AF-DX 116 completely prevented activation of ERK and p38 MAP kinase and prevented caldesmon phosphorylation. Caldesmon phosphorylation was blocked by the MAP kinase/ERK kinase inhibitor PD-98509 but not by the p38 MAP kinase inhibitor SB-203580. These results indicate that colonic smooth muscle M(2) receptors are coupled to ERK and p38 MAP kinases. Activation of ERK, but not p38 MAP kinases, results in phosphorylation of caldesmon in vivo, which is a novel function for M(2) receptor activation in smooth muscle.
Collapse
Affiliation(s)
- A K Cook
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada 89557-0046, USA
| | | | | | | | | |
Collapse
|
23
|
Kitazawa T, Maezono Y, Taneike T. The mechanisms of alpha(2)-adrenoceptor agonist-induced contraction in longitudinal muscle of the porcine uterus. Eur J Pharmacol 2000; 390:185-95. [PMID: 10708723 DOI: 10.1016/s0014-2999(00)00026-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The aim of the present study was to clarify the cellular mechanisms underlying the alpha(2)-adrenoceptor-mediated contraction of porcine myometrium (nonvascular smooth muscle). Acetylcholine (3 nM-1 microM), clonidine (1 nM-10 microM) and 5-bromo-N-[2-imidazolin-2-yl]-6-quinoxalinamine (UK14304) (1 nM-10 microM) in Krebs solution caused a concentration-dependent contraction in the longitudinal muscles of the porcine uterus with similar EC(50) values and maximum responses. A lowered external Ca(2+) concentration and verapamil (10 nM-10 microM) decreased the contractile response to clonidine and UK14304 more markedly than the response to acetylcholine. However, in Kumagai solution, neither clonidine nor UK14304 caused contractile responses, but acetylcholine remained effective. The effects of alpha(2)-adrenoceptor agonists on intracellular Ca(2+) concentration ([Ca(2+)](i)) and smooth muscle force were measured simultaneously using fura-PE3-loaded muscle preparations. Clonidine and UK14304 caused increases in [Ca(2+)](i) and force of the longitudinal muscle. The increases in [Ca(2+)](i) and muscle force were markedly inhibited by verapamil and in Ca(2+)-free solution (EGTA, 1 mM). In the absence of external Ca(2+), clonidine caused only a small increase in [Ca(2+)](i) in Ca(2+)-loaded preparations compared with those increases caused by carbachol, histamine, and oxytocin. Ca(2+) (2.5 mM) caused increases in [Ca(2+)](i) and force of the longitudinal muscles in a Ca(2+)-free high K(+) solution. Clonidine concentration dependently potentiated the Ca(2+)-induced contraction without significantly changing the increase in [Ca(2+)](i), and this potentiation was inhibited by yohimbine. These results suggested that clonidine increases the Ca(2+) sensitivity of the contractile elements through activation of alpha(2)-adrenoceptors. During the development of the contractile response to clonidine (1 microM, 0-5 min), tissue cyclic AMP levels did not change significantly. In vitro treatment with pertussis toxin (1 microg/ml for 2 h) significantly decreased the contraction induced by clonidine without affecting the responses to carbachol and high K(+). The present results indicate that in porcine myometrium, alpha(2)-adrenoceptor stimulation caused contraction of the longitudinal muscles by mechanisms largely dependent on the influx of extracellular Ca(2+), probably through voltage-dependent Ca(2+) channels (VDCCs), and that the potentiation of the Ca(2+) sensitivity of the contractile elements is another mechanism of the contractile responses. These actions involve a pertussis-toxin-sensitive G protein (probably G(i) type) in the signal transduction pathway.
Collapse
Affiliation(s)
- T Kitazawa
- Department of Pharmacology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan.
| | | | | |
Collapse
|
24
|
Goin JC, Sterin-Borda L, Bilder CR, Varrica LM, Iantorno G, Ríos MC, Borda E. Functional implications of circulating muscarinic cholinergic receptor autoantibodies in chagasic patients with achalasia. Gastroenterology 1999; 117:798-805. [PMID: 10500061 DOI: 10.1016/s0016-5085(99)70337-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Autoantibodies against M(2)-muscarinic acetylcholine receptors (M(2) mAChR) have been reported in patients with chronic Chagas' disease who have cardiac dysautonomia. The aim of this study was to investigate the presence of such antibodies in chronic chagasic and non-chagasic patients with esophageal achalasia and their ability to activate M(2) mAChR in the isolated esophagus. METHODS Enzyme-linked immunosorbent assay was used to detect serum immunoglobulin (Ig) G antibodies against a synthetic 24-mer peptide corresponding to the second extracellular loop of human M(2) mAChR. The effects of both total serum IgG and affinity-purified antipeptide antibodies on the contractile activity and adenosine 3', 5'-cyclic monophosphate (cAMP) production in rat esophageal strips were also tested. RESULTS Circulating IgG antibodies from chagasic achalasia patients recognized the M(2)-peptide more often than those from non-chagasic achalasia patients (P < 0.0005) and normal subjects (P < 0.0001). A strong association between the existence of circulating anti-M(2) mAChR antibodies and the presence of achalasia in chagasic patients was found (P < 0.01). Both the total IgG fraction and anti-M(2)-peptide antibodies increased the basal tone, reduced the relaxant effect of isoproterenol, and decreased cAMP accumulation in esophageal strips, displaying a muscarinic agonist-like activity on M(2) mAChR. CONCLUSIONS Patients with chronic Chagas' disease have circulating autoantibodies against M(2) mAChR. These antibodies could be involved in the pathophysiological mechanism of chagasic achalasia.
Collapse
Affiliation(s)
- J C Goin
- Pharmacological Units, School of Dentistry, University of Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
25
|
Braverman AS, Ruggieri MR. Selective alkylation of rat urinary bladder muscarinic receptors with 4-DAMP mustard reveals a contractile function for the M2 muscarinic receptor. J Recept Signal Transduct Res 1999; 19:819-33. [PMID: 10349596 PMCID: PMC3277790 DOI: 10.3109/10799899909042875] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Our previous data indicate that M3 muscarinic receptors mediate carbachol induced bladder contractions. The data presented here were obtained by selective alkylation of M3 receptors with 4-DAMP mustard and suggest that the M2 receptor subtype may be involved in inhibition of beta-adrenergic receptor induced relaxation, therefore, allowing recontraction. Alkylation resulted in 85% of M3 receptors and 65% of M2 receptors unable to bind radioligand as demonstrated by subtype selective immunoprecipitation. Rat bladder strips subjected to our alkylation procedure contracted submaximally, and direct carbachol contractions were inhibited by antagonists with affinities consistent with M3 receptor mediated contraction. In contrast, the affinities of antagonists for inhibition of carbachol induced recontractions following isoproterenol stimulated relaxation in the presence of 90 mM KCl, indicated a contractile function for the M2 receptor that was not observed in control strips. In conclusion, these studies demonstrate a possible role for the M2 subtype in bladder smooth muscle contraction.
Collapse
Affiliation(s)
- A S Braverman
- Department of Urology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
26
|
Preuss JM, Goldie RG. Muscarinic cholinoceptor subtypes mediating tracheal smooth muscle contraction and inositol phosphate generation in guinea pig and rat. Eur J Pharmacol 1999; 372:269-77. [PMID: 10395022 DOI: 10.1016/s0014-2999(99)00213-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of the muscarinic cholinoceptor antagonists atropine (non-selective), pirenzepine (M1-selective), methoctramine (M2-selective) and 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP; M3-selective) were examined on the responsiveness of guinea pig and rat tracheal tissue to acetylcholine and carbachol. Results indicate that smooth muscle contraction in isolated tracheal tissue from both species was mediated primarily by muscarinic M3 cholinoceptors. The effects of atropine, pirenzepine and 4-DAMP were similar against the contractile actions of acetylcholine and carbachol in both species and in epithelium-intact and epithelium-denuded tissue. In contrast, differences in the effects of methoctramine in antagonising contractile responses to acetylcholine and carbachol were observed between the two species and following epithelium removal in the guinea pig. Thus, whilst this study has found that tracheal smooth muscle contraction in the guinea pig and rat is mediated primarily by muscarinic M3 cholinoceptors, anomalies in the functional inositol phosphate generation results obtained with the muscarinic cholinoceptor antagonists highlight species differences in the actions of acetylcholine and carbachol in eliciting smooth muscle contraction suggesting the possible existence of functional non-M3 muscarinic cholinoceptors.
Collapse
Affiliation(s)
- J M Preuss
- Department of Pharmacology, University of Western Australia, Nedlands, Perth, Australia.
| | | |
Collapse
|
27
|
Akbulut H, Gören Z, Iskender E, Eraslan A, Ozdemir O, Oktay S. Subtypes of muscarinic receptors in rat duodenum: a comparison with rabbit vas deferens, rat atria, guinea-pig ileum and gallbladder by using imperialine. GENERAL PHARMACOLOGY 1999; 32:505-11. [PMID: 10323493 DOI: 10.1016/s0306-3623(98)00231-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The specific binding of [3H]QNB to rat duodenum smooth muscle membranes was a saturable process and Scatchard transformation of the saturation curves indicated a linear plot (nH = 1.017+/-0.071). The K(D) and Bmax values were 0.168+/-0.025 nM and 46.7+/-8.6 fmol/mg protein, respectively. Analyses of competition curves using pirenzepine and guanylpirenzepine indicated more than one class of binding site. A minor population of muscarinic binding sites showed high affinity (M1) for both pirenzepine (19.3+/-1.2%; pKi = 8.29+/-0.36) and guanylpirenzepine (29.4+/-2.0%; pKi = 7.28+/-0.11). The antagonistic affinity values of pirenzepine and guanylpirenzepine for the remaining low affinity binding sites, and that of methoctramine indicated the presence of both M2 and M3 subtypes. McN-A-343 produced relaxations in rat duodenum and inhibited twitch contractions of rabbit vas deferens induced by electrical stimulation in a concentration dependent manner. Carbachol (Cch) exerted concentration-dependent negative inotropic effect in rat atria and contractile effects in guinea-pig gallbladder and ileum longitudinal muscle-myenteric plexus preparation. Imperaline displaced the concentration-response curves to McN-A-343 and Cch to the right in parallel, without affecting the maximum responses in all tissues studied. The rank order of the pA2 values was rabbit vas deferens > rat atria > guinea-pig gallbladder = guinea-pig ileum > rat duodenum. The presynaptic muscarinic receptors at the rat duodenum and rabbit vas deferens were concluded to be of M1 and M4 subtypes, respectively.
Collapse
Affiliation(s)
- H Akbulut
- Department of Pharmacology, Istanbul University School of Pharmacy, Turkey
| | | | | | | | | | | |
Collapse
|
28
|
Ehlert FJ, Sawyer GW, Esqueda EE. Contractile role of M2 and M3 muscarinic receptors in gastrointestinal smooth muscle. Life Sci 1999; 64:387-94. [PMID: 10069501 DOI: 10.1016/s0024-3205(98)00584-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Muscarinic agonists elicit contraction through M3 receptors in most isolated preparations of gastrointestinal smooth muscle, and not surprisingly, several investigators have identified M3 receptors in smooth muscle using biochemical, immunological and molecular biological methods. However, these studies have also shown that the M2 receptor outnumbers the M3 by a factor of about four in most instances. In smooth muscle, M3 receptors mediate phosphoinositide hydrolysis and Ca2+ mobilization, whereas M2 receptors mediate an inhibition of cAMP accumulation. The inhibitory effect of the M2 receptor on cAMP levels suggests an indirect role for this receptor; namely, an inhibition of the relaxant action of cAMP-stimulating agents. Such a function has been rigorously demonstrated in an experimental paradigm where gastrointestinal smooth muscle is first incubated with 4-DAMP mustard to inactivate M3 receptors during a Treatment Phase, and subsequently, the contractile activity of muscarinic agonists is characterized during a Test Phase in the presence of histamine and a relaxant agent. When present together, histamine and the relaxant agent (e.g., isoproterenol or forskolin) have no net contractile effect because their actions oppose one another. However, under these conditions, muscarinic agonists elicit a highly potent contractile response through the M2 receptor, presumably by inhibiting the relaxant action of isoproterenol or forskolin on histamine-induced contractions. This contractile response is pertussis toxin-sensitive, unlike the standard contractile response to muscarinic agonists, which is pertussis toxin-insensitive. When measured under standard conditions (i.e., in the absence of histamine and without 4-DAMP mustard-treatment), the contractile response to muscarinic agonists is moderately sensitive to pertussis toxin if isoproterenol or forskolin is present. Also, pertussis toxin-treatment enhances the relaxant action of isoproterenol in the field-stimulated guinea pig ileum. These results demonstrate that endogenous acetylcholine can activate M2 receptors to inhibit the relaxant effects of beta-adrenoceptor activation on M3 receptor-mediated contractions. An operational model for the interaction between M2 and M3 receptors shows that competitive antagonism of the interactive response resembles an M3 profile under most conditions, making it difficult to detect the contribution of the M2 receptor.
Collapse
Affiliation(s)
- F J Ehlert
- Department of Pharmacology, College of Medicine, University of California, Irvine 92697-4625, USA
| | | | | |
Collapse
|
29
|
Kitazawa T, Uchiyama F, Hirose K, Taneike T. Characterization of the muscarinic receptor subtype that mediates the contractile response of acetylcholine in the swine myometrium. Eur J Pharmacol 1999; 367:325-34. [PMID: 10079008 DOI: 10.1016/s0014-2999(98)00946-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to characterize the subtype of muscarinic receptor that mediates acetylcholine-induced contractions in the nonpregnant proestrus swine myometrium by means of mechanical, radioligand ([3H]quinuclidinyl benzilate) binding and biochemical (measurement of cyclic AMP) approaches. Acetylcholine (-logEC50, 6.12), oxotremorine-methiodide (6.47), methacholine (6.35), carbachol (6.18) and muscarine (6.33) caused contractile responses of the uterine circular muscle, with a similar maximum amplitude, but pilocarpine and McN-A-343 (4-(m-chlorophenyl-carbamoyloxy)-2-butynyltrimethylammonium) were ineffective in causing contraction. The contractile response to acetylcholine was antagonized by the following muscarinic receptor antagonists in a competitive manner (with pA2 values in parentheses): atropine (8.95), 4-diphenylacetoxy-N-methylpiperidine (4-DAMP, 8.83), tropicamide (7.07), himbacine (7.01), pirenzepine (6.42) and 11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyri do[2,3 b][1,4]benzodiazepin-6-one (AF-DX116, 5.96). Electrical field stimulation (10 Hz) caused tetrodotoxin- and atropine-sensitive contractions in the circular muscle. All muscarinic receptor antagonists decreased the electrical field stimulation-induced contraction in a concentration-dependent manner. The order of inhibition (-logIC50) was 4-DAMP (8.35) > tropicamide (6.72) > himbacine (6.54) > pirenzepine (6.31)> AF-DX116 (6.13). Acetylcholine did not affect the cytoplasmic cyclic AMP level, regardless of the presence or absence of forskolin, suggesting the absence of functional muscarinic M2 and/or M4 receptors in the swine myometrium. The receptor binding study indicated that circular muscle layers of the swine myometrium contained a single class of [3H]quinuclidinyl benzilate binding site (Kd = 0.92 nM; Bmax = 126.6 fmol/mg protein). Specific binding was displaced by muscarinic receptor antagonists in the following order (with pKi value and Hill coefficient in parentheses): atropine (8.22 and 0.93) > 4-DAMP (8.18 and 0.94) > tropicamide (6.78 and 0.93) > pirenzepine (5.46 and 0.92) > AF-DX116 (5.12 and 0.94). The present results suggest that in circular muscle layers of the swine myometrium, exogenous and endogenous acetylcholine cause contraction through activation of muscarinic M3 receptors present on smooth muscle cells.
Collapse
Affiliation(s)
- T Kitazawa
- Department of Pharmacology, Faculty of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | | | | | | |
Collapse
|
30
|
Shen A, Mitchelson F. Muscarinic M2 receptor-mediated contraction in the guinea pig Taenia caeci: possible involvement of protein kinase C. Biochem Pharmacol 1998; 56:1529-37. [PMID: 9827588 DOI: 10.1016/s0006-2952(98)00242-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Contraction of the guinea pig taenia caeci is mediated by muscarinic M3 receptors; however, they comprise only 30% of the muscarinic receptors present. This study investigated the role of the predominant M2 receptor population in contractions and possible second messengers involved after M3 receptors were selectively alkylated by 4-DAMP mustard [N-(2-chloroethyl)-4-piperidinyldiphenylacetate] (60 nM) in the presence of otenzepad (AF-DX 116; 1 microM). Concentration-response curves to oxotremorine-M (oxo-M) in the presence of histamine and isoprenaline were performed in the presence of otenzepad (1 and 3 microM), resulting in a mean apparent pK(B) of 6.49, indicative of an M2 response. As the taenia has intrinsic tone, precontraction with histamine was not necessary and, therefore, in some experiments only isoprenaline was included. In these studies, an M3 response to oxo-M was observed, as the mean apparent pK(B) for otenzepad was 5.89. To investigate protein kinase C (PKC) involvement in the M2 response following M3 inactivation, the inhibitor chelerythrine (1 microM) was included with histamine and isoprenaline in the absence and presence of otenzepad. The oxo-M concentration-response curve was shifted by otenzepad with an apparent pK(B) value of 6.05, a value significantly different from that seen in the absence of chelerythrine (P < 0.05). These results suggest that activation of PKC by a spasmogen such as histamine is necessary to see an M2 response following M3 receptor inactivation.
Collapse
Affiliation(s)
- A Shen
- Victorian College of Pharmacy (Monash University), Department of Pharmaceutical Biology and Pharmacology, Parkville, Australia
| | | |
Collapse
|
31
|
Kuriyama H, Kitamura K, Itoh T, Inoue R. Physiological features of visceral smooth muscle cells, with special reference to receptors and ion channels. Physiol Rev 1998; 78:811-920. [PMID: 9674696 DOI: 10.1152/physrev.1998.78.3.811] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Visceral smooth muscle cells (VSMC) play an essential role, through changes in their contraction-relaxation cycle, in the maintenance of homeostasis in biological systems. The features of these cells differ markedly by tissue and by species; moreover, there are often regional differences within a given tissue. The biophysical features used to investigate ion channels in VSMC have progressed from the original extracellular recording methods (large electrode, single or double sucrose gap methods), to the intracellular (microelectrode) recording method, and then to methods for recording from membrane fractions (patch-clamp, including cell-attached patch-clamp, methods). Remarkable advances are now being made thanks to the application of these more modern biophysical procedures and to the development of techniques in molecular biology. Even so, we still have much to learn about the physiological features of these channels and about their contribution to the activity of both cell and tissue. In this review, we take a detailed look at ion channels in VSMC and at receptor-operated ion channels in particular; we look at their interaction with the contraction-relaxation cycle in individual VSMC and especially at the way in which their activity is related to Ca2+ movements and Ca2+ homeostasis in the cell. In sections II and III, we discuss research findings mainly derived from the use of the microelectrode, although we also introduce work done using the patch-clamp procedure. These sections cover work on the electrical activity of VSMC membranes (sect. II) and on neuromuscular transmission (sect. III). In sections IV and V, we discuss work done, using the patch-clamp procedure, on individual ion channels (Na+, Ca2+, K+, and Cl-; sect. IV) and on various types of receptor-operated ion channels (with or without coupled GTP-binding proteins and voltage dependent and independent; sect. V). In sect. VI, we look at work done on the role of Ca2+ in VSMC using the patch-clamp procedure, biochemical procedures, measurements of Ca2+ transients, and Ca2+ sensitivity of contractile proteins of VSMC. We discuss the way in which Ca2+ mobilization occurs after membrane activation (Ca2+ influx and efflux through the surface membrane, Ca2+ release from and uptake into the sarcoplasmic reticulum, and dynamic changes in Ca2+ within the cytosol). In this article, we make only limited reference to vascular smooth muscle research, since we reviewed the features of ion channels in vascular tissues only recently.
Collapse
Affiliation(s)
- H Kuriyama
- Seinan Jogakuin University, Kokura-Kita, Fukuoka, Japan
| | | | | | | |
Collapse
|
32
|
Ehlert FJ, Griffin MT. The use of irreversible ligands to inactivate receptor subtypes: 4-DAMP mustard and muscarinic receptors in smooth muscle. Life Sci 1998; 62:1659-64. [PMID: 9585153 DOI: 10.1016/s0024-3205(98)00124-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Irreversible ligands are useful tools for investigating the function of receptor subtypes in various physiological processes. The mechanism for alkylation involves the formation of a reversible receptor complex followed by a covalent reaction. The extent of receptor alkylation is determined by the dissociation constant of the reversible complex and the rate constant for conversion to the covalent complex. Selectivity can be achieved if the irreversible ligand exhibits a difference in its dissociation constants for receptor subtypes. Selective alkylation can also be achieved using a selective competitive inhibitor to protect the desired receptor subtype. By using the non-M2-selective irreversible antagonist, 4-DAMP mustard, in combination with the competitive M2-selective antagonist, AF-DX 116, it has been possible to achieve a highly selective inactivation of all non-M2 subtypes of the muscarinic receptors in smooth muscle and has enabled the discovery of the functional role of M2 receptors in smooth muscle.
Collapse
Affiliation(s)
- F J Ehlert
- Department of Pharmacology, College of Medicine, University of California, Irvine 92697, USA
| | | |
Collapse
|
33
|
Abstract
Muscarinic receptors are expressed in smooth muscle throughout the body. In most instances, the muscarinic receptor population in smooth muscle is composed of mainly the M2 and M3 subtypes in an 80% to 20% mixture. The M3 subtype mediates phosphoinositide hydrolysis and calcium mobilization, whereas the M2 subtype mediates an inhibition of cAMP accumulation. In addition, a variety of ionic conductances are elicited by muscarinic receptors. Muscarinic agonists stimulate a nonselective cation conductance that is pertussis toxin-sensitive and dependent on calcium. The pertussis toxin-sensitivity of this response suggests that it is mediated by M2 receptors. Following agonist induced depolarization of smooth muscle, voltage dependent calcium channels are activated to enable an influx of calcium. In some instances, muscarinic agonists enhance this conductance through a mechanism involving protein kinase C, whereas in other instances, muscarinic agonists suppress this calcium conductance. Smooth muscle often contains calcium activated potassium channels that tend to repolarize the membrane following calcium influx. Activation of muscarinic receptors suppresses this potassium conductance in some smooth muscles. Under standard conditions, muscarinic agonists elicit pertussis toxin-insensitive contractions through activation of the M3 receptor. When most of the M3 receptors are inactivated, it is possible to measure a pertussis toxin-sensitive contractile response to muscarinic agonists that is most likely mediated through M2 receptors. M2 receptors also cause an indirect contraction by inhibiting the relaxant effects of agents that increase cAMP (e.g., forskolin and isoproterenol).
Collapse
Affiliation(s)
- F J Ehlert
- Department of Pharmacology, College of Medicine, University of California, Irvine 92697, USA
| | | | | |
Collapse
|
34
|
Hegde SS, Choppin A, Bonhaus D, Briaud S, Loeb M, Moy TM, Loury D, Eglen RM. Functional role of M2 and M3 muscarinic receptors in the urinary bladder of rats in vitro and in vivo. Br J Pharmacol 1997; 120:1409-18. [PMID: 9113359 PMCID: PMC1564615 DOI: 10.1038/sj.bjp.0701048] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. Urinary bladder smooth muscle is enriched with muscarinic receptors, the majority of which are of the M2 subtype whereas the remaining minority belong to the M3 subtype. The objective of the present study was to assess the functional role of M2 and M3 receptors in the urinary bladder of rat in vitro and in vivo by use of key discriminatory antagonists. 2. In the isolated bladder of rat, (+)-cis-dioxolane produced concentration-dependent contractions (pEC50 = 6.3) which were unaffected by tetrodotoxin (0.1 microM). These contractions were antagonized by muscarinic antagonists with the following rank order of affinity (pA2) estimates: atropine (9.1) > 4-diphenyl acetoxy-methyl piperidine methiodide (4-DAMP) (8.9) > darifenacin (8.5) > para fluoro hexahydrosiladifenidol (p-F-HHSiD) (7.4) > pirenzepine (6.8) > methoctramine (5.9). These pA2 estimates correlated most favourably (r = 0.99, P < 0.001) with the binding affinity (pKi) estimates of these compounds at human recombinant muscarinic m3 receptors expressed in Chinese hamster ovary cells, suggesting that the receptor mediating the direct contractile responses to (+)-cis-dioxolane equates with the pharmacologically defined M3 receptor. 3. As M2 receptors in smooth muscle are negatively coupled to adenylyl cyclase, we sought to determine whether a functional role of M2 receptors could be unmasked under conditions of elevated adenylyl cyclase activity (i.e., isoprenaline-induced relaxation of KCl pre-contracted tissues). Muscarinic M3 receptors were preferentially alkylated by exposing tissues to 4-DAMP mustard (40 nM, 1 h) in the presence of methoctramine (0.3 microM) to protect M2 receptors. Under these conditions, (+)-cis-dioxolane produced concentration-dependent reversal (re-contraction) of isoprenaline-induced relaxation (pEC50 = 5.8) but had marginal effects on pinacidil-induced, adenosine 3':5'-cyclic monophosphate (cyclic AMP)-independent, relaxation. The re-contractions were antagonized by methoctramine and darifenacin, yielding pA2 estimates of 6.8 and 7.6, respectively. These values are intermediate between those expected for these compounds at M2 and M3 receptors and were consistent with the involvement of both of these subtypes. 4. In urethane-anaesthetized rats, the cholinergic component (approximately 55%) of volume-induced bladder contractions was inhibited by muscarinic antagonists with the following rank order of potency (ID35%inh, nmol kg-1, i.v.): 4-DAMP (8.1) > atropine (20.7) > methoctramine (119.9) > darifenacin (283.3) > pirenzepine (369.1) > p-F-HHSiD (1053.8). These potency estimates correlated most favourably (r = 0.89, P = 0.04) with the pKi estimates of these compounds at human recombinant muscarinic m2 receptors. This is consistent with a major contribution of M2 receptors in the generation of volume-induced bladder contractions, although the modest potency of darifenacin does not exclude a role of M3 receptors. Pretreatment with propranolol (1 mg kg-1, i.v.) increased the ID35%inh of methoctramine significantly from 95.9 to 404.5 nmol kg-1 but had no significant effects on the inhibitory responses to darifenacin. These data suggest an obligatory role of beta-adrenoceptors in M2 receptor-mediated bladder contractions in vivo. 5. The findings of the present study suggest that both M2 and M3 receptors can cause contraction of the rat bladder in vitro and may also mediate reflex bladder contractions in vivo. It is proposed that muscarinic M3 receptor activation primarily causes direct contraction of the detrusor whereas M2 receptor activation can contract the bladder indirectly by reversing sympathetically (i.e. beta-adrenoceptor)-mediated relaxation. This dual mechanism may allow the parasympathetic nervous system, which is activated during voiding, to cause more efficient and complete emptying of the bladder.
Collapse
Affiliation(s)
- S S Hegde
- Department of Urogenital and Mechanistic Pharmacology, Institute of Pharmacology, Palo Alto, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Eglen RM, Peelle B, Pulido-Rios MT, Leung E. Functional interactions between muscarinic M2 receptors and 5-hydroxytryptamine (5-HT)4 receptors and beta 3-adrenoceptors in isolated oesophageal muscularis mucosae of the rat. Br J Pharmacol 1996; 119:595-601. [PMID: 8894184 PMCID: PMC1915713 DOI: 10.1111/j.1476-5381.1996.tb15714.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Relaxations of isolated oesophageal muscularis mucosae of rat are mediated by 5-hydroxytryptamine (5-HT), acting at 5-HT4 receptors, and isoprenaline, principally acting via beta 3-adrenoceptors. The aim of this study was to investigate the hypothesis that muscarinic M2 receptors, also present in this tissue, functionally oppose 5-HT and beta-adrenoceptor-relaxant effects in this preparation. 2. Contractions of rat oesophageal muscularis mucosae were induced, in a concentration-dependent manner, by the muscarinic receptor agonist, oxotremorine M (pEC50 = 6.7 +/- 0.1). The contractile responses to oxotremorine M were surmountably antagonized by the following compounds, (pKB values in parentheses): atropine (9.1 +/- 0.2), 4-DAMP (4-diphenylacetoxy-N-methyl piperidine methiodide, 8.7 +/- 0.1), p-F-HHSiD (para-fluoro-hexa-hydro-siladifenidol, 7.5 +/- 0.1), zamifenacin (8.6 +/- 0.3), himbacine (7.2 +/- 0.2), pirenzepine (6.8 +/- 0.3) and methoctramine (6.2 +/- 0.2). These data are consistent with a role for muscarinic M3 receptors mediating contractions to oxotremorine M. The contractile response was associated with a low receptor reserve, since the responses were shifted to the right and virtually abolished by the alkylating agent, 4-DAMP mustard (4-diphenylacetoxy-N-(2-chloroethyl) piperidine, 40 nM; 60 min equilibration). 3. In tissues precontracted with U46619 (0.7 microM; approx. EC90), isoprenaline (pEC50 = 8.0 +/- 0.1) and 5-HT (pEC50 = 7.5 +/- 0.2) induced concentration-dependent relaxations. The isoprenaline potency was slightly, but significantly, different in tissues precontracted with oxotremorine M (isoprenaline, pEC50 = 7.4 +/- 0.2). In contrast, the potency of 5-HT (pEC50 = 7.5 +/- 0.2), in tissues that were precontracted with 1 microM (EC90) oxotremorine M, was identical. When these experiments were repeated in the presence of the muscarinic M2 receptor antagonist, methoctramine (1 microM), there was no effect on the relaxant potencies to either 5-HT or isoprenaline. Collectively, these data suggest that muscarinic M2 receptors do not, under these conditions, modulate relaxant potencies to either 5-HT or isoprenaline. 4. In a second protocol, tissues were pre-contracted with U46619 (0.7 microM) and relaxed with either 5-HT (0.1 microM) or isoprenaline (0.1 microM). In these tissues (in which the muscarinic M3 receptor population was extensively depleted by alkylation), oxotremorine M caused concentration-dependent re-contractions (i.e. reversal of relaxations). In tissues relaxed with 5-HT, the potency of oxtremorine M was 5.9 +/- 0.2, while in tissues relaxed with isoprenaline, the potency (pEC50) = 5.6 +/- 0.3. These re-contractions were antagonized, in a surmountable fashion, by methoctramine (1 microM; pKB = 7.6 +/- 0.1). Similar observations were seen when relaxations were induced by isoprenaline (1 microM; pKB = 7.5 +/- 0.2). Under these conditions, therefore, the pKB values are consistent with activation of muscarinic M2 receptors, and inconsistent with activation of M3 receptors. 5. It is concluded that in isolated oesophageal muscularis mucosae of rat, muscarinic M3 receptors mediate direct contractions and are associated with a low receptor reserve. When this population is depleted, and the tissues relaxed via activation of receptors that augment adenylyl cyclase activity, a functional role for muscarinic M2 receptors is revealed.
Collapse
Affiliation(s)
- R M Eglen
- Institute of Pharmacology, Roche Bioscience, Palo Alto, CA 94303, USA
| | | | | | | |
Collapse
|