1
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Oliveira MA, Lima WG, Schettini DA, Tilelli CQ, Chaves VE. Is calcitonin gene-related peptide a modulator of menopausal vasomotor symptoms? Endocrine 2019; 63:193-203. [PMID: 30306319 DOI: 10.1007/s12020-018-1777-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/29/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Calcitonin gene-related peptide (CGRP) is a neuropeptide widely distributed in the central and peripheral nervous systems, which is known as a potent vasodilator. Postmenopausal women who experience hot flushes have high levels of plasma CGRP, suggesting its involvement in menopausal vasomotor symptoms. METHODS In this review, we describe the biochemical aspects of CGRP and its effects associated with deficiencies of sexual hormones on skin temperature, vasodilatation, and sweating as well as the possible peripheral and central mechanisms involved in these events. RESULTS Several studies have shown that the effects of CGRP on increasing skin temperature and inducing vasodilatation are potentiated by a deficiency of sex hormones, a common condition of postmenopausal women. Additionally, the medial preoptic area of the hypothalamus, involved in thermoregulation, contains over 25-fold more CGRP-immunoreactive cells in female rodents compared with male rodents, reinforcing the role of female sex hormones on the action of CGRP. Some studies suggest that ovarian hormone deficiency decreases circulating endogenous CGRP, inducing an upregulation of CGRP receptors. Consequently, the high CGRP receptor density, especially in blood vessels, amplifies the stimulatory effects of this neuropeptide to raise skin temperature in postmenopausal women during hot flushes. CONCLUSIONS The duration of the perception of each hot flush in a woman is brief, while local reddening after intradermal administration of α-CGRP persists for 1 to 6 h. This contrast remains unclear.
Collapse
Affiliation(s)
- Maria Alice Oliveira
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - William Gustavo Lima
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | | | - Cristiane Queixa Tilelli
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Valéria Ernestânia Chaves
- Laboratory of Physiology, Federal University of São João del-Rei, Divinópolis, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Stress regulation of kisspeptin in the modulation of reproductive function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:431-54. [PMID: 23550018 DOI: 10.1007/978-1-4614-6199-9_20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stressful stimuli abound in modern society and have shaped evolution through altering reproductive development, behavior, and physiology. The recent identification of kisspeptin as an important component of the hypothalamic regulatory circuits involved in reproductive homeostasis sparked a great deal of research interest that subsequently implicated kisspeptin signaling in the relay of metabolic, environmental, and physiological cues to the hypothalamo-pituitary-gonadal axis. However, although it is widely recognized that exposure to stress profoundly impacts on reproductive function, the roles of kisspeptin within the complex mechanisms underlying stress regulation of reproduction remain poorly understood. We and others have recently demonstrated that a variety of experimental stress paradigms downregulate the expression of kisspeptin ligand and receptor within the reproductive brain. Coincidently, these stressors also inhibit gonadotropin secretion and delay pubertal onset-processes that rely on kisspeptin signaling. However, a modest literature is inconsistent with an exclusively suppressive influence of stress on the reproductive axis and suggests that complicated neural interactions and signaling mechanisms translate the stress response into reproductive perturbations. The purpose of this chapter is to review the evidence for a novel role of kisspeptin signaling in the modulation of reproductive function by stress and to broaden the understanding of this timely phenomenon.
Collapse
|
4
|
Cataldo G, Lovric J, Chen CC, Pytte CL, Bodnar RJ. Ventromedial and medial preoptic hypothalamic ibotenic acid lesions potentiate systemic morphine analgesia in female, but not male rats. Behav Brain Res 2010; 214:301-16. [PMID: 20678986 DOI: 10.1016/j.bbr.2010.05.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 05/25/2010] [Accepted: 05/26/2010] [Indexed: 11/30/2022]
Abstract
Sex differences in systemic morphine analgesia occur with male rodents displaying significantly greater analgesic magnitudes and potencies than females. Neonatal androgenization, and to a lesser degree, adult ovariectomy enhance systemic morphine analgesia in female rats, implicating both organizational and activational effects of gonadal hormones. The neuroanatomical circuits sensitive to sex-related hormones by which females display a smaller opiate analgesic effect is not clear, but the ventromedial (VMH) and medial preoptic (MPOA) hypothalamic nuclei are critical in the monitoring of estradiol and other sex hormone levels. To assess the contribution of these nuclei to sex and adult gonadectomy differences in systemic morphine analgesia, intact male, intact female and adult ovariectomized (OVEX) female rats received bilateral saline (SAL) or ibotenic acid (IBO) microinjections into either the VMH or MPOA. Following surgeries, baseline tail-flick latencies over 120 minutes (min) were assessed over 4 days in all nine groups with intact females tested in the estrus phase of their cycle. All animals then received an ascending series of morphine (1.0, 2.5, 5.0, 7.5, 10.0mg/kg) injections 30min prior to the tail-flick test time course with 8-12 day inter-injection intervals between doses. Baseline latencies failed to differ between SAL-treated intact males and females, but were significantly higher in SAL-treated OVEX females. Both VMH IBO and MPOA IBO lesions increased baseline latencies in intact male and female rats, but not in OVEX females. SAL-treated intact males (ED(50)=4.0mg/kg) and SAL-treated OVEX females (ED(50)=3.5mg/kg) displayed significantly greater potencies of systemic morphine analgesia than SAL-treated intact females (ED(50)=6.3mg/kg), confirming previous gender and gonadectomy differences. Neither VMH IBO (ED(50)=3.7 mg/kg) nor MPOA IBO (ED(50)=4.1mg/kg) males differed from SAL-treated males in the potency of systemic morphine analgesia. In contrast, VMH IBO (ED(50)=4.1mg/kg) and MPOA IBO (ED(50)=3.5mg/kg) intact females displayed significantly greater potencies in systemic morphine analgesia than SAL-treated intact females. However, VMH IBO OVEX (ED(50)=3.5mg/kg) and MPOA IBO OVEX (ED(50)=3.9 mg/kg) failed to differ from SAL-treated OVEX females in the potency of systemic morphine analgesia. The magnitudes of systemic morphine analgesia as measured by Maximum Percentage Effect values displayed similar patterns, but lesser degrees, of effects. These data suggest that VMH and MPOA nuclei act to tonically inhibit endogenous pain-inhibitory circuits in the intact female, but not intact male brain, and that removal of circulating gonadal hormones by OVEX and/or excitotoxic destruction of these estrogen receptor accumulating nuclei disinhibit the female analgesic response to systemic morphine.
Collapse
Affiliation(s)
- Giuseppe Cataldo
- Department of Psychology, Queens College, City University of New York, Flushing, NY, United States
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Li XF, Kinsey-Jones JS, Bowe JE, Wilkinson ES, Brain SD, Lightman SL, O'Byrne KT. A role for the medial preoptic area in CGRP-induced suppression of pulsatile LH secretion in the female rat. Stress 2009; 12:259-67. [PMID: 19051122 DOI: 10.1080/10253890802379922] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is involved in a variety of stress responses and plays a pivotal role in stress-induced suppression of the GnRH pulse generator in the rat. Intracerebroventricular administration of CGRP suppresses luteinizing hormone (LH) pulses and increases Fos expression within the medial preoptic area (mPOA) and paraventricular nucleus (PVN). The aims of the present study were to investigate whether the mPOA or PVN are sites of action for CGRP-induced suppression of LH pulses and whether lipopolysaccharide (LPS), restraint or insulin-induced hypoglycaemia, stressors known to suppress LH pulses, affect mRNA expression for CGRP and its receptor subunits (calcitonin receptor-like receptor (CL) and RAMP-1) in the mPOA and PVN. Micro-infusion of CGRP (50, 250 or 500 pmol) into the mPOA, but not the PVN, dose-dependently suppressed LH pulse frequency. LPS, restraint and hypoglycaemia suppressed RAMP-1 mRNA, but not CL or CGRP mRNA expression in the mPOA. In the PVN, all three stressors suppressed CL mRNA expression, but only LPS or restraint suppressed RAMP-1 mRNA, and CGRP mRNA was unaffected. These results provide evidence that, unlike the PVN, the mPOA might play an important role in the inhibitory effect of CGRP on pulsatile LH secretion. Additionally, CGRP receptor function may be involved in this brain region in stress-induced suppression of the GnRH pulse generator.
Collapse
Affiliation(s)
- X F Li
- Division of Reproduction & Endocrinology, London, UK
| | | | | | | | | | | | | |
Collapse
|
7
|
Wilson CA, Davies DC. The control of sexual differentiation of the reproductive system and brain. Reproduction 2007; 133:331-59. [PMID: 17307903 DOI: 10.1530/rep-06-0078] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review summarizes current knowledge of the genetic and hormonal control of sexual differentiation of the reproductive system, brain and brain function. While the chromosomal regulation of sexual differentiation has been understood for over 60 years, the genes involved and their actions on the reproductive system and brain are still under investigation. In 1990, the predicted testicular determining factor was shown to be theSRYgene. However, this discovery has not been followed up by elucidation of the actions of SRY, which may either stimulate a cascade of downstream genes, or inhibit a suppressor gene. The number of other genes known to be involved in sexual differentiation is increasing and the way in which they may interact is discussed. The hormonal control of sexual differentiation is well-established in rodents, in which prenatal androgens masculinize the reproductive tract and perinatal oestradiol (derived from testosterone) masculinizes the brain. In humans, genetic mutations have revealed that it is probably prenatal testosterone that masculinizes both the reproductive system and the brain. Sexual differentiation of brain structures and the way in which steroids induce this differentiation, is an active research area. The multiplicity of steroid actions, which may be specific to individual cell types, demonstrates how a single hormonal regulator, e.g. oestradiol, can exert different and even opposite actions at different sites. This complexity is enhanced by the involvement of neurotransmitters as mediators of steroid hormone actions. In view of current environmental concerns, a brief summary of the effects of endocrine disruptors on sexual differentiation is presented.
Collapse
Affiliation(s)
- C A Wilson
- Basic Medical Sciences, Clinical Developmental Sciences, St George's, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK.
| | | |
Collapse
|
8
|
Rubin BS, Lenkowski JR, Schaeberle CM, Vandenberg LN, Ronsheim PM, Soto AM. Evidence of altered brain sexual differentiation in mice exposed perinatally to low, environmentally relevant levels of bisphenol A. Endocrinology 2006; 147:3681-91. [PMID: 16675520 DOI: 10.1210/en.2006-0189] [Citation(s) in RCA: 228] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Humans are routinely exposed to bisphenol A (BPA), an estrogenic chemical present in food and beverage containers, dental composites, and many products in the home and workplace. BPA binds both classical nuclear estrogen receptors and facilitates membrane-initiated estrogenic effects. Here we explore the ability of environmentally relevant exposure to BPA to affect anatomical and functional measures of brain development and sexual differentiation. Anatomical evidence of alterations in brain sexual differentiation were examined in male and female offspring born to mouse dams exposed to 0, 25, or 250 ng BPA/kg body weight per day from the evening of d 8 of gestation through d 16 of lactation. These studies examined the sexually dimorphic population of tyrosine hydroxylase (TH) neurons in the rostral periventricular preoptic area, an important brain region for estrous cyclicity and estrogen-positive feedback. The significant sex differences in TH neuron number observed in control offspring were diminished or obliterated in offspring exposed to BPA primarily because of a decline in TH neuron number in BPA-exposed females. As a functional endpoint of BPA action on brain sexual differentiation, we examined the effects of perinatal BPA exposure on sexually dimorphic behaviors in the open field. Data from these studies revealed significant sex differences in the vehicle-exposed offspring that were not observed in the BPA-exposed offspring. These data indicate that BPA may be capable of altering important events during critical periods of brain development.
Collapse
Affiliation(s)
- Beverly S Rubin
- Tufts University, School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Hoffman GE, Le WW, Schulterbrandt T, Legan SJ. Estrogen and progesterone do not activate Fos in AVPV or LHRH neurons in male rats. Brain Res 2005; 1054:116-24. [PMID: 16084918 DOI: 10.1016/j.brainres.2005.06.082] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 06/14/2005] [Accepted: 06/15/2005] [Indexed: 12/16/2022]
Abstract
In rodents, females but not males, in response to escalating levels of estrogen, express a luteinizing hormone (LH) surge that is prompted by a surge in luteinizing hormone-releasing hormone (LHRH). It cannot take place if estrogen-sensitive afferents located in the anteroventral periventricular nucleus (AVPV) are either absent or disabled. Males appear to lack the ability to exhibit an LH surge, but it is unclear what level of the CNS contributes to this dimorphic response. This study was conducted to determine whether estrogen followed by progesterone treatment (E + P) of gonadectomized males evokes Fos activation in LHRH and AVPV neurons as it does in females. The results indicated that, consistent with the males' inability to express an LH surge in response to E + P treatment, LHRH and AVPV neurons in males failed to show increased Fos activation. Examination of neuron nuclear antigen (NeuN, a neuron-specific marker), estrogen receptor (ERalpha) and progesterone receptor (PR) neurons in AVPV neurons indicated that, while essentially all the neurons of the caudal AVPV in males and females are steroid responsive, the male possessed half the number of steroid responsive neurons within the caudal AVPV (where activation of Fos is maximal in females) compared to the female. Together, these data indicate that the male lacks a substantial population of steroid receptive AVPV neurons and is unable to respond to the presence of E and P and activate either AVPV or LHRH neurons.
Collapse
Affiliation(s)
- G E Hoffman
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, 685 W Baltimore Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
10
|
Kinsey-Jones JS, Li XF, Bowe JE, Brain SD, Lightman SL, O'Byrne KT. Effect of calcitonin gene-related peptide on gonadotrophin-releasing hormone mRNA expression in GT1-7 cells. J Neuroendocrinol 2005; 17:541-4. [PMID: 16101891 DOI: 10.1111/j.1365-2826.2005.01341.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent evidence has shown calcitonin gene-related peptide (CGRP) to be a key mediator of stress-induced suppression of the gonadotrophin-releasing hormone (GnRH) pulse generator, although little is known about the neural pathways involved. In the present study, we investigated the potential direct action of CGRP on GnRH neurones using GT1-7 cells, an established GnRH cell line. First, we detected expression of the CGRP receptor subunits, calcitonin receptor-like receptor and receptor activity-modifying protein-1 in the GT1-7 cells by reverse transcriptase-polymerase chain reaction. Second, we have shown that CGRP inhibits GnRH mRNA expression in the GT1-7 cells, which was effectively reversed by the CGRP receptor antagonist, CGRP8-37. These results suggest that CGRP down regulates expression of GnRH mRNA, via CGRP receptors in the GT1-7 cell, thus implying that a potential direct action of CGRP may mediate a suppressive effect on the GnRH neural network.
Collapse
Affiliation(s)
- J S Kinsey-Jones
- Division of Reproductive Health, Endocrinology and Development, King's College London, UK
| | | | | | | | | | | |
Collapse
|
11
|
Dobolyi A, Irwin S, Makara G, Usdin TB, Palkovits M. Calcitonin gene-related peptide-containing pathways in the rat forebrain. J Comp Neurol 2005; 489:92-119. [PMID: 15977170 DOI: 10.1002/cne.20618] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present study focuses on the topographical distribution of calcitonin gene-related peptide (CGRP)-containing cell bodies and fibers and their connections and pathways in the rat forebrain. We confirm previously reported CGRP projections from the perifornical area of the hypothalamus to the lateral septum, from the posterior thalamus to the caudate putamen and cerebral cortex, and from the parabrachial nuclei to the central extended amygdala, lateral hypothalamus, and ventromedial thalamus. Despite previous descriptions of CGRP in the central nervous system, important neuroanatomical aspects of the forebrain CGRP system remained obscure, which we addressed by using brain lesion techniques combined with modern immunohistology. We first report CGRP terminal fields in the olfactory-anterior septal region and also CGRP projections from the parabrachial nuclei to the olfactory-anterior septal region, the medial prefrontal cortex, the interstitial nucleus of the anterior commissure, the nucleus of the lateral olfactory tract, the anterior amygdaloid area, the posterolateral cortical amygdaloid nucleus, and the dorsolateral part of the lateral amygdaloid nucleus. In addition, we identified a CGRP cell group in the premamillary nuclei and showed that it projects to the medial CGRP layer of the lateral septum. CGRP fibers usually join other pathways rather than forming bundles. They run along the fornix from the hypothalamus, along the supraoptic decussations or the inferior thalamic peduncle-stria terminalis pathway from the posterior thalamus, and along the superior cerebellar peduncle, thalamic fasciculus, and ansa peduncularis from the parabrachial nuclei. This description of the forebrain CGRP system will facilitate investigation of its role in higher brain functions.
Collapse
Affiliation(s)
- Arpád Dobolyi
- Laboratory of Genetics, National Institutes of Mental Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
12
|
Li XF, Bowe JE, Mitchell JC, Brain SD, Lightman SL, O'Byrne KT. Stress-induced suppression of the gonadotropin-releasing hormone pulse generator in the female rat: a novel neural action for calcitonin gene-related peptide. Endocrinology 2004; 145:1556-63. [PMID: 14736738 DOI: 10.1210/en.2003-1609] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In addition to its role as a potent vasodilator, calcitonin gene-related peptide (CGRP) is centrally involved in a variety of stress responses, including activation of the hypothalamo-pituitary-adrenocortical axis. It is well known that stress suppresses the activity of the hypothalamic GnRH pulse generator, the central regulator of LH and FSH pulses, resulting in reproductive dysfunction. The aim of this study was to test the hypothesis that CGRP has a critical role in mediating stress-induced suppression of pulsatile LH secretion in the rat. Ovariectomized rats were implanted with intracerebroventricular and iv cannulae. Central administration of CGRP (75 pmol-1.2 nmol) into the lateral cerebral ventricle resulted in a profound, dose-dependent suppression of LH pulses, which was reversed by a CGRP receptor antagonist (CGRP(8-37),1 nmol). Although the site of action of CGRP remains to be established, the induction of c-Fos expression in the preoptic area and hypothalamic paraventricular nucleus might suggest an involvement of these brain regions. Intravenous administration of CGRP did not affect LH pulses. Coadministration (intracerebroventricular) of CGRP (400 pmol) with a CRH antagonist (alpha-helical CRF(9-41), 26 nmol) partly blocked the CGRP-induced suppression of LH pulses. Furthermore, CGRP(8-37) (1 nmol) completely blocked hypoglycemic stress-induced suppression of LH pulses. These results suggest that the suppression of pulsatile LH secretion by central administration of CGRP may be mediated in part by CRH, and that CGRP may play a pivotal role in the normal physiological response of stress-induced suppression of the hypothalamic GnRH pulse generator, and hence the reproductive system.
Collapse
Affiliation(s)
- Xiao Feng Li
- Centre for Reproduction, Endocrinology and Diabetes, New Hunt's House, King's College London, Guy's Campus, United Kingdom.
| | | | | | | | | | | |
Collapse
|
13
|
Spratt DP, Herbison AE. Projections of the sexually dimorphic calcitonin gene-related peptide neurons of the preoptic area determined by retrograde tracing in the female rat. J Comp Neurol 2002; 445:336-46. [PMID: 11920711 DOI: 10.1002/cne.10195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The medial preoptic area of the rat exhibits morphologic sex differences and is implicated in the control of sexually dimorphic behavior and function. Neurons expressing calcitonin gene-related peptide (CGRP) within the anteroventral periventricular (AVPV) and medial preoptic nucleus (MPN) of the medial preoptic area exhibit female-dominant sex differences in number through organizational and activational effects of gonadal steroids. The present study used retrograde tracing experiments to establish the projections of the AVPV and MPN CGRP neurons in the female rat. After the intraperitoneal administration of Fluoro-Gold to female rats (n = 5), we were unable to detect retrograde tracer in any CGRP-immunoreactive cells of the hypothalamus. Intracerebral injections of 50- to 100-nl volumes of Fluoro-Gold into the mediobasal hypothalamus resulted in up to 70% of CGRP neurons in the AVPV and MPN containing retrograde tracer. Similar large volume tracer depositions in the lateral septum, periaqueductal gray, two likely CGRP projection sites, resulted in no labeling of preoptic CGRP neurons. Experiments using small volume (30-nl) injections of Fluoro-Gold and green fluorescent microspheres at multiple sites in the mediobasal hypothalamus (n = 18) revealed that approximately 60% of AVPV and 30% of MPN neurons expressing CGRP were projecting to the region of the tuberal and ventral premammillary nuclei, with a minor projection to the dorsomedial nucleus. These findings demonstrate a major projection of the preoptic CGRP neurons to the posterior hypothalamus in the female rat and support further a functional role for these neurons in the sexually dimorphic regulation of reproductive functioning.
Collapse
Affiliation(s)
- David P Spratt
- Laboratory of Neuroendocrinology, The Babraham Institute, Cambridge CB2 4AT, United Kingdom
| | | |
Collapse
|
14
|
Spratt DP, Herbison AE. Sexually dimorphic effects of testosterone on preoptic area calcitonin gene-related peptide mRNA expression depend upon neuron location and differential estrogen and androgen receptor activation. Endocrinology 2001; 142:3397-404. [PMID: 11459783 DOI: 10.1210/endo.142.8.8312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Experiments examined activational roles of gonadal steroids on the sexually dimorphic, calcitonin gene-related peptide-expressing neurons of the rat preoptic area. Gonadectomy of male rats followed by treatment with testosterone, dihydrotestosterone, or estrogen demonstrated that the tonic suppressive influence of testosterone on cellular levels of calcitonin gene-related peptide mRNA expression in the medial preoptic nucleus and anteroventral periventricular nucleus occurred through either ER- or AR-mediated mechanisms (P < 0.05). The gonadectomy of adult female rats demonstrated little tonic influence of ovarian steroids upon calcitonin gene-related peptide mRNA levels. However, the administration of male levels of testosterone to ovariectomized rats resulted in reduced calcitonin gene-related peptide mRNA expression within the medial preoptic nucleus (P < 0.05) and, strikingly, a 3-fold induction in calcitonin gene-related peptide mRNA expression in the anteroventral periventricular nucleus (P < 0.01). Testosterone's effects in the medial preoptic nucleus and anteroventral periventricular nucleus of the female required both ER and AR activation. Dual labeling immunocytochemical studies revealed that less than 10% of calcitonin gene-related peptide neurons in the male expressed ARs compared with approximately 50% in the female. These investigations reveal that sexually differentiated region- and steroid receptor-specific mechanisms function in association with the sex differences in circulating gonadal steroids to maintain the sexually dimorphic nature of calcitonin gene-related peptide expression in the preoptic area of the adult rat.
Collapse
Affiliation(s)
- D P Spratt
- Laboratory of Neuroendocrinology, The Babraham Institute, Cambridge, United Kingdom CB2 4AT
| | | |
Collapse
|
15
|
Cooke B, Hegstrom CD, Villeneuve LS, Breedlove SM. Sexual differentiation of the vertebrate brain: principles and mechanisms. Front Neuroendocrinol 1998; 19:323-62. [PMID: 9799588 DOI: 10.1006/frne.1998.0171] [Citation(s) in RCA: 352] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A wide variety of sexual dimorphisms, structural differences between the sexes, have been described in the brains of many vertebrate species, including humans. In animal models of neural sexual dimorphism, gonadal steroid hormones, specifically androgens, play a crucial role in engendering these differences by masculinizing the nervous system of males. Usually, the androgen must act early in life, often during the fetal period to masculinize the nervous system and behavior. However, there are a few examples of androgen, in adulthood, masculinizing both the structure of the nervous system and behavior. In the modal pattern, androgens are required both during development and adulthood to fully masculinize brain structure and behavior. In rodent models of neural sexual dimorphism, it is often the aromatized metabolites of androgen, i.e., estrogens, which interact with estrogen receptors to masculinize the brain, but there is little evidence that aromatized metabolites of androgen play this role in primates, including humans. There are other animal models where androgens themselves masculinize the nervous system through interaction with androgen receptors. In the course of masculinizing the nervous system, steroids can affect a wide variety of cellular mechanisms, including neurogenesis, cell death, cell migration, synapse formation, synapse elimination, and cell differentiation. In animal models, there are no known examples where only a single neural center displays sexual dimorphism. Rather, each case of sexual dimorphism seems to be part of a distributed network of sexually dimorphic neuronal populations which normally interact with each other. Finally, there is ample evidence of sexual dimorphism in the human brain, as sex differences in behavior would require, but there has not yet been any definitive proof that steroids acting early in development directly masculinize the human brain.
Collapse
Affiliation(s)
- B Cooke
- Department of Psychology, University of California, Berkeley, California 94720-1650, USA
| | | | | | | |
Collapse
|
16
|
Leclercq P, Herbison AE. Sexually dimorphic expression of calcitonin gene-related peptide (CGRP) immunoreactivity by rat mediobasal hypothalamic neurons. J Comp Neurol 1996; 367:444-53. [PMID: 8698903 DOI: 10.1002/(sici)1096-9861(19960408)367:3<444::aid-cne9>3.0.co;2-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although the hypothalamic arcuate nucleus is a sexually dimorphic region of the rat brain, there are no reports of sex differences in the number of neurons containing specific neuropeptides within this structure. As cells synthesizing calcitonin gene-related peptide (CGRP) have been shown to exhibit sex differences in other steroid-receptive regions of the rat brain, we examined whether the CGRP-immunoreactive cells located in the mediobasal hypothalamus may also be sexually dimorphic. Immunostaining of sections from male and female colchicine-treated rats revealed a small population of CGRP-immunoreactive cells distributed throughout the arcuate nucleus. Immunoreactive cells were also detected in the lateral hypothalamic perifornical region, dorsomedial, posterior periventricular and ventral tuberomammillary nuclei, and zona incerta. Cell count analysis revealed approximately twice as many CGRP-immunoreactive cell profiles in the rostral (P < 0.01), middle (P < 0.001), and caudal (P < 0.01) thirds of the arcuate nucleus of male rats compared with females. A significant sex difference in immunoreactive cell numbers (male > female) was also detected within the caudal dorsomedial nucleus (P < 0.05) but not in the posterior periventricular nucleus, perifornical region and zona incerta. Although fibers immunoreactive for CGRP were identified in low density throughout the mediobasal hypothalamus, only female rats displayed prominent fiber staining in the periventricular region. Double-labelling immunofluorescence experiments revealed that the CGRP-immunoreactive cells within the zona incerta, but not the hypothalamus, were also immunoreactive for tyrosine hydroxylase; at least 60% of the A13 dopaminergic neurons co-express CGRP. These results provide evidence that sex differences exist in the number of specific neuropeptide-synthesizing cells within the hypothalamic arcuate nucleus and provide further examples of cell populations expressing CGRP immunoreactivity in a sexually dimorphic manner.
Collapse
Affiliation(s)
- P Leclercq
- Laboratory of Neuroendocrinology, Babraham Institute, Cambridge, England
| | | |
Collapse
|
17
|
Kawata M. Roles of steroid hormones and their receptors in structural organization in the nervous system. Neurosci Res 1995; 24:1-46. [PMID: 8848287 DOI: 10.1016/0168-0102(96)81278-8] [Citation(s) in RCA: 227] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Due to their chemical properties, steroid hormones cross the blood-brain barrier where they have profound effects on neuronal development and reorganization both in invertebrates and vertebrates, including humans mediated through their receptors. Steroids play a crucial role in the organizational actions of cellular differentiation representing sexual dimorphism and apoptosis, and in the activational effects of phenotypic changes in association with structural plasticity. Their sites of action are primarily the genes themselves but some are coupled with membrane-bound receptor/ion channels. The effects of steroid hormones on gene transcription are not direct, and other cellular components interfere with their receptors through cross-talk and convergence of the signaling pathways in neurons. These genomic and non-genomic actions account for the divergent effects of steroid hormones on brain function as well as on their structure. This review looks again at and updates the tremendous advances made in recent decades on the study of the role of steroid (gonadal and adrenal) hormones and their receptors on developmental processes and plastic changes in the nervous system.
Collapse
Affiliation(s)
- M Kawata
- Department of Anatomy and Neurobiology, Kyoto Prefectural University of Medicine, Japan
| |
Collapse
|
18
|
Herbison AE, Spratt DP. Sexually dimorphic expression of calcitonin gene-related peptide (CGRP) mRNA in rat medial preoptic nucleus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 34:143-8. [PMID: 8750870 DOI: 10.1016/0169-328x(95)00144-h] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous immunocytochemical analyses have identified a substantial, gonadal steroid-dependent sex difference in the number of cells expressing calcitonin gene-related peptide (CGRP) in the rat preoptic area. Using three 35S-labelled antisense oligonucleotide probes specific for both alpha and beta CGRP, the present study has examined CGRP mRNA expression within the medial preoptic nucleus (MPN) of intact and gonadectomised male and female rats. Cells expressing CGRP mRNA were found to be more numerous in the intact female (21 +/- 2 cells/hemisection) compared with the male (6 +/- 1; P < 0.01) although the average CGRP mRNA content of MPN cells was not different between intact males (62 +/- 7 silver grains/cell) and females (69 +/- 6 silver grains/cell). Gonadectomy resulted in a significant increase in the number of CGRP mRNA expressing cells detected in the male (12 +/- 1 cells/hemisection; P < 0.01) and an increase (P < 0.05) in the mean CGRP mRNA content per cell in both males (99 +/- 12 silver grains/cell) and females (107 +/- 11 silver grains/cell). These results show that sex differences exist in the number of cells containing CGRP transcripts in the rat MPN although average CGRP mRNA content per cell is not different between males and females. Gonadal steroids appear to exert a tonic suppressive influence on the CGRP mRNA content of MPN cells in both males and females.
Collapse
Affiliation(s)
- A E Herbison
- Laboratory of Neuroendocrinology, Babraham Institute, Cambridge, UK
| | | |
Collapse
|
19
|
Ulibarri C, Popper P, Micevych PE. Motoneurons dorsolateral to the central canal innervate perineal muscles in the Mongolian gerbil. J Comp Neurol 1995; 356:225-37. [PMID: 7629316 DOI: 10.1002/cne.903560207] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Mongolian gerbil provides a model in which sexually dimorphic areas in the hypothalamus are correlated with sociosexual behaviors such as scent marking and male copulatory behavior. To extend this model, investigations were conducted to determine whether sexually dimorphic areas existed in the spinal cord that could be relevant to male sexual behavior. The focus of these investigations was the perineal muscles associated with the penis. Therefore, this research identified the spinal motoneurons that innervate the bulbocavernosus, levator ani, anal sphincter, and ischiocavernosus muscles of Mongolian gerbils. The motoneuron pool that innervates the bulbocavernosus, levator ani, and anal sphincter was designated the spinal nucleus of the bulbocavernosus (SNB), as for other species of rodents. The motoneuron pool innervating the ischiocavernosus was identified as the dorsolateral nucleus, again, to be consistent with the designation for other rodents. The motoneurons of the gerbil SNB were distributed dorsolateral to the central canal in the lumbosacral transition zone of the spinal column. These motoneurons are located in the region classically defined as area X of the spinal cord. The number of SNB motoneurons was sexually dimorphic, with male gerbils having about five times as many SNB motoneurons as do female gerbils. The size of SNB motoneurons was also sexually dimorphic. The SNB motoneurons of males were 1.5 times larger than the SNB motoneurons of females. The effects of adult castration on the male SNB were also studied. After castration, the size, but not the number, of SNB motoneurons in males was significantly decreased. This decrease was prevented by testosterone treatment. The percentage of calcitonin gene-related peptide (CGRP)-immunoreactive SNB motoneurons was also affected by adult castration. The percentage of CGRP-immunoreactive motoneurons was significantly decreased after adult castration. Again, this decrease was reversed by testosterone treatment. These findings suggest that the SNB of gerbils is sexually dimorphic and is sensitive to circulating levels of gonadal steroids. The unique placement of the SNB motoneurons suggests that an alternative laminar organizational scheme may be necessary for Mongolian gerbil.
Collapse
Affiliation(s)
- C Ulibarri
- Department of Anatomy and Cell Biology, UCLA School of Medicine 90024-1763, USA
| | | | | |
Collapse
|
20
|
Herbison AE, King IS, Tan KC, Dye S. Increased fos expression in preoptic calcitonin gene-related peptide (CGRP) neurones following mating but not the luteinizing hormone surge in female rats. J Neuroendocrinol 1995; 7:377-85. [PMID: 7550284 DOI: 10.1111/j.1365-2826.1995.tb00772.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The functional relationship between sexually dimorphic neural populations and sex differences in reproductive functioning is unclear. The present study has investigated the function of the sexually dimorphic, estrogen-receptive, calcitonin gene-related peptide (CGRP) neurones in the female preoptic area by examining patterns of Fos immunoreactivity within these cells in relation to the luteinizing hormone surge and lordosis behaviour. In the first experiment, ovariectomized rats were treated with estradiol alone or estradiol plus progesterone to induce the luteinizing hormone surge. The percentage of CGRP neurones with Fos-positive nuclei was not different in estradiol alone (18 +/- 4%) and estradiol/progesterone-treated (24 +/- 3%) rats although the number of Fos-immunoreactive cells in the medial preoptic nucleus was increased 2-fold (P < 0.01) in estrogen/progesterone-treated rats and 40 +/- 5% of luteinizing hormone-releasing hormone neurones were found to express Fos in this group. In the second experiment, ovariectomized rats were treated with estradiol and progesterone and either, mated with a single male or placed in an empty cage, for 30 min. The number of Fos-immunoreactive cells in the medial preoptic nucleus was increased 4-fold in mated rats (P < 0.01) and the percentage of CGRP neurones with Fos-positive nuclei increased from 24 +/- 3% to 38 +/- 2% (P < 0.01) in mated animals. No differences were detected in the number of luteinizing hormone-releasing hormone neurones with Fos-positive nuclei in mated and non-mated animals.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A E Herbison
- Laboratory of Neuroendocrinology, Babraham Institute, Cambridge, UK
| | | | | | | |
Collapse
|
21
|
Affiliation(s)
- M D Madeira
- Department of Anatomy, Porto Medical School, Portugal
| | | |
Collapse
|
22
|
Pilgrim C, Hutchison JB. Developmental regulation of sex differences in the brain: can the role of gonadal steroids be redefined? Neuroscience 1994; 60:843-55. [PMID: 7936207 DOI: 10.1016/0306-4522(94)90267-4] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Yuri K, Kawata M. Estrogen affects calcitonin gene-related peptide- and methionine-enkephalin-immunoreactive neuron in the female rat preoptic area. Neurosci Lett 1994; 169:5-8. [PMID: 8047292 DOI: 10.1016/0304-3940(94)90343-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effects of estrogen on the neurons of the medial preoptic area of the ovariectomized rat were immunohistochemically investigated using antisera to calcitonin gene-related peptide (CGRP) and methionine-enkephalin (Met-Enk). To visualize CGRP- and Met-Enk-immunoreactive (IR) cell somata, colchicine was injected into the cerebroventricle. CGRP- and Met-Enk-IR neurons were distributed in the medial preoptic nucleus (MPN) but few in the periventricular preoptic nucleus (PPN) in the ovariectomized rat. After estrogen treatment, CGRP immunoreactivity was markedly increased in the PPN and MPN, whereas Met-Enk immunoreactivity was increased in the MPN. These results, along with our previous data, suggest that estrogen accelerates CGRP- and Met-Enk expression in a different manner in the PPN and MPN neurons.
Collapse
Affiliation(s)
- K Yuri
- Department of Anatomy, Kyoto Prefectural University of Medicine, Japan
| | | |
Collapse
|
24
|
Herbison AE, Dye S. Perinatal and adult factors responsible for the sexually dimorphic calcitonin gene-related peptide-containing cell population in the rat preoptic area. Neuroscience 1993; 54:991-9. [PMID: 8341428 DOI: 10.1016/0306-4522(93)90590-c] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neurons containing calcitonin gene-related peptide in the medial preoptic nucleus exhibit the largest neurochemically defined sex difference in the rat preoptic area with a 20-fold difference in cell numbers. The gonadal steroid hormones responsible for this sexual dimorphism have been investigated by examining calcitonin gene-related peptide immunoreactivity in the preoptic area of adult rats receiving a variety of perinatal and adult gonadal steroid manipulations. Cells immunoreactive for calcitonin gene-related peptide were examined in two populations within the preoptic area, one in its ventrolateral aspect and the other located in the lateral division of the medial preoptic nucleus. Cell profile counts estimate numbers of calcitonin gene-related peptide-containing cells in the medial preoptic nucleus of the female to be 22.2 +/- 3.0 cells/section compared with 1.0 +/- 0.2 in the male (P < 0.01). No sex differences existed in the preoptic ventrolateral population of calcitonin gene-related peptide cells (males 4.3 +/- 0.2, females 4.4 +/- 0.6 cells/section). Gonadectomy of male rats on postnatal day 2 resulted in the appearance of a calcitonin gene-related peptide-containing cell population in the medial preoptic nucleus which was indistinguishable from intact female rats (19.3 +/- 2.2 cells/section). Gonadectomy of adult male rats resulted in a modest increase in calcitonin gene-related peptide cell numbers within the medial preoptic nucleus (8.8 +/- 0.4 cells/section) and this was fully reversed by replacement of testosterone (0.7 +/- 0.2 cells/section).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A E Herbison
- Department of Neurobiology, AFRC Institute of Animal Physiology and Genetics Research, Babraham, Cambridge, U.K
| | | |
Collapse
|
25
|
Herbison AE, Robinson JE, Skinner DC. Calcitonin gene-related peptide (CGRP): immunocytochemical identification of a neuropeptide synthesised by ventral paraventricular magnocellular neurones in the sheep. Brain Res 1993; 611:147-51. [PMID: 8518941 DOI: 10.1016/0006-8993(93)91786-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The distribution of calcitonin gene-related peptide (CGRP)-immunoreactive neurones was examined in the hypothalamus and pituitary gland of the short-term ovariectomised ewe. A large number of magnocellular CGRP-immunoreactive neurones were identified in the ventral paraventricular nuclei (PVN); few were found in the dorsal PVN and supraoptic nuclei. Parvicellular CGRP-immunoreactive neurones were identified in low density scattered throughout the preoptic region, anterior and basal hypothalamus and region of the stria terminalis. A dense CGRP innervation of the median eminence and neural lobe of the pituitary was observed. These observations reveal substantial species differences in CGRP immunoreactivity compared with the rat and show that magnocellular CGRP-synthesising neurones in the sheep are essentially restricted to, and define, the ventral PVN. This suggests a functionally distinct role for this previously neglected division of the PVN within the ovine hypothalamo-neurohypophyseal system.
Collapse
Affiliation(s)
- A E Herbison
- Department of Neurobiology, AFRC Institute of Animal Physiology, Babraham, Cambridge UK
| | | | | |
Collapse
|