1
|
Nii T, Bungo T, Isobe N, Yoshimura Y. Slight Disruption in Intestinal Environment by Dextran Sodium Sulfate Reduces Egg Yolk Size Through Disfunction of Ovarian Follicle Growth. Front Physiol 2021; 11:607369. [PMID: 33519513 PMCID: PMC7844332 DOI: 10.3389/fphys.2020.607369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/18/2020] [Indexed: 01/04/2023] Open
Abstract
Intestinal environments such as microbiota, mucosal barrier function, and cytokine production affect egg production in laying hens. Dextran sodium sulfate (DSS) is an agent that disrupts the intestinal environment. Previously, we reported that the oral administration of dextran sodium sulfate (DSS: 0.9 g/kg BW) for 5 days caused severe intestinal inflammation in laying hens. However, the DSS concentration in the previous study was much higher to induce a milder disruption of the intestinal environment without heavy symptoms. Thus, the goal of this study was to determine the effects of a lower dose of DSS on the intestinal environment and egg production in laying hens. White Leghorn laying hens (330-day old) were oral administered with or without 0.225 g DSS/kg BW for 28 days (DSS and control group: n = 7 and 8, respectively). Weekly we collected all laid eggs and blood plasma samples. Intestinal tissues, liver, ovarian follicles, and the anterior pituitary gland were collected 1 day after the final treatment. Lower concentrations of orally administered DSS caused (1) a decrease in the ratio of villus height/crypt depth, occludin gene expressions in large intestine and cecal microbiota diversity, (2) a decrease in egg yolk weight, (3) an increase in VLDLy in blood plasma, (4), and enhanced the egg yolk precursor accumulation in the gene expression pattern in the follicular granulosa layer, (5) an increase in FSH and IL-1β gene expression in the pituitary gland, and (6) an increase in concentration of plasma lipopolysaccharide binding protein. These results suggested that the administration of the lower concentration of DSS caused a slight disruption in the intestinal environment. This disruption included poor intestinal morphology and decreased cecal microbiome diversity. The change in the intestinal environment decreases egg yolk size without decreasing the VLDLy supply from the liver. The decrease in egg yolk size is likely to be caused by the dysfunction of egg-yolk precursor uptake in ovarian follicles. In conclusion, the oral administration of a lower dose of DSS is an useful method to cause slight disruptions of intestinal environment, and the intestinal condition decreases egg yolk size through disfunction of ovarian follicle.
Collapse
Affiliation(s)
- Takahiro Nii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Bungo
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Naoki Isobe
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yukinori Yoshimura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.,Research Center for Animal Science, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
2
|
Ren C, Yao RQ, Zhang H, Feng YW, Yao YM. Sepsis-associated encephalopathy: a vicious cycle of immunosuppression. J Neuroinflammation 2020; 17:14. [PMID: 31924221 PMCID: PMC6953314 DOI: 10.1186/s12974-020-1701-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is commonly complicated by septic conditions, and is responsible for increased mortality and poor outcomes in septic patients. Uncontrolled neuroinflammation and ischemic injury are major contributors to brain dysfunction, which arises from intractable immune malfunction and the collapse of neuroendocrine immune networks, such as the cholinergic anti-inflammatory pathway, hypothalamic-pituitary-adrenal axis, and sympathetic nervous system. Dysfunction in these neuromodulatory mechanisms compromised by SAE jeopardizes systemic immune responses, including those of neutrophils, macrophages/monocytes, dendritic cells, and T lymphocytes, which ultimately results in a vicious cycle between brain injury and a progressively aberrant immune response. Deep insight into the crosstalk between SAE and peripheral immunity is of great importance in extending the knowledge of the pathogenesis and development of sepsis-induced immunosuppression, as well as in exploring its effective remedies.
Collapse
Affiliation(s)
- Chao Ren
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ren-Qi Yao
- Department of Burn Surgery, Changhai Hospital, The Navy Medical University, Shanghai, 200433, People's Republic of China
| | - Hui Zhang
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Yong-Wen Feng
- Department of Critical Care Medicine, The Second People's Hospital of Shenzhen, Shenzhen, 518035, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China.
| |
Collapse
|
3
|
Diamond ML, Ritter AC, Failla MD, Boles JA, Conley YP, Kochanek PM, Wagner AK. IL-1β associations with posttraumatic epilepsy development: A genetics and biomarker cohort study. Epilepsia 2015; 56:991-1001. [PMID: 26149793 DOI: 10.1111/epi.13100] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2014] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Posttraumatic epilepsy (PTE) is a significant complication following traumatic brain injury (TBI), yet the role of genetic variation in modulating PTE onset is unclear. We hypothesized that TBI-induced inflammation likely contributes to seizure development. We assessed whether genetic variation in the interleukin-1beta (IL-1β) gene, Il-1β levels in cerebral spinal fluid (CSF) and serum, and CSF/serum IL-1β ratios would predict PTE development post-TBI. METHODS We investigated PTE development in 256 Caucasian adults with moderate-to-severe TBI. IL-1β tagging and functional single nucleotide polymorphisms (SNPs) were genotyped. Genetic variance and PTE development were assessed. Serum and CSF IL-1β levels were collected from a subset of subjects (n = 59) during the first week postinjury and evaluated for their associations with IL-1β gene variants, and also PTE. Temporally matched CSF/serum IL-1β ratios were also generated to reflect the relative contribution of serum IL-1β to CSF IL-1β. RESULTS Multivariate analysis showed that higher CSF/serum IL-1β ratios were associated with increased risk for PTE over time (p = 0.008). Multivariate analysis for rs1143634 revealed an association between the CT genotype and increased PTE risk over time (p = 0.005). The CT genotype group also had lower serum IL-1β levels (p = 0.014) and higher IL-1β CSF/serum ratios (p = 0.093). SIGNIFICANCE This is the first report implicating IL-1β gene variability in PTE risk and linking (1) IL-1β gene variation with serum IL-1β levels observed after TBI and (2) IL-1β ratios with PTE risk. Given these findings, we propose that genetic and IL-1β ratio associations with PTE may be attributable to biologic variability with blood-brain barrier integrity during TBI recovery. These results provide a rationale for further studies (1) validating the impact of genetic variability on IL-1β production after TBI, (2) assessing genetically mediated signaling mechanisms that contribute to IL-1β CSF/serum associations with PTE, and (3) evaluating targeted IL-1β therapies that reduce PTE. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.
Collapse
Affiliation(s)
- Matthew L Diamond
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Anne C Ritter
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Michelle D Failla
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Jennifer A Boles
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Yvette P Conley
- Department of Health Promotion and Development, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.,Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A.,Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| |
Collapse
|
4
|
Diamond ML, Ritter AC, Failla MD, Boles JA, Conley YP, Kochanek PM, Wagner AK. IL-1β associations with posttraumatic epilepsy development: a genetics and biomarker cohort study. Epilepsia 2014; 55:1109-19. [PMID: 24754437 DOI: 10.1111/epi.12628] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2014] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Posttraumatic epilepsy (PTE) is a significant complication following traumatic brain injury (TBI), yet the role of genetic variation in modulating PTE onset is unclear. We hypothesized that TBI-induced inflammation likely contributes to seizure development. We assessed whether genetic variation in the interleukin-1beta (IL-1β) gene, IL-1β levels in cerebrospinal fluid (CSF) and serum, and CSF/serum IL-1β ratios would predict PTE development post-TBI. METHODS We investigated PTE development in 256 Caucasian adults with moderate-to-severe TBI. IL-1β tagging and functional single nucleotide polymorphisms (SNPs) were genotyped. Genetic variance and PTE development were assessed. Serum and CSF IL-1β levels were collected from a subset of subjects (n = 59) during the first week postinjury and evaluated for their associations with IL-1β gene variants, and also PTE. Temporally matched CSF/serum IL-1β ratios were also generated to reflect the relative contribution of serum IL-1β to CSF IL-1β. RESULTS Multivariate analysis showed that higher CSF/serum IL-1β ratios were associated with increased risk for PTE over time (p = 0.008). Multivariate analysis for rs1143634 revealed an association between the CT genotype and increased PTE risk over time (p = 0.005). The CT genotype group also had lower serum IL-1β levels (p = 0.014) and higher IL-1β CSF/serum ratios (p = 0.093). SIGNIFICANCE This is the first report implicating IL-1β gene variability in PTE risk and linking (1) IL-1β gene variation with serum IL-1β levels observed after TBI and (2) IL-1β ratios with PTE risk. Given these findings, we propose that genetic and IL-1β ratio associations with PTE may be attributable to biologic variability with blood-brain barrier integrity during TBI recovery. These results provide a rationale for further studies (1) validating the impact of genetic variability on IL-1β production after TBI, (2) assessing genetically mediated signaling mechanisms that contribute to IL-1β CSF/serum associations with PTE, and (3) evaluating targeted IL-1β therapies that reduce PTE.
Collapse
Affiliation(s)
- Matthew L Diamond
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, Pennsylvania, U.S.A
| | | | | | | | | | | | | |
Collapse
|
5
|
Bellinger DL, Lorton D. Autonomic regulation of cellular immune function. Auton Neurosci 2014; 182:15-41. [PMID: 24685093 DOI: 10.1016/j.autneu.2014.01.006] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/17/2014] [Indexed: 12/21/2022]
Abstract
The nervous system and the immune system (IS) are two integrative systems that work together to detect threats and provide host defense, and to maintain/restore homeostasis. Cross-talk between the nervous system and the IS is vital for health and well-being. One of the major neural pathways responsible for regulating host defense against injury and foreign antigens and pathogens is the sympathetic nervous system (SNS). Stimulation of adrenergic receptors (ARs) on immune cells regulates immune cell development, survival, proliferative capacity, circulation, trafficking for immune surveillance and recruitment, and directs the cell surface expression of molecules and cytokine production important for cell-to-cell interactions necessary for a coordinated immune response. Finally, AR stimulation of effector immune cells regulates the activational state of immune cells and modulates their functional capacity. This review focuses on our current understanding of the role of the SNS in regulating host defense and immune homeostasis. SNS regulation of IS functioning is a critical link to the development and exacerbation of chronic immune-mediated diseases. However, there are many mechanisms that need to be further unraveled in order to develop sound treatment strategies that act on neural-immune interaction to resolve or prevent chronic inflammatory diseases, and to improve health and quality of life.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology and Human Anatomy, Loma Linda University, School of Medicine, Loma Linda, CA, 92350, USA.
| | - Dianne Lorton
- College of Arts and Sciences, Kent State University and the Kent Summa Initiative for Clinical and Translational Research, Summa Health System, Akron, OH 44304, USA
| |
Collapse
|
6
|
Cervi AL, Lukewich MK, Lomax AE. Neural regulation of gastrointestinal inflammation: role of the sympathetic nervous system. Auton Neurosci 2013; 182:83-8. [PMID: 24412637 DOI: 10.1016/j.autneu.2013.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/11/2013] [Indexed: 12/20/2022]
Abstract
The sympathetic innervation of the gastrointestinal (GI) tract regulates motility, secretion and blood flow by inhibiting the activity of the enteric nervous system (ENS) and direct vasoconstrictor innervation of the gut microvasculature. In addition to these well-established roles, there is evidence that the sympathetic nervous system (SNS) can modulate GI inflammation. Postganglionic sympathetic neurons innervate lymphoid tissues and immune cells within the GI tract. Furthermore, innate and adaptive immune cells express receptors for sympathetic neurotransmitters. Activation of these receptors can affect a variety of important immune cell functions, including cytokine release and differentiation of helper T lymphocyte subsets. This review will consider the neuroanatomical evidence of GI immune cell innervation by sympathetic axons, the effects of blocking or enhancing SNS activity on GI inflammation, and the converse modulation of sympathetic neuroanatomy and function by GI inflammation.
Collapse
Affiliation(s)
- Andrea L Cervi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Mark K Lukewich
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Alan E Lomax
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Department of Medicine, Gastrointestinal Diseases Research Unit and Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
7
|
Glucocorticoids as cytokine inhibitors: role in neuroendocrine control and therapy of inflammatory diseases. Mediators Inflamm 2012; 2:263-70. [PMID: 18475532 PMCID: PMC2365417 DOI: 10.1155/s0962935193000365] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1993] [Accepted: 05/03/1993] [Indexed: 11/17/2022] Open
Abstract
Glucocorticoids are potent inhibitors of inflammation and endotoxic shock. This probably occurs through an inhibition of the synthesis of pro-inflammatory cytokines as well as of many of their toxic activities. Therefore, endogenous glucocorticoids (GC) might represent a major mechanism in the control of cytokine mediated pathologies. GC inhibit the synthesis of cytokines in various experimental models. Adrenalectomy or GC antagonists potentiate TNF, IL-1 and IL-6 production in LPS treated mice. GC inhibit the formation of arachidonic acid metabolites and the induction of NO synthase. They also inhibit various activities of cytokines including toxicity, haemodynamic shock and fever. Adrenalectomy sensitizes to the toxic effects of LPS, TNF and IL-1. On the other hand, GC potentiate the synthesis of several cytokine induced APP by the liver. Since many of these proteins have anti-toxic activities (antioxidant, antiprotease etc.) or bind cytokines, this might well represent a GC mediated protective feedback mechanism involving the liver. Not only do GC inhibit cytokines, but in vivo LPS and various cytokines (TNF, IL-1, IL-6) increase blood GC levels through a central mechanism involving the activation of the HPA. Thus, this neuroendocrine response to cytokines constitutes an important immunoregulatory feedback involving the brain.
Collapse
|
8
|
Abstract
Infections are a major cause of death and morbidity after acute injury of the central nervous system (CNS). Acute lesions of the CNS alter immune homeostasis contributing to the development of immunosuppression (IS), and making the bed of the infection. IS results in a decreased phagocytic functions of neutrophils and macrophages as well as monocyte deactivation (decreased capacity of antigen presentation to lymphocytes). The immune abnormalities occur very quickly and may last for weeks. The neurovegetative system is closely connected to the secondary lymphoid organs where cells of innate immunity receive information from injured organs inducing the long lasting adaptive immune response (immune synapse). The sympathetic system is critically involved in the IS through production of anti-inflammatory mediators like interleukin-10. This may prove important as all types of acute injury of the CNS can lead to direct damage to sympathetic centers. Specialized units of care for ischemic stroke, taking into account the risk of infection related to the IS, have improved the prognosis until 18th month after the initial damage of the SNC. It is now well recognized that the improved long-term prognosis is related with the secondary prevention of recurrent ischaemia as well as aggressive management of pulmonary infections. A better understanding of the pathophysiology of IS can be considered in the near future, opening the door to immunomodulatory therapeutic trials.
Collapse
|
9
|
O'Connor JC, Johnson DR, Freund GG. Psychoneuroimmune implications of type 2 diabetes: redux. Immunol Allergy Clin North Am 2009; 29:339-58. [PMID: 19389586 DOI: 10.1016/j.iac.2009.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A sizable body of knowledge has arisen demonstrating that type 2 diabetes (T2D) is associated with alterations in the innate immune system. The resulting proinflammatory-leaning imbalance is implicated in the development of secondary disease complications and comorbidities, such as delayed wound healing, accelerated progress of atherosclerosis, and retinopathy, in people who have T2D. New experimental data and the results of recently published health-related quality-of-life surveys indicate that individuals who have T2D experience diminished feelings of happiness, well being, and satisfaction with life. These emotional and psychological consequences of T2D point to altered neuroimmunity as a previously unappreciated complication of T2D. This article discusses recent data detailing the impact of T2D on a person's PNI response.
Collapse
Affiliation(s)
- Jason C O'Connor
- Department of Animal Sciences, University of Illinois, 1201 West Gregory Drive, Urbana, IL 61801, USA
| | | | | |
Collapse
|
10
|
The role of stress mediators in modulation of cytokine production by ethanol. Toxicol Appl Pharmacol 2009; 239:98-105. [PMID: 19500611 DOI: 10.1016/j.taap.2009.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 05/21/2009] [Accepted: 05/28/2009] [Indexed: 11/22/2022]
Abstract
Acute ethanol exposure in humans and in animal models activates the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS); the resultant increases in concentration of neuroendocrine mediators contribute to some of the immunosuppressive effects of ethanol. However, the role of these mediators in the ethanol-induced inhibition of inflammatory responses is not clear. This is complicated by the fact that most inflammatory stimuli also activate the HPA axis and SNS, and it has not been determined if ethanol plus an inflammatory stimulus increases these stress responses. Addressing this issue is the major focus of the study described herein. Complementary approaches were used, including quantitative assessment of the stress response in mice treated with polyinosinic-polycytidylic acid (poly I:C, as an inflammatory stimulus) and inhibition of the production or action of key HPA axis and SNS mediators. Treatment of mice with ethanol shortly before treatment with poly I:C yielded a significant increase in the corticosterone response as compared to the response to poly I:C alone, but the increase was small and not likely sufficient to account for the anti-inflammatory effects of ethanol. Inhibition of catecholamine and glucocorticoid production by adrenalectomy, and inhibition of catecholamine action with a sustained release antagonist (nadalol) supported this conclusion and revealed that "excess" stress responses associated with ethanol treatment is not the mechanism of suppression of pro-inflammatory cytokine production, but stress-induced corticosterone does regulate production of several of these cytokines, which has not previously been reported.
Collapse
|
11
|
Katafuchi T, Duan S, Take S, Yoshimura M. Cytokine-induced suppression of medial preoptic neurons: mechanisms and neuroimmunomodulatory effects. Ann N Y Acad Sci 2009; 1153:76-81. [PMID: 19236330 DOI: 10.1111/j.1749-6632.2008.03963.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have shown that the medial preoptic area (MPO) in the hypothalamus is a major site where interferon (IFN)-alpha acts to induce suppression of splenic natural killer (NK) cell activity through an activation of sympathetic nervous system (SNS) in rats. Here, we discuss the hypothalamic mechanisms of the cytokine action using in vivo and in vitro preparations in rats. Lesion of the MPO activated the SNS and suppressed splenic NK cell activity in anesthetized rats, suggesting that the MPO had an inhibitory influence on nerve activity. Since both IFN-alpha and interleukin (IL)-1beta are known to suppress MPO neuron activity, it is suggested that the suppression/loss of the MPO caused by cytokine actions/lesions disinhibits the hypothalamic-sympathetic pathway, thereby resulting in an increase in the splenic SNS and reduction of NK activity. To explore the cellular mechanisms of the suppression of MPO neurons, the effects of Prostaglandin E2 (PGE2), one of the major mediators of cytokine action in the brain, on the glutamate-induced membrane currents were examined using the perforated patch-clamp method in mechanically dissociated MPO neurons. Patch-clamp analysis revealed that PGE2 potentiated the Ca2+-dependent K+ current (KCa) stimulated by Ca2+ entry through N-methyl-D-aspartate channels. We suggest that the cytokine-induced decrease in the firing rates of MPO neurons may be a result of an increase in interspike intervals caused by PGE(2)-induced enhancement of KCa in the presence of glutamatergic inputs.
Collapse
Affiliation(s)
- Toshihiko Katafuchi
- Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | |
Collapse
|
12
|
Bellinger DL, Millar BA, Perez S, Carter J, Wood C, ThyagaRajan S, Molinaro C, Lubahn C, Lorton D. Sympathetic modulation of immunity: relevance to disease. Cell Immunol 2008; 252:27-56. [PMID: 18308299 PMCID: PMC3551630 DOI: 10.1016/j.cellimm.2007.09.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 09/01/2007] [Indexed: 02/05/2023]
Abstract
Optimal host defense against pathogens requires cross-talk between the nervous and immune systems. This paper reviews sympathetic-immune interaction, one major communication pathway, and its importance for health and disease. Sympathetic innervation of primary and secondary immune organs is described, as well as evidence for neurotransmission with cells of the immune system as targets. Most research thus far has focused on neural-immune modulation in secondary lymphoid organs, has revealed complex sympathetic modulation resulting in both potentiation and inhibition of immune functions. SNS-immune interaction may enhance immune readiness during disease- or injury-induced 'fight' responses. Research also indicate that dysregulation of the SNS can significantly affect the progression of immune-mediated diseases. However, a better understanding of neural-immune interactions is needed to develop strategies for treatment of immune-mediated diseases that are designed to return homeostasis and restore normal functioning neural-immune networks.
Collapse
Affiliation(s)
- Denise L Bellinger
- Department of Pathology & Human Anatomy, Loma Linda University School of Medicine, 11021 Campus Street, Alumni Hall 325, Loma Linda, CA 92352, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Involvement of Brain Cytokines in Stress-induced Immunosuppression. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1567-7443(07)10019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
14
|
Nance DM, Sanders VM. Autonomic innervation and regulation of the immune system (1987-2007). Brain Behav Immun 2007; 21:736-45. [PMID: 17467231 PMCID: PMC1986730 DOI: 10.1016/j.bbi.2007.03.008] [Citation(s) in RCA: 587] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 03/17/2007] [Indexed: 01/09/2023] Open
Abstract
Since 1987, only a few neuroanatomical studies have been conducted to identify the origin of innervation for the immune system. These studies demonstrated that all primary and secondary immune organs receive a substantial sympathetic innervation from sympathetic postganglionic neurons. Neither the thymus nor spleen receive any sensory neural innervation; however, there is evidence that lymph nodes and bone marrow may be innervated by sensory neurons located in dorsal root ganglia. There is no neuroanatomical evidence for a parasympathetic or vagal nerve supply to any immune organ. Thus, the primary pathway for the neural regulation of immune function is provided by the sympathetic nervous system (SNS) and its main neurotransmitter, norepinephrine (NE). Activation of the SNS primarily inhibits the activity of cells associated with the innate immune system, while it either enhances or inhibits the activity of cells associated with the acquired/adaptive immune system. Innate immune cells express both alpha and beta-adrenergic receptor subtypes, while T and B lymphocytes express adrenergic receptors of the beta2 subtype exclusively, except for murine Th2 cells that lack expression of any subtype. Via these adrenergic receptors, NE is able to regulate the level of immune cell activity by initiating a change in the level of cellular activity, which often involves a change in the level of gene expression for cytokines and antibodies.
Collapse
Affiliation(s)
- Dwight M Nance
- Susan Samueli Center for Integrative Medicine, University of California Irvine, Orange, CA 92868-4283, USA.
| | | |
Collapse
|
15
|
Bellinger DL, Millar BA, Perez S, Carter J, Wood C, ThyagaRajan S, Molinaro C, Lubahn C, Lorton D. Innervation of lymphoid organs: Clinical implications. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.cnr.2006.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Abstract
The idea that type 2 diabetes is associated with augmented innate immune function characterized by increased circulating levels of acute phase reactants and altered macrophage biology is fairly well established, even though the mechanisms involved in this complex interaction still are not entirely clear. To date, the majority of studies investigating innate immune function in type 2 diabetes are limited to the context of wound healing, atherosclerosis, stroke, and other commonly identified comorbidities. Several important recurring themes come out of these data. First, type 2 diabetes is associated with a state of chronic, subclinical inflammation. Second, in macrophages, type 2 diabetic conditions enhance proinflammatory reactions and impair anti-inflammatory responses. Third, after acute activation of the innate immune system in type 2 diabetes, recovery or resolution of inflammation is impaired. The consequences of type 2 diabetes-associated inflammatory alterations on PNI processes have been recognized only recently. Given the impact of diminished emotional well-being on the quality of life in patients who have type 2 diabetes, diabetes-induced exacerbation of PNI responses should be considered a serious complication of type 2 diabetes that warrants further clinical attention.
Collapse
Affiliation(s)
- Jason C O'Connor
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
17
|
Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 2005; 6:775-86. [PMID: 16163382 DOI: 10.1038/nrn1765] [Citation(s) in RCA: 700] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infections are a leading cause of morbidity and mortality in patients with acute CNS injury. It has recently become clear that CNS injury significantly increases susceptibility to infection by brain-specific mechanisms: CNS injury induces a disturbance of the normally well balanced interplay between the immune system and the CNS. As a result, CNS injury leads to secondary immunodeficiency - CNS injury-induced immunodepression (CIDS) - and infection. CIDS might serve as a model for the study of the mechanisms and mediators of brain control over immunity. More importantly, understanding CIDS will allow us to work on developing effective therapeutic strategies, with which the outcome after CNS damage by a host of diseases could be improved by eliminating a major determinant of poor recovery.
Collapse
Affiliation(s)
- Christian Meisel
- Department of Medical Immunology, Charité, Humboldt University, 10098 Berlin, Germany
| | | | | | | | | |
Collapse
|
18
|
Meltzer JC, MacNeil BJ, Sanders V, Pylypas S, Jansen AH, Greenberg AH, Nance DM. Stress-induced suppression of in vivo splenic cytokine production in the rat by neural and hormonal mechanisms. Brain Behav Immun 2004; 18:262-73. [PMID: 15050653 DOI: 10.1016/j.bbi.2003.09.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Revised: 07/21/2003] [Accepted: 09/04/2003] [Indexed: 11/30/2022] Open
Abstract
The mechanisms mediating the effects of stress on immune function have yet to be fully described. In vitro studies have demonstrated a role for both the sympathetic nervous system (SNS) and the hypothalamic pituitary adrenal axis (HPAA) in regulating immune responses following exposure to various stressors. The purpose of the present set of experiments was to determine the in vivo contribution of the HPAA and SNS in regulating the effects of stress on lipopolysaccharide (LPS) induced splenic cytokine production. For this, rats with combinations of sham surgeries, splenic nerve cuts (SNC), and adrenalectomies (ADX) were exposed to 15 min of 1.6 mA intermittent footshock immediately following the intravenous (i.v.) injection of 0.1 microg of LPS. Although footshock was immunosuppressive to most indices of cytokine production, neither SNC nor ADX alone blocked the effects of stress on splenic immune function. However the combination of these two manipulations significantly abrogated the immunosuppressive effects of stress on cytokine production. Adrenal demedullation of animals with a SNC demonstrated that the SNS, not the HPAA, was primarily responsible for the immunosuppressive effects of stress.
Collapse
Affiliation(s)
- Jonathan C Meltzer
- National Research Council of Canada Institute for Biodiagnostics, Winnipeg, MB, Canada R3E 0W3
| | | | | | | | | | | | | |
Collapse
|
19
|
Song C, Leonard BE, Horrobin DF. Dietary ethyl-eicosapentaenoic acid but not soybean oil reverses central interleukin-1-induced changes in behavior, corticosterone and immune response in rats. Stress 2004; 7:43-54. [PMID: 15204032 DOI: 10.1080/10253890410001667188] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Omega (n)-3 and n-6 fatty acids are important membrane components of neurons and immune cells, and related to psychiatric and inflammatory diseases. Increased ratio of n-6/n-3 in the blood has been reported in depressed patients and in students following stress exposure. The n-3 fatty acid, eicosapentaenoic acid (ethyl-EPA) suppresses inflammation and has antidepressant properties. Interleukin (IL)-1beta can stimulate corticosterone secretion, induce anxiety and stress-like behavior and inflammatory responses. This study was to evaluate the effect of diets enriched with coconut oil, ethyl-EPA and soybean oil on central IL-1beta induced stress and anxiety-like behavior, induced changes in the concentration of prostaglandin (PG) E2 and corticosterone and the release of IL-10. Groups of rats were fed with either 5% coconut oil (as control diet), 0.2% EPA with 4.8% coconut oil or 1% EPA with 4% coconut oil and 5% soybean oil for 7 weeks. The central administration of IL-1beta induced sickness, stress and anxiety-like behavior as indicated by a reduction in body weight, decreased time spent, and the number of entries, into the open arms of the elevated plus maze and decreased exploration and entry into the central zone of the "open field" apparatus. IL-1beta also increased PGE2 and corticosterone concentrations and decreased the release of IL-10 from leucocytes. Food enriched with ethyl-EPA but not soybean oil, significantly attenuated most of these changes. These results demonstrate that ethyl-EPA has anti-inflammatory, anti-stress and anti-anxiety effects in rats.
Collapse
Affiliation(s)
- Cai Song
- Department of Psychiatry, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
20
|
Kees MG, Pongratz G, Kees F, Schölmerich J, Straub RH. Via β-adrenoceptors, stimulation of extrasplenic sympathetic nerve fibers inhibits lipopolysaccharide-induced TNF secretion in perfused rat spleen. J Neuroimmunol 2003; 145:77-85. [PMID: 14644033 DOI: 10.1016/j.jneuroim.2003.09.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Using a spleen slice microsuperfusion technique in mice, we have previously characterized the role of norepinephrine (NE) and other neurotransmitters for sympathetic modulation of IL-6 and TNF secretion of splenic macrophages. Since experiments in spleen slices do not reflect the situation of an entire perfused organ, we investigated sympathetic modulation of lipopolysaccharide (LPS)-induced secretion of IL-6 and TNF in perfusion experiments of rat spleen. In an organ bath, perfusion was performed in explanted whole spleens, and catecholamines and cytokines were measured by HPLC and ELISA, respectively. Release of NE depended on stimulation frequency (maximum at 10 Hz). Apart from NE, perfusates also contained significant amounts of dopamine and epinephrine. Furthermore, perfusate epinephrine levels correlated positively with perfusate NE levels (RRank=0.750, p<0.001) but not with plasma epinephrine concentrations. This indicates that epinephrine is a conversion product of sympathetically released NE. Early electrical stimulation of extrasplenic splenic nerves, 20 min after administration of LPS, significantly inhibited TNF secretion. This electrically induced effect was abrogated by simultaneous administration of propranolol (10(-6) M) but it was not influenced by administration of either an alpha1- or alpha2-adrenergic antagonist. Late electrical stimulation of splenic nerves, 2.5 h after administration of LPS, did not change TNF secretion. Interestingly, no influence of early or late sympathetic nerve fiber stimulation on IL-6 secretion was observed. In conclusion, this is the first perfusion study of the entire spleen that demonstrates that early electrical stimulation of sympathetic splenic nerve fibers directly inhibits LPS-induced TNF secretion. This study corroborates the idea that splenic sympathetic nerves are able to inhibit important activators of the innate immune system when stimulation happens very early or even prior to their induction by LPS.
Collapse
Affiliation(s)
- Martin G Kees
- Laboratory of Neuro/Endocrino/Immunology, Department of Internal Medicine I, University Hospital, Regensberg 93042, Germany
| | | | | | | | | |
Collapse
|
21
|
MacNeil BJ, Jansen AH, Greenberg AH, Nance DM. Neuropeptide specificity of prostaglandin E2-induced activation of splenic and renal sympathetic nerves in the rat. Brain Behav Immun 2003; 17:442-52. [PMID: 14583236 DOI: 10.1016/s0889-1591(03)00050-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sympathetic activation occurs rapidly following intracerebroventricular (icv) injection of prostaglandin E2(PGE2). This study examined whether neuropeptides mediate PGE2-induced sympathetic nerve activation in urethane/chloralose-anesthetized Sprague-Dawley rats. Animals were pretreated (20.0 microg, icv) with the following receptor antagonists; CRF ([D-Phe12,Nle21,38,Calpha-MeLeu37]CRF12-41), AVP-V1 (Des-Gly-[Phaa1, D-Tyr(Et)2,Lys6,Arg8]-vasopressin), or OT (OT+V1, [d(CH2)5,Tyr(Me)2,Orn8]-vasotocin) followed 20 min later by PGE2 (2.0 microg, icv). Pretreatment with the CRF antagonist attenuated the increase in renal nerve activity induced by PGE2 when measured 10 and 30 min post-injection. PGE2-induced renal nerve activity was also inhibited at both time points by the AVP antagonist and, to a similar extent, the OT antagonist. The AVP antagonist did not effect splenic nerve responses to PGE2 whereas the CRF antagonist produced an incomplete and transient reduction in PGE2-induced activation of the splenic nerve. However, the OT antagonist completely blocked the activation of the splenic nerve after central injection of PGE2. ICV injections of AVP and OT produced immediate changes in splenic and renal nerve activity whereas CRF failed to alter the activity of either nerve in anesthetized or conscious animals. Thus, PGE2 acts through neuropeptide-specific pathways to initiate sympathetic outflow and OT is a specific component of the sympathetic pathway innervating the spleen.
Collapse
Affiliation(s)
- Brian J MacNeil
- School of Medical Rehabilitation, University of Manitoba, R106-771 McDermot Avenue, Winnipeg, Man., Canada R3E 0T6.
| | | | | | | |
Collapse
|
22
|
Meltzer JC, MacNeil BJ, Sanders V, Pylypas S, Jansen AH, Greenberg AH, Nance DM. Contribution of the adrenal glands and splenic nerve to LPS-induced splenic cytokine production in the rat. Brain Behav Immun 2003; 17:482-97. [PMID: 14583240 DOI: 10.1016/s0889-1591(03)00084-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Both the hypothalamic pituitary adrenal axis (HPAA) and the sympathetic nervous system (SNS) can inhibit immune function and are regarded as the primary efferent pathways for neural-immune interactions. To determine if this relationship is maintained in vivo in response to an inflammatory stimulus, rats were injected intravenously (iv) with various doses of lipopolysaccharide (LPS) and splenic cytokine mRNA and protein levels were measured at several dose and time intervals post-injection. The spleen was chosen as the target organ because both the neural and hormonal inputs to the spleen can be selectively removed by splenic nerve cut (SNC) and adrenalectomy (ADX), respectively. Data from our dose response studies established that maximum levels of splenic cytokines were induced in response to relatively low doses of LPS. Minimal changes in LPS-induced splenic cytokine levels were observed in response to ADX, SNC, or a combination of the two procedures across several doses of LPS. These results suggest that there are aspects of immune regulation that are functionally removed from these central modulatory systems and that the counter-regulatory responses induced by LPS have minimal impact on the concurrent induction of cytokines by this inflammatory stimulus. The conceptual model of neural-immune regulation as an inhibitory feedback system, at least with regards to the early activational effects induced by an inflammatory stimulus, was not supported by these studies.
Collapse
Affiliation(s)
- Jonathan C Meltzer
- National Research Council of Canada Institute for Biodiagnostics, Winnipeg, MB, Canada R3B 1Y6
| | | | | | | | | | | | | |
Collapse
|
23
|
Maier SF. Bi-directional immune-brain communication: Implications for understanding stress, pain, and cognition. Brain Behav Immun 2003; 17:69-85. [PMID: 12676570 DOI: 10.1016/s0889-1591(03)00032-1] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The immune system and the central nervous system form a bi-directional communication network. The critical roles of pro-inflammatory cytokines in both the periphery and the nervous system are discussed. In the periphery, these cytokines initiate the processes that signal the brain that immune activation has occurred, and communicate this information over both neural and blood-borne routes. The arrival of these signals in the central nervous system induces a neural cascade that includes the de novo induction of pro-inflammatory cytokines. The functions of these cytokines in the nervous system are discussed, and it is argued that they play a key role in regulating the neural control of immune processes in the periphery. In addition, it is argued that these cytokines play a variety of other roles, and some implications of the cytokine network for understanding stress, behavior, sensory processing, mood, and cognition are described. The overall argument is that because brain-mediated host defense involves behavioral, sensory, mood, and cognitive alterations, immune activation, and immune products such as the cytokines can have a pervasive effect on these functions. Finally, these phenomena are placed in an evolutionary perspective.
Collapse
Affiliation(s)
- Steven F Maier
- Department of Psychology and Center for Neuroscience, University of Colorado, Campus box 345 80309-0345, Boulder, CO, USA.
| |
Collapse
|
24
|
Borsody MK, Weiss JM. Peripheral endotoxin causes long-lasting changes in locus coeruleus activity via IL-1 in the brain. Acta Neuropsychiatr 2002; 14:303-21. [PMID: 26984577 DOI: 10.1034/j.1601-5215.2002.140605.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Activity of locus coeruleus (LC) neurons, the major noradrenergic cell-body group in the brain whose axons give rise to approximately 70% of norepinephrine (NE) in the brain, is believed to play an important role in attention/vigilance, cognitive functions and behavioral disorders, particularly depression. Results described here show that in the rat, intraperitoneal (i.p.) injection of lipopolysaccharide (LPS, a bacterial endotoxin) causes long-lasting changes in electrophysiological activity of LC neurons that are mediated by interleukin-1 (IL-1) acting locally in the LC region. First, it was found that IL-1, when microinjected into the LC region or stimulated/expressed in that brain region, increased activity of LC neurons. The only exception to this was that a very low dose of microinjected IL-1 (5 pg) decreased LC activity, which could be blocked by an antagonist to corticotropin-releasing hormone (CRH), thus suggesting that the decrease was due to IL-1 stimulation of CRH release. All of these effects could be blocked by injection and/or infusion of IL-1 receptor antagonist (IL-1RA) specifically into the LC region. Next, intraperitoneal (i.p.) injection of a low dose of LPS(10 µg/kg or 100 ng/kg) was also found to increase LC activity. The excitation of LC produced by 10 µg/kg i.p. LPS increased progressively for at least 1 week, with LC neurons firing at more than twice their normal rate at 1 week after the i.p. LPS injection. Alteration of LC activity lasted for 3 weeks after a single i.p. injection of 10 µg/kg LPS. The effects of i.p. LPS on LC activity at any time after i.p. injection could be blocked by a brief microinfusion of IL-1RA into the LC region, thereby indicating that changes in LC activity seen after the i.p. LPS were caused by IL-1 acting in the LC region. Finally, i.p. injection of peptidoglycan, representing gram-positive bacteria, and polyinsinic-polycytidylic acid [poly(I):(C)], representing viral infection, also caused increases in LC activity, and the effects of peptidoglycan [but not those of poly(I):(C)] were blocked by microinfusion of IL-1RA into LC. These findings suggest that bacterial infections can give rise to prolonged changes in brain activity through cytokine action in brain.
Collapse
Affiliation(s)
- Mark K Borsody
- 2Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jay M Weiss
- 2Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Haddad JJ, Saadé NE, Safieh-Garabedian B. Cytokines and neuro-immune-endocrine interactions: a role for the hypothalamic-pituitary-adrenal revolving axis. J Neuroimmunol 2002; 133:1-19. [PMID: 12446003 DOI: 10.1016/s0165-5728(02)00357-0] [Citation(s) in RCA: 301] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytokines, peptide hormones and neurotransmitters, as well as their receptors/ligands, are endogenous to the brain, endocrine and immune systems. These shared ligands and receptors are used as a common chemical language for communication within and between the immune and neuroendocrine systems. Such communication suggests an immunoregulatory role for the brain and a sensory function for the immune system. Interplay between the immune, nervous and endocrine systems is most commonly associated with the pronounced effects of stress on immunity. The hypothalamic-pituitary-adrenal (HPA) axis is the key player in stress responses; it is well established that both external and internal stressors activate the HPA axis. Cytokines are chemical messengers that stimulate the HPA axis when the body is under stress or experiencing an infection. This review discusses current knowledge of cytokine signaling pathways in neuro-immune-endocrine interactions as viewed through the triplet HPA axis. In addition, we elaborate on HPA/cytokine interactions in oxidative stress within the context of nuclear factor-kappaB transcriptional regulation and the role of oxidative markers and related gaseous transmitters.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, Department of Anesthesia and Perioperative Care, University of California at San Francisco, School of Medicine, Medical Sciences, San Francisco, CA 94143-0542, USA.
| | | | | |
Collapse
|
26
|
Friedman EM, Irwin M. Central CRH suppresses specific antibody responses: effects of beta-adrenoceptor antagonism and adrenalectomy. Brain Behav Immun 2001; 15:65-77. [PMID: 11259081 DOI: 10.1006/brbi.2000.0582] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Central corticotropin releasing hormone (CRH)-induced activation of the sympathetic nervous system and/or the pituitary-adrenal axis is hypothesized to mediate suppression of in vivo specific antibody responses. To test whether beta-adrenergic receptor activation is involved in the immunosuppressive effects of central CRH, rats were pretreated with propranolol or saline before intracerebroventricular infusion of CRH and immunization with keyhole limpet hemocyanin (KLH). KLH (3 microg/kg) immunization induced significant increases in circulating levels of antigen-specific IgM and IgG. Central infusion of CRH (200 pmol) suppressed both IgM and IgG responses. Pretreatment with propranolol (20 mg/kg IP) reversed CRH-induced suppression of IgG responses but had no effect on IgM levels. To test whether adrenal activation also plays a role in the effects of KLH on specific antibody responses, a separate group of animals underwent adrenalectomy prior to CRH infusion and immunization with KLH. As compared to nonadrenalectomized control rats, adrenalectomized rats showed a reduction of antibody responses, and CRH failed to induce a further suppression of IgM or IgG responses in adrenalectomized animals. Collectively, these data suggest that beta-adrenoceptors mediate the suppression of primary antibody responses induced by central CRH. Moreover, the adrenals may promote optimal primary antibody responses after exposure to physiological levels of antigen.
Collapse
Affiliation(s)
- E M Friedman
- Department of Psychiatry, University of California, San Diego, USA
| | | |
Collapse
|
27
|
Immunoregulation by the sympathetic nervous system. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1567-7443(01)80013-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
Liège S, Layé S, Li KS, Moze E, Neveu PJ. Interleukin 1 receptor accessory protein (IL-1RAcP) is necessary for centrally mediated neuroendocrine and immune responses to IL-1beta. J Neuroimmunol 2000; 110:134-9. [PMID: 11024543 DOI: 10.1016/s0165-5728(00)00331-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mice deficient for the IL-1RAcP gene (IL-1RAcP KO) were used to explore the role of IL-1RAcP in physiological functions of brain IL-1beta. Animals were injected i.c.v. with two different doses of recombinant human (rh) IL-1beta: a small one (750 pg) known to induce sickness behavior, and a larger one (50 ng), chosen to counteract the possible loss of affinity of IL-1beta on its receptor. Neuroendocrine and immune parameters were measured 2 h after IL-1 injection. The increase of plasma corticosterone induced by rhIL-1beta in wild-type (WT) mice was not observed in IL-1RAcP KO mice. Likewise, the depression of splenocyte proliferation occurred in WT but not in KO mice. Finally, in opposition to WT mice, plasma levels and brain cortical content of IL-6 in IL-1RAcP KO mice remained unchanged as compared to saline-injected controls. The results clearly demonstrate that IL-1RAcP is necessary for the induction of the main neuroendocrine and immune effects of central IL-1beta.
Collapse
Affiliation(s)
- S Liège
- INSERM U.394 Neurobiologie Intégrative, Institut François Magendie, Rue Camille Saint-Saëns, 33077 Cedex, Bordeaux, France
| | | | | | | | | |
Collapse
|
29
|
Lapsha VI, Azev OA, Lukashenko TM, Shelaeva EA. Electrical activity in the vagus nerves and some medullary nuclei in rats: Changes induced by endotoxin action and hyperthermia evoked by an increase in ambient temperatures. NEUROPHYSIOLOGY+ 2000. [DOI: 10.1007/bf02515174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
|
31
|
Gomez-Flores R, Weber RJ. Inhibition of interleukin-2 production and downregulation of IL-2 and transferrin receptors on rat splenic lymphocytes following PAG morphine administration: a role in natural killer and T cell suppression. J Interferon Cytokine Res 1999; 19:625-30. [PMID: 10433363 DOI: 10.1089/107999099313767] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the effects of acute injection of morphine into the rat mesencephalon periaqueductal gray (PAG), on splenic natural killer (NK) cell and lymphocyte functions, interleukin-2 (IL-2) production, expression of T cell (CD3), T helper cell (CD4), T suppressor cell (CD8), and NK cell (NKR-P1) surface markers, and expression of IL-2 (CD25) and transferrin (CD71) receptors. Bilateral microinjection of 10 nmol of morphine in the PAG significantly (p < 0.001) inhibited IL-2 (31%) production by activated splenic lymphocytes compared with that of PAG saline-injected control rats. In addition, morphine significantly (p < 0.01) suppressed splenic NK cell activity (14-33%) and T lymphocyte proliferative responses (25-48%) to various mitogens compared with controls. Furthermore, morphine did not alter the expression of CD3, CD4, CD8, and NKR-P1 surface markers, but significantly (p < 0.001) downregulated the expression of CD25 and CD71 receptors following in vitro activation. These results suggested that injection of morphine in the PAG suppresses NK and T cell functions by reducing the ability of T cells to produce IL-2 and downregulating the expression of CD25 and CD71 surface activation markers.
Collapse
Affiliation(s)
- R Gomez-Flores
- Department of Biomedical and Therapeutic Sciences, University of Illinois, College of Medicine, Peoria 61656, USA
| | | |
Collapse
|
32
|
Zalcman S, Murray L, Dyck DG, Greenberg AH, Nance DM. Interleukin-2 and -6 induce behavioral-activating effects in mice. Brain Res 1998; 811:111-21. [PMID: 9804916 DOI: 10.1016/s0006-8993(98)00904-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Interleukin (IL)-1, IL-2 and IL-6 influence central monoamine activity in a cytokine-specific manner. We demonstrated that whereas IL-2 increased hypothalamic and hippocampal norepinephrine (NE) utilization, and DA turnover in the prefrontal cortex, IL-6 induced profound elevations of serotonin (5-HT) and mesocortical dopamine (DA) activity in the hippocampus and prefrontal cortex [S. Zalcman, J.M. Green-Johnson, L. Murray, D.M. Nance, D.G. Dyck, H. Anisman, A. H. Greenberg, Cytokine-specific central monoamine alterations following IL-1, -2 and -6 administration, Brain Res. 643 (1994) 40-49]. IL-1, in contrast, induced a wide range of central monoamine alterations. We presently report that these cytokines also differentially influence behavior. Profound reductions in non-ambulatory and ambulatory exploration were induced in BALB/c mice following IL-1 administration. In contrast, IL-2-treated mice displayed significant increases in the time spent engaged in non-ambulatory exploration, digging, rearing (particularly the number of free rears), and in the investigation of a novel stimulus (i.e., increased number and duration of stimulus contacts). IL-6-treated mice, moreover, exhibited significant increases in the time spent engaged in ambulatory exploration, digging and rearing (particularly the number of free rears, which tended to be of short duration). Modest increases in locomotion and grooming were also observed in IL-6-treated animals. Plasma corticosterone levels did not vary significantly as a function of IL-6 treatment. Hence, cytokine-specific behavioral-activating effects were induced following administration of IL-2 and IL-6. We suggest that these effects have adaptive significance and relevance to sickness behavior; however, pathological outcomes (e.g., schizophrenia, anxious-like states, anxious depression, motor abnormalities) could develop should these cytokines be overproduced or dysregulated.
Collapse
Affiliation(s)
- S Zalcman
- The Manitoba Institute of Cell Biology, University of Manitoba, 770 Bannatyne Ave., Winnipeg, Mb., Canada.
| | | | | | | | | |
Collapse
|
33
|
Meltzer JC, Sanders V, Grimm PC, Stern E, Rivier C, Lee S, Rennie SL, Gietz RD, Hole AK, Watson PH, Greenberg AH, Nance DM. Production of digoxigenin-labelled RNA probes and the detection of cytokine mRNA in rat spleen and brain by in situ hybridization. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1998; 2:339-51. [PMID: 9630715 DOI: 10.1016/s1385-299x(98)00010-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-radioactive in situ hybridization is a sensitive method for determining the site of production for secretory molecules such as cytokines. We report here on the central and peripheral induction of proinflammatory cytokines by endotoxin, and outline procedures for the generation and application of rat-specific digoxigenin (Dig)-labelled RNA probes for the localization of mRNA by in situ hybridization. Rats were injected either intravenously (i.v.) or intracerebroventricularly (i.c.v.) with vehicle or lipopolysaccharide (LPS) and sacrificed at various time intervals post-injection. Rats were then perfused with 4% paraformaldehyde and the spleens and brains were removed and cryoprotected in 30% sucrose. Dig-labelled, rat-specific, antisense and sense RNA probes were generated by in vitro transcription from PCR-derived templates. Positive staining with all the antisense probes was cytoplasmic, whereas the sense probes showed no staining. Numerous tumor necrosis factor alpha (TNF-alpha) and interleukin-1 beta (IL-1beta) mRNA positive cells were observed in the marginal zone and in the red pulp of the spleen after iv LPS injections, whereas sections from saline-treated animals showed minimal cytokine mRNA expression. Cells positive for TNF-alpha and IL-1beta mRNA were detectable in the brain after i.c.v. injections of LPS, but not after icv injection of vehicle. An antisense probe for c-fos was utilized in these studies as a positive control for our procedure due to its anatomically specific expression in the rat brain after LPS. In conclusion we have demonstrated that in situ hybridization with Dig-labelled RNA probes is an efficient, sensitive and reliable tool to localize cytokine mRNA production in rat tissue.
Collapse
Affiliation(s)
- J C Meltzer
- Department of Anatomy, The University of Manitoba, 770 Bannatyne Ave., Winnipeg, MB, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Connor TJ, Song C, Leonard BE, Merali Z, Anisman H. An assessment of the effects of central interleukin-1beta, -2, -6, and tumor necrosis factor-alpha administration on some behavioural, neurochemical, endocrine and immune parameters in the rat. Neuroscience 1998; 84:923-33. [PMID: 9579794 DOI: 10.1016/s0306-4522(97)00533-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite a vast amount of research into the actions of cytokines within the central nervous system, the pharmacological role and/or physiological function of the various cytokines within the central nervous system is still not fully understood. The present study evaluated the effects of intracerebroventricular administration of interleukin-1beta, -2, -6 (20 ng) and tumour necrosis factor-alpha (40 ng) on elevated plus maze behaviour, monoamine levels in the hypothalamus, hippocampus and amygdala, plasma corticosterone and catecholamine concentrations and Concanavalin A-induced splenic lymphocyte proliferation in the rat. Both interleukin-1beta and tumour necrosis factor-alpha induced "anxiogenic-like" effects on the elevated plus maze, whereas interleukin-2 and interleukin-6 did not. However only interleukin-1beta led to endocrine variations often associated with stress and anxiety. Cytokine specific alterations in monoamine levels were evident in the hypothalamus and hippocampus, while neurotransmitter concentrations in the amygdala were not significantly altered by cytokine treatment. In addition, interleukin-1beta reduced Concanavalin A-induced lymphocyte proliferation, whereas the other cytokine treatments failed to significantly alter this response. These results demonstrate that in some, but not all, respects interleukin-1beta administration produced "stress like" effects on behaviour, monoamine neurotransmitters, hypothalamic pituitary adrenal axis activity and immune function, while the other cytokines produced less consistent effects on these parameters. It is noteworthy that although interleukin-1beta and tumour necrosis factor-alpha provoked an anxiogenic response in the elevated plus maze test of anxiety, neither cytokine significantly altered amygdaloid noradrenergic or serotonergic activity, as many previous studies have implicated increased amygdaloid noradrenergic and/or serotonergic activity in the pathophysiology of anxiety.
Collapse
Affiliation(s)
- T J Connor
- Department of Pharmacology, National University of Ireland, Galway
| | | | | | | | | |
Collapse
|
35
|
Abstract
Peripheral immune stimulation such as that provided by lipopolysaccharide (LPS) has been reported to increase brain levels of IL-1beta mRNA, immunoreactivity, and bioactivity. Stressors produce many of the same neural and endocrine responses as those that follow LPS, but the impact of stressors on brain interleukin-1beta (IL-1beta) has not been systematically explored. An ELISA designed to detect IL-1beta was used to measure levels of IL-1beta protein in rat brain. Brain IL-1beta was explored after exposure to inescapable shock (IS; 100 1.6 mA tail shocks for 5 sec each) and LPS (1 mg/kg) as a positive control. Rats were killed either immediately or 2, 7, 24, or 48 hr after IS. Brains were dissected into hypothalamus, hippocampus, cerebellum, posterior cortex, and nucleus tractus solitarius regions. LPS produced widespread increases in brain IL-1beta, but IS did not. Adrenal glucocorticoids are known to suppress IL-1beta production in both the periphery and brain. Thus, it was possible that the stressor did provide stimulus input to the brain IL-1beta system(s), but that the production of IL-1beta protein was suppressed by the rapid and prolonged high levels of glucocorticoids produced by IS. To test this possibility rats were adrenalectomized or given sham surgery, with half of the adrenalectomized rats receiving corticosterone replacement to maintain basal corticosterone levels. IS produced large increases in brain IL-1beta protein in the adrenalectomized subjects 2 hr after stress, whether basal corticosterone levels had been maintained. Thus elimination of the stress-induced rise in corticosterone unmasked a robust and widespread increase in brain IL-1beta.
Collapse
|
36
|
Connor TJ, Leonard BE. Depression, stress and immunological activation: the role of cytokines in depressive disorders. Life Sci 1998; 62:583-606. [PMID: 9472719 DOI: 10.1016/s0024-3205(97)00990-9] [Citation(s) in RCA: 319] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traditionally, both stress and depression have been associated with impaired immune function and increased susceptibility to infectious and neoplastic disease. However over the last number of years a large body of evidence suggests that major depression is associated with signs of immunological activation. Moreover it has been suggested that cytokine hypersecretion may be involved in the aetiology of depressive disorders. The present article reviews the evidence from both clinical and experimental studies which implicates immunological activation and particularly hypersecretion of cytokines in the onset and maintenance of depressive illness. Both clinical and experimental studies indicate that stress and depression are associated with increased circulating concentrations of cytokines such as IL-1beta, IL-6 and gamma-IFN and positive acute phase proteins, and hyperactivity of the HPA-axis. In addition, it has been reported that immunological activation induces "stress-like" behavioural and neurochemical changes in laboratory animals. Although for many years it has been suggested that stress acts a predisposing factor to depressive illness, the precise mechanisms by which stress-induced depressive symptoms occur are not fully understood. Nevertheless, behavioural changes due to stress have often been explained in terms of changes in neurotransmitter function in the brain. In the present article increased cytokine secretion is implicated as a mechanism whereby stress can induce depression.
Collapse
Affiliation(s)
- T J Connor
- Department of Pharmacology, National University of Ireland, Galway
| | | |
Collapse
|
37
|
Pitossi F, del Rey A, Kabiersch A, Besedovsky H. Induction of cytokine transcripts in the central nervous system and pituitary following peripheral administration of endotoxin to mice. J Neurosci Res 1997; 48:287-98. [PMID: 9169855 DOI: 10.1002/(sici)1097-4547(19970515)48:4<287::aid-jnr1>3.0.co;2-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The regional distribution and inducibility of cytokines in the normal brain is still a matter of controversy. As an attempt to clarify this issue, we studied the constitutive and induced expression of interleukin (IL)-1beta, IL-6, tumor necrosis factor (TNF)-alpha, and interferon (IFN)-gamma mRNAs in the brain, pituitary, and spleen of mice using qualitative and semiquantitative reverse-transcription polymerase chain reaction. The contribution of nonbrain cells to the cytokine transcripts detected was considered. With the exception of IFN-gamma mRNA, transcripts for the other cytokines were found to be constitutively present in the brain. Following i.p. injection of lipopolysaccharide (LPS) at a dose below those described to disrupt the blood-brain barrier (BBB), cytokine mRNA expression was increased in the spleen, the pituitary, and the brain. In the brain, the onset of transcription varied from 45 min (IL-1beta, TNF-alpha) to 4 hr (IFN-gamma), and the peak of mRNA accumulation was observed at different times depending on the cytokine and the brain region studied. IL-1 and IL-6 were highly expressed in the hypothalamus and hippocampus, while TNF-alpha expression was more marked in the thalamus-striatum. The cortex was the region in which cytokines were less inducible. The inducible expression of cytokine mRNAs in the brain was paralleled by stimulation of the hypothalamus-pituitary-adrenal axis. These results show the capacity of brain cells to synthesize different cytokine mRNAs in vivo and define the kinetics of their expression in several brain areas and in the periphery in parallel to the activation of a neuroendocrine pathway by endotoxin.
Collapse
Affiliation(s)
- F Pitossi
- Institute of Physiology, Medical Faculty, Philipps University, Marburg, Germany
| | | | | | | |
Collapse
|
38
|
|
39
|
Colton CA, Chernyshev ON. Inhibition of microglial superoxide anion production by isoproterenol and dexamethasone. Neurochem Int 1996; 29:43-53. [PMID: 8808788 DOI: 10.1016/0197-0186(95)00139-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microglia, like other tissue macrophages, are a component of the hypothalamic-pituitary endocrine-immune axis and, as such, are responsive to both neural and endocrine factors. Using cultured neonatal hamster microglia, we have examined the effect of isoproterenol, a beta-adrenergic agonist, and dexamethasone, a synthetic glucocorticoid, on superoxide anion production. For these experiments, microglia were pretreated with isoproterenol or dexamethasone and then induced to produce superoxide anion by exposure of the cells to phorbol myristate acetate (PMA). Our study demonstrates that the PMA-stimulated production of superoxide anion was decreased by acute (30 min) and chronic (24 h) pretreatment of the microglia with isoproterenol and was blocked by the beta-adrenergic receptor antagonist, propranolol. Since a rise in intracellular cAMP may be a prime factor in the inhibition of superoxide anion production in isoproterenol-treated cells, we used forskolin, a known activator of the adenylate cyclase in place of isoproterenol and re-investigate superoxide anion production. Short term exposures to forskolin produced a lower amount of superoxide anion than PMA-stimulated alone and, thus, mimicked the effect of isoproterenol. However, treatment with the same concentration of forskolin for 24 h prior to the induction of the NADPH oxidase did not significantly change PMA-stimulated superoxide anion production from untreated values. Thus, chronic exposure to forskolin produced a different effect than chronic exposure to isoproterenol. Isoproterenol and forskolin both increased immunoreactivity for the protein products of the early response genes, c-fos and c-jun. Pretreatment with dexamethasone for 24 h also inhibited superoxide anion production and was blocked by the protein synthesis inhibitor, cycloheximide. The simultaneous addition of varying concentrations of dexamethasone and 5 microM isoproterenol did not produce a greater inhibition in superoxide anion production than either agent alone. The down-regulation of microglial function by adrenergic agonists and by glucocorticoids provides a way in which the cytotoxicity of these immune cells can be reduced and may be a factor in the paracrine regulation of microglia.
Collapse
Affiliation(s)
- C A Colton
- Department of Physiology and Biophysics, Georgetown University Medical School, Washington, DC 20007, USA
| | | |
Collapse
|
40
|
Janz LJ, Green-Johnson J, Murray L, Vriend CY, Nance DM, Greenberg AH, Dyck DG. Pavlovian conditioning of LPS-induced responses: effects on corticosterone, splenic NE, and IL-2 production. Physiol Behav 1996; 59:1103-9. [PMID: 8737899 DOI: 10.1016/0031-9384(95)02171-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present study used a taste aversion paradigm to condition lipopolysaccharide (LPS)-induced suppression of splenic lymphocyte interleukin-2 (IL-2) production, with concurrent measurement of corticosterone production and splenic norepinephrine (NE) content). In training, two groups of rats received saccharin and IP LPS in a paired (P) manner and a third group in a specifically unpaired (U) manner. In the test, the unpaired group (group U) and one of the paired (group P) groups were re-exposed (R) to the cue and the other not (NR). An additional group controlled for the effects of cues (conditional stimulus) and fluid deprivation (negative control; NC). A robust taste aversion in the P-R group was accompanied by suppression of IL-2 production, reduced splenic NE content, and elevated corticosterone production, relative to combined controls (i.e., groups U-R, P-NR, and NC). The conditioned modulation of IL-2 secretion, along with the concomitant alteration of adrenocortical and sympathetic mediators, supports the involvement of bidirectional central nervous-immune system pathways in this paradigm.
Collapse
Affiliation(s)
- L J Janz
- Department of Pathology, University of Manitoba, Winnipeg, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Marquette C, Ceccaldi PE, Ban E, Weber P, Tsiang H, Haour F. Alteration of interleukin-1 alpha production and interleukin-1 alpha binding sites in mouse brain during rabies infection. Arch Virol 1996; 141:573-85. [PMID: 8645096 DOI: 10.1007/bf01718318] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have evaluated the effect of rabies virus infection on interleukin-1 alpha (IL-1 alpha) production and its receptors in mouse brain. Study of virus dissemination in the central nervous system (CNS) showed a massive infection of main brain structures from day 4 post infection (p.i.) up to the agony stage on day 6 p.i. At the same time, IL-1 alpha concentrations increased in cortical and hippocampal homogenates, whereas no change was detected in serum. In non-infected mice, IL-1 alpha binding sites were observed in the dentate gyrus, the cortex, the choroid plexus, the meninges and the anterior pituitary. During rabies virus infection, a striking decrease in IL-1 alpha binding sites was observed on day 4 p.i. with a complete disappearance on day 6 p.i., except in the pituitary gland where they remained at control level. In conclusion, concomitantly with the early rabid pathological signs, brain IL-1 alpha production and IL-1 alpha binding sites are specifically and significantly altered by brain viral proliferation. These results indicate that IL-1 alpha could be involved in the brain response to viral infection as a mediator and could participate in the genesis of the rabies pathogeny.
Collapse
Affiliation(s)
- C Marquette
- Rabies Unit, Pasteur Institute, Paris, France
| | | | | | | | | | | |
Collapse
|
42
|
Vizi ES, Orsó E, Osipenko ON, Haskó G, Elenkov IJ. Neurochemical, electrophysiological and immunocytochemical evidence for a noradrenergic link between the sympathetic nervous system and thymocytes. Neuroscience 1995; 68:1263-76. [PMID: 8544999 DOI: 10.1016/0306-4522(95)00215-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The object of these experiments was to investigate whether noradrenaline is the signal neurotransmitter between the sympathetic nervous system and rat thymocytes. Using immunocytochemistry, evidence was obtained that the rat thymus (thymic capsule, subcapsular region and connective tissue septa) is innervated by noradrenergic varicose axons terminals (tyrosine hydroxylase- and dopamine-beta-hydroxylase-immunostained nerve fibres). This innervation is mainly associated with the vasculature and separately from vessels along the thymic tissue septa it branches into the thymic parenchyma. Using electron microscopy, classical synapses between thymocytes and neuronal elements were not observed. The neurochemical study revealed that these nerve terminals are able to take up, store and release noradrenaline upon axonal stimulation in a [Ca2+]o-dependent manner. The release was tetrodotoxin (1 microM)-sensitive, and reserpine pretreatment prevented axonal stimulation to release noradrenaline, indicating vesicular origin of noradrenaline. In addition, it was found that the release of noradrenaline was subjected to negative feedback modulation via presynaptic alpha 2-adrenoreceptors. Using a patch-clamp technique, electrophysiological evidence was obtained showing that noradrenaline inhibits in a concentration-dependent manner outward voltage-dependent potassium (k+) current recorded from isolated thymocytes. Since noradrenergic varicose axon terminals enter the parenchyma thymocytes and the boutons are not in close apposition to their target cells, noradrenaline released from these terminals diffuses away from release site to reach its targets, thymocytes, and to exert its inhibitory effect on voltage-dependent K+ -current. Since K+ channels are believed to be involved in T cell proliferation and differentiation, the modulation of K+ channel gating by noradrenaline released in response to axonal activity suggests that signals from blood-born or locally released hormones and cytokines. In this respect, noradrenaline released from non-synaptic neuronal varicosities and exerting its effect within the radius of diffusion may serve as a chemical link between the sympathetic nervous system and thymocytes and may have physiological and pathological importance in the thymus during stress and inflammatory/immune responses.
Collapse
Affiliation(s)
- E S Vizi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
43
|
Gabellec MM, Griffais R, Fillion G, Haour F. Expression of interleukin 1 alpha, interleukin 1 beta and interleukin 1 receptor antagonist mRNA in mouse brain: regulation by bacterial lipopolysaccharide (LPS) treatment. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 31:122-30. [PMID: 7476020 DOI: 10.1016/0169-328x(95)00042-q] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Lipopolysaccharide (LPS) stimulation is known to induce interleukin-1 (IL-1) mRNA expression in various immune cell types. Since IL-1 synthesis has been suggested to occur locally in brain tissue, we investigated the expression of IL-1 (alpha and beta) and IL-1 receptor antagonist (IL-1ra) mRNAs in various structures of the central nervous system, as well as in the spleen, following intraperitoneal injection of LPS (100 micrograms/mouse). After RNA extraction and amplification by the reverse transcription-polymerase chain reaction (RT-PCR), the PCR products were separated on an agarose gel, transferred and hybridized with digoxigenin-labeled probes synthetized by nested PCR. Glyceraldehyde phosphate deshydrogenase mRNA was used as an internal control. Under basal conditions the expression of IL-1 alpha, IL-1 beta and IL-1ra mRNAs in the brain was extremely low for the three cytokines; in the spleen these mRNAs were clearly detectable. Following LPS stimulation, mRNAs were strongly increased in all the tested tissues (cortex, hippocampus, hypothalamus, cerebellum, pituitary and spleen). The kinetics of mRNAs expressions in the brain were similar for all the tested regions, with a maximum at 6 h and a decrease up to 24 h after LPS administration. In the spleen the maximum was observed as soon as 1 h following stimulation. In conclusion, peripheral LPS stimulation induces a strong and transient expression of IL-1 alpha and IL-1 beta mRNAs in the brain. IL-1ra mRNA is also stimulated by LPS in various regions of the brain.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M M Gabellec
- Unité de Pharmacologie Neuro-Immuno-Endocrinienne, Paris, France
| | | | | | | |
Collapse
|
44
|
Andren J, Andrews K, Brown L, Chidgey J, Geary N, King MG, Roberts TK. Muramyl peptides and the functions of sleep. Behav Brain Res 1995; 69:85-90. [PMID: 7546321 DOI: 10.1016/0166-4328(95)00004-d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Muramyl peptides (MPs) are bacterially derived sleep factors which stimulate slow wave sleep. In the neonate, MPs are capable of inducing quiet sleep and suppressing active sleep. Given that active sleep is thought to be important for brain development during this period, the possibility that changes in the availability of MPs in the neonate may affect brain development was examined. Rat pups were given muramyl dipeptide (MDP) twice daily for the first 14 days post partum. It was hypothesised that MDP would stimulate quiet sleep at the expense of active sleep as has been shown in the young rabbit. There was no effect on neonatal levels of quiet sleep or active sleep. There was, however, a variety of effects, apparently unrelated to the sleep functions of MDP. These effects were changes in adult learning, serotonin metabolism and brain anatomy. The function of sleep in the mediation of the sleep-independent effects of MPs was examined, in particular the opposite effects of MDP on host immunity depending on the sleepiness of the host. In this light sleep does indeed serve to mediate the effects of MPs and it is speculated that many of the effects observed here may change in response to sleep levels in individuals. The notion that autonomic signalling between brain and spleen is more efficient during sleep is presented as an example of a function of sleep that may modulate the immunological effects of MPs.
Collapse
Affiliation(s)
- J Andren
- Department of Psychology, University of Newcastle, Australia
| | | | | | | | | | | | | |
Collapse
|
45
|
Yokotani K, Okuma Y, Osumi Y. Recombinant interleukin-1 beta inhibits gastric acid secretion by activation of central sympatho-adrenomedullary outflow in rats. Eur J Pharmacol 1995; 279:233-9. [PMID: 7556406 DOI: 10.1016/0014-2999(95)00166-i] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The inhibitory mechanism of gastric acid secretion induced by human recombinant interleukin-1 beta was investigated in bilaterally vagotomized, urethane-anesthetized rats. Intracerebroventricular administration of interleukin-1 beta (10, 50 and 100 ng/animal) dose dependently inhibited the gastric acid secretion induced by electrical stimulation of the vagus nerve at 3 Hz. Inhibition of gastric acid secretion induced by interleukin-1 beta (50 ng/animal) was abolished both by splanchnectomy and by phentolamine (5 mg/kg i.m.). Greater splanchnic nerves ramify into the adrenal branch and gastric sympathetic preganglionic branch. The interleukin-1 beta (50 ng/animal)-induced inhibition was also abolished by intracerebroventricular pretreatment with indomethacin (500 micrograms/animal), while pretreatment with the same dose of this reagent by the intraperitoneal route was without effect. These results suggest that centrally administered interleukin-1 beta induces a prostaglandin-mediated central excitation of the sympatho-adrenomedullary system, and the resultant activation of gastric alpha-adrenoceptors inhibits the vagally stimulated gastric acid secretion in rats.
Collapse
Affiliation(s)
- K Yokotani
- Department of Pharmacology, Kochi Medical School, Japan
| | | | | |
Collapse
|
46
|
Shintani F, Nakaki T, Kanba S, Kato R, Asai M. Role of interleukin-1 in stress responses. A putative neurotransmitter. Mol Neurobiol 1995; 10:47-71. [PMID: 7598832 DOI: 10.1007/bf02740837] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recently, the central roles of interleukin-1 (IL-1) in physical stress responses have been attracting attention. Stress responses have been characterized as central neurohormonal changes, as well as behavioral and physiological changes. Administration of IL-1 has been shown to induce effects comparable to stress-induced changes. IL-1 acts on the brain, especially the hypothalamus, to enhance release of monoamines, such as norepinephrine, dopamine, and serotonin, as well as secretion of corticotropin-releasing hormone (CRH). IL-1-induced activation of the hypothalamo-pituitary-adrenal (HPA) axis in vivo depends on secretion of CRH, an intact pituitary, and the ventral noradrenergic bundle that innervates the CRH-containing neurons in the paraventricular nucleus of the hypothalamus. Recent studies have shown that IL-1 is present within neurons in the brain, suggesting that IL-1 functions in neuronal transmission. We showed that IL-1 in the brain is involved in the stress response, and that stress-induced activation of monoamine release and the HPA axis were inhibited by IL-1 receptor antagonist (IL-1Ra) administration directly into the rat hypothalamus. IL-1Ra has been known to exert a blocking effect on IL-1 by competitively inhibiting the binding of IL-1 to IL-1 receptors. In the latter part of this review, we will attempt to describe the relationship between central nervous system diseases, including psychological disorders, and the functions of IL-1 as a putative neurotransmitter.
Collapse
Affiliation(s)
- F Shintani
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
47
|
Abstract
The results described herein indicate that elevation of IL-1 in rat brain, either by infusion of IL-1 into the brain or by stimulation of release of endogenous IL-1 in the brain by LPS, rapidly suppresses a variety of immune responses measured in peripheral lymphocytes. This effect can be blocked by infusion of alpha-MSH into brain, an attribute that was used to indicate that the effects of LPS infusion occurred by stimulation of endogenous IL-1 and not some other influence of LPS. That suppression of cellular immune responses indeed describes the consequences of elevating IL-1 in brain was shown by determining the time course of effects and thereby demonstrating that rebound enhancement of cellular immune responses did not occur after either IL-1 or LPS. Studies that examined the mechanisms by which brain IL-1 affects immune responses indicated that IL-1 influences peripheral lymphocytes by stimulation of CRF in the central nervous system and that CRF in turn causes suppression of cellular immune responses through activation of both the pituitary-adrenal axis and the autonomic nervous system. These findings have also been observed in another laboratory. Moreover, Brown et al. have shown that IL-1 in brain suppresses macrophage function in addition to the suppression of lymphocyte functions described herein. The physiologic significance of IL-1 actions in the brain on immune responses remains to be determined, but the demonstration that this cytokine influences immune processes by acting in brain opens for study another means by which brain and immune system interact.
Collapse
Affiliation(s)
- J M Weiss
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia 30306
| | | | | |
Collapse
|
48
|
WEISS JAYM, QUAN NING, SUNDARR SYAMK. Widespread Activation and Consequences of Interleukin-1 in the Brain. Ann N Y Acad Sci 1994. [DOI: 10.1111/j.1749-6632.1994.tb39676.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Schöbitz B, De Kloet ER, Holsboer F. Gene expression and function of interleukin 1, interleukin 6 and tumor necrosis factor in the brain. Prog Neurobiol 1994; 44:397-432. [PMID: 7886232 DOI: 10.1016/0301-0082(94)90034-5] [Citation(s) in RCA: 228] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- B Schöbitz
- Max Plank Institute of Psychiatry, Department of Neuroendocrinology, Munich, Germany
| | | | | |
Collapse
|
50
|
Abstract
Recent experimental evidence confirms the interrelationships between the central nervous, neuroendocrine and immune systems. Indeed, extensive duality exists in the use of neurotransmitters, hormones and receptors each system displays. In the present annotation, the effect of cytokines, soluble mediators of immune function, on the CNS and neuroendocrine systems is addressed and conversely, we discuss the modification of the immune compartment by the sympathetic nervous and neuroendocrine systems, with particular reference to the role of noradrenaline and corticosterone. Dysfunction between the systems is considered in the context of autoimmune conditions, with emphasis on experimental allergic encephalomyelitis and the contribution of corticosterone-driven T-cell apoptosis to recovery from the disease. Finally, we speculate on the relevance of neuroimmune interactions in the pathogenesis of multiple sclerosis.
Collapse
Affiliation(s)
- T Smith
- Multiple Sclerosis Laboratory, Miriam Marks Department of Neurochemistry, Institute of Neurology, London, UK
| | | |
Collapse
|