1
|
Basmadjian OM, Occhieppo VB, Montemerlo AE, Rivas GA, Rubianes MD, Baiardi G, Bregonzio C. Angiotensin II involvement in the development and persistence of amphetamine-induced sensitization: Striatal dopamine reuptake implications. Eur J Neurosci 2024; 59:2450-2464. [PMID: 38480476 DOI: 10.1111/ejn.16312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 05/22/2024]
Abstract
Amphetamine (AMPH) exposure induces behavioural and neurochemical sensitization observed in rodents as hyperlocomotion and increased dopamine release in response to a subsequent dose. Brain Angiotensin II modulates dopaminergic neurotransmission through its AT1 receptors (AT1-R), positively regulating striatal dopamine synthesis and release. This work aims to evaluate the AT1-R role in the development and maintenance of AMPH-induced sensitization. Also, the AT1-R involvement in striatal dopamine reuptake was analysed. The sensitization protocol consisted of daily AMPH administration for 5 days and tested 21 days after withdrawal. An AT1-R antagonist, candesartan, was administered before or after AMPH exposure to evaluate the participation of AT1-R in the development and maintenance of sensitization, respectively. Sensitization was evaluated by locomotor activity and c-Fos immunostaining. Changes in dopamine reuptake kinetics were evaluated 1 day after AT1-R blockade withdrawal treatment, with or without the addition of AMPH in vitro. The social interaction test was performed as another behavioural output. Repeated AMPH exposure induced behavioural and neurochemical sensitization, which was prevented and reversed by candesartan. The AT1-R blockade increased the dopamine reuptake kinetics. Neither the AMPH administration nor the AT1-R blockade altered the performance of social interaction. Our results highlight the AT1-R's crucial role in AMPH sensitization. The enhancement of dopamine reuptake kinetics induced by the AT1-R blockade might attenuate the neuroadaptive changes that lead to AMPH sensitization and its self-perpetuation. Therefore, AT1-R is a prominent candidate as a target for pharmacological treatment of pathologies related to dopamine imbalance, including drug addiction and schizophrenia.
Collapse
Affiliation(s)
- Osvaldo M Basmadjian
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria B Occhieppo
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Antonella E Montemerlo
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo A Rivas
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - María D Rubianes
- INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gustavo Baiardi
- Laboratorio de Neurofarmacología, (IIBYT-CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Claudia Bregonzio
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
2
|
Oros-González A, Gallardo-Ortíz IA, Montes S, Del Valle-Mondragón L, Páez-Martínez N. Captopril and losartan attenuate behavioural sensitization in mice chronically exposed to toluene. Behav Brain Res 2021; 418:113640. [PMID: 34757000 DOI: 10.1016/j.bbr.2021.113640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
Inhalants are consumed worldwide for recreational purposes. The main component found in many inhalants is toluene. One of the most deleterious behavioural effects caused by chronic exposure to inhalants is addiction. This response has been associated with activation of the mesolimbic dopaminergic pathway, and it is known that the renin angiotensin system plays a role in the modulation of this dopaminergic system. In the present work, we hypothesize that blockade of the RAS with angiotensin converting enzyme inhibitors or angiotensin II type 1 receptor blockers is able to attenuate the addictive response induced by toluene. We exposed mice to toluene for four weeks to induce locomotor sensitization. In the second phase of the work, captopril or losartan were administered for 20 days. Subsequently, the expression of behavioural sensitization was evaluated with a toluene challenge. To exclude false associations between the observed responses and treatments, motor coordination and blood pressure were analysed in animals treated with captopril or losartan. At the end of the behavioural studies, animal brains were harvested and Ang II/Ang-(1-7) and Ang-(1-7)/Ang II ratios were analysed in the nucleus accumbens (NAc) and prefrontal cortex (PFCx). The results showed that toluene induced behavioural sensitization, while captopril or losartan treatment attenuated the expression of this response. No significant differences were observed in motor coordination or blood pressure. Repeated toluene administration decreased Ang-(1-7)/Ang II ratio in the PFCx. On the other hand, treatment with captopril or losartan decreased the Ang II/Ang-(1-7) ratio and enhanced the Ang-(1-7)/Ang II ratio in the NAc. This work suggests that blockade of RAS attenuates the toluene-induced behavioural sensitization.
Collapse
Affiliation(s)
- Alain Oros-González
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Itzell Alejandrina Gallardo-Ortíz
- Unidad de Biomedicina, Carrera de Enfermería, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México.
| | - Sergio Montes
- Unidad Académica Multidisciplinaria Reynosa-Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, Tamaulipas, México
| | | | - Nayeli Páez-Martínez
- Sección de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México; Laboratorio Integrativo para el Estudio de Sustancias Inhalables Adictivas, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México, México.
| |
Collapse
|
3
|
Kim S, Jang EY, Song SH, Kim JS, Ryu IS, Jeong CH, Lee S. Brain Microdialysis Coupled to LC-MS/MS Revealed That CVT-10216, a Selective Inhibitor of Aldehyde Dehydrogenase 2, Alters the Neurochemical and Behavioral Effects of Methamphetamine. ACS Chem Neurosci 2021; 12:1552-1562. [PMID: 33871963 DOI: 10.1021/acschemneuro.1c00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Methamphetamine (MA), a potent central nervous system stimulant, mainly affects the brain dopaminergic and serotoninergic systems. Monoamine oxidase, catechol-O-methyltransferase, and aldehyde dehydrogenase 2 (ALDH2) are important enzymes in the metabolism of dopamine (DA) and serotonin (5-HT); however, the role of ALDH2 in MA addiction remains unclear. This study focused on the real-time changes in DA, 5-HT, and their metabolites, including 3,4-dihydroxyphenylacetic aldehyde and salsolinol, which are metabolites directly related to ALDH2, to examine the effects of the inhibition of ALDH2 on hyperlocomotion induced by MA. Locomotor activity was evaluated in rats after administration of MA and/or CVT-10216 (a selective ALDH2 inhibitor). Moreover, the simultaneous quantification of DA, 5-HT, and their metabolites in brain microdialysates of the rats was performed using a derivatization-assisted LC-MS/MS method after full validation. The validation results proved the method to be selective, sensitive, accurate, and precise, with acceptable linearity within calibration ranges. Intraperitoneal (i.p.) administration of 10 or 20 mg/kg of CVT-10216 significantly decreased MA-induced hyperlocomotion (1 mg/kg, i.p.). The analytical results of rat brain microdialysates demonstrated that the administration of CVT-10216 significantly downregulated DA levels, which were increased upon exposure to MA. Moreover, the increase in 3-methoxytyramine levels following coadministration of CVT-10216 and MA could play a potential role in antagonizing the hyperlocomotion induced by MA. All of these findings suggest that the inhibition of ALDH2 protects against MA-induced hyperlocomotion and has therapeutic potential in MA addiction.
Collapse
Affiliation(s)
- Seungju Kim
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Eun Young Jang
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daegeon 34114, Republic of Korea
| | - Sang-Hoon Song
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Ji Sun Kim
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daegeon 34114, Republic of Korea
| | - In Soo Ryu
- Pharmacology and Drug Abuse Research Group, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daegeon 34114, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, 1095 Dalgubeoldaero, Dalseo-gu, Daegu 704-701, Republic of Korea
| |
Collapse
|
4
|
Costa G, Serra M, Marongiu J, Morelli M, Simola N. Influence of dopamine transmission in the medial prefrontal cortex and dorsal striatum on the emission of 50-kHz ultrasonic vocalizations in rats treated with amphetamine: Effects on drug-stimulated and conditioned calls. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109797. [PMID: 31669508 DOI: 10.1016/j.pnpbp.2019.109797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 01/16/2023]
Abstract
Rat ultrasonic vocalizations (USVs) of 50 kHz are increasingly being evaluated as a behavioral marker of the affective properties of drugs. Studies in amphetamine-treated rats have shown that activation of dopamine transmission in the nucleus accumbens (NAc) initiates the emission of 50-kHz USVs, but little is known on how dopamine transmission in other brain regions modulates the effects of drugs on calling behavior. To clarify this issue, we evaluated 50-kHz USV emissions in rats subjected to dopaminergic denervation of either the medial prefrontal cortex (mPFC) or the dorsal striatum (DS) and treated with amphetamine. Rats received amphetamine (1 mg/kg, i.p. × 5) on alternate days in a test cage; 7 days later, they were re-exposed to the test cage, to measure calling behavior that may reflect drug conditioning, and then challenged with amphetamine (1 mg/kg, i.p.). The numbers of total and categorized 50-kHz USVs emitted were evaluated, along with immunofluorescence for Zif-268 in the NAc. Dopamine-denervated and sham-operated rats displayed comparable patterns of calling behavior during amphetamine treatment and after amphetamine challenge. Conversely, rats that were dopamine-denervated in the mPFC, but not DS, emitted low numbers of 50-kHz USVs on test cage re-exposure. Finally, dopamine-denervated rats displayed a less marked increase in Zif-268-positive neurons in the NAc shell after amphetamine challenge, compared with sham-operated rats. These results may be relevant to identify the neuronal circuits that modulate 50-kHz USV emissions in rats treated with amphetamine, as well as the interplay between calling behavior and affective properties of drugs.
Collapse
Affiliation(s)
- Giulia Costa
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marcello Serra
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jacopo Marongiu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy; CNR, National Research Council of Italy, Neuroscience Institute, Cagliari, Italy
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy.
| |
Collapse
|
5
|
Carrara-Nascimento PF, Hoffmann LB, Flório JC, Planeta CS, Camarini R. Effects of Ethanol Exposure During Adolescence or Adulthood on Locomotor Sensitization and Dopamine Levels in the Reward System. Front Behav Neurosci 2020; 14:31. [PMID: 32210774 PMCID: PMC7067700 DOI: 10.3389/fnbeh.2020.00031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/13/2020] [Indexed: 12/02/2022] Open
Abstract
Behavioral sensitization is a process of neuroadaptation characterized by a gradual increase in motor behaviors. The major neural substrates involved in the behavioral sensitization lie on the dopaminergic mesocorticolimbic pathway, which is still under development during adolescence. To investigate age-differences in ethanol behavioral sensitization and dopamine levels in distinct brain regions of the reward system, adolescent and adult mice were repeatedly pretreated with saline or ethanol (2.0 g/kg i.p.) during 15 consecutive days and challenged with saline or ethanol 5 days after pretreatment. Dopamine and its metabolites were measured in tissue samples of the prefrontal cortex (PFC), nucleus accumbens (NAc) and striatum by HPLC analysis. While repeated ethanol administration resulted in the development of locomotor sensitization in both adult and adolescent mice, only the adults expressed sensitization to a subsequent ethanol challenge injection. Neurochemical results showed reduced dopamine levels in adolescents compared to adults. Specifically, mice pretreated with ethanol during adolescence displayed lower dopamine levels in the PFC compared to the respective adult group in response to an ethanol challenge injection, and preadolescent mice exhibited lower dopamine levels in the NAc following an acute ethanol treatment compared to adults. These findings suggest that adolescent mice are not only less sensitive to the expression of ethanol-induced sensitization than adults, but also show lower dopamine content after ethanol exposition in the PFC and NAc.
Collapse
Affiliation(s)
| | - Lucas Barbosa Hoffmann
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Camilo Flório
- Departmento de Patologia, Escola de Medicina Veterinária, Universidade de São Paulo, São Paulo, Brazil
| | - Cleopatra Silva Planeta
- Laboratório de Neuropsicofarmacologia, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, Brazil
| | - Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Dopamine Evokes a Trace Amine Receptor-dependent Inward Current that is Regulated by AMP Kinase in Substantia Nigra Dopamine Neurons. Neuroscience 2019; 427:77-91. [PMID: 31883822 DOI: 10.1016/j.neuroscience.2019.11.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022]
Abstract
We reported recently that activators of AMP-activated protein kinase (AMPK) slow the rundown of current evoked by the D2 autoreceptor agonist quinpirole in rat substantia nigra compacta (SNC) dopamine neurons. The present study examined the effect of AMPK on current generated by dopamine, which unlike quinpirole, is a substrate for the dopamine transporter (DAT). Using whole-cell patch-clamp, we constructed current-voltage (I-V) plots while superfusing brain slices with dopamine (100 μM) for 25 min. Two minutes after starting superfusion, dopamine evoked a peak current with an average slope conductance of 0.97 nS and an estimated reversal potential (Erev) of -113 mV, which is near that expected for K+. But after 10 min of superfusion, dopamine-evoked currents had shifted to more depolarized values with a slope conductance of 0.64 nS and an Erev of -83 mV. This inward shift in current was completely blocked by the DAT inhibitor GBR12935. However, an AMPK blocking agent (dorsomorphin) permitted the emergence of inward current despite the continued presence of the DAT inhibitor. When D2 autoreceptors were blocked by sulpiride, I-V plots showed that dopamine evoked an inward current with an estimated slope conductance of 0.45 nS with an Erev of -57 mV. Moreover, this inward current was completely blocked by the trace amine-associated receptor 1 (TAAR1) antagonist EPPTB. These results suggest that dopamine activates a TAAR1-dependent non-selective cation current that is regulated by AMPK.
Collapse
|
7
|
Camarini R, Pautassi RM. Behavioral sensitization to ethanol: Neural basis and factors that influence its acquisition and expression. Brain Res Bull 2016; 125:53-78. [PMID: 27093941 DOI: 10.1016/j.brainresbull.2016.04.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/29/2022]
Abstract
Ethanol-induced behavioral sensitization (EBS) was first described in 1980, approximately 10 years after the phenomenon was described for psychostimulants. Ethanol acts on γ-aminobutyric acid (GABA) and glutamate receptors as an allosteric agonist and antagonist, respectively, but it also affects many other molecular targets. The multiplicity of factors involved in the behavioral and neurochemical effects of ethanol and the ensuing complexity may explain much of the apparent disparate results, found across different labs, regarding ethanol-induced behavioral sensitization. Although the mesocorticolimbic dopamine system plays an important role in EBS, we provide evidence of the involvement of other neurotransmitter systems, mainly the glutamatergic, GABAergic, and opioidergic systems. This review also analyses the neural underpinnings (e.g., induction of cellular transcription factors such as cyclic adenosine monophosphate response element binding protein and growth factors, such as the brain-derived neurotrophic factor) and other factors that influence the phenomenon, including age, sex, dose, and protocols of drug administration. One of the reasons that make EBS an attractive phenomenon is the assumption, firmly based on empirical evidence, that EBS and addiction-related processes have common molecular and neural basis. Therefore, EBS has been used as a model of addiction processes. We discuss the association between different measures of ethanol-induced reward and EBS. Parallels between the pharmacological basis of EBS and acute motor effects of ethanol are also discussed.
Collapse
Affiliation(s)
- Rosana Camarini
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, SP, Brazil.
| | - Ricardo Marcos Pautassi
- Instituto de Investigaciones Médicas M. y M. Ferreyra, Córdoba (IMMF-CONICET-Universidad Nacional de Córdoba), Universidad Nacional de Córdoba, Argentina
| |
Collapse
|
8
|
Pokinko M, Moquin L, Torres-Berrío A, Gratton A, Flores C. Resilience to amphetamine in mouse models of netrin-1 haploinsufficiency: role of mesocortical dopamine. Psychopharmacology (Berl) 2015; 232:3719-29. [PMID: 26264903 DOI: 10.1007/s00213-015-4032-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/13/2015] [Indexed: 11/25/2022]
Abstract
RATIONALE Signaling through the netrin-1 receptor, deleted in colorectal cancer (DCC), in dopamine neurons controls the extent of their innervation to the medial prefrontal cortex (mPFC) during adolescence. In mice, dcc haploinsufficiency results in increased mPFC dopamine innervation and concentrations in adulthood. In turn, dcc haploinsufficiency leads to resilience to the effects of stimulant drugs of abuse on dopamine release in the nucleus accumbens and behavior. OBJECTIVES First, we set out to determine whether increased mPFC dopamine innervation causes blunted behavioral responses to amphetamine in adult dcc haploinsufficient mice. Second, we investigated whether unc5c, another netrin-1 receptor expressed by dopamine neurons, is involved in these effects. Third, we assessed whether haploinsufficiency of netrin-1 itself leads to blunted behavioral responding to amphetamine, whether this phenotype emerges before or after adolescence and whether increased mPFC dopamine input is the underlying mechanism. RESULTS Adult, but not adolescent, dcc, unc5c and netrin-1 haploinsufficient mice exhibit blunted behavioral responses to amphetamine. Furthermore, adult dcc, unc5c, and netrin-1 haploinsufficient mice have exaggerated mPFC dopamine concentrations in comparison to their wild-type littermates. Importantly, resilience to amphetamine-induced behavioral activation in all the three mouse models is abolished by selective dopamine depletion in the medial prefrontal cortex. CONCLUSIONS dcc, unc5c, or netrin-1 haploinsufficiency leads to increased dopamine content in the mPFC and to resilience against amphetamine-induced behavioral activation. Our findings raise the hypothesis that DCC, UNC5C, and netrin-1 act in concert to organize the adolescent development of mesocortical dopamine innervation and, in turn, determine behavioral responses to drugs of abuse.
Collapse
Affiliation(s)
- Matthew Pokinko
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
9
|
Cui X, Lefevre E, Turner KM, Coelho CM, Alexander S, Burne THJ, Eyles DW. MK-801-induced behavioural sensitisation alters dopamine release and turnover in rat prefrontal cortex. Psychopharmacology (Berl) 2015; 232:509-517. [PMID: 25066360 DOI: 10.1007/s00213-014-3689-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/04/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE Repeated exposure to psychostimulants that either increase dopamine (DA) release or target N-methyl-D-aspartate (NMDA) receptors can induce behavioural sensitisation, a phenomenon that may be important for the processes of addiction and even psychosis. A critical component of behavioural sensitisation is an increase in DA release within mesocorticolimbic circuits. In particular, sensitisation to amphetamine leads to increased DA release within well-known sub-cortical brain regions and also regulatory regions such as prefrontal cortex (PFC). However, it is unknown how DA release within the PFC of animals is altered by sensitisation to NMDA receptor antagonists. OBJECTIVES The aims of the present study were twofold, firstly to examine whether a single dose of dizocilpine maleate (MK-801) could induce long-term behavioural sensitisation and secondly to examine DA release in the PFC of sensitised rats. MATERIALS AND METHODS Behavioural sensitisation was assessed by measuring locomotion after drug exposure. DA release in the PFC was measured using freely moving microdialysis. RESULTS We show that a single dose of MK-801 can induce sensitisation to subsequent MK-801 exposure in a high percentage of rats (66 %). Furthermore, rats sensitised to MK-801 have altered DA release and turnover in the PFC compared with non-sensitised rats. CONCLUSION Schizophrenia patients have been postulated to have 'endogenous sensitisation' to psychostimulants. MK-801-induced sensitised rats, in particular when compared with non-sensitised rats, provide a useful model for studying PFC dysfunction in schizophrenia.
Collapse
Affiliation(s)
- Xiaoying Cui
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
dcc orchestrates the development of the prefrontal cortex during adolescence and is altered in psychiatric patients. Transl Psychiatry 2013; 3:e338. [PMID: 24346136 PMCID: PMC4030324 DOI: 10.1038/tp.2013.105] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 10/21/2013] [Indexed: 01/19/2023] Open
Abstract
Adolescence is a period of heightened susceptibility to psychiatric disorders of medial prefrontal cortex (mPFC) dysfunction and cognitive impairment. mPFC dopamine (DA) projections reach maturity only in early adulthood, when their control over cognition becomes fully functional. The mechanisms governing this protracted and unique development are unknown. Here we identify dcc as the first DA neuron gene to regulate mPFC connectivity during adolescence and dissect the mechanisms involved. Reduction or loss of dcc from DA neurons by Cre-lox recombination increased mPFC DA innervation. Underlying this was the presence of ectopic DA fibers that normally innervate non-cortical targets. Altered DA input changed the anatomy and electrophysiology of mPFC circuits, leading to enhanced cognitive flexibility. All phenotypes only emerged in adulthood. Using viral Cre, we demonstrated that dcc organizes mPFC wiring specifically during adolescence. Variations in DCC may determine differential predisposition to mPFC disorders in humans. Indeed, DCC expression is elevated in brains of antidepressant-free subjects who committed suicide.
Collapse
|
11
|
Bimpisidis Z, De Luca MA, Pisanu A, Di Chiara G. Lesion of medial prefrontal dopamine terminals abolishes habituation of accumbens shell dopamine responsiveness to taste stimuli. Eur J Neurosci 2012; 37:613-22. [PMID: 23216547 DOI: 10.1111/ejn.12068] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 11/28/2022]
Abstract
Taste stimuli increase extracellular dopamine (DA) in the nucleus accumbens (NAc) and in the medial prefrontal cortex (mPFC). This effect shows single-trial habituation in NAc shell but not in core or in mPFC. Morphine sensitization abolishes habituation of DA responsiveness in NAc shell but induces it in mPFC. These observations support the hypothesis of an inhibitory influence of mPFC DA on NAc DA. To test this hypothesis, we used in vivo microdialysis to investigate the effect of mPFC 6-hydroxy-dopamine (6-OHDA) lesions on the NAc DA responsiveness to taste stimuli. 6-OHDA was infused bilaterally in the mPFC of rats implanted with guide cannulae. After 1 week, rats were implanted with an intraoral catheter, microdialysis probes were inserted into the guide cannulae, and dialysate DA was monitored in NAc shell/core after intraoral chocolate. 6-OHDA infusion reduced tissue DA in the mPFC by 75%. Tyrosine hydroxylase immunohistochemistry showed that lesions were confined to the mPFC. mPFC 6-OHDA lesion did not affect the NAc shell DA responsiveness to chocolate in naive rats but abolished habituation in rats pre-exposed to the taste. In the NAc core, mPFC lesion potentiated, delayed and prolonged the stimulatory DA response to taste but failed to affect DA in pre-exposed rats. Behavioural taste reactions and motor activity were not affected. The results indicate a top-down control of NAc DA by mPFC and a reciprocal relationship between DA transmission in these two areas. Moreover, habituation of DA responsiveness in the NAc shell is dependent upon an intact DA input to the mPFC.
Collapse
Affiliation(s)
- Zisis Bimpisidis
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | | | | |
Collapse
|
12
|
da-Rosa DD, Valvassori SS, Steckert AV, Ornell F, Ferreira CL, Lopes-Borges J, Varela RB, Dal-Pizzol F, Andersen ML, Quevedo J. Effects of lithium and valproate on oxidative stress and behavioral changes induced by administration of m-AMPH. Psychiatry Res 2012; 198:521-6. [PMID: 22429481 DOI: 10.1016/j.psychres.2012.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/12/2012] [Accepted: 01/18/2012] [Indexed: 01/02/2023]
Abstract
In the last years our research group has studied and validated the animal model of mania induced by dextroamphetamine (d-AMPH). Considering the lack of animal models of mania reported in the literature; this study evaluated the possibilities to validate the animal model induced by methamphetamine (m-AMPH). Then, we evaluated the effects of lithium (Li), valproate (VPA) on the behavior and parameters of oxidative damage in rat brain after administration of m-AMPH. In the prevention treatment, Wistar rats were pretreated with Li, VPA or saline (Sal) for 14 days, and then, between days 8 and 14, rats were treated with m-AMPH (1, 0.5 or 0.25 mg/kg) or Sal. In the reversal treatment, rats were first given m-AMPH (0.25 mg/kg) or Sal. Locomotor behavior was assessed using the open-field task and parameters of oxidative damage were measured in brain structures. Our results show that the hyperactivity was prevented and reverted by Li and VPA only when m-AMPH was administered in the dose of 0.25mg/kg. In addition, the m-AMPH in all doses administrated induced oxidative damage in both structures tested in two models. Li and VPA reversed and prevented this impairment, however in a way dependent of cerebral area, the dose of m-AMPH and technique.
Collapse
Affiliation(s)
- Dayane D da-Rosa
- Laboratory of Neurosciences and National Institute for Translational Medicine, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, 88806-000 Criciúma, SC, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Flores C. Role of netrin-1 in the organization and function of the mesocorticolimbic dopamine system. J Psychiatry Neurosci 2011; 36:296-310. [PMID: 21481303 PMCID: PMC3163646 DOI: 10.1503/jpn.100171] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Changes in mesocorticolimbic dopamine (DA) neurons and their target cells can be induced throughout life and are important determinants of individual differences in susceptibility to psychopathology. The goal of my research is to gain insight into the nature of the cellularand molecular mechanism underlying the selective plasticity of mesocorticolimbic DA neurons. Here, I review work showing that the guidance cue netrin-1 is implicated in the organization, plasticity and function of mesocorticolimbic DA neurons in rodents. Developmental variations in netrin-1 receptor function result in selective reorganization of medial prefrontal DA circuitry during adolescence and in an adult phenotype protected against schizophrenia-like dopaminergic and behavioural abnormalities. Furthermore, in adulthood, expression of netrin-1 receptors is upregulated by repeated exposure to stimulant drugs of abuse in DA somatodendritic regions and is necessary for drug-induced behavioural plasticity. I propose that risk factors associated with DA-related adult psychiatric disorders alter netrin-1 function.
Collapse
Affiliation(s)
- Cecilia Flores
- Department of Psychiatry, McGill University, Douglas Hospital Research Centre, Montréal, QC, Canada.
| |
Collapse
|
14
|
De Luca MA, Bimpisidis Z, Bassareo V, Di Chiara G. Influence of morphine sensitization on the responsiveness of mesolimbic and mesocortical dopamine transmission to appetitive and aversive gustatory stimuli. Psychopharmacology (Berl) 2011; 216:345-53. [PMID: 21340470 DOI: 10.1007/s00213-011-2220-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 02/06/2011] [Indexed: 10/18/2022]
Abstract
RATIONALE Repeated treatment with morphine has been shown to sensitize rats to its stimulant effects on motor activity and mesolimbic dopamine (DA) transmission. OBJECTIVES The aim of this study is to investigate if morphine sensitization is associated to changes in the behavioral reactions to appetitive and aversive taste stimuli and in the response of in vivo DA transmission in the nucleus accumbens (NAc) shell and core and medial prefrontal cortex (PFCX) to the same stimuli. METHODS Rats were administered twice a day for three consecutive days with increasing doses of morphine [10, 20, and 40 mg/kg, subcutaneously (sc)] or with saline. After 15 days of withdrawal, rats were infused intraorally with either an appetitive (sweet chocolate, 1 ml) or an aversive solution (quinine HCl 5 × 10(-4) M, 1 ml). The behavioral taste reactions were recorded during microdialysis of DA in the NAc shell and core and PFCX. RESULTS Opiate sensitization did not affect behavioral reactions to intraoral chocolate or quinine. In rats naive to the taste stimuli, morphine sensitization was associated to potentiation of stimulatory DA response to appetitive and aversive taste stimuli in the NAc core. Morphine sensitization reciprocally affected habituation of DA responsiveness after one trial exposure to appetitive and aversive taste stimuli (abolition it in the shell, induction in the PFCX). No habituation of DA responsiveness to taste was observed in the NAc core in controls as well as in morphine-sensitized rats. CONCLUSIONS These results suggest that opiate sensitization is associated to differential adaptive changes of the responsiveness of DA transmission to taste stimuli in DA terminal areas.
Collapse
|
15
|
Drerup JM, Hayashi K, Cui H, Mettlach GL, Long MA, Marvin M, Sun X, Goldberg MS, Lutter M, Bibb JA. Attention-deficit/hyperactivity phenotype in mice lacking the cyclin-dependent kinase 5 cofactor p35. Biol Psychiatry 2010; 68:1163-71. [PMID: 20832057 PMCID: PMC2997929 DOI: 10.1016/j.biopsych.2010.07.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/19/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) may result from delayed establishment of corticolimbic circuitry or perturbed dopamine (DA) neurotransmission. Despite the widespread use of stimulants to treat ADHD, little is known regarding their long-term effects on neurotransmitter levels and metabolism. Cyclin-dependent kinase 5 (Cdk5) regulates DA signaling through control of synthesis, postsynaptic responses, and vesicle release. Mice lacking the Cdk5-activating cofactor p35 are deficient in cortical lamination, suggesting altered motor/reward circuitry. METHODS We employed mice lacking p35 to study the effect of altered circuitry in vivo. Positron emission tomography measured glucose metabolism in the cerebral cortex using 2-deoxy-2-[¹⁸F] fluoro-d-glucose as the radiotracer. Retrograde dye tracing and tyrosine hydroxylase immunostains assessed the effect of p35 knockout on the medial prefrontal cortex (PFC), especially in relation to mesolimbic circuit formation. We defined the influence of Cdk5/p35 activity on catecholaminergic neurotransmission and motor activity via examination of locomotor responses to psychostimulants, monoamine neurotransmitter levels, and DA signal transduction. RESULTS Here, we report that mice deficient in p35 display increased glucose uptake in the cerebral cortex, basal hyperactivity, and paradoxical decreased locomotion in response to chronic injection of cocaine or methylphenidate. Knockout mice also exhibited an increased susceptibility to changes in PFC neurotransmitter content after chronic methylphenidate exposure and altered basal DAergic activity in acute striatal and PFC slices. CONCLUSIONS Our findings suggest that dysregulation of Cdk5/p35 activity during development may contribute to ADHD pathology, as indicated by the behavioral phenotype, improperly established mesolimbic circuitry, and aberrations in striatal and PFC catecholaminergic signaling in p35 knockout mice.
Collapse
Affiliation(s)
- Justin M. Drerup
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
,Department of Chemistry, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Kanehiro Hayashi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Huxing Cui
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Gabriel L. Mettlach
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Michael A. Long
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Marian Marvin
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Xiankai Sun
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Matthew S. Goldberg
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Michael Lutter
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - James A. Bibb
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
16
|
Wanchoo SJ, Lee MJ, Swann AC, Dafny N. Bilateral six-hydroxydopamine administration to PFC prevents the expression of behavioral sensitization to methylphenidate. Brain Res 2009; 1312:89-100. [PMID: 19932692 DOI: 10.1016/j.brainres.2009.11.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/09/2009] [Accepted: 11/17/2009] [Indexed: 11/28/2022]
Abstract
Psychostimulants like amphetamine and methylphenidate (MPD) are used to treat attention deficit hyperactivity disorder (ADHD), which is marked by developmentally inappropriate inattention, hyperactivity, and impulsivity. Neuropsychological analyses indicate that ADHD patients are impaired on tasks of behavioral inhibition, reward reversal, and working memory, which are functions of the prefrontal cortex (PFC) and are modulated by the mesocortical dopamine (DA) system. Non-specific electrical lesioning of PFC eliminated the expression of behavioral sensitization elicited by chronic MPD administration. Behavioral sensitization is the progressive augmentation of locomotor activity as a result of repetitive (chronic) exposure to the drug. It is believed that the sensitization to chronic drug treatment is caused due to an increase in DA in the mesocorticolimbic DA system, which includes the PFC. Therefore, this study investigated the role of PFC DA in mediating the behavioral sensitization to repeated administration of MPD in adult male Sprague-Dawley rats. On experimental day (ED) 1, the behavior was recorded post-saline injection. On ED 2, the rats were divided into three groups--control, sham and bilateral 6-OHDA treated group; and the sham and 6-OHDA treated groups underwent respective surgeries. After 5 days of rest following surgery, the post-surgery baseline was recorded on ED 8 following a saline injection. All three groups received 2.5 mg/kg MPD for 6 days (from ED 9 to ED 14), followed by a 3-day washout period (ED 15 to ED 18). On ED 19, a rechallenge injection of 2.5 mg/kg MPD was given and locomotor activity was recorded. It was found that the 6-OHDA lesion group failed to exhibit behavioral sensitization to MPD. The involvement of the dopaminergic afferents of PFC in behavioral sensitization to MPD is discussed.
Collapse
Affiliation(s)
- S J Wanchoo
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, TX, USA
| | | | | | | |
Collapse
|
17
|
Prefrontal cortical D1 dopamine receptors modulate subcortical D2 dopamine receptor-mediated stress responsiveness. Int J Neuropsychopharmacol 2009; 12:1195-208. [PMID: 19275776 DOI: 10.1017/s1461145709000121] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Increased responsiveness to stress plays an important role in the manifestation of schizophrenia symptoms. Evidence indicates that the prefrontal cortex (PFC), and dopamine neurotransmission in the PFC in particular, is involved in the modulation of stress responsiveness. Decreased dopaminergic activity and loss of dopamine fibres have been reported in PFC in schizophrenia patients. Consequently, it was hypothesized that depletion of dopamine in PFC may facilitate increased stress responsiveness. Adult Sprague-Dawley rats received injections of 6-hydroxydopamine or saline bilaterally into the medial PFC (mPFC) following desipramine pretreatment to selectively deplete dopaminergic fibres. Following a 3-wk recovery period, the lesioned and control rats received injections of a D1 or D2 dopamine receptor agonist or vehicle into the mPFC and were immediately subjected to forced swimming as a stressor. Results showed that frequency of locomotion and rearing, behavioural measures indicative of increased dopaminergic activity in the nucleus accumbens (NAc), were significantly increased following stress in prefrontal cortical dopamine-depleted rats. This effect was significantly ameliorated by infusions of a D1 dopamine receptor agonist directly into the mPFC in a dose-dependent manner but not by infusion of a D2 dopamine receptor agonist. In addition, stress-induced behavioural changes in prefrontal cortical dopamine-depleted rats were significantly reduced following selective discrete infusions of a D2 dopamine receptor antagonist into the NAc shell. The results suggest that dopaminergic transmission via D1 receptors in the mPFC modulates D2 dopamine receptor-mediated stress responsiveness in the NAc, a feature that may be disrupted in schizophrenia patients.
Collapse
|
18
|
Kelsey JE, Willmore EJ. Electrolytic lesions of the nucleus accumbens enhance locomotor sensitization to nicotine in rats. Behav Neurosci 2009; 120:600-11. [PMID: 16768612 DOI: 10.1037/0735-7044.120.3.600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electrolytic lesions of the medial core of the nucleus accumbens (NAc) in male Long-Evans rats increased spontaneous locomotion, enhanced the locomotor stimulating effect of acute 5.0 mg/kg cocaine, enhanced the development and subsequent expression of locomotor sensitization produced by repeated injections of 0.4 mg/kg nicotine but not 7.5 mg/kg cocaine, and enhanced the expression of conditioned locomotion. Given that 6-hydroxydopamine lesions of the NAc typically have effects on locomotor-related processes that are opposite of those produced by electrolytic and excitotoxic lesions, these data are consistent with a hypothesis that the NAc output, especially from the core, inhibits a variety of such processes and that the DA input to the NAc enhances these processes by inhibiting this inhibitory output.
Collapse
Affiliation(s)
- John E Kelsey
- Department of Psychology and Program in Neuroscience, Bates College, Lewiston, ME 04240, USA.
| | | |
Collapse
|
19
|
Grant A, Speed Z, Labelle-Dumais C, Flores C. Post-pubertal emergence of a dopamine phenotype in netrin-1 receptor-deficient mice. Eur J Neurosci 2009; 30:1318-28. [PMID: 19788579 DOI: 10.1111/j.1460-9568.2009.06919.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
During the pubertal period the mesocortical dopamine (DA) system undergoes substantial reorganization of neuronal connectivity and functional refinement. Netrins are guidance cues involved in the organization of neuronal circuitry. We have previously shown that adult mice that develop with reduced levels of the netrin-1 receptor [deleted in colorectal cancer (DCC)] display selective reorganization of mesocortical DA circuitry, show enhanced mesocortical DA function and exhibit a behavioural phenotype opposite to that observed in animal models of schizophrenia. Here we assess whether the dcc behavioural and DA phenotypes are present prior to the maturation of the mesocortical DA system by comparing dcc-heterozygous and wild-type mice at the post-weaning and peri-pubertal periods on various indices of DA function. At both the post-weaning and peri-pubertal ages, but unlike in adulthood, dcc-heterozygous and wild-type mice show no differences in the number of midbrain DA neurones or in tyrosine hydroxylase protein levels in the medial prefrontal cortex. Furthermore, the elevated baseline concentration of mesocortical DA and DA metabolites observed in adult dcc-heterozygous mice is not present in either post-weanling or peri-pubertal mice. Interestingly, post-weanling, but not peri-pubertal, dcc-heterozygous mice show greater baseline concentrations of DA metabolites in the nucleus accumbens, opposite to what was observed in adulthood. Finally, neither post-weanling nor peri-pubertal dcc-heterozygous mice demonstrate the blunted amphetamine-induced locomotor response observed in adulthood. Thus, these findings show that the 'protective' dcc phenotype has a post-pubertal emergence and indicate that DCC may play a role in the normal maturation of the mesocorticolimbic DA system.
Collapse
Affiliation(s)
- Alanna Grant
- Departments of Psychiatry and Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
20
|
Blockade of D1 dopamine receptors in the medial prefrontal cortex attenuates amphetamine- and methamphetamine-induced locomotor activity in the rat. Brain Res 2009; 1300:51-7. [PMID: 19733155 DOI: 10.1016/j.brainres.2009.08.084] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/19/2009] [Accepted: 08/22/2009] [Indexed: 11/22/2022]
Abstract
The medial prefrontal cortex (mPFC) is a component of the mesolimbic dopamine (DA) system involved in psychostimulant-induced hyperactivity and previous studies have shown that altering DA transmission or D2 receptors within the mPFC can decrease this stimulant effect. The goal of this study was to investigate a potential modulatory role for D1 receptors in the mPFC in amphetamine (AMPH)- and methamphetamine (METH)-induced hyperactivity. Locomotor activity in an open-field arena was measured in male, Sprague-Dawley rats given an intra-mPFC infusion of vehicle or the D1 receptor antagonist SCH 23390 (0.25 or 1.0 microg) prior to systemic (i.p.) injection of saline, AMPH (1 mg/kg), or METH (1 mg/kg). We found that SCH 23390 produced a dose-dependent decrease in AMPH- and METH-induced locomotion and rearing but had no significant effect on spontaneous behavior that occurred following systemic saline injections. Because SCH 23390 has been shown to have agonist-like properties at 5-HT(2C) receptors, a follow-up experiment was performed to determine if this contributed to the attenuation of METH-induced activity that we observed. Rats were given intra-mPFC infusions of both SCH 23390 (1.0 microg) and the 5-HT(2C) antagonist RS 102221 (0.25 microg) prior to METH (1 mg/kg, i.p.). The addition of the 5-HT(2C) antagonist failed to alter SCH 23390-induced decreases in METH-induced locomotion and rearing; infusion of RS 102221 alone had no significant effects on locomotion and produced a non-significant decrease in rearing. The results of these studies suggest that D1 activation in the mPFC plays a significant role in AMPH- and METH-induced hyperactivity.
Collapse
|
21
|
Boyce PJ, Finlay JM. Extracellular dopamine and norepinephrine in the developing rat prefrontal cortex: transient effects of early partial loss of dopamine. Brain Res Bull 2009; 79:104-110. [PMID: 19320060 DOI: 10.1016/j.brainresbull.2009.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Early developmental abnormalities affecting mesocortical dopamine (DA) neurons may result in later functional deficits that play a role in the emergence of psychiatric illness in adolescence/early adulthood. Little is known about the functional maturation of these neurons under either normal or abnormal conditions. In the present study, 6-hydroxydopamine was infused into the rat medial prefrontal cortex (mPFC) on postnatal day (PN) 12-14. On PN30-35, 45-50, and 60-65, mPFC extracellular DA and norepinephrine (NE) concentrations were monitored in intact and lesioned rats using in vivo microdialysis. Extracellular DA and NE concentrations in the intact mPFC remain fairly stable across development; one exception being a trend for acute tailshock-evoked DA concentrations to increase as a function of age. Lesioned rats sustained a persistent (approximately 50%) decrease in mPFC tissue DA concentrations. Tailshock-evoked increases in mPFC extracellular DA were attenuated in lesioned rats tested on PN30-35, but not PN45-50 or 60-65. Basal and evoked extracellular NE was unaffected in lesioned rats tested at any age, despite a persistent (approximately 25%) decrease in tissue NE content. Horizontal locomotor activity was also assessed in the present study. Results of previous studies suggest this behavior is modulated by mesoprefrontal DA neurons. Although not significant, acute tailshock- and acute amphetamine-evoked horizontal locomotor activity tended to be attenuated in lesioned rats tested on PN30-35 and augmented in lesioned rats tested on PN60-65. The present data suggest that early partial loss of mesoprefrontal DA nerve terminals, resulting in a persistent decrease in tissue DA concentrations, is unlikely to result in persistent alterations in local DA release.
Collapse
Affiliation(s)
- Patricia J Boyce
- Department of Psychology, Western Washington University, Bellingham, WA 98225-9089, United States
| | | |
Collapse
|
22
|
Grant A, Hoops D, Labelle-Dumais C, Prévost M, Rajabi H, Kolb B, Stewart J, Arvanitogiannis A, Flores C. Netrin-1 receptor-deficient mice show enhanced mesocortical dopamine transmission and blunted behavioural responses to amphetamine. Eur J Neurosci 2007; 26:3215-28. [PMID: 18005074 DOI: 10.1111/j.1460-9568.2007.05888.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The mesocorticolimbic dopamine (DA) system is implicated in neurodevelopmental psychiatric disorders including schizophrenia but it is unknown how disruptions in brain development modify this system and increase predisposition to cognitive and behavioural abnormalities in adulthood. Netrins are guidance cues involved in the proper organization of neuronal connectivity during development. We have hypothesized that variations in the function of DCC (deleted in colorectal cancer), a netrin-1 receptor highly expressed by DA neurones, may result in altered development and organization of mesocorticolimbic DA circuitry, and influence DA function in the adult. To test this hypothesis, we assessed the effects of reduced DCC on several indicators of DA function. Using in-vivo microdialysis, we showed that adult mice that develop with reduced DCC display increased basal DA levels in the medial prefrontal cortex and exaggerated DA release in response to the indirect DA agonist amphetamine. In contrast, these mice exhibit normal levels of DA in the nucleus accumbens but significantly blunted amphetamine-induced DA release. Concomitantly, using conditioned place preference, locomotor activity and prepulse inhibition paradigms, we found that reduced DCC diminishes the rewarding and behavioural-activating effects of amphetamine and protects against amphetamine-induced deficits in sensorimotor gating. Furthermore, we found that adult DCC-deficient mice exhibit altered dendritic spine density in layer V medial prefrontal cortex pyramidal neurones but not in nucleus accumbens medium spiny neurones. These findings demonstrate that reduced DCC during development results in a behavioural phenotype opposite to that observed in developmental models of schizophrenia and identify DCC as a critical factor in the development of DA function.
Collapse
Affiliation(s)
- Alanna Grant
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, 6875 LaSalle Boulevard, Verdun, Quebec, Canada, H4H 1R3
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nakayama H, Kitaichi K, Ito Y, Hashimoto K, Takagi K, Yokoi T, Takagi K, Ozaki N, Yamamoto T, Hasegawa T. The role of organic cation transporter-3 in methamphetamine disposition and its behavioral response in rats. Brain Res 2007; 1184:260-9. [PMID: 17988657 DOI: 10.1016/j.brainres.2007.09.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
Abstract
Organic cation transporter-3 (OCT3) is expressed in several tissues including the brain. We have previously demonstrated that rats with behavioral sensitization to methamphetamine (METH) increased the brain penetration of METH with decreased expression of OCT3 in brain. Considering the earlier in vitro studies demonstrating that 1) OCT3 could transport dopamine (DA) and 2) the specific transport via OCT3 could be inhibited by METH, these results suggest that decreased OCT3 might decrease the efflux of METH and/or DA from brain, subsequently causing the development of behavioral sensitization. Thus, in the present study, behavioral task related to DA and pharmacokinetic experiment were performed using rats treated with antisense against OCT3 (OCT3-AS) since no specific ligands for OCT3 are still available. The continuous infusion of OCT3-AS into the third ventricle significantly decreased the expression of OCT3 in choroid plexus (CP) epithelial cells. Both METH-induced hyperlocomotion and METH-induced extracellular DA levels in nucleus accumbens and prefrontal cortex were significantly increased in OCT3-AS-treated rats. Moreover, the concentrations of METH were significantly increased in cerebrospinal fluid as well as extracellular areas at the nucleus accumbens in OCT3-AS-treated rats. These results suggested that decreased OCT3 elevated the concentration of METH and/or DA in brain, subsequently enhancing dopaminergic neuronal transmission and increasing METH-induced hyperlocomotion. In summary, OCT3 at the CP could regulate the effect of METH by controlling the levels of METH and/or DA in brain. Thus, these results suggest that OCT3 may be a new molecular target to treat METH-related disorders such as drug abuse and schizophrenia.
Collapse
Affiliation(s)
- Hironao Nakayama
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Goodman A. Neurobiology of addiction. An integrative review. Biochem Pharmacol 2007; 75:266-322. [PMID: 17764663 DOI: 10.1016/j.bcp.2007.07.030] [Citation(s) in RCA: 224] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 02/08/2023]
Abstract
Evidence that psychoactive substance use disorders, bulimia nervosa, pathological gambling, and sexual addiction share an underlying biopsychological process is summarized. Definitions are offered for addiction and addictive process, the latter being the proposed designation for the underlying biopsychological process that addictive disorders are hypothesized to share. The addictive process is introduced as an interaction of impairments in three functional systems: motivation-reward, affect regulation, and behavioral inhibition. An integrative review of the literature that addresses the neurobiology of addiction is then presented, organized according to the three functional systems that constitute the addictive process. The review is directed toward identifying candidate neurochemical substrates for the impairments in motivation-reward, affect regulation, and behavioral inhibition that could contribute to an addictive process.
Collapse
Affiliation(s)
- Aviel Goodman
- Minnesota Institute of Psychiatry, 1347 Summit Avenue, St. Paul, MN 55105, USA.
| |
Collapse
|
25
|
Morales-Mulia M, Panayi F, Lambás-Señas L, Scarna H, Méndez M. Changes in Proenkephalin mRNA expression in forebrain areas after amphetamine-induced behavioural sensitization. Pharmacol Biochem Behav 2007; 87:232-40. [PMID: 17537495 DOI: 10.1016/j.pbb.2007.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 04/17/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
Acute and repeated psychostimulant administration induces a long-lasting enhanced behavioural response to a subsequent drug challenge, known as behavioural sensitization. This phenomenon involves persistent neurophysiological adaptations, which may lead to drug addiction. Brain dopaminergic pathways have been implicated as the main neurobiological substrates of behavioural sensitization, although other neurotransmitters and neuromodulators may also participate. In order to investigate a possible involvement of opioid systems in amphetamine (AMPH) behavioural sensitization, we studied the AMPH-induced changes in Proenkephalin (Pro-Enk) mRNA expression in forebrain areas in both drug-naïve and AMPH-sensitized rats. Male Sprague-Dawley rats were sensitized to AMPH by means of a single AMPH (1 mg/kg s.c.) injection and the same dose was injected 7 days later to assess the expression of sensitization. Pro-Enk mRNA levels were evaluated by in situ hybridization in coronal brain sections. AMPH injection induced an increase in Pro-Enk mRNA expression in the nucleus accumbens and the medial-posterior caudate-putamen in drug-naïve rats. Challenge with AMPH to rats injected 1 week earlier with AMPH induced motor sensitization and increased and decreased Pro-Enk mRNA expression in the prefrontal cortex and the anterior medial caudate-putamen, respectively. Our results suggest that alterations in cortical and striatal enkephalinergic systems could contribute to the expression of AMPH behavioural sensitization.
Collapse
Affiliation(s)
- Marcela Morales-Mulia
- Departamento de Neuroquímica, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente, Calzada México Xochimilco 101, Col. San Lorenzo Huipulco, 14370 México D.F., Mexico
| | | | | | | | | |
Collapse
|
26
|
Hao Y, Yang JY, Wu CF, Wu MF. Pseudoginsenoside-F11 decreases morphine-induced behavioral sensitization and extracellular glutamate levels in the medial prefrontal cortex in mice. Pharmacol Biochem Behav 2007; 86:660-6. [PMID: 17368734 DOI: 10.1016/j.pbb.2007.02.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 02/10/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
Morphine produces a variety of behavioral and biochemical changes related to its abuse. Our previous studies showed that Pseudoginsenoside-F11 (PF11), an ocotillol-type saponin existing in American ginseng, can antagonize pharmacological effects of morphine. To further investigate the effects of PF11 on morphine abuse and the underlying mechanisms, we tested the effects of PF11 on morphine-induced development of behavioral sensitization and alterations in glutamate levels in the medial prefrontal cortex (mPFC) in freely moving mice by using in vivo microdialysis. As the results shown, PF11 antagonized the development of behavioral sensitization and decrease of glutamate in the mPFC induced by morphine. Therefore, these findings suggest that PF11 may block the development of morphine-induced behavioral sensitization via its effect, at least partially, on the glutamatergic system in the mPFC.
Collapse
Affiliation(s)
- Yue Hao
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | | | | | | |
Collapse
|
27
|
Gabriele J, Thomas N, N-Marandi S, Mishra R. Differential modulation of a 40 kDa catecholamine regulated protein in the core and shell subcompartments of the nucleus accumbens following chronic quinpirole and haloperidol administration in the rat. Synapse 2007; 61:835-42. [PMID: 17603808 DOI: 10.1002/syn.20435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Past reports have shown dopamine (DA) D2/D3 receptor agonist quinpirole (QNP) and the DA D2 receptor antagonist, haloperidol (HAL) display a significant increase in expression of catecholamine regulated protein (CRP40) in the nucleus accumbens (NAcc) and the striatum, respectively. The present study investigated the in vivo effects of QNP and HAL on CRP40 protein levels within the core and shell subcompartments of the NAcc. As significant homology exists between CRP40 and Hsp70/Hsc70, parallel studies with inducible Hsp70 and constitutive Hsc70 were conducted to establish the specificity with respect to QNP on Hsp70 and CRP40. Results demonstrated that CRP40 protein was significantly expressed in the shell relative to the core region of NAcc following chronic QNP (+16.28%+/-0.42%, P<0.05) and CRP40 protein was significantly expressed in the core vs. the shell following chronic HAL (+36.02%+/-0.75%, P<0.05). There was no significant change in Hsp70 protein levels following chronic QNP or HAL administration. The results demonstrated selective modulation of CRP40 within NAcc by QNP and HAL treatment, without affecting Hsp70.
Collapse
Affiliation(s)
- Joseph Gabriele
- Department of Psychiatry and Behavioral Neuroscience, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | |
Collapse
|
28
|
Yamashita M, Fukushima S, Shen HW, Hall FS, Uhl GR, Numachi Y, Kobayashi H, Sora I. Norepinephrine transporter blockade can normalize the prepulse inhibition deficits found in dopamine transporter knockout mice. Neuropsychopharmacology 2006; 31:2132-9. [PMID: 16407898 DOI: 10.1038/sj.npp.1301009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dopamine transporter knockout (DAT KO) mice display deficits in sensorimotor gating that are manifested by reduced prepulse inhibition (PPI) of the acoustic startle reflex. Since PPI deficits may model some of the cognitive dysfunctions identified in certain neuropsychiatric patients, we have studied the effects of transporter blockers on PPI in wild-type and DAT KO mice. Treatments with High dose psychostimulants that block DAT as well as the norepinephrine (NET) and serotonin (SERT) transporters (60 mg/kg cocaine or methylphenidate) significantly impaired PPI in wild-type mice. By contrast, these treatments significantly ameliorated the PPI deficits observed in untreated DAT KO mice. In studies with more selective transport inhibitors, the selective NET inhibitor nisoxetine (10 or 30 mg/kg) also significantly reversed PPI deficits in DAT KO mice. By contrast, while the SERT inhibitor fluoxetine (30 mg/kg) normalized these PPI deficits in DAT KO mice, citalopram (30 or 100 mg/kg) failed to do so. The 'paradoxical' effects of cocaine and methylphenidate in DAT KO mice are thus likely to be mediated, at least in part by the ability of these drugs to block NET, although serotonin systems may also have some role. Together with recent microdialysis data, these results support the hypothesis that prefrontal cortical NET blockade and consequent enhancement of prefrontal cortical extracellular dopamine mediates the reversal of PPI deficits in DAT KO mice.
Collapse
Affiliation(s)
- Motoyasu Yamashita
- Department of Psychobiology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ramos M, Goñi-Allo B, Aguirre N. Administration of SCH 23390 into the medial prefrontal cortex blocks the expression of MDMA-induced behavioral sensitization in rats: an effect mediated by 5-HT2C receptor stimulation and not by D1 receptor blockade. Neuropsychopharmacology 2005; 30:2180-91. [PMID: 15841107 DOI: 10.1038/sj.npp.1300735] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Akin to what has been reported for cocaine, systemic administration of the dopamine D1 receptor antagonist, SCH 23390 ((R)-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride), blocks the expression but not the induction of 3,4-methylenedioxymethamphetamine (MDMA)-induced behavioral sensitization. Since the medial prefrontal cortex (mPFC) appears to regulate the expression of sensitization to cocaine, this study examined whether microinjection of SCH 23390 into the mPFC would alter the expression of MDMA sensitization. Saline or MDMA was administered for 5 consecutive days. After 12 days of withdrawal, rats received a bilateral intra-mPFC microinjection of SCH 23390 or saline followed by an intraperitoneal (i.p.) challenge dose of MDMA. While SCH 23390 enhanced locomotion in MDMA-naïve rats, it completely suppressed the expression of sensitization in MDMA-pretreated animals. Since, SCH 23390 has a fairly good affinity for 5-HT(2C) receptors, we went further to study the role of mPFC D1 and 5-HT(2C) receptors in this, apparently, paradoxical effect shown by SCH 23390. Thus, the microinjection of both SKF 81297 (R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide) and MK 212 (6-chloro-2-(1-piperazinyl)pyrazine hydrochloride), a D1 and 5-HT(2C) receptor agonist, respectively, blocked MDMA sensitization. By contrast, the 5-HT(2C) receptor antagonist, RS 102221 (8-[5-(2,4-dimethoxy-5-(4-trifluoromethylphenylsulfonamido)phenyl-5-oxopentyl]-1,3,8-triazaspiro[4,5]decane-2,4-dione hydrochloride), had no effect in MDMA-naïve or MDMA-sensitized animals, but reversed the effects of SCH 23390 in MDMA-pretreated rats. These results demonstrate that suppression of MDMA-induced sensitization by SCH 23390 is mediated by 5-HT(2C) receptor stimulation in the mPFC and not by the blockade of mPFC D1 receptors. Furthermore, these data indicate that stimulation of 5-HT(2C) receptors by SCH 23390 is not a minor issue and should be considered when interpreting future data.
Collapse
Affiliation(s)
- María Ramos
- Departamento de Farmacología, Facultad de Medicina, Universidad de Navarra, C/Irunlarrea 1, Pamplona 31008, Spain
| | | | | |
Collapse
|
30
|
Ramos M, Goñi-Allo B, Aguirre N. Ibotenic acid lesions of the medial prefrontal cortex block the development and expression of 3,4-methylenedioxymethamphetamine-induced behavioral sensitization in rats. Behav Brain Res 2005; 160:304-11. [PMID: 15863226 DOI: 10.1016/j.bbr.2004.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2004] [Revised: 12/13/2004] [Accepted: 12/16/2004] [Indexed: 11/28/2022]
Abstract
There is ample evidence that plastic changes in the nervous system require the excitatory amino acid transmission. This appears to be also the case for psychostimulant-induced behavioral sensitization. More specifically the glutamatergic input from the medial prefrontal cortex (mPFC) to the VTA and the NAc appears to be involved in behavioral sensitization processes. However, dissociations regarding the role of the mPFC with respect to the development and expression of sensitization, as well as with respect to the psychostimulant being studied (amphetamine versus cocaine) appear to exist. The present study examined the role of the dorsal mPFC in the development and expression of 3,4-methylenedioxymethamphetamine (MDMA)-induced sensitization. Bilateral ibotenic acid or sham lesions of the dorsal mPFC were performed 7 days prior to or 4 days after a context-dependent sensitization-inducing regimen of MDMA (15 mg/kg i.p.) or saline. Rats were then challenged with MDMA (5 mg/kg i.p.) after 12 days of withdrawal. Ibotenic acid lesions did not affect the activating effects of MDMA, but prevented the development and expression of MDMA sensitization. Thus, the distance traveled during the development phase of sensitization increased in sham-lesioned rats but not in ibotenic-lesioned animals. Similarly, sham-lesioned rats showed a sensitized response when challenged with MDMA after the withdrawal period, an effect not observed in ibotenic-lesioned animals. These data reinforce the view that the dorsal mPFC is involved in psychostimulant sensitization and more specifically they indicate that the dorsal mPFC plays a key role in the development and expression of MDMA-induced behavioral sensitization.
Collapse
Affiliation(s)
- María Ramos
- Department of Pharmacology, School of Medicine, University of Navarra, Spain
| | | | | |
Collapse
|
31
|
Williams JM, Steketee JD. Effects of repeated cocaine on the release and clearance of dopamine within the rat medial prefrontal cortex. Synapse 2005; 55:98-109. [PMID: 15529334 DOI: 10.1002/syn.20093] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous data suggest that cocaine-induced dopamine (DA) transmission within the medial prefrontal cortex (mPFC) undergoes time-dependent changes during withdrawal from repeated cocaine administration. The current studies assessed two potential mechanisms that may underlie this neuroadaptation. One set of experiments examined alterations in DA clearance in the mPFC of rats that had been pretreated with four administrations of cocaine (15 mg/kg, i.p.; once per day for 4 days) and were withdrawn 1, 7, or 30 days. No significant changes in mPFC DA uptake into crude mPFC synaptosomes or in mPFC DA transporter levels were observed at any of the time points examined. Uptake assay and Western blotting sensitivity was confirmed with prefrontal 6-hydroxydopamine lesions, which significantly reduced [3H]DA uptake and DA transporter immunoreactivity in mPFC synaptosomes. To evaluate temporal changes in DA release resulting from repeated cocaine, additional experiments utilized in vivo microdialysis to locally infuse KCl (10, 30, or 100 mM) into the mPFC over the same withdrawal time course used in the uptake studies. After 1-7 days of withdrawal, KCl-stimulated DA release was significantly reduced in the mPFC of cocaine-pretreated animals. However, after 30 days of withdrawal the evoked release of DA in the mPFC of saline- and cocaine-pretreated animals was similar. These data suggest that previously reported modulation of cocaine-induced mPFC DA transmission occurring upon withdrawal from repeated cocaine might arise from transient changes in DA releasability rather than clearance. The relevance of these findings is discussed in relation to mPFC involvement in psychostimulant sensitization.
Collapse
Affiliation(s)
- Jason M Williams
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | |
Collapse
|
32
|
Kadota T, Kadota K. Neurotoxic morphological changes induced in the medial prefrontal cortex of rats behaviorally sensitized to methamphetamine. ACTA ACUST UNITED AC 2004; 67:241-51. [PMID: 15570889 DOI: 10.1679/aohc.67.241] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The present study examined whether the development in rats of behavioral sensitization to methamphetamine (MAP) is related to the development of neurotoxic morphological changes presumably induced in the medial prefrontal cortex (MFC). Male rats were intraperitonieally injected with MAP (5 mg/kg) once a day for 12 days (day 1-day 12), and then the drug was withdrawn for 7-42 days (WD7-WD42). The MAP- treatment caused hypersensitivity of a successive head-movement stereotypy, which reached a basic plateau level on day 4, and rose successively to a higher level by day 12. Morphological changes were histochemically and morphometrically examined in the MFC. In the strata covering layers II and III, the densities of tyrosine hydroxylase (TH)-immunoreactive axons decreased on a daily basis to 50% of the control on day 4 and then to 40% on days 6 and 12. The densities of dopamine-,beta-hydroxylase (DBH)-immunoreactive axons did not change during the injection period. A few TUNEL-positive cells were observed in a unit area (0.25 mm2) covering layers II-V on day 6 and they increased to 19 and 16 on day 12 and WD7, respectively. These observations demonstrate a role for the neurotoxic changes in the MFC in the processes of behavioral sensitization of a stereotypy to a low dose of MAP.
Collapse
Affiliation(s)
- Tomoko Kadota
- Department of Bioenvironmental Medicine and Anatomy, Chiba University Graduate School of Medicine, Chiba, Japan.
| | | |
Collapse
|
33
|
Sullivan RM, Brake WG. What the rodent prefrontal cortex can teach us about attention-deficit/hyperactivity disorder: the critical role of early developmental events on prefrontal function. Behav Brain Res 2003; 146:43-55. [PMID: 14643458 DOI: 10.1016/j.bbr.2003.09.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The present review surveys a broad range of findings on the functions of the rodent prefrontal cortex (PFC) in the context of the known pathophysiology of attention-deficit/hyperactivity disorder (ADHD). An overview of clinical findings concludes that dysfunction of the right PFC plays a critical role in ADHD and that a number of early developmental factors conspire to increase the risk of the disorder. Rodent studies are described which go far in explaining how the core processes which are deficient in ADHD are mediated by the PFC and that the mesocortical dopamine (DA) system plays a central role in modulating these functions. These studies also demonstrate a surprising degree of cerebral lateralization of prefrontal function in the rat. Importantly, the PFC is highly vulnerable to a wide variety of early developmental insults, which parallel the known risk factors for ADHD. It is suggested that the regulation of physiological and behavioral arousal is a fundamental role of the PFC, upon which many "higher" prefrontal functions are dependent or at least influenced. These right hemispheric arousal systems, of which the mesocortical DA system is a component, are greatly affected by early adverse events, both peri- and postnatally. Abnormal development, particularly of the right PFC and its DAergic afferents, is suggested to contribute directly to the core deficits of ADHD through dysregulation of the right frontostriatal system.
Collapse
Affiliation(s)
- Ron M Sullivan
- Department of Psychiatry, Centre de Recherche Fernand-Seguin, University of Montreal, 7331 rue Hochelaga, Montreal, Que., Canada.
| | | |
Collapse
|
34
|
Gabriele J, Culver K, Sharma S, Zhang B, Szechtman H, Mishra R. Asymmetric modulation of a catecholamine-regulated protein in the rat brain, following quinpirole administration. Synapse 2003; 49:261-9. [PMID: 12827645 DOI: 10.1002/syn.10224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously reported a brain-specific 40 kDa catecholamine-regulated protein (CRP40) that binds dopamine (DA) and related catecholamines. CPR40 shares significant sequence homology with human heat shock protein (Hsp70), GRP78/BIP, and human #BQ24193 protein. Recent studies with the DA D(2) receptor antagonist, haloperidol, demonstrated a significant increase in expression of CRP40 in the striatum (STR). The objective of the present study was to investigate CRP40 expression in various brain regions following treatments with the DA D(2)/D(3) receptor agonist quinpirole (QNP) in rats and examine possible relationships between neurochemical parameters and locomotor activity. Rats received injections of either QNP (0.5 mg/kg, for 27 days every third day) or saline (SAL) and their locomotor activities were measured for 90 min after each injection. At injection 9, QNP-treated rats showed locomotor activity that was significantly greater than SAL controls (F(2,28) = 3.88, P < 0.05, Duncan's multiple range test, P < 0.05). Neurochemically, acute QNP-treated rats demonstrated significant differential expression of CRP40 in the left/right prefrontal cortex (PFC) relative to SAL-treated rats (-17.76 +/- 2.10%, -10.35 +/- 1.23%, P < 0.001). Chronic QNP significantly decreased CRP40 expression in the STR, ventral tegmental area (VTA), and left/right PFC (-24.85+/- 2.10%, -18.15 +/- 5.64%, -49.13 +/- 7.05%, -25 +/- 3.63%, P < 0.001). Finally, chronic QNP treatment resulted in a significant increase in CRP40 levels in the nucleus accumbens (NA) (+39.32 +/- 7.00%, P < 0.001). Heat shock protein (i.e., Hsp70 or Hsc70) expression remained unaltered following QNP treatment. Since QNP is a DA D(2)/D(3) agonist, alterations in CRP40 expression following QNP treatment suggest the protein's function in dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Joseph Gabriele
- Department of Psychiatry and Behavioral Neuroscience, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada, L8N 3Z5
| | | | | | | | | | | |
Collapse
|
35
|
Uslaner JM, Crombag HS, Ferguson SM, Robinson TE. Cocaine-induced psychomotor activity is associated with its ability to induce c-fos mRNA expression in the subthalamic nucleus: effects of dose and repeated treatment. Eur J Neurosci 2003; 17:2180-6. [PMID: 12786985 DOI: 10.1046/j.1460-9568.2003.02638.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Factors that modulate the psychomotor activating effects of amphetamine and cocaine, such as environmental novelty and dose, also regulate the ability of these drugs to induce c-fos mRNA expression in the subthalamic nucleus (STN). We hypothesized therefore that engagement of the STN may be important for stimulant-induced psychomotor activation. To further test this hypothesis we examined whether repeated treatment with cocaine, which enhances its psychomotor activating effects (i.e. produces behavioural sensitization), also enhances its ability to induce c-fos expression in the STN. In addition, given that STN activity is thought to be influenced by preproenkephalin mRNA-containing (ENK+) neurons in the caudate-putamen, we also examined whether repeated cocaine treatment alters c-fos expression in ENK+ cells. We report that: (i) cocaine pretreatment enhances the ability of a cocaine challenge to induce c-fos mRNA expression in the STN, and this effect is most robust at challenge doses where behavioural sensitization is observed; (ii) the ability of cocaine to induce c-fos in the STN is independent of the ability of cocaine to engage ENK+ cells. These results support the idea that the STN is involved in stimulant-induced psychomotor activation and sensitization, but suggest that stimulant-induced engagement of the STN is not dependent on ENK+ cells in the caudate-putamen. These findings may have implications concerning the neurobiological mechanisms underlying the behavioural effects of psychostimulant drugs.
Collapse
Affiliation(s)
- Jason M Uslaner
- Biopsychology Program, Department of Psychology, The University of Michigan, East Hall, 525 E. University St., Ann Arbor, MI 48019-1109, USA
| | | | | | | |
Collapse
|
36
|
Uslaner JM, Norton CS, Watson SJ, Akil H, Robinson TE. Amphetamine-induced c-fos mRNA expression in the caudate-putamen and subthalamic nucleus: interactions between dose, environment, and neuronal phenotype. J Neurochem 2003; 85:105-14. [PMID: 12641732 DOI: 10.1046/j.1471-4159.2003.01646.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When administered in a novel environment relatively low doses of amphetamine induce c-fos mRNA in the subthalamic nucleus (STN) and in preproenkephalin mRNA-containing (ENK+) neurons in the caudate-putamen (CPu). When administered at home, however, low doses of amphetamine do not produce these effects. Environmental novelty also facilitates the behavioral effects of acute and repeated amphetamine, but this is dose-dependent. The purpose of the present experiment therefore was to determine if the effect of context on amphetamine-induced c-fos expression is also dose-dependent. It was found that: (i) No dose of amphetamine tested (1-10 mg/kg) induced c-fos in many ENK+ cells when given at home. (ii) When given in a novel environment low to moderate doses of amphetamine (1-5 mg/kg) induced c-fos in substantial numbers of ENK+ cells, but the highest dose examined (10 mg/kg) did not. (iii) Environmental novelty enhanced the ability of low to moderate doses of amphetamine to induce c-fos in the STN, but the highest dose of amphetamine induced robust c-fos mRNA expression in the STN regardless of context. The results do not support the idea that engaging ENK+ cells, at least as indicated by c-fos mRNA expression, is critical to produce robust behavioral sensitization, but do suggest a possible role for the STN. Furthermore, the results highlight the importance of drug-environment interactions on the neurobiological effects of drugs, and have implications for thinking about the circuits by which context modulates the acute and long-lasting consequences of amphetamine treatment.
Collapse
Affiliation(s)
- Jason M Uslaner
- Biopsychology and Neuroscience Programs, Department of Psychology, The University of Michigan, Ann Arbor, Michigan 48019, USA
| | | | | | | | | |
Collapse
|
37
|
Hédou G, Jongen-Rêlo AL, Murphy CA, Heidbreder CA, Feldon J. Sensitized Fos expression in subterritories of the rat medial prefrontal cortex and nucleus accumbens following amphetamine sensitization as revealed by stereology. Brain Res 2002; 950:165-79. [PMID: 12231241 DOI: 10.1016/s0006-8993(02)03034-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Behavioral sensitization to the locomotor activating effects of amphetamine refers to the progressive, long lasting increase in locomotor activity that occurs with repeated injections. This phenomenon is thought to result from neuroadaptations occurring in the projection fields of mesocorticolimbic dopaminergic neurons. In the present study, we investigated the effects of amphetamine sensitization on Fos immunoreactivity (Fos-IR) in subterritories of the nucleus accumbens (core and shell) and medial prefrontal cortex (mPFC; dorsal and ventral) using stereology. Rats received five daily injections of amphetamine (1.5 mg/kg, i.p.) or saline. Behavioral sensitization was measured 48 h following the last injection, in response to a challenge injection of 1.5 mg/kg amphetamine. Sensitized rats showed a greater enhancement of locomotor activity upon drug challenge compared with their saline counterparts. Densities of Fos-positive nuclei were enhanced more in the dorsal than the ventral mPFC subterritory, whereas in the nucleus accumbens, densities of Fos-positive nuclei were increased more in the core than the shell of amphetamine-sensitized rats compared to controls. These results represent, to our knowledge, the first published report using stereological methods to quantify Fos-IR in the brain and suggest functional specialization of cortical and limbic regions in the expression of behavioral sensitization to amphetamine.
Collapse
Affiliation(s)
- Gaël Hédou
- Behavioral Neurobiology Laboratory, The Swiss Federal Institute of Technology (ETH), Schorenstrasse 16, CH-8603, Schwerzenbach, Switzerland
| | | | | | | | | |
Collapse
|
38
|
Culver KE, Rosenfeld JM, Szechtman H. Monoamine oxidase inhibitor-induced blockade of locomotor sensitization to quinpirole: role of striatal dopamine uptake inhibition. Neuropharmacology 2002; 43:385-93. [PMID: 12243768 DOI: 10.1016/s0028-3908(02)00128-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies have shown that the monoamine oxidase inhibitor (MAOI) clorgyline, blocks locomotor sensitization to the D(2)/D(3) dopamine agonist quinpirole and sensitizes self-directed mouthing behavior in rats by a mechanism independent of MAO inhibition. However, clorgyline is also an inhibitor of striatal dopamine uptake, and this mechanism could account for the effect of clorgyline on quinpirole sensitization. To investigate this possibility, the effects of clorgyline and pargyline were examined. Of these two MAOIs, only clorgyline inhibits dopamine uptake in the striatum. Rats received subcutaneous injections of clorgyline (1 mg/kg), pargyline (10 mg/kg) or vehicle 90 min prior to each injection of quinpirole (0.5 mg/kg, s.c., x8, twice weekly) or saline. Clorgyline and pargyline blocked the development of quinpirole-induced locomotor sensitization and sensitized self-directed mouthing behaviors in quinpirole rats. Thus, it is unlikely that clorgyline blocks locomotor sensitization to quinpirole via an inhibition of striatal dopamine uptake. Both MAOIs increased dopamine metabolism in the striatum, showed opposite effects in the prefrontal cortex, and eliminated the correlation between prefrontal dopamine and striatal DOPAC content found in quinpirole sensitized rats. We suggest that clorgyline and pargyline may affect the behavioral and neurochemical response to quinpirole via a previously reported MAOI-displaceable quinpirole binding site, a site which we hypothesize serves as a 'switch' to select what motor output becomes sensitized to repeated injections of quinpirole.
Collapse
Affiliation(s)
- K E Culver
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, L8N 3Z5, Ontario, Canada
| | | | | |
Collapse
|
39
|
Bjijou Y, De Deurwaerdere P, Spampinato U, Stinus L, Cador M. D-amphetamine-induced behavioral sensitization: effect of lesioning dopaminergic terminals in the medial prefrontal cortex, the amygdala and the entorhinal cortex. Neuroscience 2002; 109:499-516. [PMID: 11823062 DOI: 10.1016/s0306-4522(01)00508-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The behavioral sensitization produced by the repeated administration of D-amphetamine is known to involve dopaminergic neurons in the mesoaccumbens pathway. Induction of this process is dependent on action of the drug in the ventral tegmental area while its expression involves action in the nucleus accumbens. We studied here the putative involvement of dopaminergic projections other than the mesoaccumbens in this phenomenon. We examined the influence of dopaminergic lesion of the medial prefrontal cortex, the amygdala and the entorhinal cortex in the behavioral sensitization produced by repeated injections of amphetamine either peripherally or directly into the ventral tegmental area of the brain. The repeated administration of amphetamine induced a behavioral sensitization, with the ventral tegmental area a critical site for induction of the process. This sensitization to amphetamine cross-reacted with morphine and was still observed 2 weeks after cessation of the treatment. Bilateral 6-hydroxydopamine lesion of dopaminergic terminals in either the medial prefrontal cortex or the amygdala, but not in the entorhinal cortex, prevented the development of behavioral sensitization to amphetamine and the cross-sensitization with morphine, whether the amphetamine pretreatment was administered peripherally or directly into the ventral tegmental area. In conclusion, these results indicated that behavioral sensitization to amphetamine, which involves dopaminergic neurons of the ventral tegmental area, is also dependent on dopaminergic neurotransmission of the medial prefrontal cortex and amygdala but not of the entorhinal cortex.
Collapse
Affiliation(s)
- Y Bjijou
- Laboratoire de Neuropsychobiologie des Désadaptations, CNRS-UMR5541, P.O. Box 31, Université Victor Segalen, Bordeaux II, 146 rue Léo Saignat, 33076 Cedex, Bordeaux, France
| | | | | | | | | |
Collapse
|
40
|
Sullivan RM, Gratton A. Behavioral effects of excitotoxic lesions of ventral medial prefrontal cortex in the rat are hemisphere-dependent. Brain Res 2002; 927:69-79. [PMID: 11814433 DOI: 10.1016/s0006-8993(01)03328-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The ventral region of the medial prefrontal cortex (mPFC) is highly sensitive to stressful inputs and implicated in a variety of behaviors. Studies have also demonstrated numerous functional hemispheric asymmetries within this brain area of the rat. The present study examines the effects of ibotenic acid or sham lesions targeting the left, right or bilateral infralimbic cortex, on a variety of behaviors. Lesions (which destroyed infralimbic and ventral prelimbic cortex) were without effect on acquisition or reversal of a spatial learning task in the Morris water maze. Similarly unaffected were spontaneous and amphetamine-induced locomotor activity and sensitization, and prepulse inhibition of the acoustic startle response. In contrast, lesions significantly affected behavior in the elevated plus maze, as right-lesioned animals spent more time exploring the open arms of the maze than shams or left-lesioned rats, while not differing in closed arm entries. As well, in a simple taste aversion paradigm, right-lesioned rats drank significantly more of a sweetened milk/quinine solution than shams and left-lesioned rats, despite not differing in consumption of sweetened milk alone. The anxiolytic effects of right, but not left lesions of ventral mPFC, parallel the asymmetrical suppression of physiological stress responses previously reported for similar lesions. It is suggested that the right ventral mPFC plays a primary role in optimizing cautious and adaptive behavior in potentially threatening situations.
Collapse
Affiliation(s)
- Ron M Sullivan
- Centre de Recherche Fernand-Seguin, Department of Psychiatry, Université de Montréal, 7331, rue Hochelaga, Québec, H1N 3V2, Montréal, Canada.
| | | |
Collapse
|
41
|
Olsen CM, Duvauchelle CL. Intra-prefrontal cortex injections of SCH 23390 influence nucleus accumbens dopamine levels 24 h post-infusion. Brain Res 2001; 922:80-6. [PMID: 11730704 DOI: 10.1016/s0006-8993(01)03152-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The dopaminergic pathway from the ventral tegmental area (VTA) to the nucleus accumbens (NAcc) is well known to be involved in the reinforcing properties of many drugs of abuse. The medial prefrontal cortex (mPFC) has been shown to exhibit significant influence over activity in this pathway, and has also been implicated in drug abuse. The present experiment investigated the ability of D1 activity in the mPFC to influence accumbal dopamine levels. NAcc dopamine (DA) was monitored before, immediately after, and 24 h following mPFC infusion of a D1 agonist (SKF 38393), D1 antagonist (SCH 23390), or a vehicle solution. Immediately following infusion of dopaminergic agents or vehicle, no significant changes in accumbal DA were observed. However, 24 h following infusion of the antagonist but not the agonist, significant elevations of accumbal DA were observed. Since elevated NAcc DA was only observed 24 h after treatment, these results provide evidence that long-term neural adaptations can be induced by transient neuropharmacological treatment.
Collapse
Affiliation(s)
- C M Olsen
- College of Pharmacy, Division of Pharmacology/Toxicology, The University of Texas at Austin, Austin, TX 78712-1074, USA
| | | |
Collapse
|
42
|
Beyer CE, Steketee JD. Characterization of the role of medial prefrontal cortex dopamine receptors in cocaine-induced locomotor activity. Behav Neurosci 2001; 115:1093-100. [PMID: 11584922 DOI: 10.1037/0735-7044.115.5.1093] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Medial prefrontal cortex (mPFC) dopamine (DA) modulates the motor-stimulant response to cocaine. The present study examined the specific mPFC DA receptor subtypes that mediate this behavioral response. Intra-mPFC injection of the DA D2-like receptor agonist quinpirole blocked cocaine-induced motor activity, an effect that was prevented by coadministration of the D2 receptor antagonist sulpiride. Intra-mPFC injection of the selective D4 receptor agonist PD 168,077 or the selective D1 receptor agonist SKF 81297 did not alter the motor-stimulant response to cocaine. Finally, it was found that an intermediate dose of quinpirole, which only attenuated cocaine-induced motor activity, was not altered by SKF 81297 coadministration, suggesting a lack of synergy between mPFC D1 and D2 receptors. These results suggest that D2 receptor mechanisms in the mPFC are at least partly responsible for mediating the acute motor-stimulant effects of cocaine.
Collapse
Affiliation(s)
- C E Beyer
- Department of Pharmacology and Therapeutics, School of Graduate Studies, Louisiana State University Health Sciences Center, USA
| | | |
Collapse
|
43
|
Zhang K, Tarazi FI, Campbell A, Baldessarini RJ. GABA(B) receptors: altered coupling to G-proteins in rats sensitized to amphetamine. Neuroscience 2001; 101:5-10. [PMID: 11068131 DOI: 10.1016/s0306-4522(00)00344-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Modified dopamine and glutamate neurotransmission in discrete brain regions is implicated in stimulant-induced behavioral sensitization. Release of both neurotransmitters is influenced by GABA(B) metabotropic receptors for the principal inhibitory neurotransmitter GABA. Accordingly, GABA(B) receptors were examined in rats sensitized to amphetamine by measuring receptor density and coupling to G-proteins indicated as [(3)H]baclofen binding and baclofen-mediated [(35)S]GTP gamma S binding. Repeated treatment with (+)-amphetamine (5mg/kg per day, i.p., for five days) sensitized the rats to amphetamine challenge (1mg/kg) at 14 days, but not one day, later. GABA(B) receptor density was not altered at either time. Baclofen-mediated [(35)S]GTP gamma S binding, however, was selectively augmented in the prefrontal cortex and attenuated in the nucleus accumbens at 14 days, but not one day, after amphetamine treatment. Changes in GABA(B) receptor coupling to G-proteins in rats sensitized to amphetamine, but not in similarly treated but unsensitized rats, lead us to suggest that altered GABA(B) receptor functioning may contribute to the expression of amphetamine-induced behavioral sensitization.
Collapse
Affiliation(s)
- K Zhang
- Mailman Research Center, McLean Division of Massachusetts General Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | |
Collapse
|
44
|
Steckler T, Holsboer F. Conditioned activity to amphetamine in transgenic mice expressing an antisense RNA against the glucocorticoid receptor. Behav Neurosci 2001; 115:207-19. [PMID: 11256444 DOI: 10.1037/0735-7044.115.1.207] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glucocorticoids enhance the locomotion-stimulating and the rewarding properties of stimulant drugs. Amphetamine-induced conditioned activity was investigated in B6C3F1 (controls) and antisense transgenic mice. The latter expresses a neurofilament-promotor-driven antisense RNA complementary to a fragment of cDNA that codes for the mouse glucocorticoid receptor. This gene expression leads to approximately a 50% reduction in glucocorticoid receptor mRNA in the brain. Transgenic mice showed an increased novelty response when tested in an open field, in terms of both distance traveled and number of rearings. Moreover, they displayed enhanced amphetamine-induced conditioned activity. Behavioral sensitization was observed in controls, whereas behavioral tolerance developed in transgenic mice. These data support the concept of an enhanced stress response in these transgenic mice, rather than a general downregulation of the stress response because of impaired glucocorticoid receptor function.
Collapse
Affiliation(s)
- T Steckler
- Max Planck Institute of Psychiatry, Munich, Germany.
| | | |
Collapse
|
45
|
Abstract
The prefrontal cortex (PFC) has long been known to be involved in the mediation of complex behavioral responses. Considerable research efforts are directed towards refining the knowledge about the function of this brain area and the role it plays in cognitive performance and behavioral output. In the first part, this review provides, from a pharmacological perspective, an overview of anatomical, electrophysiological and neurochemical aspects of the function of the PFC, with an emphasis on the mesocortical dopamine system. Anatomy of the mesocortical system, basic physiological and pharmacological properties of neurotransmission within the PFC, and interactions between dopamine and glutamate as well as other transmitters within the mesocorticolimbic circuit are included. The coverage of these data is largely restricted to what is relevant for the second part of the review which focuses on behavioral studies that have examined the role of the PFC in a variety of phenomena, behaviors and paradigms. These include reward and addiction, locomotor activity and sensitization, learning, cognition, and schizophrenia. Although the focus of this review is on the mesocortical dopamine system, given the intricate interactions of dopamine with other transmitter systems within the PFC and the importance of the PFC as a source of glutamate in subcortical areas, these aspects are also covered in some detail where appropriate. Naturally, a topic as complex as this cannot be covered comprehensively in its entirety. Therefore this review is largely limited to data derived from studies using rats, and it is also specifically restricted to data concerning the medial PFC (mPFC). Since in several fields of research the findings concerning the function or role of the mPFC are relatively inconsistent, the question is addressed whether these inconsistencies might, at least in part, be related to the anatomical and functional heterogeneity of this brain area.
Collapse
Affiliation(s)
- T M Tzschentke
- Grünenthal GmbH, Research and Development, Department of Pharmacology, Postfach 500444, 52088, Aachen, Germany.
| |
Collapse
|
46
|
Abstract
Obstetric complications involving anoxia or prolonged hypoxia are suspected to increase the risk for such mental disorders as schizophrenia and attention deficit-hyperactivity disorder. In previous studies, we reported evidence of enhanced nucleus accumbens (NAcc) dopamine (DA) function in adult rats subjected to intrauterine anoxia during cesarean (C) section birth. In the present study, we used voltammetry and monoamine-sensitive electrodes to investigate the possibility that this functional hyperactivity of the meso-NAcc system is attributable to a loss of inhibitory control from the medial prefrontal cortex (PFC). We monitored the DA responses to repeated once-daily stress in the right or left PFC of adult male rats born vaginally (VAG) or by C-section, either with (C + 15) or without (C + 0) an additional 15 min of intrauterine anoxia. In C + 15 animals, we observed a pronounced and persistent blunting of stress-induced DA release in the right PFC but not in the left; with repeated testing, a similar pattern of dampened right PFC DA stress responses emerged in C + 0 animals. In addition, C + 15 animals were spontaneously more active than VAG and C + 0 animals and displayed an increase in PFC DA transporter density that was also lateralized to the right hemisphere. There was no evidence, however, that PFC D(1) and D(2) receptor levels differed between birth groups or hemisphere. These findings suggest a mechanism by which perinatal complications involving anoxia might contribute to the etiology of mental disorders that have been linked to disturbances in central DA transmission and lateralized PFC dysfunction.
Collapse
|
47
|
Yui K, Ali SF. Preface: Recent advances of neurobiological basis of stimulant-induced sensitization. Addict Biol 2000; 5:321-4. [PMID: 20575848 DOI: 10.1111/j.1369-1600.2000.tb00198.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- K Yui
- Department of Psychiatry, Jichi Medical School, Tochigi, Japan
| | | |
Collapse
|
48
|
Laruelle M. The role of endogenous sensitization in the pathophysiology of schizophrenia: implications from recent brain imaging studies. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 31:371-84. [PMID: 10719165 DOI: 10.1016/s0165-0173(99)00054-5] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Long-term sensitization is a process whereby exposure to a given stimulus such as a drug or a stressor results in an enhanced response at subsequent exposures. Sensitization of mesolimbic dopamine systems has been postulated by several authors to underlie the development of dopaminergic abnormalities associated with schizophrenia. In this review, core features of stimulant-induced sensitization of dopamine systems in rodents are briefly reviewed, as well as the behavioral and clinical evidence suggesting the relevance of this process to drug-induced psychosis and schizophrenia. Results of recent brain imaging studies relevant to the question of sensitization in schizophrenia are then discussed. These studies indicate that schizophrenia is associated with increased amphetamine-induced dopamine release. This exaggerated response was detected in patients experiencing an episode of clinical deterioration but not in clinically stable patients. Since increased stimulant-induced dopamine release is a hallmark of sensitization, these results support the view that schizophrenia is associated with a process of endogenous sensitization. Based on the preclinical evidence that dopamine projection to the prefrontal cortex acts as a buffer that oppose the development of sensitization in subcortical dopamine projections, we propose that, in schizophrenia, neurodevelopmental abnormalities of prefrontal dopaminergic systems might result in a state of enhanced vulnerability to sensitization during late adolescence and early adulthood. It is also proposed that D(2) receptor blockade, if sustained, might allow for an extinction of this sensitization process, with possible re-emergence upon treatment discontinuation. A better understanding of the neurocircuitry associated with endogenous sensitization and its consequence in schizophrenia might be important for the development of better treatment and relapse prevention strategies.
Collapse
Affiliation(s)
- M Laruelle
- Department of Psychiatry, Columbia University, New York State Psychiatric Institute, 1051 Riverside Dr, Unit 42, New York, NY, USA.
| |
Collapse
|
49
|
Zimmer L, Delion-Vancassel S, Durand G, Guilloteau D, Bodard S, Besnard JC, Chalon S. Modification of dopamine neurotransmission in the nucleus accumbens of rats deficient in n–3 polyunsaturated fatty acids. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32071-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
50
|
A single exposure to amphetamine is sufficient to induce long-term behavioral, neuroendocrine, and neurochemical sensitization in rats. J Neurosci 1999. [PMID: 10531460 DOI: 10.1523/jneurosci.19-21-09579.1999] [Citation(s) in RCA: 216] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repeated treatment with psychostimulant drugs causes long-lasting behavioral sensitization and associated neuroadaptations. Although sensitization induced by a single psychostimulant exposure has also been reported, information on the behavioral and neurochemical consequences of a single psychostimulant exposure is sparse. Therefore, to evaluate whether behavioral sensitization evoked by single and repeated psychostimulant pretreatment regimens represent the same neurobiological phenomenon, the time-dependent expression of behavioral, neurochemical, and neuroendocrine sensitization after a single exposure to amphetamine was investigated in rats. A single exposure to amphetamine (5 mg/kg, i.p.) caused context-independent sensitization of the locomotor effects of amphetamine, which intensified over time. Thus, sensitization to amphetamine was marginal at 3 d after treatment and more evident after 1 week, whereas 3 weeks after treatment, profound sensitization, as well as cross-sensitization, to cocaine was observed. Amphetamine pretreatment caused an increase in the electrically evoked release of [(3)H]dopamine from nucleus accumbens, caudate putamen, and medial prefrontal cortex slices and of [(14)C]acetylcholine from accumbens and caudate slices. The hyperreactivity of dopaminergic nerve terminals appeared to parallel the development of locomotor sensitization, i.e., whereas hyperreactivity of accumbens dopaminergic terminals increased between 3 d and 3 weeks after treatment, the hyperreactivity of medial prefrontal dopaminergic terminals decreased. Pre-exposure to amphetamine also sensitized the hypothalamus-pituitary-adrenal axis response to amphetamine at 1 and 3 weeks, but not at 3 d after treatment. Because these data closely resemble those reported previously for repeated amphetamine pretreatment, it is concluded that a single exposure to amphetamine is sufficient to induce long-term behavioral, neurochemical, and neuroendocrine sensitization in rats.
Collapse
|