1
|
Hatta W, Koike T, Asano N, Hatayama Y, Ogata Y, Saito M, Jin X, Uno K, Imatani A, Masamune A. The Impact of Tobacco Smoking and Alcohol Consumption on the Development of Gastric Cancers. Int J Mol Sci 2024; 25:7854. [PMID: 39063094 PMCID: PMC11276971 DOI: 10.3390/ijms25147854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Chronic infection of Helicobacter pylori is considered the principal cause of gastric cancers, but evidence has accumulated regarding the impact of tobacco smoking and alcohol consumption on the development of gastric cancers. Several possible mechanisms, including the activation of nicotinic acetylcholine receptors, have been proposed for smoking-induced gastric carcinogenesis. On the other hand, local acetaldehyde exposure and ethanol-induced mucosal inflammation have been proposed as the mechanisms involved in the development of gastric cancers in heavy alcohol drinkers. In addition, genetic polymorphisms are also considered to play a pivotal role in smoking-related and alcohol-related gastric carcinogenesis. In this review, we will discuss the molecular mechanisms involved in the development of gastric cancers in relation to tobacco smoking and alcohol consumption.
Collapse
Affiliation(s)
- Waku Hatta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| | - Tomoyuki Koike
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| | - Naoki Asano
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, 47-1 Nodayama, Medeshima-Shiode, Natori 981-1293, Miyagi, Japan
- Division of Carcinogenesis and Senescence Biology, Tohoku University Graduate School of Medicine, Natori 981-1293, Miyagi, Japan
| | - Yutaka Hatayama
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| | - Yohei Ogata
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| | - Masahiro Saito
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| | - Xiaoyi Jin
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| | - Kaname Uno
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| | - Akira Imatani
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| | - Atsushi Masamune
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Miyagi, Japan; (T.K.); (Y.H.); (Y.O.); (M.S.); (X.J.); (K.U.); (A.I.); (A.M.)
| |
Collapse
|
2
|
Song BJ, Abdelmegeed MA, Cho YE, Akbar M, Rhim JS, Song MK, Hardwick JP. Contributing Roles of CYP2E1 and Other Cytochrome P450 Isoforms in Alcohol-Related Tissue Injury and Carcinogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1164:73-87. [PMID: 31576541 DOI: 10.1007/978-3-030-22254-3_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The purpose of this review is to briefly summarize the roles of alcohol (ethanol) and related compounds in promoting cancer and inflammatory injury in many tissues. Long-term chronic heavy alcohol exposure is known to increase the chances of inflammation, oxidative DNA damage, and cancer development in many organs. The rates of alcohol-mediated organ damage and cancer risks are significantly elevated in the presence of co-morbidity factors such as poor nutrition, unhealthy diets, smoking, infection with bacteria or viruses, and exposure to pro-carcinogens. Chronic ingestion of alcohol and its metabolite acetaldehyde may initiate and/or promote the development of cancer in the liver, oral cavity, esophagus, stomach, gastrointestinal tract, pancreas, prostate, and female breast. In this chapter, we summarize the important roles of ethanol/acetaldehyde in promoting inflammatory injury and carcinogenesis in several tissues. We also review the updated roles of the ethanol-inducible cytochrome P450-2E1 (CYP2E1) and other cytochrome P450 isozymes in the metabolism of various potentially toxic substrates, and consequent toxicities, including carcinogenesis in different tissues. We also briefly describe the potential implications of endogenous ethanol produced by gut bacteria, as frequently observed in the experimental models and patients of nonalcoholic fatty liver disease, in promoting DNA mutation and cancer development in the liver and other tissues, including the gastrointestinal tract.
Collapse
Affiliation(s)
- Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Young-Eun Cho
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.,Department of Food Science and Nutrition, Andong National University, Andong, Republic of Korea
| | - Mohammed Akbar
- Division of Neuroscience and Behavior, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Johng S Rhim
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Min-Kyung Song
- Investigational Drug Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - James P Hardwick
- Biochemistry and Molecular Pathology in the Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
3
|
Teschke R. Alcoholic Liver Disease: Current Mechanistic Aspects with Focus on Their Clinical Relevance. Biomedicines 2019; 7:E68. [PMID: 31491888 PMCID: PMC6783919 DOI: 10.3390/biomedicines7030068] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022] Open
Abstract
The spectrum of alcoholic liver disease (ALD) is broad and includes alcoholic fatty liver, alcoholic steatohepatitis, alcoholic hepatitis, alcoholic fibrosis, alcoholic cirrhosis, and alcoholic hepatocellular carcinoma, best explained as a five-hit sequelae of injurious steps. ALD is not primarily the result of malnutrition as assumed for many decades but due to the ingested alcohol and its metabolic consequences although malnutrition may marginally contribute to disease aggravation. Ethanol is metabolized in the liver to the heavily reactive acetaldehyde via the alcohol dehydrogenase (ADH) and the cytochrome P450 isoform 2E1 of the microsomal ethanol-oxidizing system (MEOS). The resulting disturbances modify not only the liver parenchymal cells but also non-parenchymal cells such as Kupffer cells (KCs), hepatic stellate cells (HSCs), and liver sinusoidal endothelial cells (LSECs). These are activated by acetaldehyde, reactive oxygen species (ROS), and endotoxins, which are produced from bacteria in the gut and reach the liver due to gut leakage. A variety of intrahepatic signaling pathways and innate or acquired immune reactions are under discussion contributing to the pathogenesis of ALD via the five injurious hits responsible for disease aggravation. As some of the mechanistic steps are based on studies with in vitro cell systems or animal models, respective proposals for humans may be considered as tentative. However, sufficient evidence is provided for clinical risk factors that include the amount of alcohol used daily for more than a decade, gender differences with higher susceptibility of women, genetic predisposition, and preexisting liver disease. In essence, efforts within the last years were devoted to shed more light in the pathogenesis of ALD, much has been achieved but issues remain to what extent results obtained from experimental studies can be transferred to humans.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, Frankfurt/Main, Germany.
| |
Collapse
|
4
|
Teschke R. Alcoholic Liver Disease: Alcohol Metabolism, Cascade of Molecular Mechanisms, Cellular Targets, and Clinical Aspects. Biomedicines 2018; 6:E106. [PMID: 30424581 PMCID: PMC6316574 DOI: 10.3390/biomedicines6040106] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/13/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease is the result of cascade events, which clinically first lead to alcoholic fatty liver, and then mostly via alcoholic steatohepatitis or alcoholic hepatitis potentially to cirrhosis and hepatocellular carcinoma. Pathogenetic events are linked to the metabolism of ethanol and acetaldehyde as its first oxidation product generated via hepatic alcohol dehydrogenase (ADH) and the microsomal ethanol-oxidizing system (MEOS), which depends on cytochrome P450 2E1 (CYP 2E1), and is inducible by chronic alcohol use. MEOS induction accelerates the metabolism of ethanol to acetaldehyde that facilitates organ injury including the liver, and it produces via CYP 2E1 many reactive oxygen species (ROS) such as ethoxy radical, hydroxyethyl radical, acetyl radical, singlet radical, superoxide radical, hydrogen peroxide, hydroxyl radical, alkoxyl radical, and peroxyl radical. These attack hepatocytes, Kupffer cells, stellate cells, and liver sinusoidal endothelial cells, and their signaling mediators such as interleukins, interferons, and growth factors, help to initiate liver injury including fibrosis and cirrhosis in susceptible individuals with specific risk factors. Through CYP 2E1-dependent ROS, more evidence is emerging that alcohol generates lipid peroxides and modifies the intestinal microbiome, thereby stimulating actions of endotoxins produced by intestinal bacteria; lipid peroxides and endotoxins are potential causes that are involved in alcoholic liver injury. Alcohol modifies SIRT1 (Sirtuin-1; derived from Silent mating type Information Regulation) and SIRT2, and most importantly, the innate and adapted immune systems, which may explain the individual differences of injury susceptibility. Metabolic pathways are also influenced by circadian rhythms, specific conditions known from living organisms including plants. Open for discussion is a 5-hit working hypothesis, attempting to define key elements involved in injury progression. In essence, although abundant biochemical mechanisms are proposed for the initiation and perpetuation of liver injury, patients with an alcohol problem benefit from permanent alcohol abstinence alone.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Leimenstrasse 20, D-63450 Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, Frankfurt/Main, Germany.
| |
Collapse
|
5
|
Altinoz E, Erdemli ME, Gul M, Aksungur Z, Gul S, Bag HG, Kaya GB, Turkoz Y. Neuroprotection against CCl4induced brain damage with crocin in Wistar rats. Biotech Histochem 2018; 93:623-631. [DOI: 10.1080/10520295.2018.1519725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- E Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - ME Erdemli
- Department of Medical Biochemistry, Faculty of Medicine, Nigde Omer Halisdemir University, Nigde, Turkey
| | - M Gul
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Z Aksungur
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - S Gul
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - HG Bag
- Department of Biostatistics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - GB Kaya
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Y Turkoz
- Department of Medical Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
6
|
Gedik S, Erdemli ME, Gul M, Yigitcan B, Gozukara Bag H, Aksungur Z, Altinoz E. Investigation of the protective effects of crocin on acrylamide induced small and large intestine damage in rats. Biotech Histochem 2018; 93:267-276. [PMID: 29644878 DOI: 10.1080/10520295.2018.1432888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
We investigated repair of acrylamide (AA) induced damage in intestines by administration of crocin. We used 40 male Wistar rats in four groups of 10 animals: control, AA, crocin, and AA + crocin groups. We investigated biochemical and histological changes to small and large intestine. AA ingestion decreased glutathione (GSH) levels and total antioxidant status (TAS) in the intestine compared to the control group, while superoxide dismutase (SOD) and catalase (CAT) activities, and total oxidant status (TOS) and malondialdehyde (MDA) levels were increased. Villi were shortened and villus degeneration was observed in ileum of the AA group. Degeneration of surface epithelium and Liberkühn crypts were observed in colon sections. GSH and TAS levels increased after administration of AA together with crocin, while SOD and CAT levels and TOS and MDA levels decreased; significant recovery of histological damage also was observed. We found that crocin exhibits protective effects on AA induced small and large intestine damage by inhibiting oxidative stress.
Collapse
Affiliation(s)
- S Gedik
- a Department of Chemistry, Faculty of Sciences , Karabuk University , Karabuk
| | - M E Erdemli
- b Department of Medical Biochemistry, Medical Faculty , Nigde Omer Halisdemir University , Nigde
| | - M Gul
- c Department of Histology and Embryology, Medical Faculty , Inonu University , Malatya
| | - B Yigitcan
- c Department of Histology and Embryology, Medical Faculty , Inonu University , Malatya
| | - H Gozukara Bag
- d Department of Biostatistics, Medical Faculty , Inonu University , Malatya
| | - Z Aksungur
- e Department of Medical Biochemistry, Medical Faculty , Inonu University , Malatya
| | - E Altinoz
- f Department of Medical Biochemistry, Medical Faculty , Karabuk University , Karabuk , Turkey
| |
Collapse
|
7
|
Gedik S, Erdemli ME, Gul M, Yigitcan B, Gozukara Bag H, Aksungur Z, Altinoz E. Hepatoprotective effects of crocin on biochemical and histopathological alterations following acrylamide-induced liver injury in Wistar rats. Biomed Pharmacother 2017; 95:764-770. [DOI: 10.1016/j.biopha.2017.08.139] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 10/18/2022] Open
|
8
|
Müller MF, Zhou Y, Adams DJ, Arends MJ. Effects of long-term ethanol consumption and Aldh1b1 depletion on intestinal tumourigenesis in mice. J Pathol 2017; 241:649-660. [PMID: 28026023 DOI: 10.1002/path.4869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
Abstract
Ethanol and its metabolite acetaldehyde have been classified as carcinogens for the upper aerodigestive tract, liver, breast, and colorectum. Whereas mechanisms related to oxidative stress and Cyp2e1 induction seem to prevail in the liver, and acetaldehyde has been proposed to play a crucial role in the upper aerodigestive tract, pathological mechanisms in the colorectum have not yet been clarified. Moreover, all evidence for a pro-carcinogenic role of ethanol in colorectal cancer is derived from correlations observed in epidemiological studies or from rodent studies with additional carcinogen application or tumour suppressor gene inactivation. In the current study, wild-type mice and mice with depletion of aldehyde dehydrogenase 1b1 (Aldh1b1), an enzyme which has been proposed to play an important role in acetaldehyde detoxification in the intestines, received ethanol in drinking water for 1 year. Long-term ethanol consumption led to intestinal tumour development in wild-type and Aldh1b1-depleted mice, but no intestinal tumours were observed in water-treated controls. Moreover, a significant increase in DNA damage was detected in the large intestinal epithelium of ethanol-treated mice of both genotypes compared with the respective water-treated groups, along with increased proliferation of the small and large intestinal epithelium. Aldh1b1 depletion led to increased plasma acetaldehyde levels in ethanol-treated mice, to a significant aggravation of ethanol-induced intestinal hyperproliferation, and to more advanced features of intestinal tumours, but it did not affect intestinal tumour incidence. These data indicate that ethanol consumption can initiate intestinal tumourigenesis without any additional carcinogen treatment or tumour suppressor gene inactivation, and we provide evidence for a role of Aldh1b1 in protection of the intestines from ethanol-induced damage, as well as for both carcinogenic and tumour-promoting functions of acetaldehyde, including increased progression of ethanol-induced tumours. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mike F Müller
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Ying Zhou
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - David J Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Mark J Arends
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, Cancer Research UK Edinburgh Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XR, UK
| |
Collapse
|
9
|
Bluemel S, Williams B, Knight R, Schnabl B. Precision medicine in alcoholic and nonalcoholic fatty liver disease via modulating the gut microbiota. Am J Physiol Gastrointest Liver Physiol 2016; 311:G1018-G1036. [PMID: 27686615 PMCID: PMC5206291 DOI: 10.1152/ajpgi.00245.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/25/2016] [Indexed: 02/08/2023]
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) represent a major health burden in industrialized countries. Although alcohol abuse and nutrition play a central role in disease pathogenesis, preclinical models support a contribution of the gut microbiota to ALD and NAFLD. This review describes changes in the intestinal microbiota compositions related to ALD and NAFLD. Findings from in vitro, animal, and human studies are used to explain how intestinal pathology contributes to disease progression. This review summarizes the effects of untargeted microbiome modifications using antibiotics and probiotics on liver disease in animals and humans. While both affect humoral inflammation, regression of advanced liver disease or mortality has not been demonstrated. This review further describes products secreted by Lactobacillus- and microbiota-derived metabolites, such as fatty acids and antioxidants, that could be used for precision medicine in the treatment of liver disease. A better understanding of host-microbial interactions is allowing discovery of novel therapeutic targets in the gut microbiota, enabling new treatment options that restore the intestinal ecosystem precisely and influence liver disease. The modulation options of the gut microbiota and precision medicine employing the gut microbiota presented in this review have excellent prospects to improve treatment of liver disease.
Collapse
Affiliation(s)
- Sena Bluemel
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Brandon Williams
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Rob Knight
- Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, La Jolla, California; and
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California;
- Veterans Affairs San Diego Healthcare System, San Diego, California
| |
Collapse
|
10
|
Liu Y, Chen H, Sun Z, Chen X. Molecular mechanisms of ethanol-associated oro-esophageal squamous cell carcinoma. Cancer Lett 2015; 361:164-73. [PMID: 25766659 DOI: 10.1016/j.canlet.2015.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 02/06/2023]
Abstract
Alcohol drinking is a major etiological factor of oro-esophageal squamous cell carcinoma (OESCC). Both local and systemic effects of ethanol may promote carcinogenesis, especially among chronic alcoholics. However, molecular mechanisms of ethanol-associated OESCC are still not well understood. In this review, we summarize current understandings and propose three mechanisms of ethanol-associated OESCC: (1) Disturbance of systemic metabolism of nutrients: during ethanol metabolism in the liver, systemic metabolism of retinoids, zinc, iron and methyl groups is altered. These nutrients are known to be associated with the development of OESCC. (2) Disturbance of redox metabolism in squamous epithelial cells: when ethanol is metabolized in oro-esophageal squamous epithelial cells, reactive oxygen species are generated and produce oxidative damage. Meanwhile, ethanol may also disturb fatty-acid metabolism in these cells. (3) Disturbance of signaling pathways in squamous epithelial cells: due to its physico-chemical properties, ethanol changes cell membrane fluidity and shape, and may thus impact multiple signaling pathways. Advanced molecular techniques in genomics, epigenomics, metabolomics and microbiomics will help us elucidate how ethanol promotes OESCC.
Collapse
Affiliation(s)
- Yao Liu
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China; Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Hao Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA
| | - Zheng Sun
- Department of Oral Medicine, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China.
| | - Xiaoxin Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, NC 27707, USA.
| |
Collapse
|
11
|
Intestinal CYP2E1: A mediator of alcohol-induced gut leakiness. Redox Biol 2014; 3:40-6. [PMID: 25462064 PMCID: PMC4297927 DOI: 10.1016/j.redox.2014.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 02/07/2023] Open
Abstract
Chronic alcohol use can result in many pathological effects including alcoholic liver disease (ALD). While alcohol is necessary for the development of ALD, only 20-30% of alcoholics develop alcoholic steatohepatitis (ASH) with progressive liver disease leading to cirrhosis and liver failure (ALD). This suggests that while chronic alcohol consumption is necessary it is not sufficient to induce clinically relevant liver damage in the absence of a secondary risk factor. Studies in rodent models and alcoholic patients show that increased intestinal permeability to microbial products like endotoxin play a critical role in promoting liver inflammation in ALD pathogenesis. Therefore identifying mechanisms of alcohol-induced intestinal permeability is important in identifying mechanisms of ALD and for designing new avenues for therapy. Cyp2e1 is a cytochrome P450 enzyme that metabolizes alcohol has been shown to be upregulated by chronic alcohol use and to be a major source of oxidative stress and liver injury in alcoholics and in animal and in vitro models of chronic alcohol use. Because Cyp2e1 is also expressed in the intestine and is upregulated by chronic alcohol use, we hypothesized it could play a role in alcohol-induced intestinal hyperpermeability. Our in vitro studies with intestinal Caco-2 cells and in mice fed alcohol showed that circadian clock proteins CLOCK and PER2 are required for alcohol-induced permeability. We also showed that alcohol increases Cyp2e1 protein and activity but not mRNA in Caco-2 cells and that an inhibitor of oxidative stress or siRNA knockdown of Cyp2e1 prevents the increase in CLOCK or PER2 proteins and prevents alcohol-induced hyperpermeability. With our collaborators we have also shown that Cyp2e1 knockout mice are resistant to alcohol-induced gut leakiness and liver inflammation. Taken together our data support a novel Cyp2e1-circadian clock protein mechanism for alcohol-induced gut leakiness that could provide new avenues for therapy of ALD.
Collapse
|
12
|
Forsyth CB, Voigt RM, Shaikh M, Tang Y, Cederbaum AI, Turek FW, Keshavarzian A. Role for intestinal CYP2E1 in alcohol-induced circadian gene-mediated intestinal hyperpermeability. Am J Physiol Gastrointest Liver Physiol 2013; 305:G185-95. [PMID: 23660503 PMCID: PMC3725682 DOI: 10.1152/ajpgi.00354.2012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have shown that alcohol increases Caco-2 intestinal epithelial cell monolayer permeability in vitro by inducing the expression of redox-sensitive circadian clock proteins CLOCK and PER2 and that these proteins are necessary for alcohol-induced hyperpermeability. We hypothesized that alcohol metabolism by intestinal Cytochrome P450 isoform 2E1 (CYP2E1) could alter circadian gene expression (Clock and Per2), resulting in alcohol-induced hyperpermeability. In vitro Caco-2 intestinal epithelial cells were exposed to alcohol, and CYP2E1 protein, activity, and mRNA were measured. CYP2E1 expression was knocked down via siRNA and alcohol-induced hyperpermeability, and CLOCK and PER2 protein expression were measured. Caco-2 cells were also treated with alcohol or H₂O₂ with or without N-acetylcysteine (NAC) anti-oxidant, and CLOCK and PER2 proteins were measured at 4 or 2 h. In vivo Cyp2e1 protein and mRNA were also measured in colon tissue from alcohol-fed mice. Alcohol increased CYP2E1 protein by 93% and enzyme activity by 69% in intestinal cells in vitro. Alcohol feeding also increased mouse colonic Cyp2e1 protein by 73%. mRNA levels of Cyp2e1 were not changed by alcohol in vitro or in mouse intestine. siRNA knockdown of CYP2E1 in Caco-2 cells prevented alcohol-induced hyperpermeability and induction of CLOCK and PER2 proteins. Alcohol-induced and H₂O₂-induced increases in intestinal cell CLOCK and PER2 were significantly inhibited by treatment with NAC. We concluded that our data support a novel role for intestinal CYP2E1 in alcohol-induced intestinal hyperpermeability via a mechanism involving CYP2E1-dependent induction of oxidative stress and upregulation of circadian clock proteins CLOCK and PER2.
Collapse
Affiliation(s)
- Christopher B. Forsyth
- Departments of 1Internal Medicine, Division of Digestive Diseases and Nutrition, ,2Biochemistry,
| | - Robin M. Voigt
- Departments of 1Internal Medicine, Division of Digestive Diseases and Nutrition,
| | - Maliha Shaikh
- Departments of 1Internal Medicine, Division of Digestive Diseases and Nutrition,
| | - Yueming Tang
- Departments of 1Internal Medicine, Division of Digestive Diseases and Nutrition,
| | - Arthur I. Cederbaum
- 3Mount Sinai School of Medicine, Department of Pharmacology and System Therapeutics, New York, New York;
| | - Fred W. Turek
- 8Northwestern University Feinberg School of Medicine, Chicago; ,4Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, Illinois;
| | - Ali Keshavarzian
- Departments of 1Internal Medicine, Division of Digestive Diseases and Nutrition, ,5Pharmacology, and ,6Molecular Biophysics and Physiology, Rush University Medical Center, Chicago; ,7Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
13
|
Tatematsu K, Koide A, Morimura K, Fukushima S, Mori Y. The enhancing effect of ethanol on the mutagenic activation of N-nitrosomethylbenzylamine by cytochrome P450 2A in the rat oesophagus. Mutagenesis 2013; 28:161-9. [PMID: 23325793 DOI: 10.1093/mutage/ges066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alcohol consumption is frequently associated with various cancers and the enhancement of the metabolic activation of carcinogens has been proposed as a mechanism underlying this relationship. The ethanol-induced enhancement of N-nitrosodiethylamine (DEN)-mediated carcinogenesis can be attributed to an increase in hepatic activity. However, the mechanism of elevation of N-nitrosomethylbenzylamine (NMBA)-induced tumorigenesis remains unclear. To elucidate the mechanism underlying the role of ethanol in the enhancement of NMBA-induced oesophageal carcinogenesis, we evaluated the hepatic and extrahepatic levels of the cytochrome P450 (CYP) and mutagenic activation of environmental carcinogens by immunoblot analyses and Ames preincubation test, respectively, in F344 rats treated with ethanol. Five weeks of treatment with 10% ethanol added to the drinking water or two intragastric treatments with 50% ethanol, both resulted in elevated levels of CYP2E1 (1.5- to 2.3-fold) and mutagenic activities of DEN, N-nitrosodimethylamine and N-nitrosopyrrolidine in the presence of rat liver S9 (1.5- to 2.4-fold). This was not the case with CYP1A1/2, CYP2A1/2, CYP2B1/2 or CYP3A2, nor with the activities of 2-amino-3-methylimidazo[4,5-f]quinoline, 3-amino-1-methyl-5H-pyrido[4,3-b]indole, aflatoxin B(1) or other N-nitroso compounds (NOCs), including NMBA. Ethanol-induced elevations of CYP2A and CYP2E1 were observed in the oesophagus (up to 1.7- and 2.3-fold) and kidney (up to 1.5- and 1.8-fold), but not in the lung or colon. In oesophagus and kidney, the mutagenic activities of NMBA and four NOCs were markedly increased (1.3- to 2.4-fold) in treated rats. The application of several CYP inhibitors revealed that CYP2A were likely to contribute to the enhancing effect of ethanol on NMBA activation in the rat oesophagus and kidney, but that CYP2E1 failed to do so. These results showed that the enhancing effect of ethanol on NMBA-induced oesophageal carcinogenesis could be attributed to an increase in the metabolic activation of NMBA by oesophageal CYP2A during the initiation phase, and that this occurred independently of CYP2E1.
Collapse
Affiliation(s)
- Kenjiro Tatematsu
- Laboratory of Radiochemistry, Gifu Pharmaceutical University, 6-1, Mitahora-higashi 5-chome, Gifu 502-8585, Japan
| | | | | | | | | |
Collapse
|
14
|
Dey A. Cytochrome P450 2E1: its clinical aspects and a brief perspective on the current research scenario. Subcell Biochem 2013; 67:1-104. [PMID: 23400917 DOI: 10.1007/978-94-007-5881-0_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Research on Cytochrome P450 2E1 (CYP2E1), a key enzyme in alcohol metabolism has been very well documented in literature. Besides the involvement of CYP2E1 in alcohol metabolism as illustrated through the studies discussed in the chapter, recent studies have thrown light on several other aspects of CYP2E1 i.e. its extrahepatic expression, its involvement in several diseases and pathophysiological conditions; and CYP2E1 mediated carcinogenesis and modulation of drug efficacy. Studies involving these interesting facets of CYP2E1 have been discussed in the chapter focusing on the recent observations or ongoing studies illustrating the crucial role of CYP2E1 in disease development and drug metabolism.
Collapse
Affiliation(s)
- Aparajita Dey
- AU-KBC Research Centre, Anna University, MIT Campus, Chromepet, Chennai, Tamil Nadu, 600044, India,
| |
Collapse
|
15
|
Abstract
Over the last three decades, direct hepatotoxic effects of ethanol were established, some of which were linked to redox changes produced by NADH generated via the alcohol dehydrogenase (ADH) pathway and shown to affect the metabolism of lipids, carbohydrates, proteins, and purines. It was also determined that ethanol can be oxidized by a microsomal ethanol oxidizing system (MEOS) involving a specific cytochrome P-450; this newly discovered ethanol-inducible cytochrome P-450 (P-450 IIEi) contributes to ethanol metabolism, tolerance, energy wastage (with associated weight loss), and the selective hepatic perivenular toxicity of various xenobiotics. Their activation by P-450IIEi now provides an understanding of the increased susceptibility of the heavy drinker to the toxicity of industrial solvents, anaesthetic agents, commonly prescribed drugs, over-the-counter analgesics, and chemical carcinogens. P-450 induction also explains depletion (and toxicity) of nutritional factors such as vitamin A. As a consequence, treatment with vitamin A and other nutritional factors is beneficial, but must take into account a narrowed therapeutic window in alcoholics who have increased needs for nutrients and also display an enhanced susceptibility to some of their adverse effects. Acetaldehyde (the metabolite produced from ethanol by either ADH or MEOS) impairs hepatic oxygen utilization and forms protein adducts, resulting in antibody production, enzyme inactivation, and decreased DNA repair. It also stimulates collagen production by the vitamin A storing cells (lipocytes) and myofibroblasts, and causes glutathione depletion. Supplementation with S-adenosyl-L-methionine partly corrects the depletion and associated mitochondrial injury, whereas administration of polyunsaturated lecithin opposes the fibrosis. Thus, at the cellular level, the classic dichotomy between the nutritional and toxic effects of ethanol has now been bridged. The understanding of how the ensuing injury eventually results in irreversible scarring or cirrhosis may provide us with improved modalities for treatment and prevention.
Collapse
Affiliation(s)
- C S Lieber
- Alcohol Research & Treatment Center, Bronx VA Medical Center, 130 West Kingsbridge Road, Bronx, NY, 10468, USA
| |
Collapse
|
16
|
Abstract
This article discusses the molecular basis of esophageal cancer development and subsequent progression of disease. Differing epidemiologic factors are associated with esophageal adenocarcinoma and squamous cell carcinoma. These 2 different histologic types have differing putative underlying mechanisms of transdifferentiation from normal esophageal mucosa to malignant histologies via gene dysregulation, biochemical modifications, and altered cell signaling pathways. Our developing understanding of the molecular events underlying esophageal cancer is leading to the establishment of identifiable biomarkers and the clinical use of molecularly targeted treatment agents. The identification of driving genetic mutations and altered signaling pathways has also had favorable outcomes.
Collapse
|
17
|
Urtasun R, Cubero FJ, Nieto N. Oxidative stress modulates KLF6Full and its splice variants. Alcohol Clin Exp Res 2012; 36:1851-62. [PMID: 22486562 DOI: 10.1111/j.1530-0277.2012.01798.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/13/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND Induction of reactive oxygen species (ROS) is a central mechanism in alcohol hepatotoxicity. Krüppel-like factor 6 (KLF6), a transcription factor and a tumor-suppressor gene, is an early-responsive gene to injury; however, the effect of ROS and alcohol on KLF6 induction is unknown. The aim of this study is to investigate the contribution of 2 sources of ROS, cytochrome P450 2E1 (CYP2E1), NAD(P)H quinone oxidoreductase (NQO1), and alcohol on the modulation of KLF6(Full) expression, splicing to KLF6_V1 and KLF6_V2, and the effect on TNFα, a downstream target. METHODS AND RESULTS Endogenous ROS production in CYP2E1-expressing HepG2 cells induced mRNA and protein expression of KLF6(Full) and its splice variants compared to control cells. Incubation with pro-oxidants such as arachidonic acid (AA), β-naphtoflavone, and H(2) O(2) further enhanced KLF6(Full) and its splice variants. The AA effects on KLF6(Full) and its splice forms were blocked by vitamin E-which prevents lipid peroxidation-and by diallylsulfide-a CYP2E1 inhibitor. Menadione and paraquat, 2 pro-oxidants metabolized via NQO1, induced KLF6(Full) mRNA in a thiol-dependent manner. Antioxidants and an NQO1 inhibitor suppressed the menadione-dependent increase in KLF6(Full) and its splice variants mRNA. Furthermore, primary hepatocytes and livers from chronic alcohol-fed rats, with elevated lipid peroxidation, H(2) O(2) and CYP2E1 but with low GSH, showed a ~2-fold increase in KLF6(Full) mRNA compared to controls. Inhibition of p38 phosphorylation further up-regulated the CYP2E1 and the AA effects on KLF6(Full) mRNA, whereas inhibition JNK and ERK1/2 phosphorylation decreased both. KLF6_V1 but not KLF6(Full) ablation markedly increased TNFα levels in macrophages; thus, TNFα emerges as a downstream target of KLF6_V1. CONCLUSIONS The novel effect of ROS on modulating KLF6(Full) expression and its splice variants could play a relevant role in liver injury and in TNFα regulation.
Collapse
Affiliation(s)
- Raquel Urtasun
- Department of Medicine, Division of Liver Diseases, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
18
|
Mormone E, Lu Y, Ge X, Fiel MI, Nieto N. Fibromodulin, an oxidative stress-sensitive proteoglycan, regulates the fibrogenic response to liver injury in mice. Gastroenterology 2012; 142:612-621.e5. [PMID: 22138190 PMCID: PMC3800000 DOI: 10.1053/j.gastro.2011.11.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/18/2011] [Accepted: 11/22/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Collagen I deposition contributes to liver fibrosis, yet little is known about other factors that mediate this process. Fibromodulin is a liver proteoglycan that regulates extracellular matrix organization and is induced by fibrogenic stimuli. We propose that fibromodulin contributes to the pathogenesis of fibrosis by regulating the fibrogenic phenotype of hepatic stellate cells (HSCs). METHODS We analyzed liver samples from patients with hepatitis C-associated cirrhosis and healthy individuals (controls). We used a coculture model to study interactions among rat HSCs, hepatocytes, and sinusoidal endothelial cells. We induced fibrosis in livers of wild-type and Fmod(-/-) mice by bile duct ligation, injection of CCl(4), or administration of thioacetamide. RESULTS Liver samples from patients with cirrhosis had higher levels of fibromodulin messenger RNA and protein than controls. Bile duct ligation, CCl(4), and thioacetamide each increased levels of fibromodulin protein in wild-type mice. HSCs, hepatocytes, and sinusoidal endothelial cells produced and secreted fibromodulin. Infection of HSCs with an adenovirus that expressed fibromodulin increased expression of collagen I and α-smooth muscle actin, indicating increased activation of HSCs and fibrogenic potential. Recombinant fibromodulin promoted proliferation, migration, and invasion of HSCs, contributing to their fibrogenic activity. Fibromodulin was sensitive to reactive oxygen species. HepG2 cells that express cytochrome P450 2E1 produced fibromodulin, and HSCs increased fibromodulin production in response to pro-oxidants. In mice, administration of an antioxidant prevented the increase in fibromodulin in response to CCl(4). Coculture of hepatocytes or sinusoidal endothelial cells with HSCs increased the levels of reactive oxygen species in the culture medium, along with collagen I and fibromodulin proteins; this increase was prevented by catalase. Fibromodulin bound to collagen I, but the binding did not prevent collagen I degradation by matrix metalloproteinase 13. Bile duct ligation caused liver fibrosis in wild-type but not Fmod(-/-) mice. CONCLUSIONS Fibromodulin levels are increased in livers of patients with cirrhosis. Hepatic fibromodulin activates HSCs and promotes collagen I deposition, which leads to liver fibrosis in mice.
Collapse
Affiliation(s)
- Elisabetta Mormone
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Yongke Lu
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Xiaodong Ge
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York
| | - Maria Isabel Fiel
- Division of Liver Diseases, Department of Pathology, Mount Sinai School of Medicine, New York, New York
| | - Natalia Nieto
- Division of Liver Diseases, Department of Medicine, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
19
|
Duell EJ, Travier N, Lujan-Barroso L, Clavel-Chapelon F, Boutron-Ruault MC, Morois S, Palli D, Krogh V, Panico S, Tumino R, Sacerdote C, Quirós JR, Sánchez-Cantalejo E, Navarro C, Gurrea AB, Dorronsoro M, Khaw KT, Allen NE, Key TJ, Bueno-de-Mesquita HB, Ros MM, Numans ME, Peeters PHM, Trichopoulou A, Naska A, Dilis V, Teucher B, Kaaks R, Boeing H, Schütze M, Regner S, Lindkvist B, Johansson I, Hallmans G, Overvad K, Egeberg R, Tjønneland A, Lund E, Weiderpass E, Braaten T, Romieu I, Ferrari P, Jenab M, Stenling R, Aune D, Norat T, Riboli E, González CA. Alcohol consumption and gastric cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Am J Clin Nutr 2011; 94:1266-75. [PMID: 21993435 DOI: 10.3945/ajcn.111.012351] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Gastric cancer (GC) is the second leading cause of cancer death worldwide. The association between alcohol consumption and GC has been investigated in numerous epidemiologic studies with inconsistent results. OBJECTIVE We evaluated the association between alcohol consumption and GC risk. DESIGN We conducted a prospective analysis in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort, which included 444 cases of first primary gastric adenocarcinoma. HRs and 95% CIs for GC were estimated by using multivariable Cox proportional hazards regression for consumption of pure ethanol in grams per day, with stratification by smoking status, anatomic subsite (cardia, noncardia), and histologic subtype (diffuse, intestinal). In a subset of participants, results were further adjusted for baseline Helicobacter pylori serostatus. RESULTS Heavy (compared with very light) alcohol consumption (≥60 compared with 0.1-4.9 g/d) at baseline was positively associated with GC risk (HR: 1.65; 95% CI: 1.06, 2.58), whereas lower consumption amounts (<60 g/d) were not. When we analyzed GC risk by type of alcoholic beverage, there was a positive association for beer (≥30 g/d; HR: 1.75; 95% CI: 1.13, 2.73) but not for wine or liquor. Associations were primarily observed at the highest amounts of drinking in men and limited to noncardia subsite and intestinal histology; no statistically significant linear dose-response trends with GC risk were observed. CONCLUSION Heavy (but not light or moderate) consumption of alcohol at baseline (mainly from beer) is associated with intestinal-type noncardia GC risk in men from the EPIC cohort.
Collapse
Affiliation(s)
- Eric J Duell
- Unit of Nutrition, Environment and Cancer, Bellvitge Biomedical Research Institute-IDIBELL, Catalan Institute of Oncology-ICO, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
D'Ambrosio DN, Walewski JL, Clugston RD, Berk PD, Rippe RA, Blaner WS. Distinct populations of hepatic stellate cells in the mouse liver have different capacities for retinoid and lipid storage. PLoS One 2011; 6:e24993. [PMID: 21949825 PMCID: PMC3174979 DOI: 10.1371/journal.pone.0024993] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/22/2011] [Indexed: 01/18/2023] Open
Abstract
Hepatic stellate cell (HSC) lipid droplets are specialized organelles for the storage of retinoid, accounting for 50–60% of all retinoid present in the body. When HSCs activate, retinyl ester levels progressively decrease and the lipid droplets are lost. The objective of this study was to determine if the HSC population in a healthy, uninjured liver demonstrates heterogeneity in its capacity for retinoid and lipid storage in lipid droplets. To this end, we utilized two methods of HSC isolation, which leverage distinct properties of these cells, including their vitamin A content and collagen expression. HSCs were isolated either from wild type (WT) mice in the C57BL/6 genetic background by flotation in a Nycodenz density gradient, followed by fluorescence activated cell sorting (FACS) based on vitamin A autofluorescence, or from collagen-green fluorescent protein (GFP) mice by FACS based on GFP expression from a GFP transgene driven by the collagen I promoter. We show that GFP-HSCs have: (i) increased expression of typical markers of HSC activation; (ii) decreased retinyl ester levels, accompanied by reduced expression of the enzyme needed for hepatic retinyl ester synthesis (LRAT); (iii) decreased triglyceride levels; (iv) increased expression of genes associated with lipid catabolism; and (v) an increase in expression of the retinoid-catabolizing cytochrome, CYP2S1. Conclusion: Our observations suggest that the HSC population in a healthy, uninjured liver is heterogeneous. One subset of the total HSC population, which expresses early markers of HSC activation, may be “primed” and ready for rapid response to acute liver injury.
Collapse
Affiliation(s)
- Diana N. D'Ambrosio
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - José L. Walewski
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Robin D. Clugston
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Paul D. Berk
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
| | - Richard A. Rippe
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - William S. Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
Toh Y, Oki E, Ohgaki K, Sakamoto Y, Ito S, Egashira A, Saeki H, Kakeji Y, Morita M, Sakaguchi Y, Okamura T, Maehara Y. Alcohol drinking, cigarette smoking, and the development of squamous cell carcinoma of the esophagus: molecular mechanisms of carcinogenesis. Int J Clin Oncol 2010; 15:135-44. [PMID: 20224883 DOI: 10.1007/s10147-010-0057-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Indexed: 12/12/2022]
Abstract
Esophageal cancer is the eighth most common incident cancer in the world and ranks sixth among all cancers in mortality. Esophageal cancers are classified into two histological types; esophageal squamous cell carcinoma (ESCC), and adenocarcinoma, and the incidences of these types show a striking variety of geographic distribution, possibly reflecting differences in exposure to specific environmental factors. Both alcohol consumption and cigarette smoking are major risk factors for the development of ESCC. Acetaldehyde is the most toxic ethanol metabolite in alcohol-associated carcinogenesis, while ethanol itself stimulates carcinogenesis by inhibiting DNA methylation and by interacting with retinoid metabolism. Cigarette smoke contains more than 60 carcinogens and there are strong links between some of these carcinogens and various smoking-induced cancers; these mechanisms are well established. Synergistic effects of cigarette smoking and alcohol consumption are also observed in carcinogenesis of the upper aerodigestive tract. Of note, intensive molecular biological studies have revealed the molecular mechanisms involved in the development of ESCC, including genetic and epigenetic alterations. However, a wide range of molecular changes is associated with ESCC, possibly because the esophagus is exposed to many kinds of carcinogens including alcohol and cigarette smoke, and it remains unclear which alterations are the most critical for esophageal carcinogenesis. This brief review summarizes the general mechanisms of alcohol- and smoking-induced carcinogenesis and then discusses the mechanisms of the development of ESCC, with special attention to alcohol consumption and cigarette smoking.
Collapse
Affiliation(s)
- Yasushi Toh
- Department of Gastroenterological Surgery, National Kyushu Cancer Center, 3-1-1 Notame, Minami-ku, Fukuoka 811-1395, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Brooks PJ, Goldman D, Li TK. Alleles of alcohol and acetaldehyde metabolism genes modulate susceptibility to oesophageal cancer from alcohol consumption. Hum Genomics 2009; 3:103-5. [PMID: 19164087 PMCID: PMC2814320 DOI: 10.1186/1479-7364-3-2-103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
23
|
Ishiguro S, Sasazuki S, Inoue M, Kurahashi N, Iwasaki M, Tsugane S. Effect of alcohol consumption, cigarette smoking and flushing response on esophageal cancer risk: a population-based cohort study (JPHC study). Cancer Lett 2009; 275:240-6. [PMID: 19036500 DOI: 10.1016/j.canlet.2008.10.020] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Revised: 08/20/2008] [Accepted: 10/17/2008] [Indexed: 11/19/2022]
Abstract
We examined the effect of alcohol consumption, cigarette smoking and flushing response on esophageal squamous cell carcinoma (ESCC) in a large-scale population-based cohort study. 44,970 middle-aged and older Japanese men were followed. A total of 215 cases of ESCC were newly diagnosed. Alcohol consumption and cigarette smoking are strongly associated with the incidence of ESCC. Heavy alcohol consumption increased the risk of ESCC especially among heavy smokers with the flushing response (HR = 3.41, 95% CI = 2.10-5.51). Strong effect modification was detected in heavy smokers. Our results suggest that heavy alcohol consumption together with heavy smoking may increase the risk of ESCC particularly in individuals with the flushing response.
Collapse
Affiliation(s)
- Seiji Ishiguro
- Epidemiology and Prevention Division, Research Center for Cancer Prevention and Screening, National Cancer Center, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Seitz HK, Cho CH. Contribution of alcohol and tobacco use in gastrointestinal cancer development. Methods Mol Biol 2009; 472:217-41. [PMID: 19107435 DOI: 10.1007/978-1-60327-492-0_9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tobacco smoke and alcohol are major risk factors for a variety of cancer sites, including those of the gastrointestinal tract. Tobacco smoke contains a great number of mutagenic and carcinogenic compounds, including polycyclic carbohydrates, nitrosamines, and nicotine, while ethanol per se has only weak carcinogenic potential, but its first metabolite, acetaldehyde, is a mutagen and carcinogen, since it forms stable adducts with DNA. The possibility of proto-oncogene mutation in gastrointestinal mucosa cells may be associated with tobacco smoking-induced cancers through the formation of unfavorable DNA adducts. Individuals with defective DNA repair mechanisms and unfavorable genetic make-up for carcinogen metabolism may be at increased risk for gastrointestinal cancers. Individuals with a high production rate of acetaldehyde from ethanol also have an increased cancer risk when they drink chronically. These include individuals with a genetically determined increased acetaldehyde production due to alcohol dehydrogenase polymorphism and those with a decreased detoxification of acetaldehyde due to acetaldehyde dehydrogenase mutation. In addition, oral bacterial overgrowth due to poor oral hygiene also increases salivary acetaldehyde. Dietary deficiencies such as a lack of folate, riboflavine, and zinc may also contribute to the increase cancer risk in the alcoholic patient. It is of considerable importance that smoking and drinking act synergistically. Smoking increases the acetaldehyde burden following alcohol consumption and drinking enhances the activation of various procarcinogens present in tobacco smoke due to increased metabolic activation by an induced cytochrome P450-2E1-dependent microsomal biotransformation system in the mucosa of the upper digestive tract and the liver.
Collapse
Affiliation(s)
- Helmut K Seitz
- Department of Medicine, Center of Alcohol Research, Liver Disease and Nutrition, Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
25
|
Boadas-Vaello P, Jover E, Saldaña-Ruíz S, Soler-Martín C, Chabbert C, Bayona JM, Llorens J. Allylnitrile Metabolism by CYP2E1 and Other CYPs Leads to Distinct Lethal and Vestibulotoxic Effects in the Mouse. Toxicol Sci 2008; 107:461-72. [DOI: 10.1093/toxsci/kfn233] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
26
|
O'Shea D, Kim RB, Wilkinson GR. Modulation of CYP2EI activity by isoniazid in rapid and slow N-acetylators. Br J Clin Pharmacol 2008. [DOI: 10.1111/j.1365-2125.1997.tb00144.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
27
|
Hayashi N, Tsutsumi M, Fukura M, Yano H, Tsuchishima M, Takase S. Effect of chronic dietary ethanol consumption on colonic cancer in rats induced by 1,1-dimethylhydrazine. Alcohol Clin Exp Res 2008; 31:S72-6. [PMID: 17331170 DOI: 10.1111/j.1530-0277.2006.00290.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The pathogenetic correlation between chronic alcohol consumption and development of colon cancer is not clear. The role of alcohol abuse in the carcinogenic action of 1,1-dimethylhydrazine (DMH), which induces tumors in the colon, was evaluated. METHODS Twenty male rats were fed liquid diets containing ethanol or carbohydrates for 39 weeks. DMH (20 mg/kg body weight, once a week) was injected subcutaneously from the 5th to the 20th week. Pair feeding was stopped at 10:00 am and DMH was administered at 02:00 pm. Ethanol was not detected in the blood at the time of injection. Liquid diets were provided again at 05:00 pm until 10:00 am next day. The animals were killed at the end of the 39th week, and the colons were removed for examination for the number of aberrant crypt foci (ACF) by methylene blue staining. Tissue sections were stained for histology and cytochrome P4502E1 (CYP2E1) expression. RESULTS The number of ACF in colons obtained from ethanol-fed rats with DMH was 24 (n=5, 4.4+/-2.5/rat), which was significantly (p<0.001) more than that of the other treated rats: only 3 (n=5, 0.6+/-0.5/rat) in the pair-fed control rats with DMH, and none in the ethanol-fed or control-fed rats without DMH. Cytochrome P4502E1 staining demonstrated marked expression in the colon mucosa from ethanol-fed rats, but not in the pair-fed control rats. CONCLUSIONS The increased expression of CYP2E1 induced by chronic ethanol consumption promotes the development of DMH-induced colon cancer.
Collapse
Affiliation(s)
- Nobuhiko Hayashi
- Department of Gastroenterology, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Lee CH, Lee JM, Wu DC, Goan YG, Chou SH, Wu IC, Kao EL, Chan TF, Huang MC, Chen PS, Lee CY, Huang CT, Huang HL, Hu CY, Hung YH, Wu MT. Carcinogenetic impact of ADH1B and ALDH2 genes on squamous cell carcinoma risk of the esophagus with regard to the consumption of alcohol, tobacco and betel quid. Int J Cancer 2008; 122:1347-56. [PMID: 18033686 DOI: 10.1002/ijc.23264] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The consumption of alcohol, tobacco and betel quid has been found to be an important contributor to esophageal squamous cell carcinoma (ESCC) in Taiwan. The genotoxic effect of the ADH1B and ALDH2 genes modulating an individual's alcohol-metabolizing capacity on ESCC may be linked to drinking behavior, intake pattern and other exogenous factors. To investigate the interplay of these genetic and environmental factors in determining the risk of ESCC, a multicenter case-control study was conducted. Here, 406 patients with pathology-proven ESCC, as well as 656 gender, age and study hospital matched controls were recruited. Genetic polymorphisms of ADH1B and ALDH2 appeared to correlate with the abstinence of alcohol, though not with tobacco and betel quid. Within the same levels of alcohol consumption, carcinoma risks increased along with an increase in the numbers of ADH1B*1 and ALDH2*2 alleles. The inactive ALDH2*1/*2 genotype was found to multiplicatively interact with a low-to-moderate (0.1-30 g/day) and a heavy (>30 g/day) ethanol intake to increase the ESCC risk (the joint aOR = 14.5 and 102.6, respectively). Among low-to-moderate drinkers, a smoking-dependent carcinogenetic effect for the ADH1B*1/*1 and ALDH2*1/*2+*2/*2 genotypes was recognized, with significant risks found in smokers, but not in nonsmokers. Further, a supra-multiplicative combined risk of ESCC for alcohol and tobacco use was identified among carriers of the ADH1B*1/*1 genotype (p for interaction = 0.042). In conclusion, the interplay of the ADH1B and ALDH2 genotypes, in conjunction with a behaved drinking habit and a practiced drinking pattern, along with continued tobacco consumption, plays an important pathogenic role in modulating ESCC risk.
Collapse
Affiliation(s)
- Chien-Hung Lee
- Faculty of Public Health, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Uno S, Dragin N, Miller ML, Dalton TP, Gonzalez FJ, Nebert DW. Basal and inducible CYP1 mRNA quantitation and protein localization throughout the mouse gastrointestinal tract. Free Radic Biol Med 2008; 44:570-83. [PMID: 17997381 PMCID: PMC2754765 DOI: 10.1016/j.freeradbiomed.2007.10.044] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Revised: 10/10/2007] [Accepted: 10/13/2007] [Indexed: 01/04/2023]
Abstract
The CYP1A1, CYP1A2, and CYP1B1 enzymes are inducible by benzo[a]pyrene (BaP) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); metabolism of BaP by these enzymes leads to electrophilic intermediates and genotoxicity. Throughout the gastrointestinal (GI) tract, we systematically compared basal and inducible levels of the CYP1 mRNAs by Q-PCR, and localized the CYP1 proteins by immunohistochemistry. Cyp1(+/+) wild-type were compared with the Cyp1a1(-/-), Cyp1a2(-/-), and Cyp1b1(-/-) single-knockout and Cyp1a1/1b1(-/-) and Cyp1a2/1b1(-/-) double-knockout mice. Oral BaP was compared with intraperitoneal TCDD. In general, maximal CYP1A1 mRNA levels were 3-10 times greater than CYP1B1, which were 3-10 times greater than CYP1A2 mRNA levels. Highest inducible concentrations of CYP1A1 and CYP1A2 occurred in proximal small intestine, whereas the highest basal and inducible levels of CYP1B1 mRNA occurred in esophagus, forestomach, and glandular stomach. Ablation of either Cyp1a2 or Cyp1b1 gene resulted in a compensatory increase in CYP1A1 mRNA - but only in small intestine. Also in small intestine, although BaP- and TCDD-mediated CYP1A1 inductions were roughly equivalent, oral BaP-mediated CYP1A2 mRNA induction was approximately 40-fold greater than TCDD-mediated CYP1A2 induction. CYP1B1 induction by TCDD in Cyp1(+/+) and Cyp1a2(-/-) mice was 4-5 times higher than that by BaP; however, in Cyp1a1(-/-) animals CYP1B1 induction by TCDD or BaP was approximately equivalent. CYP1A1 and CYP1A2 proteins were generally localized nearer to the lumen than CYP1B1 proteins, in both squamous and glandular epithelial cells. These GI tract data suggest that the inducible CYP1A1 enzyme, both in concentration and in location, might act as a "shield" in detoxifying oral BaP and, hence, protecting the animal.
Collapse
Affiliation(s)
- Shigeyuki Uno
- Department of Environmental Health, and The Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | - Nadine Dragin
- Department of Environmental Health, and The Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | - Marian L. Miller
- Department of Environmental Health, and The Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | - Timothy P. Dalton
- Department of Environmental Health, and The Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel W. Nebert
- Department of Environmental Health, and The Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
- Corresponding author. Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267-0056, USA. Fax: +1 513 558 3562. E-mail address: (D.W. Nebert)
| |
Collapse
|
30
|
Yoon M, Madden MC, Barton HA. Extrahepatic metabolism by CYP2E1 in PBPK modeling of lipophilic volatile organic chemicals: impacts on metabolic parameter estimation and prediction of dose metrics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1527-41. [PMID: 17710613 DOI: 10.1080/15287390701384684] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) models are increasingly available for environmental chemicals and applied in risk assessments. Volatile organic compounds (VOCs) are important pollutants in air, soil, and water. CYP2E1 metabolically activates many VOCs in animals and humans. Despite its presence in extrahepatic tissues, the metabolism by CYP2E1 is often described as restricted to the liver in PBPK models, unless target tissue dose metrics in extrahepatic tissues are needed for the model application, including risk assessment. The impact of accounting for extrahepatic metabolism by CYP2E1 on the estimation of metabolic parameters and the prediction of dose metrics was evaluated for three lipophilic VOCs: vinyl chloride, trichloroethylene, and carbon tetrachloride. Metabolic parameters estimated from fitting gas uptake data with and without extrahepatic metabolism were similar. The impact of extrahepatic metabolism on PBPK predictions was evaluated using inhalation exposure scenarios relevant for animal toxicity studies and human risk assessment. Although small, the relative role of extrahepatic metabolism and the differences in the predicted dose metrics were greater at low exposure concentrations. The impact was species dependent and influenced by Km for CYP2E1. The current study indicates that inhalation modeling for several representative VOCs that are CYP2E1 substrates is not affected by the inclusion of extrahepatic metabolism, implying that liver-only metabolism may be a reasonable simplification for PBPK modeling of lipophilic VOCs. The PBPK predictions using this assumption can be applied confidently for risk assessment, but this conclusion should not necessarily be applied to VOCs that are metabolized by other enzymes.
Collapse
Affiliation(s)
- Miyoung Yoon
- National Research Council Research Associateship Program, North Carolina, USA
| | | | | |
Collapse
|
31
|
Abstract
Approximately 3.6% of cancers worldwide derive from chronic alcohol drinking, including those of the upper aerodigestive tract, the liver, the colorectum and the breast. Although the mechanisms for alcohol-associated carcinogenesis are not completely understood, most recent research has focused on acetaldehyde, the first and most toxic ethanol metabolite, as a cancer-causing agent. Ethanol may also stimulate carcinogenesis by inhibiting DNA methylation and by interacting with retinoid metabolism. Alcohol-related carcinogenesis may interact with other factors such as smoking, diet and comorbidities, and depends on genetic susceptibility.
Collapse
Affiliation(s)
- Helmut K Seitz
- Department of Medicine and Laboratory of Alcohol Research, Liver Disease and Nutrition, Salem Medical Centre, University of Heidelberg, Heidelberg, Germany.
| | | |
Collapse
|
32
|
Mori Y, Tatematsu K, Koide A, Sugie S, Tanaka T, Mori H. Modification by curcumin of mutagenic activation of carcinogenic N-nitrosamines by extrahepatic cytochromes P-450 2B1 and 2E1 in rats. Cancer Sci 2006; 97:896-904. [PMID: 16805852 PMCID: PMC11159237 DOI: 10.1111/j.1349-7006.2006.00261.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
To elucidate the mechanism underlying suppression by curcumin of esophageal carcinogenesis induced by NMBA, we evaluated the CYP level and mutagenic activation of environmental carcinogens, by immunoblot analyses and Ames preincubation test, respectively, and bilirubin, 4-nitrophenol and testosterone UDPGT activities in F344 rats treated with curcumin and/or NMBA. No significant alterations in the hepatic levels of constitutive CYP proteins, mutagenic activation by liver S9 or hepatic UDPGT activities were produced by subcutaneous treatment with 0.5 mg/kg NMBA for 5 weeks and/or feeding of 0.05% and 0.2% curcumin for 6 weeks. In contrast, gavage of 0.2% curcumin decreased esophageal CYP2B1 and 2E1 by up to 60%, compared with vehicle control. Similarly, intragastric treatment with 270 mg/kg curcumin decreased esophageal and gastric CYP2B1 and CYP2E1, but not in lung, kidney or intestine. Conversely, large intestinal CYP2B1 was 2.8-fold higher in the treated rats than in control rats. Mutagenic activities of NOC, including NMBA, in the presence of esophagus and stomach S9 were markedly decreased in the treated rats, whereas those in the presence of large intestine S9 were 2.2-3.0-fold above control. These results show that modifying effects of curcumin on esophageal carcinogenesis can be attributed to a decrease in metabolic activation of NMBA by esophageal CYP2B1 during the initiation phase, without the contribution of metabolic activation and inactivation by liver. Further, the present findings suggest the potential of curcumin for modification of gastric and intestinal carcinogenesis initiated with NOC.
Collapse
Affiliation(s)
- Yukio Mori
- Institute of Biological Pharmacy, Gifu Pharmaceutical University, 6-1, Mitahora-higashi 5-chome, Gifu 502-8585, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Oates PS, West AR. Heme in intestinal epithelial cell turnover, differentiation, detoxification, inflammation, carcinogenesis, absorption and motility. World J Gastroenterol 2006; 12:4281-95. [PMID: 16865768 PMCID: PMC4087737 DOI: 10.3748/wjg.v12.i27.4281] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract is lined by a simple epithelium that undergoes constant renewal involving cell division, differentiation and cell death. In addition, the epithelial lining separates the hostile processes of digestion and absorption that occur in the intestinal lumen from the aseptic environment of the internal milieu by defensive mechanisms that protect the epithelium from being breached. Central to these defensive processes is the synthesis of heme and its catabolism by heme oxygenase (HO). Dietary heme is also an important source of iron for the body which is taken up intact by the enterocyte. This review describes the recent literature on the diverse properties of heme/HO in the intestine tract. The roles of heme/HO in the regulation of the cell cycle/apoptosis, detoxification of xenobiotics, oxidative stress, inflammation, development of colon cancer, heme-iron absorption and intestinal motility are specifically examined.
Collapse
|
34
|
Tsutsumi M, George J, Ishizawa K, Fukumura A, Takase S. Effect of chronic dietary ethanol in the promotion of N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in rats. J Gastroenterol Hepatol 2006; 21:805-13. [PMID: 16704527 DOI: 10.1111/j.1440-1746.2005.04040.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The pathogenetic correlation between chronic alcohol consumption and development of esophageal cancer is not clear. The role of alcohol abuse in the carcinogenic action of N-nitrosomethylbenzylamine, which induces tumors in the esophagus, has been evaluated. METHODS Twenty male rats were fed liquid diets containing ethanol or carbohydrates for 30 weeks. N-nitrosomethylbenzylamine (0.1 mg/kg, twice a week) was injected i.p. from the 9th to 19th week. The pair feeding was stopped at 9.00 am and N-nitrosomethylbenzylamine was administered at 10.00 am. Ethanol was not detected in the blood at the time of injection. Liquid diets were provided again at 3 pm until 9 am next day. The animals were killed at the end of the 30th week. The esophagi were collected and examined for visible tumors. The tissue sections were stained for histology and CYP2E1expression. RESULTS While 5-8 esophageal squamous polyps developed in all rats in the ethanol group, only one polyp each was formed in five out of the 10 rats in the control group. The size of the polyps was significantly larger in the ethanol group, when compared to the control group. Invasive squamous cell carcinoma was also observed in 50% of the animals in the ethanol group. Cytochrome P4502E1 (CYP2E1) staining demonstrated marked expression in the esophageal mucosa in the ethanol group, but not in the control group. CONCLUSIONS The increased expression of CYP2E1 induced by chronic ethanol consumption promotes the development of N-nitrosomethylbenzylamine-induced esophageal tumorigenesis. However, the molecular mechanism of the increased production of esophageal tumors during alternative administration of N-nitrosomethylbenzylamine and ethanol is not clear.
Collapse
Affiliation(s)
- Mikihiro Tsutsumi
- Division of Gastroenterology, Department of Internal Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Abstract
Chronic and excessive alcohol intake is associated with an increased risk of a variety of cancers (e.g., oral cavity, larynx, esophagus, liver, lung, colorectal, and breast). Retinoids (vitamin A and its derivatives) are known to exert profound effects on cellular growth, cellular differentiation, and apoptosis, thereby controlling carcinogenesis. Lower hepatic vitamin A levels have been well documented in alcoholics. Substantial research has been done, investigating the mechanisms by which excessive alcohol interferes with retinoid metabolism. More specifically, (1) alcohol acts as a competitive inhibitor of vitamin A oxidation to retinoic acid involving alcohol dehydrogenases and acetaldehyde dehydrogenases; (2) alcohol-induced cytochrome P450 enzymes (CYP), particularly CYP2E1, enhance catabolism of vitamin A and retinoic acid; and (3) alcohol alters retinoid homeostasis by increasing vitamin A mobilization from liver to extrahepatic tissues. As a consequence, long-term and excessive alcohol intake results in impaired status of retinoic acid, the most active derivative of vitamin A and a ligand for both retinoic acid receptors and retinoid X receptors. Moreover, this alcohol-impaired retinoic acid homeostasis interferes with (1) retinoic acid signaling (e.g., down-regulates retinoid target gene expression) and (2) retinoic acid "cross-talk" with the mitogen-activated protein kinase [(MAPK), including Jun N-terminal kinase, extracellular signal-regulated kinase, and p38 kinase] signaling pathway. In addition, restoration of retinoic acid homeostasis by retinoic acid supplementation restored the normal status of both retinoid and MAPK signaling, thereby maintaining normal cell proliferation and apoptosis in alcohol-fed animals. These observations would have implications for the prevention of alcohol-promoted liver (and peripheral tissue) carcinogenesis. However, a better understanding of the alcohol-retinoid interaction and the molecular mechanisms involved is needed before retinoids can be pursued in the prevention of alcohol-related carcinogenesis in human beings, particularly regarding the detrimental effects of polar metabolites of vitamin A.
Collapse
Affiliation(s)
- Xiang-Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, 711 Washington Street, Boston, MA 02111, USA.
| |
Collapse
|
37
|
Lieber CS. The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metab Rev 2005; 36:511-29. [PMID: 15554233 DOI: 10.1081/dmr-200033441] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidation of ethanol via alcohol dehydrogenase (ADH) explains various metabolic effects of ethanol but does not account for the tolerance. This fact, as well as the discovery of the proliferation of the smooth endoplasmic reticulum (SER) after chronic alcohol consumption, suggested the existence of an additional pathway which was then described by Lieber and DeCarli, namely the microsomal ethanol oxidizing system (MEOS), involving cytochrome P450. The existence of this system was initially challenged but the effect of ethanol on liver microsomes was confirmed by Remmer and his group. After chronic ethanol consumption, the activity of the MEOS increases, with an associated rise in cytochrome P450, especially CYP2E1, most conclusively shown in alcohol dehydrogenase negative deer mice. There is also cross-induction of the metabolism of other drugs, resulting in drug tolerance. Furthermore, the conversion of hepatotoxic agents to toxic metabolites increases, which explains the enhanced susceptibility of alcoholics to the adverse effects of various xenobiotics, including industrial solvents. CYP2E1 also activates some commonly used drugs (such as acetaminophen) to their toxic metabolites, and promotes carcinogenesis. In addition, catabolism of retinol is accelerated resulting in its depletion. Contrasting with the stimulating effects of chronic consumption, acute ethanol intake inhibits the metabolism of other drugs. Moreover, metabolism by CYP2E1 results in a significant release of free radicals which, in turn, diminishes reduced glutathione (GSH) and other defense systems against oxidative stress which plays a major pathogenic role in alcoholic liver disease. CYP1A2 and CYP3A4, two other perivenular P450s, also sustain the metabolism of ethanol, thereby contributing to MEOS activity and possibly liver injury. CYP2E1 has also a physiologic role which comprises gluconeogenesis from ketones, oxidation of fatty acids, and detoxification of xenobiotics other than ethanol. Excess of these physiological substrates (such as seen in obesity and diabetes) also leads to CYP2E1 induction and nonalcoholic fatty liver disease (NAFLD), which includes nonalcoholic fatty liver and nonalcoholic steatohepatitis (NASH), with pathological lesions similar to those observed in alcoholic steatohepatitis. Increases of CYP2E1 and its mRNA prevail in the perivenular zone, the area of maximal liver damage. CYP2E1 up-regulation was also demonstrated in obese patients as well as in rat models of obesity and NASH. Furthermore, NASH is increasingly recognized as a precursor to more severe liver disease, sometimes evolving into "cryptogenic" cirrhosis. The prevalence of NAFLD averages 20% and that of NASH 2% to 3% in the general population, making these conditions the most common liver diseases in the United States. Considering the pathogenic role that up-regulation of CYP2E1 also plays in alcoholic liver disease (vide supra), it is apparent that a major therapeutic challenge is now to find a way to control this toxic process. CYP2E1 inhibitors oppose alcohol-induced liver damage, but heretofore available compounds are too toxic for clinical use. Recently, however, polyenylphosphatidylcholine (PPC), an innocuous mixture of polyunsaturated phosphatidylcholines extracted from soybeans (and its active component dilinoleoylphosphatidylcholine), were discovered to decrease CYP2E1 activity. PPC also opposes hepatic oxidative stress and fibrosis. It is now being tested clinically.
Collapse
Affiliation(s)
- Charles S Lieber
- Mount Sinai School of Medicine, Section of Liver Disease and Nutrition and Alcohol Research Center, Bronx Veterans Affairs Medical Center, USA
| |
Collapse
|
38
|
Abstract
Most tissues of the body contain enzymes capable of ethanol oxidation or nonoxidative metabolism, but significant activity occurs only in the liver and, to a lesser extent, in the stomach. Hence, medical consequences are predominant in these organs. In the liver, ethanol oxidation generates an excess of reducing equivalents, primarily as NADH, causing hepatotoxicity. An additional system, containing cytochromes P-450 inducible by chronic alcohol feeding, was demonstrated in liver microsomes and found to be a major cause of hepatotoxicity.
Collapse
Affiliation(s)
- Charles S Lieber
- Bronx VA Medical Center (151-2), 130 West Kingsbridge Road, Bronx, NY 10468, USA.
| |
Collapse
|
39
|
Abstract
Epidemiological data have identified chronic alcohol consumption as a significant risk factor for upper gastrointestinal cancer (oropharynx, hypopharynx, esophagus) and colorectal cancer. Pathophysiological mechanisms include generation of acetaldehyde (AA) and reactive oxygen species (ROS), induction of cytochrome P 4502E1 (CYP2E1), and local and nutritional factors. Genetic polymorphisms of alcohol-metabolizing enzymes may individually influence the risk of carcinogenesis. AA, the first and major metabolite of ethanol, has proven to be the most carcinogenic and mutagenic agent in alcohol-associated cancer. Gastrointestinal bacteria as well as various isozymes of alcohol dehydrogenase (ADH) are capable of metabolizing ethanol to AA thus leading to an increased cell turnover of the gastrointestinal mucosa after chronic alcohol consumption. In Caucasians, ADH1C polymorphism is most important, for the ADH1C*1 transcription results in an ADH isoenzyme 2.5 times more active than that from ADH1C*2, which is associated with an increase in AA production. Additionally, oxidative stress due to an induction of CYP2E1 in the gastrointestinal mucosa of alcoholics should be considered as another key factor in alcohol-induced carcinogenesis. Nutritional deficiencies, i.e. lack of folic and retinoic acid, as well as malnutrition itself may also contribute to the development of gastrointestinal cancer.
Collapse
Affiliation(s)
- Helmut K Seitz
- Department of Medicine, Salem Medical Centre and Laboratory of Alcohol Research, Liver Disease and Nutrition, Heidelberg, Germany.
| | | | | |
Collapse
|
40
|
DeLozier TC, Tsao CC, Coulter SJ, Foley J, Bradbury JA, Zeldin DC, Goldstein JA. CYP2C44, a new murine CYP2C that metabolizes arachidonic acid to unique stereospecific products. J Pharmacol Exp Ther 2004; 310:845-54. [PMID: 15084647 DOI: 10.1124/jpet.104.067819] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human CYP2Cs have been studied extensively with respect to the metabolism of clinically important drugs and endogenous chemicals such as arachidonic acid (AA). Five members of the mouse CYP2C family have previously been described that metabolize arachidonic acid into regio- and stereospecific epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids, which have many important physiological roles. Herein, we describe the cloning and characterization of a new mouse cytochrome P450 (P450), CYP2C44, which has the lowest homology with other known mouse CYP2Cs. Western blotting and real-time polymerase chain reaction detected CYP2C44 mRNA and protein in liver >> kidney > adrenals. Kidney contained approximately 10% of the CYP2C44 mRNA content of liver. CYP2C44 metabolized AA to unique stereospecific products, 11R,12S-EET and 8R, 9S-EET, which are similar to those produced by rat CYP2C23. CY2C23 is highly expressed in rat kidney and has been suggested to be important in producing compensatory renal artery vasodilation in response to salt-loading in this species. Immunohistochemistry showed the presence of CYP2C44 in hepatocytes, biliary cells of the liver, and the proximal tubules of the kidney. Unlike mouse CYP2C29, CYP2C38, and CYP2C39, CYP2C44 did not metabolize the common CYP2C substrate tolbutamide. CYP2C44 was not induced by phenobarbital or pregnenolone-16alpha-carbonitrile, two prototypical inducers of hepatic P450s. The presence of CYP2C44 in mouse liver, kidney, and adrenals and the unique stereospecificity of its arachidonic acid metabolites are consistent with the possibility that it may have unique physiological roles within these tissues, such as modulation of electrolyte transport or vascular tone.
Collapse
Affiliation(s)
- Tracy C DeLozier
- Laboratory of Pharmacology, National Institute of Environmental Health Sciences, P.O. Box 12233, 111 T.W. Alexander Drive, Building 101, Research Triangle Park, NC 27709
| | | | | | | | | | | | | |
Collapse
|
41
|
Pöschl G, Stickel F, Wang XD, Seitz HK. Alcohol and cancer: genetic and nutritional aspects. Proc Nutr Soc 2004; 63:65-71. [PMID: 15070439 DOI: 10.1079/pns2003323] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic alcohol consumption is a major risk factor for cancer of upper aero-digestive tract (oro-pharynx, hypopharynx, larynx and oesophagus), the liver, the colo-rectum and the breast. Evidence has accumulated that acetaldehyde is predominantly responsible for alcohol-associated carcinogenesis. Acetaldehyde is carcinogenic and mutagenic, binds to DNA and protein, destroys the folate molecule and results in secondary cellular hyper-regeneration. Acetaldehyde is produced by mucosal and cellular alcohol dehydrogenase, cytochrome P450 2E1 and through bacterial oxidation. Its generation and/or its metabolism is modulated as a result of polymorphisms or mutations of the genes responsible for these enzymes. Acetaldehyde can also be produced by oral bacteria. Smoking, which changes the oral bacterial flora, also increases salivary acetaldehyde. Cigarette smoke and some alcoholic beverages, such as Calvados, contain acetaldehyde. In addition, chronic alcohol consumption induces cytochrome P450 2E1 enxyme activity in mucosal cells, resulting in an increased generation of reactive oxygen species and in an increased activation of various dietary and environmental carcinogens. Deficiencies of riboflavin, Zn, folate and possibly retinoic acid may further enhance alcohol-associated carcinogenesis. Finally, methyl deficiency as a result of multiple alcohol-induced changes leads to DNA hypomethylation. A depletion of lipotropes, including methionine, choline, betaine and S-adenosylmethionine, as well as folate, results in the hypomethylation of oncogenes and may lead to DNA strand breaks, all of which are associated with increased carcinogenesis.
Collapse
Affiliation(s)
- Gudrun Pöschl
- Laboratory of Alcohol Research, Liver Disease and Nutrition and Department of Medicine, Salem Medical Center, Zeppelinstrasse 11-33, 69121 Heidelberg, Germany
| | | | | | | |
Collapse
|
42
|
Seitz HK, Stickel F, Homann N. Pathogenetic mechanisms of upper aerodigestive tract cancer in alcoholics. Int J Cancer 2004; 108:483-7. [PMID: 14696110 DOI: 10.1002/ijc.11600] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Helmut K Seitz
- Laboratory of Alcohol Research, Liver Disease and Nutrition and Department of Medicine, Salem Medical Center, Heidelberg, Germany.
| | | | | |
Collapse
|
43
|
Schattenberg JM, Wang Y, Rigoli RM, Koop DR, Czaja MJ. CYP2E1 overexpression alters hepatocyte death from menadione and fatty acids by activation of ERK1/2 signaling. Hepatology 2004; 39:444-55. [PMID: 14767997 DOI: 10.1002/hep.20067] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chronic oxidative stress induced by overexpression of the cytochrome P450 isoform 2E1 (CYP2E1) has been implicated in hepatocyte injury and death. However, the mechanism by which CYP2E1 overexpression may promote cell death is unknown. Acute oxidative stress activates mitogen-activated protein kinases (MAPK), suggesting that chronic oxidant generation by CYP2E1 may regulate cellular responses through these signaling pathways. The effect of CYP2E1 overexpression on MAPK activation and their function in altering death responses of CYP2E1-overexpressing hepatocytes were investigated. Chronic CYP2E1 overexpression led to increased extracellular signal-regulated kinase 1/2 (ERK1/2) activation constitutively and in response to oxidant stress from the superoxide generator menadione. CYP2E1-overexpressing cells were resistant to menadione toxicity through an ERK1/2-dependent mechanism. Similar to menadione, the polyunsaturated fatty acid (PUFA) arachidonic acid (AA) induced an increased activation of ERK1/2 in hepatocytes that overexpressed CYP2E1. However, CYP2E1-overexpressing cells were sensitized to necrotic death from AA and the PUFA gamma-linolenic acid, but not from saturated or monounsaturated fatty acids. Death from PUFA resulted from oxidative stress and was blocked by inhibition of ERK1/2, but not p38 MAPK or activator protein-1 signaling. CYP2E1 expression induced ERK1/2 activation through increased epidermal growth factor receptor (EGFR)/c-Raf signaling. Inhibition of EGFR signaling reversed CYP2E1-induced resistance to menadione and sensitization to AA toxicity. In conclusion, chronic CYP2E1 overexpression leads to sustained ERK1/2 activation mediated by EGFR/c-Raf signaling. This adaptive response in hepatocytes exposed to chronic oxidative stress confers differential effects on cellular survival, protecting against menadione-induced apoptosis, but sensitizing to necrotic death from PUFA.
Collapse
Affiliation(s)
- Jörn M Schattenberg
- Department of Medicine and Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
44
|
Yang SP, Medling T, Raner GM. Cytochrome P450 expression and activities in rat, rabbit and bovine tongue. Comp Biochem Physiol C Toxicol Pharmacol 2003; 136:297-308. [PMID: 15012901 DOI: 10.1016/j.cca.2003.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 10/14/2003] [Accepted: 10/14/2003] [Indexed: 12/01/2022]
Abstract
Xenobiotic metabolism in the tongue has received little attention in the literature. In the present study, we report a comparative analysis of constitutive cytochrome P450 (CYP) expression and activities in the tongue. First we compared catalytic activities of rabbit, rat and bovine tongue samples using the probe substrates 4-nitrophenol, 1-phenylethanol, caffeine and 7-ethoxycoumarin. Rabbit tongue samples showed the highest activities for all substrates. We then compared the activities in rat and rabbit tongue with those in the rabbit liver, along with the effects of P450 inhibitors on specific activities. Combined, the activity studies indicate that CYP1A1 is active in rabbit tongue cells, but CYP1A2, CYP3A6 and CYP2E1 are below limits of detection. RT-PCR was also used to compare mRNA levels of 11 different rabbit and six different rat P450 isoforms in the tongue to those in the liver of these two species. Only CYP2E1, CYP1A1 and CYP4A4 were detected at significant levels in the rabbit tongue. None of the six rat isoforms probed were observed in the tongue. Although 4-nitrophenol activity was observed in the rabbit tongue samples, the kinetic parameter K(m) was inconsistent with the involvement of CYP2E1. We suggest that although CYP2E1 is expressed in the tongue, it is rapidly degraded in this organ, and the nitrophenol hydroxylation and caffeine hydroxylation we observe is the result of activity of CYP1A1.
Collapse
Affiliation(s)
- Shin-Pei Yang
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA
| | | | | |
Collapse
|
45
|
Affiliation(s)
- Laurence S Kaminsky
- Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.
| | | |
Collapse
|
46
|
Lindell M, Lang M, Lennernäs H. Expression of genes encoding for drug metabolising cytochrome P450 enzymes and P-glycoprotein in the rat small intestine; comparison to the liver. Eur J Drug Metab Pharmacokinet 2003; 28:41-8. [PMID: 14503663 DOI: 10.1007/bf03190865] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The level of expression of genes encoding for nine major xenobiotic metabolising Cytochrome P450s (CYPs) and the P-glycoprotein (Pgp) was determined in three different regions of the small intestine of male and female Sprague Dawley rats and the expression was compared with that in the liver. A semi-quantitative RT-PCR method, using the total RNA from the tissues, was established for the determination of the level of gene expression. Four of the CYP genes: the CYP2B1, CYP2C6, CYP2C11 and CYP2D1 and the Pgp were expressed at as high levels in the small intestine as in the liver. The expression of the other CYP genes was remarkably different in the two organs. The CYP1A2, CYP2A3, CYP2E1 and CYP3A1 showed a strong expression in the liver but only a comparatively weak or no expression in the small intestine. The CYP1A1 on the other hand exhibited a stronger expression in the small intestine than in the liver. With the exception of the CYP2A3, none of the genes showed a clear regional distribution in their small intestinal expression. Furthermore, no obvious sex difference in the expression of the CYP and Pgp genes could be observed. Our results indicate that several of the enzymes, central for drug metabolism are differently expressed in the liver and in the small intestine of the rat which should be taken into account when using rat as a model for the bioavailability and organ specific toxicity studies of orally administered xenobiotics. The apparently strong small intestinal expression of the CYP2C genes suggests that these enzymes could play a key role in the intestinal drug metabolism in rats and therefore affect the bioavailability of those orally used drugs which are substrates of the CYP2Cs. This possibility should be investigated in more detail both in rats and humans.
Collapse
Affiliation(s)
- Monica Lindell
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | | | | |
Collapse
|
47
|
Sikdar N, Mahmud SA, Paul RR, Roy B. Polymorphism in CYP1A1 and CYP2E1 genes and susceptibility to leukoplakia in Indian tobacco users. Cancer Lett 2003; 195:33-42. [PMID: 12767509 DOI: 10.1016/s0304-3835(03)00156-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Inter-individual genetic differences may contribute to differences in susceptibility to human diseases triggered by environmental exposures. In this study, we investigated polymorphisms at two sites in the CYP1A1 and three sites in the CYP2E1 genes in 99 leukoplakia patients and 227 controls from one Indian population. The frequencies of genotypes at these polymorphic sites (MspI and Ileu/Val) in the CYP1A1 and (PstI, RsaI and DraI) in the CYP2E1 genes, were similar in patient and control groups. But the combined rare and heterozygous genotypes (CC+CD) at the DraI site in the CYP2E1 gene were over-represented among patients compared with controls (age-adjusted odds ratio (OR)=2.02, 95% confidence interval (CI)=1.21-3.35). Light tobacco smokers (i.e. <21 pack-year) and light tobacco chewers (i.e. <104 chewing-year) with a "rare" C allele at the DraI site had high risk of leukoplakia (OR=2.88, 95% CI=1.16-7.22; OR=2.94, 95% CI=1.15-7.65, respectively). The "mixed tobacco" users with "rare" C allele are more susceptible to the disease than "exclusive" tobacco smokers and chewers. The results indicate that the "rare" C allele at the DraI polymorphic site in CYP2E1 gene may enhance susceptibility to leukoplakia among tobacco users in this population. But the low sample size limited the power to precisely estimate the tobacco-genotype interactions.
Collapse
Affiliation(s)
- Nilabja Sikdar
- Anthropology and Human Genetics Unit, Biological Sciences Division, Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India
| | | | | | | |
Collapse
|
48
|
Abstract
Chronic and excessive alcohol intake is associated with an increased incidence of a variety of cancers (e.g., liver, oral cavity, esophagus, colorectal and breast). Long-term alcohol intake results in impaired nutritional status of retinoic acid (RA), the most active derivative of vitamin A, which may provide a promoting environment for tumor formation. Recent studies demonstrate that chronic alcohol-induced hepatocellular proliferation, which may convert hepatocytes from a state of resistance to a carcinogen to a state of high susceptibility, is due to alcohol-impaired RA metabolism and signaling and crosstalk with the Jun N-terminal kinases-dependent signaling pathway. Further, the restoration of hepatic RA homeostasis by treatment with either RA supplementation or inhibitors of RA catabolism can suppress alcohol-induced hepatocyte hyperproliferation and restore alcohol-deregulated apoptosis, thereby reducing the risk of alcohol-promoted hepatocellular carcinogenesis. These studies indicate the importance of RA actions in the prevention and/or treatment of alcohol-related carcinogenic process in the liver and other organs.
Collapse
Affiliation(s)
- Xiang-Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer U.S. Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
49
|
Ma J, Bradbury JA, King L, Maronpot R, Davis LS, Breyer MD, Zeldin DC. Molecular cloning and characterization of mouse CYP2J6, an unstable cytochrome P450 isoform. Biochem Pharmacol 2002; 64:1447-60. [PMID: 12417258 DOI: 10.1016/s0006-2952(02)01393-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A cDNA encoding a new cytochrome P450 was cloned from a mouse liver library. Sequence analysis revealed that this 2046-bp cDNA encodes a 501-amino acid polypeptide that is 72-94% identical to other CYP2J subfamily P450s and is designated CYP2J6. Northern analysis demonstrated that CYP2J6 transcripts are abundant in the small intestine and present at lower levels in other mouse tissues. In situ hybridization revealed that CYP2J6 mRNAs are present in luminal epithelial cells of the gastrointestinal mucosa. The CYP2J6 cDNA was expressed in Sf9 cells using baculovirus. The heterologously expressed CYP2J6 protein displayed a typical P450 CO-difference spectrum; however, the protein was unstable as evidenced by the loss of the Soret maxima at 450nm and the appearance of a 420nm peak when CYP2J6-expressing cells were disrupted by mechanical homogenization, sonication, or freeze-thaw. Immunoblotting of mouse microsomes with the anti-human CYP2J2 IgG, which cross-reacts with rodent CYP2Js, demonstrated the presence of multiple distinct murine CYP2J immunoreactive proteins in various tissues. Immunoblotting with an antibody to a CYP2J6-specific peptide detected a prominent 55-57kDa protein in Sf9 cell extracts expressing recombinant CYP2J6 but did not detect a protein of similar molecular mass in mouse small intestinal microsomes. Mixing experiments demonstrated that recombinant CYP2J6 is degraded rapidly in the presence of small intestinal microsomes consistent with proteolysis at highly sensitive sites. Sf9 cells, which express both CYP2J6 and NADPH-P450 oxidoreductase, metabolized benzphetamine but not arachidonic acid. We conclude that CYP2J6 is an unstable P450 that is active in the metabolism of benzphetamine, but not arachidonic acid.
Collapse
Affiliation(s)
- Jixiang Ma
- Division of Intramural Research, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, Building 101, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Standop J, Schneider MB, Ulrich A, Chauhan S, Moniaux N, Büchler MW, Batra SK, Pour PM. The pattern of xenobiotic-metabolizing enzymes in the human pancreas. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2002; 65:1379-1400. [PMID: 12396872 DOI: 10.1080/00984100290071603] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Our previous study on phase II detoxifying enzymes, showing a significant reduction of glutathione S-transferase-pi in chronic pancreatitis compared to the normal pancreas, indicated that xenobiotic-metabolizing enzymes are involved in the pathogenesis of pancreatic diseases. This study presents an overall look at the distribution of the phase I xenobiotic-metabolizing enzymes, which are responsible for the metabolism of many common environmental toxins and carcinogens, in the normal pancreas. Twenty-four normal pancreases from 7 donors and 17 early autopsy cases, as well as cultured human islet cells, were analyzed by immunohistochemistry, Western blot analysis, and/or reverse-transcription polymerase chain reaction (RT-PCR) for the expression of nine cytochrome P-450 mono-oxygenases (CYP) and the NADPH cytochrome P-450 oxidoreductase. Remarkable differences in the cellular distribution of these enzymes were found between the individuals and between different pancreatic cells within the same individual. Nondiabetics expressed more of the enzymes than diabetics, females more than males, younger more than older individuals, and organ donors (all young individuals) more than autopsy specimens. CYP 2B6 was expressed in all 7 donor pancreas, compared to 8 of 17 autopsy cases. Most of the enzymes were localized in islet cells and either were distributed in all islet cells or were restricted to, or expressed in a higher concentration in, glucagon and/or pancreatic polypeptide cells. Furthermore, a different cellular localization of the enzymes was found in some individuals (e.g., cytoplasmic vs. Golgi pattern of staining and a frequent nuclear localization of CYP 2E1 in females). Except for anti-CYP 1A2 and 3A4, RT-PCR and Western blot analyses validated the specificity of the antibodies. Our results show that islet cells play a major role in the detoxification process of the pancreas. The expression of individual enzymes and their distribution in acinar, ductal, and islet cells may determine individual susceptibility to pancreatic diseases.
Collapse
Affiliation(s)
- Jens Standop
- UNMC Eppley Research Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | | | | | | | | | | | | | | |
Collapse
|