1
|
Gandhi S, Sweeney HL, Hart CC, Han R, Perry CGR. Cardiomyopathy in Duchenne Muscular Dystrophy and the Potential for Mitochondrial Therapeutics to Improve Treatment Response. Cells 2024; 13:1168. [PMID: 39056750 PMCID: PMC11274633 DOI: 10.3390/cells13141168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disease caused by mutations to the dystrophin gene, resulting in deficiency of dystrophin protein, loss of myofiber integrity in skeletal and cardiac muscle, and eventual cell death and replacement with fibrotic tissue. Pathologic cardiac manifestations occur in nearly every DMD patient, with the development of cardiomyopathy-the leading cause of death-inevitable by adulthood. As early cardiac abnormalities are difficult to detect, timely diagnosis and appropriate treatment modalities remain a challenge. There is no cure for DMD; treatment is aimed at delaying disease progression and alleviating symptoms. A comprehensive understanding of the pathophysiological mechanisms is crucial to the development of targeted treatments. While established hypotheses of underlying mechanisms include sarcolemmal weakening, upregulation of pro-inflammatory cytokines, and perturbed ion homeostasis, mitochondrial dysfunction is thought to be a potential key contributor. Several experimental compounds targeting the skeletal muscle pathology of DMD are in development, but the effects of such agents on cardiac function remain unclear. The synergistic integration of small molecule- and gene-target-based drugs with metabolic-, immune-, or ion balance-enhancing compounds into a combinatorial therapy offers potential for treating dystrophin deficiency-induced cardiomyopathy, making it crucial to understand the underlying mechanisms driving the disorder.
Collapse
Affiliation(s)
- Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; (H.L.S.); (C.C.H.)
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Cora C. Hart
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA; (H.L.S.); (C.C.H.)
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Renzhi Han
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Christopher G. R. Perry
- School of Kinesiology and Health Science, Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
2
|
Morris CE, Wheeler JJ, Joos B. The Donnan-dominated resting state of skeletal muscle fibers contributes to resilience and longevity in dystrophic fibers. J Gen Physiol 2022; 154:212743. [PMID: 34731883 PMCID: PMC8570295 DOI: 10.1085/jgp.202112914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/30/2021] [Indexed: 11/28/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked dystrophin-minus muscle-wasting disease. Ion homeostasis in skeletal muscle fibers underperforms as DMD progresses. But though DMD renders these excitable cells intolerant of exertion, sodium overloaded, depolarized, and spontaneously contractile, they can survive for several decades. We show computationally that underpinning this longevity is a strikingly frugal, robust Pump-Leak/Donnan (P-L/D) ion homeostatic process. Unlike neurons, which operate with a costly “Pump-Leak–dominated” ion homeostatic steady state, skeletal muscle fibers operate with a low-cost “Donnan-dominated” ion homeostatic steady state that combines a large chloride permeability with an exceptionally small sodium permeability. Simultaneously, this combination keeps fiber excitability low and minimizes pump expenditures. As mechanically active, long-lived multinucleate cells, skeletal muscle fibers have evolved to handle overexertion, sarcolemmal tears, ischemic bouts, etc.; the frugality of their Donnan dominated steady state lets them maintain the outsized pump reserves that make them resilient during these inevitable transient emergencies. Here, P-L/D model variants challenged with DMD-type insult/injury (low pump-strength, overstimulation, leaky Nav and cation channels) show how chronic “nonosmotic” sodium overload (observed in DMD patients) develops. Profoundly severe DMD ion homeostatic insult/injury causes spontaneous firing (and, consequently, unwanted excitation–contraction coupling) that elicits cytotoxic swelling. Therefore, boosting operational pump-strength and/or diminishing sodium and cation channel leaks should help extend DMD fiber longevity.
Collapse
Affiliation(s)
- Catherine E Morris
- Neuroscience, Ottawa Hospital Research Institute, Ottawa, Canada.,Center for Neural Dynamics, University of Ottawa, Ottawa, Canada
| | | | - Béla Joos
- Center for Neural Dynamics, University of Ottawa, Ottawa, Canada.,Department of Physics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
González Coraspe JA, Weis J, Anderson ME, Münchberg U, Lorenz K, Buchkremer S, Carr S, Zahedi RP, Brauers E, Michels H, Sunada Y, Lochmüller H, Campbell KP, Freier E, Hathazi D, Roos A. Biochemical and pathological changes result from mutated Caveolin-3 in muscle. Skelet Muscle 2018; 8:28. [PMID: 30153853 PMCID: PMC6114045 DOI: 10.1186/s13395-018-0173-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Background Caveolin-3 (CAV3) is a muscle-specific protein localized to the sarcolemma. It was suggested that CAV3 is involved in the connection between the extracellular matrix (ECM) and the cytoskeleton. Caveolinopathies often go along with increased CK levels indicative of sarcolemmal damage. So far, more than 40 dominant pathogenic mutations have been described leading to several phenotypes many of which are associated with a mis-localization of the mutant protein to the Golgi. Golgi retention and endoplasmic reticulum (ER) stress has been demonstrated for the CAV3 p.P104L mutation, but further downstream pathophysiological consequences remained elusive so far. Methods We utilized a transgenic (p.P104L mutant) mouse model and performed proteomic profiling along with immunoprecipitation, immunofluorescence and immunoblot examinations (including examination of α-dystroglycan glycosylation), and morphological studies (electron and coherent anti-Stokes Raman scattering (CARS) microscopy) in a systematic investigation of molecular and subcellular events in p.P104L caveolinopathy. Results Our electron and CARS microscopic as well as immunological studies revealed Golgi and ER proliferations along with a build-up of protein aggregates further characterized by immunoprecipitation and subsequent mass spectrometry. Molecular characterization these aggregates showed affection of mitochondrial and cytoskeletal proteins which accords with our ultra-structural findings. Additional global proteomic profiling revealed vulnerability of 120 proteins in diseased quadriceps muscle supporting our previous findings and providing more general insights into the underlying pathophysiology. Moreover, our data suggested that further DGC components are altered by the perturbed protein processing machinery but are not prone to form aggregates whereas other sarcolemmal proteins are ubiquitinated or bind to p62. Although the architecture of the ER and Golgi as organelles of protein glycosylation are altered, the glycosylation of α-dystroglycan presented unchanged. Conclusions Our combined data classify the p.P104 caveolinopathy as an ER-Golgi disorder impairing proper protein processing and leading to aggregate formation pertaining proteins important for mitochondrial function, cytoskeleton, ECM remodeling and sarcolemmal integrity. Glycosylation of sarcolemmal proteins seems to be normal. The new pathophysiological insights might be of relevance for the development of therapeutic strategies for caveolinopathy patients targeting improved protein folding capacity. Electronic supplementary material The online version of this article (10.1186/s13395-018-0173-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Mary E Anderson
- Howard Hughes Medical Institute, Departments of Molecular Physiology and Biophysics, of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Ute Münchberg
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Kristina Lorenz
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Stephan Buchkremer
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Stephanie Carr
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, England, UK
| | - René Peiman Zahedi
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec, H4A 3T2, Canada.,Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, H3T 1E2, Canada
| | - Eva Brauers
- Institute of Neuropathology, RWTH Aachen University Hospital, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Hannah Michels
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, England, UK
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, 701-0192, Japan
| | - Hanns Lochmüller
- Institute of Genetic Medicine, International Centre for Life, Central Parkway, Newcastle upon Tyne, England, UK.,Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada and Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Departments of Molecular Physiology and Biophysics, of Neurology, University of Iowa, Iowa City, IA, 52242, USA
| | - Erik Freier
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Denisa Hathazi
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Andreas Roos
- Biomedical Research Department, Tissue Omics group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, Otto-Hahn-Str. 6b, 44227, Dortmund, Germany.
| |
Collapse
|
4
|
Murphy S, Zweyer M, Henry M, Meleady P, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic analysis of the sarcolemma-enriched fraction from dystrophic mdx-4cv skeletal muscle. J Proteomics 2018; 191:212-227. [PMID: 29408692 DOI: 10.1016/j.jprot.2018.01.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/12/2018] [Accepted: 01/28/2018] [Indexed: 02/07/2023]
Abstract
The highly progressive neuromuscular disorder dystrophinopathy is triggered by primary abnormalities in the Dmd gene, which causes cytoskeletal instability and loss of sarcolemmal integrity. Comparative organellar proteomics was employed to identify sarcolemma-associated proteins with an altered concentration in dystrophic muscle tissue from the mdx-4cv mouse model of dystrophinopathy. A lectin agglutination method was used to prepare a sarcolemma-enriched fraction and resulted in the identification of 190 significantly changed protein species. Proteomics established differential expression patterns for key components of the muscle plasma membrane, cytoskeletal network, extracellular matrix, metabolic pathways, cellular stress response, protein synthesis, immune response and neuromuscular junction. The deficiency in dystrophin and drastic reduction in dystrophin-associated proteins appears to trigger (i) enhanced membrane repair involving myoferlin, dysferlin and annexins, (ii) increased protein synthesis and the compensatory up-regulation of cytoskeletal proteins, (iii) the decrease in the scaffolding protein periaxin and myelin PO involved in myelination of motor neurons, (iv) complex changes in bioenergetic pathways, (v) elevated levels of molecular chaperones to prevent proteotoxic effects, (vi) increased collagen deposition causing reactive myofibrosis, (vii) disturbed ion homeostasis at the sarcolemma and associated membrane systems, and (viii) a robust inflammatory response by the innate immune system in response to chronic muscle damage. SIGNIFICANCE: Duchenne muscular dystrophy is a devastating muscle wasting disease and represents the most frequently inherited neuromuscular disorder in humans. Genetic abnormalities in the Dmd gene cause a loss of sarcolemmal integrity and highly progressive muscle fibre degeneration. Changes in the neuromuscular system are associated with necrosis, fibrosis and inflammation. In order to evaluate secondary changes in the sarcolemma membrane system due to the lack of the membrane cytoskeletal protein dystrophin, comparative organellar proteomics was used to study the mdx-4cv mouse model of dystrophinopathy. Mass spectrometric analyses identified a variety of altered components of the extracellular matrix-sarcolemma-cytoskeleton axis in dystrophic muscles. This included proteins involved in membrane repair, cytoskeletal restoration, calcium homeostasis, cellular signalling, stress response, neuromuscular transmission and reactive myofibrosis, as well as immune cell infiltration. These pathobiochemical alterations agree with the idea of highly complex secondary changes in X-linked muscular dystrophy and support the concept that micro-rupturing of the dystrophin-deficient plasma membrane is at the core of muscle wasting pathology.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Rustam R Mundegar
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
5
|
|
6
|
Murphy S, Ohlendieck K. The biochemical and mass spectrometric profiling of the dystrophin complexome from skeletal muscle. Comput Struct Biotechnol J 2015; 14:20-7. [PMID: 26793286 PMCID: PMC4688399 DOI: 10.1016/j.csbj.2015.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
The development of advanced mass spectrometric methodology has decisively enhanced the analytical capabilities for studies into the composition and dynamics of multi-subunit protein complexes and their associated components. Large-scale complexome profiling is an approach that combines the systematic isolation and enrichment of protein assemblies with sophisticated mass spectrometry-based identification methods. In skeletal muscles, the membrane cytoskeletal protein dystrophin of 427 kDa forms tight interactions with a variety of sarcolemmal, cytosolic and extracellular proteins, which in turn associate with key components of the extracellular matrix and the intracellular cytoskeleton. A major function of this enormous assembly of proteins, including dystroglycans, sarcoglycans, syntrophins, dystrobrevins, sarcospan, laminin and cortical actin, is postulated to stabilize muscle fibres during the physical tensions of continuous excitation-contraction-relaxation cycles. This article reviews the evidence from recent proteomic studies that have focused on the characterization of the dystrophin-glycoprotein complex and its central role in the establishment of the cytoskeleton-sarcolemma-matrisome axis. Proteomic findings suggest a close linkage of the core dystrophin complex with a variety of protein species, including tubulin, vimentin, desmin, annexin, proteoglycans and collagens. Since the almost complete absence of dystrophin is the underlying cause for X-linked muscular dystrophy, a more detailed understanding of the composition, structure and plasticity of the dystrophin complexome may have considerable biomedical implications.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
7
|
Murphy S, Zweyer M, Mundegar RR, Henry M, Meleady P, Swandulla D, Ohlendieck K. Concurrent Label-Free Mass Spectrometric Analysis of Dystrophin Isoform Dp427 and the Myofibrosis Marker Collagen in Crude Extracts from mdx-4cv Skeletal Muscles. Proteomes 2015; 3:298-327. [PMID: 28248273 PMCID: PMC5217383 DOI: 10.3390/proteomes3030298] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/18/2015] [Accepted: 09/03/2015] [Indexed: 01/06/2023] Open
Abstract
The full-length dystrophin protein isoform of 427 kDa (Dp427), the absence of which represents the principal abnormality in X-linked muscular dystrophy, is difficult to identify and characterize by routine proteomic screening approaches of crude tissue extracts. This is probably related to its large molecular size, its close association with the sarcolemmal membrane, and its existence within a heterogeneous glycoprotein complex. Here, we used a careful extraction procedure to isolate the total protein repertoire from normal versus dystrophic mdx-4cv skeletal muscles, in conjunction with label-free mass spectrometry, and successfully identified Dp427 by proteomic means. In contrast to a considerable number of previous comparative studies of the total skeletal muscle proteome, using whole tissue proteomics we show here for the first time that the reduced expression of this membrane cytoskeletal protein is the most significant alteration in dystrophinopathy. This agrees with the pathobiochemical concept that the almost complete absence of dystrophin is the main defect in Duchenne muscular dystrophy and that the mdx-4cv mouse model of dystrophinopathy exhibits only very few revertant fibers. Significant increases in collagens and associated fibrotic marker proteins, such as fibronectin, biglycan, asporin, decorin, prolargin, mimecan, and lumican were identified in dystrophin-deficient muscles. The up-regulation of collagen in mdx-4cv muscles was confirmed by immunofluorescence microscopy and immunoblotting. Thus, this is the first mass spectrometric study of crude tissue extracts that puts the proteomic identification of dystrophin in its proper pathophysiological context.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Co. Kildare, Ireland.
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Rustam R Mundegar
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | - Dieter Swandulla
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Co. Kildare, Ireland.
| |
Collapse
|
8
|
Murphy S, Henry M, Meleady P, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Simultaneous Pathoproteomic Evaluation of the Dystrophin-Glycoprotein Complex and Secondary Changes in the mdx-4cv Mouse Model of Duchenne Muscular Dystrophy. BIOLOGY 2015; 4:397-423. [PMID: 26067837 PMCID: PMC4498307 DOI: 10.3390/biology4020397] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/28/2015] [Indexed: 12/14/2022]
Abstract
In skeletal muscle, the dystrophin-glycoprotein complex forms a membrane-associated assembly of relatively low abundance, making its detailed proteomic characterization in normal versus dystrophic tissues technically challenging. To overcome this analytical problem, we have enriched the muscle membrane fraction by a minimal differential centrifugation step followed by the comprehensive label-free mass spectrometric analysis of microsomal membrane preparations. This organelle proteomic approach successfully identified dystrophin and its binding partners in normal versus dystrophic hind limb muscles. The introduction of a simple pre-fractionation step enabled the simultaneous proteomic comparison of the reduction in the dystrophin-glycoprotein complex and secondary changes in the mdx-4cv mouse model of dystrophinopathy in a single analytical run. The proteomic screening of the microsomal fraction from dystrophic hind limb muscle identified the full-length dystrophin isoform Dp427 as the most drastically reduced protein in dystrophinopathy, demonstrating the remarkable analytical power of comparative muscle proteomics. Secondary pathoproteomic expression patterns were established for 281 proteins, including dystrophin-associated proteins and components involved in metabolism, signalling, contraction, ion-regulation, protein folding, the extracellular matrix and the cytoskeleton. Key findings were verified by immunoblotting. Increased levels of the sarcolemmal Na+/K+-ATPase in dystrophic leg muscles were also confirmed by immunofluorescence microscopy. Thus, the reduction of sample complexity in organelle-focused proteomics can be advantageous for the profiling of supramolecular protein complexes in highly intricate systems, such as skeletal muscle tissue.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Rustam R Mundegar
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Dieter Swandulla
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
9
|
Tuazon MA, Henderson GC. Fatty acid profile of skeletal muscle phospholipid is altered in mdx mice and is predictive of disease markers. Metabolism 2012; 61:801-11. [PMID: 22209669 DOI: 10.1016/j.metabol.2011.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 10/10/2011] [Accepted: 10/21/2011] [Indexed: 10/14/2022]
Abstract
The mdx mouse is a model for Duchenne muscular dystrophy. The fatty acid (FA) composition in dystrophic muscle could potentially impact the disease severity. We tested FA profiles in skeletal muscle phospholipid (PL) and triglyceride in mdx and control (con) mice to assess associations with disease state as well as correlations with grip strength (which is lower in mdx) and serum creatine kinase (CK, which is elevated in mdx). Compared with con, mdx PL contained less docosahexaenoic acid (P < .001) and more linoleic acid (P = .001). Docosahexaenoic acid contents did not correlate with strength or serum CK. Linoleic acid content in PL was positively correlated with CK in mdx (P < .05) but not con. α-Linolenic acid content in PL was positively correlated with strength in mdx (P < .05) but not con. The FA profile in triglyceride showed less difference between groups and far less predictive ability for disease markers. We conclude that profiling the FA composition of tissue lipids (particularly PL) can be a useful strategy for generating novel biomarkers and potential therapeutic targets in muscle diseases and likely other pathological conditions as well. Specifically, the present results have indicated potential benefits of raising content of particular n-3 FAs (especially α-linolenic acid) and reducing content of particular n-6 FAs (linoleic acid) in PL of dystrophic muscle.
Collapse
Affiliation(s)
- Marc A Tuazon
- Department of Exercise Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
10
|
Miles MT, Cottey E, Cottey A, Stefanski C, Carlson CG. Reduced resting potentials in dystrophic (mdx) muscle fibers are secondary to NF-κB-dependent negative modulation of ouabain sensitive Na+-K+ pump activity. J Neurol Sci 2011; 303:53-60. [PMID: 21306738 DOI: 10.1016/j.jns.2011.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/28/2010] [Accepted: 01/12/2011] [Indexed: 12/11/2022]
Abstract
To examine potential mechanisms for the reduced resting membrane potentials (RPs) of mature dystrophic (mdx) muscle fibers, the Na(+)-K(+) pump inhibitor ouabain was added to freshly isolated nondystrophic and mdx fibers. Ouabain produced a 71% smaller depolarization in mdx fibers than in nondystrophic fibers, increased the [Na(+)](i) in nondystrophic fibers by 40%, but had no significant effect on the [Na(+)](i) of mdx fibers, which was approximately double that observed in untreated nondystrophic fibers. Western blots indicated no difference in total and phosphorylated Na(+)-K(+) ATPase catalytic α1 subunit between nondystrophic and mdx muscle. Examination of the effects of the NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) indicated that direct application of the drug slowly hyperpolarized mdx fibers (7 mV in 90 min) but had no effect on nondystrophic fibers. Pretreatment with ouabain abolished this hyperpolarization, and pretreatment with PDTC restored ouabain-induced depolarization and reduced [Na(+)](i). Administration of an NF-κB inhibitor that utilizes a different mechanism for reducing nuclear NF-κB activation, ursodeoxycholic acid (UDCA), also hyperpolarized mdx fibers. These results suggest that in situ Na(+)-K(+) pump activity is depressed in mature dystrophic fibers by NF-κB dependent modulators, and that this reduced pump activity contributes to the weakness characteristic of dystrophic muscle.
Collapse
Affiliation(s)
- M T Miles
- Dept. of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University, Kirksville, MO 63501-1497, USA
| | | | | | | | | |
Collapse
|
11
|
Hirn C, Shapovalov G, Petermann O, Roulet E, Ruegg UT. Nav1.4 deregulation in dystrophic skeletal muscle leads to Na+ overload and enhanced cell death. ACTA ACUST UNITED AC 2008; 132:199-208. [PMID: 18625851 PMCID: PMC2483333 DOI: 10.1085/jgp.200810024] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a hereditary degenerative disease manifested by the absence of dystrophin, a structural, cytoskeletal protein, leading to muscle degeneration and early death through respiratory and cardiac muscle failure. Whereas the rise of cytosolic Ca2+ concentrations in muscles of mdx mouse, an animal model of DMD, has been extensively documented, little is known about the mechanisms causing alterations in Na+ concentrations. Here we show that the skeletal muscle isoform of the voltage-gated sodium channel, Nav1.4, which represents over 90% of voltage-gated sodium channels in muscle, plays an important role in development of abnormally high Na+ concentrations found in muscle from mdx mice. The absence of dystrophin modifies the expression level and gating properties of Nav1.4, leading to an increased Na+ concentration under the sarcolemma. Moreover, the distribution of Nav1.4 is altered in mdx muscle while maintaining the colocalization with one of the dystrophin-associated proteins, syntrophin α-1, thus suggesting that syntrophin is an important linker between dystrophin and Nav1.4. Additionally, we show that these modifications of Nav1.4 gating properties and increased Na+ concentrations are strongly correlated with increased cell death in mdx fibers and that both cell death and Na+ overload can be reversed by 3 nM tetrodotoxin, a specific Nav1.4 blocker.
Collapse
Affiliation(s)
- Carole Hirn
- Laboratory of Pharmacology, Geneva-Lausanne School of Pharmaceutical Sciences, University of Geneva, CH 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
12
|
Iwata Y, Katanosaka Y, Hisamitsu T, Wakabayashi S. Enhanced Na+/H+ exchange activity contributes to the pathogenesis of muscular dystrophy via involvement of P2 receptors. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1576-87. [PMID: 17823278 PMCID: PMC2043518 DOI: 10.2353/ajpath.2007.070452] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A subset of muscular dystrophy is caused by genetic defects in dystrophin-associated glycoprotein complex. Using two animal models (BIO14.6 hamsters and mdx mice), we found that Na(+)/H(+) exchanger (NHE) inhibitors prevented muscle degeneration. NHE activity was constitutively enhanced in BIO myotubes, as evidenced by the elevated intracellular pH and enhanced (22)Na(+) influx, with activation of putative upstream kinases ERK42/44. NHE inhibitor significantly reduced the increases in baseline intracellular Ca(2+) as well as Na(+) concentration and stretch-induced damage, suggesting that Na(+)(i)-dependent Ca(2+)overload via the Na(+)/Ca(2+) exchanger may cause muscle damage. Furthermore, ATP was found to be released continuously from BIO myotubes in a manner further stimulated by stretching and that the P2 receptor antagonists reduce the enhanced NHE activity and dystrophic muscle damage. These observations suggest that autocrine ATP release may be primarily involved in genesis of abnormal ionic homeostasis in dystrophic muscles and that Na(+)-dependent ion exchangers play a critical pathological role in muscular dystrophy.
Collapse
Affiliation(s)
- Yuko Iwata
- Department of Molecular Physiology, National Cardiovascular Center Research Institute, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
13
|
Yeung EW, Head SI, Allen DG. Gadolinium reduces short-term stretch-induced muscle damage in isolated mdx mouse muscle fibres. J Physiol 2004; 552:449-58. [PMID: 14561828 PMCID: PMC2343387 DOI: 10.1113/jphysiol.2003.047373] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Duchenne muscular dystrophy is a lethal muscle disease caused by absence of the protein dystrophin which is part of a glycoprotein complex located on the intracellular surface of the surface membrane. The precise function of dystrophin and the reason why its absence causes severe muscle damage are unclear. Stretch-induced muscle damage is well recognised in normal muscle and is more severe in muscles from animals lacking dystrophin (mdx mice). It has been proposed that stretch-induced damage underlies the progression of damage in muscular dystrophy. In the present study we confirm that single fibres from mdx muscle are more susceptible to stretch-induced damage and show that there is an associated rise in intracellular sodium concentration ([Na+]i) which is greater than in wild-type mice. We show that this rise in [Na+]i can be prevented by Gd3+, which is an established blocker of stretch-activated channels. mdx fibres have a higher than normal resting [Na+]i and this is also reduced by Gd3+. If Gd3+ is applied over the period in which [Na+]i rises following stretched contraction, it prevents one component of the reduced force. The other component of reduced force is caused by inhomogeneity of sarcomeres and can be minimised by stretching the muscle to its new optimum length. These experiments show that part of the short-term damage caused by stretch in mdx fibres can be prevented by blocking stretch-activated channels.
Collapse
Affiliation(s)
- Ella W Yeung
- Institute for Biomedical Research and Department of Physiology, University of Sydney F13, NSW 2006, Australia
| | | | | |
Collapse
|
14
|
Lee JS, Pfund Z, Juhász C, Behen ME, Muzik O, Chugani DC, Nigro MA, Chugani HT. Altered regional brain glucose metabolism in Duchenne muscular dystrophy: a pet study. Muscle Nerve 2002; 26:506-12. [PMID: 12362416 DOI: 10.1002/mus.10238] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The basis for cognitive impairment in Duchenne muscular dystrophy (DMD) is not well understood but may be related to abnormal expression of dystrophin in brain. The aim of this study was to determine whether regional brain glucose metabolism is altered in children with DMD and whether such metabolic disturbances are localized to regions shown to be normally rich in dystrophin expression. Ten boys (mean age, 11.8 years) with DMD and 17 normal adults as a control group (mean age, 27.6 years) underwent 2-deoxy-2[(18)F]fluoro-D-glucose positron emission tomography (PET) and neuropsychological evaluation. The PET data were analyzed by statistical parametric mapping (SPM). The SPM analysis showed five clusters of decreased glucose metabolism in children with DMD, including the medial temporal structures and cerebellum bilaterally and the sensorimotor and lateral temporal cortex on the right side. At the voxel level, significant glucose hypometabolism was found in the right postcentral and middle temporal gyri, uncus, and VIIIB cerebellar lobule, as well as in the left hippocampal gyrus and cerebellar lobule. The neuropsychological profile of the DMD group revealed borderline nonverbal intellectual functioning, impaired manual dexterity bilaterally, borderline cognitive functioning, and internalizing behavioral difficulties. Our findings demonstrate region-specific hypometabolism, as well as cognitive and behavioral deficits in DMD children. As the regions showing hypometabolism on PET include those normally rich in dystrophin expression, it will be important to determine whether the hypometabolic regions also show cytoarchitectural abnormalities related to the lack of dystrophin.
Collapse
Affiliation(s)
- Joon Soo Lee
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, 3901 Beaubien Blvd., Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Godfraind JM, Tekkök SB, Krnjević K. Hypoxia on hippocampal slices from mice deficient in dystrophin (mdx) and isoforms (mdx3cv). J Cereb Blood Flow Metab 2000; 20:145-52. [PMID: 10616803 DOI: 10.1097/00004647-200001000-00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Slices from control C57, mdx, and mdx3cv mice were made hypoxic until both field excitatory postsynaptic potential (fEPSP) and presynaptic afferent volley (AV) disappeared (H1). After reoxygenation and recovery of fEPSP, a second and longer hypoxic test (H2) lasted 3 minutes beyond the time required to block AV. When slices were kept in 10 mmol/L glucose, HI abolished AV 37 and 19% earlier in slices from mdr and mdx3cv mutants than in control slices (where HI = 12 +/- 4.6 minutes, mean +/- SD). During H2 or when slices were kept in 4 mmol/L glucose, AV vanished even more quickly, but the times to block did not differ significantly between slices from controls and mutants. After reoxygenation, AV fully recovered in most slices. Rates of blockade of fEPSPs were comparable in all slices, and most fEPSPs recovered fully after HI. But even in the presence of 10 mmol/L glucose, the second hypoxia suppressed fEPSPs irreversibly in some slices: 2 of 10 from control, 3 of 7 from mdx, and 1 of 6 from mdx3cv mice. Most slices in 4 mmol/L glucose showed no recovery at all: six of seven from control, three of five from mdx, and four of five from mdx3cv mice. Thus, slices from mdx mice were more susceptible than other slices to irreversible hypoxic failure when slices were kept in 10 mmol/L glucose, but they were less susceptible than other slices when kept in 4 mmol/L glucose. In conclusion, the lack of full-length dystrophin (427 kDa) predisposes to quicker loss of nerve conduction in slices from mdx and mdx3cv mutants and improved posthypoxic recovery of fEPSPs in 4 mmol/L glucose in slices from mdx but not mdx3cv mutants, perhaps because the 70-kDa and other C-terminal isoforms are still present in mdx mice.
Collapse
Affiliation(s)
- J M Godfraind
- Département de Physiologie et Pharmacologie, Système Nerveux, Faculté de Médecine, UCL-Bruxelles, Brussels, Belgium
| | | | | |
Collapse
|
16
|
Moral-Naranjo MT, Campoy FJ, Cabezas-Herrera J, Vidal CJ. Increased butyrylcholinesterase levels in microsomal membranes of dystrophic Lama2dy mouse muscle. J Neurochem 1999; 73:1138-44. [PMID: 10461905 DOI: 10.1046/j.1471-4159.1999.0731138.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The proportions and the glycosylation of butyrylcholinesterase (BuChE) forms in vesicles rich in sarcoplasmic reticulum from normal (NMV) and dystrophic (DMV) muscle were analyzed, using merosin-deficient dystrophic mice. BuChE activity in DMV was two- to threefold that in NMV. Globular amphiphilic G1A, G2A, and G4A and hydrophilic G4H BuChE forms were identified in NMV and DMV. The amount of G2A forms increased sevenfold in DMV, and the other forms increased about twofold. The higher BuChE level in DMV might reflect a maturational defect, with dystrophy preventing the down-regulation of BuChE with muscle development. About half of G1A, G2A, and G4H BuChE forms in NMV or DMV bound to Lens culinaris agglutinin (LCA), a higher fraction to wheat germ agglutinin (WGA), and little to Ricinus communis agglutinin (RCA). Most of the G4A forms in NMV or DMV bound to LCA or WGA; those from NMV failed to bind to RCA, whereas most of the variants in DMV bound to it, suggesting that the excess of tetramers in DMV is mainly RCA-reactive. The differential interaction of lectins with BuChE components from muscle microsomes, serum, and nerves confirmed that the microsomal BuChE was muscle-intrinsic. The results provide clues regarding the alterations that dystrophy produces in the biosynthesis of BuChE forms in muscle.
Collapse
Affiliation(s)
- M T Moral-Naranjo
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, Espinardo, Murcia, Spain
| | | | | | | |
Collapse
|
17
|
De la Porte S, Morin S, Koenig J. Characteristics of skeletal muscle in mdx mutant mice. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 191:99-148. [PMID: 10343393 DOI: 10.1016/s0074-7696(08)60158-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We review the extensive research conducted on the mdx mouse since 1987, when demonstration of the absence of dystrophin in mdx muscle led to X-chromosome-linked muscular dystrophy (mdx) being considered as a homolog of Duchenne muscular dystrophy. Certain results are contradictory. We consider most aspects of mdx skeletal muscle: (i) the distribution and roles of dystrophin, utrophin, and associated proteins; (ii) morphological characteristics of the skeletal muscle and hypotheses put forward to explain the regeneration characteristic of the mdx mouse; (iii) special features of the diaphragm; (iv) changes in basic fibroblast growth factor, ion flux, innervation, cytoskeleton, adhesive proteins, mastocytes, and metabolism; and (v) different lines of therapeutic research.
Collapse
Affiliation(s)
- S De la Porte
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS UPR 9040, Gif sur Yvette, France
| | | | | |
Collapse
|
18
|
Abstract
A mechanistic definition of the dystrophic process is proposed, and the effects of growth factors vs. down-regulation of growth are critically analyzed. A conceptual scheme is presented to illustrate the steps leading to pathology, and various compensatory systems which ameliorate the pathology are examined, particularly in regards to the mdv mouse which is resistant to the deficiency of dystrophin, the main protein product of the Duchenne and Becker muscular dystrophy (DMD/BMD) gene. These compensatory systems are analyzed in terms of the differential resistance of fiber types to pathogenesis. The generation of a stable population of maturationally arrested centronucleated fibers which express the mature adult myosin isoforms is proposed to be the main strategy of mdx muscle to minimize apoptosis. Physiological properties of these fibers, such as utrophin expression, and high mitochondrial and endoplasmic reticulum content, together with probable increased glycerophosphorylcholine concentrations and facile access to the vascular system, are hypothesized to be instrumental in their resistance to pathogenesis. It is proposed that the major element that determines the susceptibility of most human muscles to the dystrophic process is their inability to arrest the maturation of regenerated fibers at the centronucleated stage with a concomitant expression of the adult myosins.
Collapse
Affiliation(s)
- J P Infante
- Institute for Theoretical Biochemistry and Molecular Biology, Ithaca, NY 14852-4512, USA
| | | |
Collapse
|