1
|
Pottorf TS, Rotterman TM, McCallum WM, Haley-Johnson ZA, Alvarez FJ. The Role of Microglia in Neuroinflammation of the Spinal Cord after Peripheral Nerve Injury. Cells 2022; 11:cells11132083. [PMID: 35805167 PMCID: PMC9265514 DOI: 10.3390/cells11132083] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injuries induce a pronounced immune reaction within the spinal cord, largely governed by microglia activation in both the dorsal and ventral horns. The mechanisms of activation and response of microglia are diverse depending on the location within the spinal cord, type, severity, and proximity of injury, as well as the age and species of the organism. Thanks to recent advancements in neuro-immune research techniques, such as single-cell transcriptomics, novel genetic mouse models, and live imaging, a vast amount of literature has come to light regarding the mechanisms of microglial activation and alluding to the function of microgliosis around injured motoneurons and sensory afferents. Herein, we provide a comparative analysis of the dorsal and ventral horns in relation to mechanisms of microglia activation (CSF1, DAP12, CCR2, Fractalkine signaling, Toll-like receptors, and purinergic signaling), and functionality in neuroprotection, degeneration, regeneration, synaptic plasticity, and spinal circuit reorganization following peripheral nerve injury. This review aims to shed new light on unsettled controversies regarding the diversity of spinal microglial-neuronal interactions following injury.
Collapse
Affiliation(s)
- Tana S. Pottorf
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
| | - Travis M. Rotterman
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA;
| | - William M. McCallum
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
| | - Zoë A. Haley-Johnson
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
| | - Francisco J. Alvarez
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA; (T.S.P.); (W.M.M.); (Z.A.H.-J.)
- Correspondence:
| |
Collapse
|
2
|
Chronic exposure to IL-6 induces a desensitized phenotype of the microglia. J Neuroinflammation 2021; 18:31. [PMID: 33482848 PMCID: PMC7821504 DOI: 10.1186/s12974-020-02063-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Background When the homeostasis of the central nervous system (CNS) is altered, microglial cells become activated displaying a wide range of phenotypes that depend on the specific site, the nature of the activator, and particularly the microenvironment generated by the lesion. Cytokines are important signals involved in the modulation of the molecular microenvironment and hence play a pivotal role in orchestrating microglial activation. Among them, interleukin-6 (IL-6) is a pleiotropic cytokine described in a wide range of pathological conditions as a potent inducer and modulator of microglial activation, but with contradictory results regarding its detrimental or beneficial functions. The objective of the present study was to evaluate the effects of chronic IL-6 production on the immune response associated with CNS-axonal anterograde degeneration. Methods The perforant pathway transection (PPT) paradigm was used in transgenic mice with astrocyte-targeted IL6-production (GFAP-IL6Tg). At 2, 3, 7, 14, and 21 days post-lesion, the hippocampal areas were processed for immunohistochemistry, flow cytometry, and protein microarray. Results An increase in the microglia/macrophage density was observed in GFAP-IL6Tg animals in non-lesion conditions and at later time-points after PPT, associated with higher microglial proliferation and a major monocyte/macrophage cell infiltration. Besides, in homeostasis, GFAP-IL6Tg showed an environment usually linked with an innate immune response, with more perivascular CD11b+/CD45high/MHCII+/CD86+ macrophages, higher T cell infiltration, and higher IL-10, IL-13, IL-17, and IL-6 production. After PPT, WT animals show a change in microglia phenotype expressing MHCII and co-stimulatory molecules, whereas transgenic mice lack this shift. This lack of response in the GFAP-IL6Tg was associated with lower axonal sprouting. Conclusions Chronic exposure to IL-6 induces a desensitized phenotype of the microglia. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02063-1.
Collapse
|
3
|
Sutherland TC, Geoffroy CG. The Influence of Neuron-Extrinsic Factors and Aging on Injury Progression and Axonal Repair in the Central Nervous System. Front Cell Dev Biol 2020; 8:190. [PMID: 32269994 PMCID: PMC7109259 DOI: 10.3389/fcell.2020.00190] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
In the aging western population, the average age of incidence for spinal cord injury (SCI) has increased, as has the length of survival of SCI patients. This places great importance on understanding SCI in middle-aged and aging patients. Axon regeneration after injury is an area of study that has received substantial attention and made important experimental progress, however, our understanding of how aging affects this process, and any therapeutic effort to modulate repair, is incomplete. The growth and regeneration of axons is mediated by both neuron intrinsic and extrinsic factors. In this review we explore some of the key extrinsic influences on axon regeneration in the literature, focusing on inflammation and astrogliosis, other cellular responses, components of the extracellular matrix, and myelin proteins. We will describe how each element supports the contention that axonal growth after injury in the central nervous system shows an age-dependent decline, and how this may affect outcomes after a SCI.
Collapse
Affiliation(s)
- Theresa C Sutherland
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, Bryan, TX, United States
| |
Collapse
|
4
|
Schepanski S, Buss C, Hanganu-Opatz IL, Arck PC. Prenatal Immune and Endocrine Modulators of Offspring's Brain Development and Cognitive Functions Later in Life. Front Immunol 2018; 9:2186. [PMID: 30319639 PMCID: PMC6168638 DOI: 10.3389/fimmu.2018.02186] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022] Open
Abstract
Milestones of brain development in mammals are completed before birth, which provide the prerequisite for cognitive and intellectual performances of the offspring. Prenatal challenges, such as maternal stress experience or infections, have been linked to impaired cognitive development, poor intellectual performances as well as neurodevelopmental and psychiatric disorders in the offspring later in life. Fetal microglial cells may be the target of such challenges and could be functionally modified by maternal markers. Maternal markers can cross the placenta and reach the fetus, a phenomenon commonly referred to as “vertical transfer.” These maternal markers include hormones, such as glucocorticoids, and also maternal immune cells and cytokines, all of which can be altered in response to prenatal challenges. Whilst it is difficult to discriminate between the maternal or fetal origin of glucocorticoids and cytokines in the offspring, immune cells of maternal origin—although low in frequency—can be clearly set apart from offspring's cells in the fetal and adult brain. To date, insights into the functional role of these cells are limited, but it is emergingly recognized that these maternal microchimeric cells may affect fetal brain development, as well as post-natal cognitive performances and behavior. Moreover, the inheritance of vertically transferred cells across generations has been proposed, yielding to the presence of a microchiome in individuals. Hence, it will be one of the scientific challenges in the field of neuroimmunology to identify the functional role of maternal microchimeric cells as well as the brain microchiome. Maternal microchimeric cells, along with hormones and cytokines, may induce epigenetic changes in the fetal brain. Recent data underpin that brain development in response to prenatal stress challenges can be altered across several generations, independent of a genetic predisposition, supporting an epigenetic inheritance. We here discuss how fetal brain development and offspring's cognitive functions later in life is modulated in the turnstile of prenatal challenges by introducing novel and recently emerging pathway, involving maternal hormones and immune markers.
Collapse
Affiliation(s)
- Steven Schepanski
- Laboratory of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Buss
- Institute of Medical Psychology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Development, Health, and Disease Research Program, University of California, Irvine, Orange, CA, United States
| | - Ileana L Hanganu-Opatz
- Developmental Neurophysiology, Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra C Arck
- Laboratory of Experimental Feto-Maternal Medicine, Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Tu THT, Sharma N, Shin EJ, Tran HQ, Lee YJ, Jeong JH, Jeong JH, Nah SY, Tran HYP, Byun JK, Ko SK, Kim HC. Ginsenoside Re Protects Trimethyltin-Induced Neurotoxicity via Activation of IL-6-Mediated Phosphoinositol 3-Kinase/Akt Signaling in Mice. Neurochem Res 2017; 42:3125-3139. [PMID: 28884396 DOI: 10.1007/s11064-017-2349-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/19/2017] [Accepted: 07/01/2017] [Indexed: 12/23/2022]
Abstract
Ginseng (Panax ginseng), an herbal medicine, has been used to prevent neurodegenerative disorders. Ginsenosides (e.g., Re, Rb1, or Rg1) were obtained from Korean mountain cultivated ginseng. The anticonvulsant activity of ginsenoside Re (20 mg/kg/day × 3) against trimethyltin (TMT) insult was the most pronounced out of ginsenosides (e.g., Re, Rb1, and Rg1). Re itself did not significantly alter tumor necrosis factor-α (TNF-α), interferon-ϒ (IFN-ϒ), and interleukin-1β (IL-1β) expression, however, it significantly increases the interleukin-6 (IL-6) expression. In addition, Re attenuated the TMT-induced decreases in IL-6 protein level. Therefore, IL-6 knockout (-/-) mice were employed to investigate whether Re requires IL-6-dependent neuroprotective activity against TMT toxicity. Re significantly attenuated TMT-induced lipid peroxidation, protein peroxidation, and reactive oxygen species in the hippocampus. Re-mediated antioxidant effects were more pronounced in IL-6 (-/-) mice than in WT mice. Consistently, TMT-induced increase in c-Fos-immunoreactivity (c-Fos-IR), TUNEL-positive cells, and nuclear chromatin clumping in the dentate gyrus of the hippocampus were significantly attenuated by Re. Furthermore, Re attenuated TMT-induced proapoptotic changes. Protective potentials by Re were comparable to those by recombinant IL-6 protein (rIL-6) against TMT-insult in IL-6 (-/-) mice. Moreover, treatment with a phosphoinositol 3-kinase (PI3K) inhibitor, LY294002 (1.6 µg, i.c.v) counteracted the protective potential mediated by Re or rIL-6 against TMT insult. The results suggest that ginsenoside Re requires IL-6-dependent PI3K/Akt signaling for its protective potential against TMT-induced neurotoxicity.
Collapse
Affiliation(s)
- Thu-Hien Thi Tu
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Yu Jeung Lee
- Clinical Pharmacy, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea
| | - Ji Hoon Jeong
- Pharmacology, College of Medicine, Chug-Ang University, Seoul, Republic of Korea
| | - Jung Hwan Jeong
- Headquarters of Forestry Support, Korea Forestry Promotion Institute, Seoul, 07570, Republic of Korea
| | - Seung Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, Republic of Korea
| | - Hoang-Yen Phi Tran
- Physical Chemistry Department, University of Medicine and Pharmacy, Ho Chi Minh City, 760000, Vietnam
| | - Jae Kyung Byun
- Korean Society of Forest Environment Research, Namyangju, 12014, Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food & Nutrition, Semyung University, Jecheon, 27136, Republic of Korea.
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341, Republic of Korea.
| |
Collapse
|
6
|
Fregnan F, Muratori L, Simões AR, Giacobini-Robecchi MG, Raimondo S. Role of inflammatory cytokines in peripheral nerve injury. Neural Regen Res 2014; 7:2259-66. [PMID: 25538747 PMCID: PMC4268726 DOI: 10.3969/j.issn.1673-5374.2012.29.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/10/2012] [Indexed: 12/22/2022] Open
Abstract
Inflammatory events occurring in the distal part of an injured peripheral nerve have, nowadays, a great resonance. Investigating the timing of action of the several cytokines in the important stages of Wallerian degeneration helps to understand the regenerative process and design pharmacologic intervention that promotes and expedites recovery. The complex and synergistic action of inflammatory cytokines finally promotes axonal regeneration. Cytokines can be divided into pro- and anti-inflammatory cytokines that upregulate and downregulate, respectively, the production of inflammatory mediators. While pro-inflammatory cytokines are expressed in the first phase of Wallerian degeneration and promote the recruitment of macrophages, anti-inflammatory cytokines are expressed after this recruitment and downregulate the production of all cytokines, thus determining the end of the process. In this review, we describe the major inflammatory cytokines involved in Wallerian degeneration and the early phases of nerve regeneration. In particular, we focus on interleukin-1, interleukin-2, interleukin-6, tumor necrosis factor-β, interleukin-10 and transforming growth factor-β.
Collapse
Affiliation(s)
- Federica Fregnan
- Department of Clinical and Biological Sciences, University of Turin, Orbassano 10043, Turin, Italy ; Neuroscience Institute of the "Cavalieri Ottolenghi" Foundation, Orbassano 10043, Turin, Italy
| | - Luisa Muratori
- Department of Clinical and Biological Sciences, University of Turin, Orbassano 10043, Turin, Italy ; Neuroscience Institute of the "Cavalieri Ottolenghi" Foundation, Orbassano 10043, Turin, Italy
| | - Anabel Rodriguez Simões
- Department of Clinical and Biological Sciences, University of Turin, Orbassano 10043, Turin, Italy
| | | | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Orbassano 10043, Turin, Italy ; Neuroscience Institute of the "Cavalieri Ottolenghi" Foundation, Orbassano 10043, Turin, Italy
| |
Collapse
|
7
|
Almolda B, Villacampa N, Manders P, Hidalgo J, Campbell IL, González B, Castellano B. Effects of astrocyte-targeted production of interleukin-6 in the mouse on the host response to nerve injury. Glia 2014; 62:1142-61. [DOI: 10.1002/glia.22668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Beatriz Almolda
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience; Autonomous University of Barcelona; Bellaterra 08193 Spain
| | - Nàdia Villacampa
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience; Autonomous University of Barcelona; Bellaterra 08193 Spain
| | - Peter Manders
- School of Molecular Bioscience; University of Sydney; Sydney NSW 2006 Australia
| | - Juan Hidalgo
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience; Autonomous University of Barcelona; Bellaterra 08193 Spain
| | - Iain L. Campbell
- School of Molecular Bioscience; University of Sydney; Sydney NSW 2006 Australia
| | - Berta González
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience; Autonomous University of Barcelona; Bellaterra 08193 Spain
| | - Bernardo Castellano
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience; Autonomous University of Barcelona; Bellaterra 08193 Spain
| |
Collapse
|
8
|
Mousa A, Bakhiet M. Role of cytokine signaling during nervous system development. Int J Mol Sci 2013; 14:13931-57. [PMID: 23880850 PMCID: PMC3742226 DOI: 10.3390/ijms140713931] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 01/24/2023] Open
Abstract
Cytokines are signaling proteins that were first characterized as components of the immune response, but have been found to have pleiotropic effects in diverse aspects of body function in health and disease. They are secreted by numerous cells and are used extensively in intercellular communications to produce different activities, including intricate processes engaged in the ontogenetic development of the brain. This review discusses factors involved in brain growth regulation and recent findings exploring cytokine signaling pathways during development of the central nervous system. In view of existing data suggesting roles for neurotropic cytokines in promoting brain growth and repair, these molecules and their signaling pathways might become targets for therapeutic intervention in neurodegenerative processes due to diseases, toxicity, or trauma.
Collapse
Affiliation(s)
- Alyaa Mousa
- Department of Anatomy, Faculty of Medicine, Health Sciences Centre, Kuwait University, Safat 13060, Kuwait; E-Mail:
| | - Moiz Bakhiet
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, P.O. Box 26671 Manama, Bahrain
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +973-1723-7300
| |
Collapse
|
9
|
Majumder A, Banerjee S, Harrill JA, Machacek DW, Mohamad O, Bacanamwo M, Mundy WR, Wei L, Dhara SK, Stice SL. Neurotrophic effects of leukemia inhibitory factor on neural cells derived from human embryonic stem cells. Stem Cells 2013; 30:2387-99. [PMID: 22899336 DOI: 10.1002/stem.1201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Various growth factor cocktails have been used to proliferate and then differentiate human neural progenitor (NP) cells derived from embryonic stem cells (ESC) for in vitro and in vivo studies. However, the cytokine leukemia inhibitory factor (LIF) has been largely overlooked. Here, we demonstrate that LIF significantly enhanced in vitro survival and promoted differentiation of human ESC-derived NP cells. In NP cells, as well as NP-derived neurons, LIF reduced caspase-mediated apoptosis and reduced both spontaneous and H2O2-induced reactive oxygen species in culture. In vitro, NP cell proliferation and the yield of differentiated neurons were significantly higher in the presence of LIF. In NP cells, LIF enhanced cMyc phosphorylation, commonly associated with self-renewal/proliferation. Also, in differentiating NP cells LIF activated the phosphoinositide 3-kinase and signal transducer and activator of transcription 3 pathways, associated with cell survival and reduced apoptosis. When differentiated in LIF+ media, neurite outgrowth and ERK1/2 phosphorylation were potentiated together with increased expression of gp130, a component of the LIF receptor complex. NP cells, pretreated in vitro with LIF, were effective in reducing infarct volume in a model of focal ischemic stroke but LIF did not lead to significantly improved initial NP cell survival over nontreated NP cells. Our results show that LIF signaling significantly promotes human NP cell proliferation, survival, and differentiation in vitro. Activated LIF signaling should be considered in cell culture expansion systems for future human NP cell-based therapeutic transplant studies.
Collapse
Affiliation(s)
- Anirban Majumder
- Regenerative Bioscience Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bigini P, Veglianese P, Andriolo G, Cova L, Grignaschi G, Caron I, Daleno C, Barbera S, Ottolina A, Calzarossa C, Lazzari L, Mennini T, Bendotti C, Silani V. Intracerebroventricular administration of human umbilical cord blood cells delays disease progression in two murine models of motor neuron degeneration. Rejuvenation Res 2011; 14:623-39. [PMID: 21978082 DOI: 10.1089/rej.2011.1197] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The lack of effective drug therapies for motor neuron diseases (MND), and in general for all the neurodegenerative disorders, has increased the interest toward the potential use of stem cells. Among the cell therapy approaches so far tested in MND animal models, systemic injection of human cord blood mononuclear cells (HuCB-MNCs) has proven to reproducibly increase, although modestly, the life span of SOD1G93A mice, a model of familial amyotrophic lateral sclerosis (ALS), even if only few transplanted cells were found in the damaged areas. In attempt to improve the potential efficacy of these cells in the central nervous system, we examined the effect and distribution of Hoechst 33258-labeled HuCB-MNCs after a single bilateral intracerberoventricular injection in two models of motor neuron degeneration, the transgenic SOD1G93A and wobbler mice. HuCB-MNCs significantly ameliorated symptoms progression in both mouse models and prolonged survival in SOD1G93A mice. They were localized in the lateral ventricles, even 4 months after administration. However, HuCB-MNCs were not found in the spinal cord ventral horns. This evidence strengthens the hypothesis that the beneficial role of transplanted cells is not due to cell replacement but is rather associated with the production and release of circulating protective factors that may act both at the central and/or peripheral levels. In particular, we show that HuCB-MNCs release a series of cytokines and chemokines with antiinflammatory properties that could be responsible of the functional improvement of mouse models of motor neuron degenerative disorders.
Collapse
Affiliation(s)
- P Bigini
- Mario Negri Institute for Pharmacological Research, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lee BS, Choi JY, Cha JH. Expression of ciliary neurotrophic factor and its receptor in experimental obstructive nephropathy. Anat Cell Biol 2011; 44:85-97. [PMID: 21829752 PMCID: PMC3145847 DOI: 10.5115/acb.2011.44.2.85] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/18/2011] [Accepted: 04/18/2011] [Indexed: 11/27/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is well known as a growth/survival factor of neuronal tissue. We investigated the expression of CNTF and its specific receptor alpha (CNTFRα) in a unilateral ureteral obstruction (UUO) model. Complete UUO was produced by left ureteral ligation in Sprague-Dawley rats. The animals were sacrificed on days 1, 3, 5, 7, 14, 21, and 28 after UUO. The kidneys were fixed, and processed for both immunohistochemistry and in situ hybridization. CNTF immunoreactivity in sham-operated kidneys was observed only in the descending thin limb (DTL) of the loop of Henle. In UUO kidneys, CNTF expression was induced in the S3 segment (S3s) of the proximal tubule from day 1, and progressively expanded into the entire S3s and a part of the convoluted proximal tubules, distal tubules (DT), and glomerular parietal epithelium up to day 7. Upregulated CNTF expression was maintained to day 28. From day 14, the inner medullary collecting duct showed weak CNTF immunoreactivity. The CNTFRα mRNA hybridization signal in sham-operated kidneys was weakly detected in the DTL, DT, medullary thick ascending limb, and in a few S3s cells. After UUO, CNTFRα mRNA expression increased progressively in both the renal cortex and the medulla up to day 7 and increased expression was maintained until day 28. The results suggest that the S3s may be the principal induction site for CNTF in response to renal injury, and that CNTF may play a role in chronic renal injury.
Collapse
Affiliation(s)
- Byoung-Seung Lee
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | |
Collapse
|
12
|
Concomitant rheumatoid arthritis and amyotrophic lateral sclerosis: report of two new cases and review of literature. Rheumatol Int 2011; 31:715-9. [PMID: 21258799 DOI: 10.1007/s00296-010-1760-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/30/2010] [Indexed: 10/18/2022]
Abstract
To describe a rare association between rheumatoid arthritis (RA) and amyotrophic lateral sclerosis (ALS). Two new cases of patients with RA who developed amyotrophic lateral sclerosis (ALS), one receiving anti-TNFα agents, were reported. Only other five cases of this rare association have been previously described in literature. The simultaneous presence of the two diseases represents a difficult diagnostic challenge because RA may mimic some musculoskeletal symptoms of ALS. There is no evidence in favor of a common pathophysiologic mechanism, and thus the possibility of a fortuitous association must be raised. A neurotoxic side effect of various drugs for RA treatment could be considered. Casual or causal association remains a difficult choice. The possibility of a coincidental association must be raised but neurologic side effects of TNFα blockers lead to discussion.
Collapse
|
13
|
Spooren A, Kolmus K, Laureys G, Clinckers R, De Keyser J, Haegeman G, Gerlo S. Interleukin-6, a mental cytokine. ACTA ACUST UNITED AC 2011; 67:157-83. [PMID: 21238488 DOI: 10.1016/j.brainresrev.2011.01.002] [Citation(s) in RCA: 278] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/21/2010] [Accepted: 01/08/2011] [Indexed: 12/18/2022]
Abstract
Almost a quarter of a century ago, interleukin-6 (IL-6) was discovered as an inflammatory cytokine involved in B cell differentiation. Today, IL-6 is recognized to be a highly versatile cytokine, with pleiotropic actions not only in immune cells, but also in other cell types, such as cells of the central nervous system (CNS). The first evidence implicating IL-6 in brain-related processes originated from its dysregulated expression in several neurological disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. In addition, IL-6 was shown to be involved in multiple physiological CNS processes such as neuron homeostasis, astrogliogenesis and neuronal differentiation. The molecular mechanisms underlying IL-6 functions in the brain have only recently started to emerge. In this review, an overview of the latest discoveries concerning the actions of IL-6 in the nervous system is provided. The central position of IL-6 in the neuroinflammatory reaction pattern, and more specifically, the role of IL-6 in specific neurodegenerative processes, which accompany Alzheimer's disease, multiple sclerosis and excitotoxicity, are discussed. It is evident that IL-6 has a dichotomic action in the CNS, displaying neurotrophic properties on the one hand, and detrimental actions on the other. This is in agreement with its central role in neuroinflammation, which evolved as a beneficial process, aimed at maintaining tissue homeostasis, but which can become malignant when exaggerated. In this perspective, it is not surprising that 'well-meant' actions of IL-6 are often causing harm instead of leading to recovery.
Collapse
Affiliation(s)
- Anneleen Spooren
- Laboratory of Eukaryotic Signal Transduction and Gene Expression, University of Ghent, K.L. Ledeganckstraat 35, 9000 Gent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
14
|
Cotter MA, Gibson TM, Nangle MR, Cameron NE. Effects of interleukin-6 treatment on neurovascular function, nerve perfusion and vascular endothelium in diabetic rats. Diabetes Obes Metab 2010; 12:689-99. [PMID: 20590746 DOI: 10.1111/j.1463-1326.2010.01221.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AIM Interleukin-6 (IL-6), a member of the neuropoietic cytokine family, participates in neural development and has neurotrophic activity. Recent research has also indicated actions to improve vasa nervorum function in diabetes. Both these facets are potentially relevant for treatment of diabetic neuropathy. The aim of this study was to determine whether IL-6 treatment corrected changes in neurovascular function in streptozotocin-induced diabetic rats. METHODS After 1 month of diabetes, rats were given IL-6 for 1 month. The rats were subjected to sensory testing and measurements of nerve conduction velocities and nerve blood flow by hydrogen clearance microelectrode polarography. Further groups were used to study responses of the isolated gastric fundus and renal artery. Results were statistically analysed using ANOVA and post hoc tests. RESULTS Diabetic rats showed mechanical hyperalgesia, thermal hyperalgesia, and tactile allodynia. The former was unaffected by IL-6 treatment, whereas the latter two measures were corrected. Immunohistochemical staining of dorsal root ganglia for IL-6 did not reveal any changes with diabetes or treatment. The results showed that 22 and 17.4% slowing of sciatic motor and saphenous sensory nerve conduction velocities, respectively, with diabetes were improved by IL-6. Sciatic endoneurial perfusion was halved by diabetes and corrected by IL-6. A 40.6% diabetic deficit in maximal non-adrenergic, non-cholinergic relaxation of gastric fundus to nerve stimulation was unaffected by IL-6. Renal artery endothelium-dependent relaxation was halved by diabetes, the endothelium-derived hyperpolarizing factor (EDHF) component being severely attenuated. IL-6 did not affect nitric oxide-mediated vasorelaxation, but markedly improved EDHF responses. CONCLUSIONS IL-6 improved aspects of small and large nerve fibre and vascular endothelium dysfunction in diabetic rats. The functional benefits related to increased nerve blood flow via an EDHF mechanism, and IL-6 could have therapeutic potential in diabetic neuropathy and vasculopathy, which should be further evaluated.
Collapse
Affiliation(s)
- M A Cotter
- School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | |
Collapse
|
15
|
Chakraborty S, Kaushik DK, Gupta M, Basu A. Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res 2010; 88:1615-31. [PMID: 20127816 DOI: 10.1002/jnr.22343] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuroinflammation is a complex innate response of neural tissue against harmful effects of diverse stimuli viz., pathogens, damaged cells and irritants within the Central Nervous System (CNS). Studies show that multiple inflammatory mediators including cytokines, chemokines and prostaglandins are elevated in the Cerebrospinal Fluid (CSF) and in post-mortem brain tissues of patients with history of neuroinflammatory conditions as well as neurodegenerative disorders like Alzheimer's disease, Parkinson's disease and Multiple Sclerosis. The innate immunity mediators in the brain, namely microglia and astrocytes, express certain Pattern Recognition Receptors (PRRs), which are always on 'high-alert' for pathogens or other inflammatory triggers and participate in the assembly and activation of the inflammasome. The inflammasome orchestrates the activation of the precursors of proinflammatory caspases, which in turn, cleave the precursor forms of interleukin-1beta, IL-18 and IL-33 into their active forms; the secretion of which leads to a potent inflammatory response, and/or influences the release of toxins from glial and endothelial cells. Altered expression of inflammasome mediators can either promote or inhibit neurodegenerative processes. Therefore, modulating the inflammasome machinery seems a better combat strategy than summarily suppressing all inflammation in most neuroinflammatory conditions. In the current review we have surveyed the identified triggers and pathways of inflammasome activation and the following events which ultimately accomplish the innate inflammatory response in the CNS, with a goal to provide an analytical insight into disease pathogenesis that might provide cues for devising novel therapeutic strategies.
Collapse
|
16
|
Satellite glial cells express IL-6 and corresponding signal-transducing receptors in the dorsal root ganglia of rat neuropathic pain model. ACTA ACUST UNITED AC 2010; 6:73-83. [DOI: 10.1017/s1740925x10000074] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
There is a growing body of evidence that cytokines contribute to both induction and maintenance of neuropathic pain derived from changes in dorsal root ganglia (DRG), including the activity of the primary sensory neurons and their satellite glial cells (SGC). We used immunofluorescence andin situhybridization methods to provide evidence that chronic constriction injury (CCI) of the sciatic nerve induces synthesis of interleukin-6 (IL-6) in SGC, elevation of IL-6 receptor (IL-6R) and activation of signal transducer and activator of transcription 3 (STAT3) signalling. Unilateral CCI of the rat sciatic nerve induced mechanoallodynia and thermal hyperalgesia in ipsilateral hind paws, but contralateral paws exhibited only temporal changes of sensitivity. We demonstrated that IL-6 mRNA and protein, which were expressed at very low levels in naïve DRG, were bilaterally increased not only in L4-L5 DRG neurons but also in SGC activated by unilateral CCI. Besides IL-6, substantial increase of IL-6R and pSTAT3 expression occurred in SGC following CCI, however, IL-6R associated protein, gp130 levels did not change. The results may suggest that unilateral CCI of the sciatic nerve induces bilateral activation of SGC in L4-L5 DRG to transduce IL-6 signalling during neuroinflammation.
Collapse
|
17
|
Rezende ACS, Vieira AS, Rogério F, Rezende LF, Boschero AC, Negro A, Langone F. Effects of systemic administration of ciliary neurotrophic factor on Bax and Bcl-2 proteins in the lumbar spinal cord of neonatal rats after sciatic nerve transection. ACTA ACUST UNITED AC 2008; 41:1024-8. [PMID: 19039380 DOI: 10.1590/s0100-879x2008005000052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 10/30/2008] [Indexed: 11/22/2022]
Abstract
Ciliary neurotrophic factor (CNTF) is a cytokine that plays a neuroprotective role in relation to axotomized motoneurons. We determined the effect of daily subcutaneous doses of CNTF (1.2 microg/g for 5 days; N = 13) or PBS (N = 13) on the levels of mRNA for Bcl-2 and Bax, as well as the expression and inter-association of Bcl-2 and Bax proteins, and the survival of motoneurons in the spinal cord lumbar enlargement of 2-day-old Wistar rats after sciatic nerve transection. Five days after transection, the effects were evaluated on histological and molecular levels using Nissl staining, immunoprecipitation, Western blot analysis, and reverse transcriptase-polymerase chain reaction. The motoneuron survival ratio, defined as the ratio between the number of motoneurons counted on the lesioned side vs those on the unlesioned side, was calculated. This ratio was 0.77 +/- 0.02 for CNTF-treated rats vs 0.53 +/- 0.02 for the PBS-treated controls (P < 0.001). Treatment with CNTF modified the level of mRNA, with the expression of Bax RNA decreasing 18% (with a consequent decrease in the level of Bax protein), while the expression of Bcl-2 RNA was increased 87%, although the level of Bcl-2 protein was unchanged. The amount of Bcl-2/Bax heterodimer increased 91% over that found in the PBS-treated controls. These data show, for the first time, that the neuroprotective effect of CNTF on neonatal rat axotomized motoneurons is associated with a reduction in free Bax, due to the inhibition of Bax expression, as well as increased Bcl-2/Bax heterodimerization. Thus, the neuroprotective action of the CNTF on axotomized motoneurons can be related to the inhibition of this apoptotic pathway.
Collapse
Affiliation(s)
- A C S Rezende
- Departamento de Fisiologia e Biofísica, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | | | | | | | |
Collapse
|
18
|
Callizot N, Andriambeloson E, Glass J, Revel M, Ferro P, Cirillo R, Vitte PA, Dreano M. Interleukin-6 protects against paclitaxel, cisplatin and vincristine-induced neuropathies without impairing chemotherapeutic activity. Cancer Chemother Pharmacol 2008; 62:995-1007. [DOI: 10.1007/s00280-008-0689-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 01/20/2008] [Indexed: 10/22/2022]
|
19
|
Bauer S, Kerr BJ, Patterson PH. The neuropoietic cytokine family in development, plasticity, disease and injury. Nat Rev Neurosci 2007; 8:221-32. [PMID: 17311007 DOI: 10.1038/nrn2054] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neuropoietic cytokines are well known for their role in the control of neuronal, glial and immune responses to injury or disease. Since this discovery, it has emerged that several of these proteins are also involved in nervous system development, in particular in the regulation of neurogenesis and stem cell fate. Recent data indicate that these proteins have yet more functions, as key modulators of synaptic plasticity and of various behaviours. In addition, neuropoietic cytokines might be a factor in the aetiology of psychiatric disorders.
Collapse
Affiliation(s)
- Sylvian Bauer
- Physiologie Neurovégétative, UMR 6153 CNRS, 1147 INRA, Université Paul Cézanne-Aix-Marseille-3, Ave. Escadrille Normandie-Niemen, BP 351-352, 13397 Marseille Cedex 20, France
| | | | | |
Collapse
|
20
|
Ekestern E. Neurotrophic factors and amyotrophic lateral sclerosis. NEURODEGENER DIS 2006; 1:88-100. [PMID: 16908980 DOI: 10.1159/000080049] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 03/22/2004] [Indexed: 12/15/2022] Open
Abstract
The cause of motor neuron death in amyotrophic lateral sclerosis (ALS) remains a mystery. Initial implications of neurotrophic factor impairment involved in disease progression causing selective motor neuron death were brought forward in the late 1980s. These implications were based on several in vitro studies of motor neuron cultures in which a near to complete rescue of axotomized neonatal motor neurons in the presence of supplementary neurotrophic factors were revealed. These findings pawed the way for extensive investigations in experimental animal models of ALS. Neurotrophic factor administration in rodent ALS models demonstrated a remarkable effect on survival of degenerating motor neurons and rescue of axotomized motor neurons, both in vivo and in vitro. In the absence of efficient therapy for ALS, some of these promising neurotrophic factors have been administered to groups of ALS patients, as they appeared available for clinical trials. Up to date, none of tested factors has lived up to expectations, altering the outcome of the disease. This review summarizes current findings on neurotrophic factor expression in ALS tissue and these factors' potential/debatable clinical relevance to ALS and the treatment of ALS. It also discusses possible interventions improving clinical trial design to obtain efficacy of neurotrophic factor treatment in patients suffering from ALS.
Collapse
Affiliation(s)
- Eva Ekestern
- Department of Neuroimmunology, Brain Research Institute, University of Vienna, Austria.
| |
Collapse
|
21
|
Starkweather AR, Witek-Janusek L, Nockels RP, Peterson J, Mathews HL. Immune function, pain, and psychological stress in patients undergoing spinal surgery. Spine (Phila Pa 1976) 2006; 31:E641-7. [PMID: 16915080 DOI: 10.1097/01.brs.0000231795.85409.87] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This study was an exploratory repeated measures design comparing patients undergoing two magnitudes of surgery in the lumbar spine: lumbar herniated disc repair and posterior lumbar fusion. OBJECTIVE The present study evaluated and compared the effect of perceived pain, perceived stress, anxiety, and mood on natural killer cell activity (NKCA) and IL-6 production among adult patients undergoing lumbar surgery. SUMMARY OF BACKGROUND DATA Presurgical stress and anxiety can lead to detrimental patient outcomes after surgery, such as increased infection rates. It has been hypothesized that such outcomes are due to stress-immune alterations, which may be further exacerbated by the extent of surgery. However, psychologic stress, anxiety, and mood have not been previously characterized in patients undergoing spinal surgery. METHODS Pain, stress, anxiety, and mood were measured using self-report instruments at T1 (1 week before surgery), T2 (the day of surgery), T3 (the day after surgery), and T4 (6 weeks after surgery). Blood (30 mL) was collected for immune assessments at each time point. RESULTS Pain, stress, anxiety, and mood state were elevated at baseline in both surgical groups and were associated with significant reduction in NKCA compared with the nonsurgical control group. A further decrease in NKCA was observed 24 hours after surgery in both surgical groups with a significant rise in stimulated IL-6 production, regardless of the magnitude of surgery. In the recovery period, NKCA increased to or above baseline values, which correlated with decreased levels of reported pain, perceived stress, anxiety, and mood state. CONCLUSIONS This study demonstrated that patients undergoing elective spinal surgery are highly stressed and anxious, regardless of the magnitude of surgery and that such psychologic factors may mediate a reduction in NKCA.
Collapse
Affiliation(s)
- Angela R Starkweather
- Intercollegiate College of Nursing, Washington State University, Spokane, WA 99224, USA.
| | | | | | | | | |
Collapse
|
22
|
Andriambeloson E, Baillet C, Vitte PA, Garotta G, Dreano M, Callizot N. Interleukin-6 attenuates the development of experimental diabetes-related neuropathy. Neuropathology 2006; 26:32-42. [PMID: 16521477 DOI: 10.1111/j.1440-1789.2006.00651.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuropathy is the most severe and the least understood complication of diabetes. We investigated the potential neuroprotective effect of IL-6 therapy in an experimental model of diabetic neuropathy. A single i.v. injection of streptozotocin (STZ, 55 mg/kg) was used to induce experimental diabetes in adult males. IL-6 (1, 10 or 30 microg/kg) was administrated either intraperitoneally on a daily basis or subcutaneously (s.c.) on a daily, on a three times or one time per week basis, starting at day 10 post-STZ. A decrease in sensory nerve conduction velocity (SNCV), indicative of neuropathy, is seen in STZ rats as early as day 10 post-STZ, a time at which blood glycaemia is already maximal. At later time points, this electrophysiological impairment became severe and clinically apparent by affecting tail flick latency. Motor dysfunction defined by a significant increase in compound muscle action potential (CMAP) latency was also recorded. At the completion of the study (day 40 post-STZ), histological examination revealed significant axonopathy and myelin loss, along with an increase in the proportion of fibers with abnormal appearance in sciatic nerves of STZ rats. These changes were not observed in non-diabetic rats and were significantly prevented by IL-6 treatment. The optimal dose appeared to be 10 microg/kg s.c. three injections per week, which showed a better effect in most of the parameters studied than 4-methylcatechol, a NGF-like neuroprotective compound. Once weekly and three times weekly administrations of IL-6 were as effective as daily treatment. Taken together, these results support the potential neuroprotective actions of IL-6. The fact that the half-life of IL-6 is only approximately 5 h while weekly dosing was neuroprotective strongly suggests activation by IL-6 of effector molecule(s) with longer duration of action.
Collapse
|
23
|
Ji JF, Dheen ST, Kumar SD, He BP, Tay SSW. Expressions of cytokines and chemokines in the dorsal motor nucleus of the vagus nerve after right vagotomy. ACTA ACUST UNITED AC 2005; 142:47-57. [PMID: 16260063 DOI: 10.1016/j.molbrainres.2005.09.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 09/07/2005] [Accepted: 09/16/2005] [Indexed: 11/26/2022]
Abstract
The aim of this study was to investigate the expression of cytokines, tumor necrosis factor alpha (TNF-alpha), interleukin-1 beta (IL-1beta), interleukin-6 (IL-6) and transforming growth factor-beta 1 (TGF-beta1) and chemokines, fractalkine, monocyte chemoattractant protein 1 (MCP-1) and stromal cell-derived factor 1 (SDF-1) in the dorsal motor nucleus of the vagus nerve (DMV) after right vagotomy. Results showed that the immunoreactivities of IL-1beta, IL-6, TGF-beta1, fractalkine and MCP-1 were upregulated in the DMV at 14 days and the upregulation persisted at least until 28 days following right vagotomy. Quantification analysis revealed significant increases in the number of their immunopositive cells in the right DMV at 14 and 28 days after right vagotomy. Moreover, the upregulation of TNF-alpha immunoreactivity and significantly increased number of TNF-alpha-immunopositive cells were observed in the injured DMV at 7 and 14 days, and the increase in SDF-1-immunopositive cells at 14 days, after right vagotomy. Real time RT-PCR analysis showed the significant increase in the mRNA expression of IL-1beta, fractalkine and MCP-1 at 7 days, and the upregulation of TNF-alpha mRNA expression at 1 day after vagotomy. However, the peak increase in TGF-beta1 mRNA expression was observed at 1 day and the significant increase persisted at least until 14 days following right vagotomy. Double immunofluorescence analysis showed co-localization of lectin, a marker for microglia with CX3CR1 but not with IL-1beta at 14 days following right vagotomy. This study suggests that cytokines and chemokines involved in neuroprotection and neurodestruction could be activated in the axotomized DMV. However, it warrants further investigation to understand the neurodestructive and neuroprotective mechanisms that determine the fate of the vagal motoneurons after vagotomy.
Collapse
Affiliation(s)
- Jun Feng Ji
- Department of Anatomy, Faculty of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Blk. MD10, 4 Medical Drive, Singapore 117597, Singapore
| | | | | | | | | |
Collapse
|
24
|
Jones G, Zhu Y, Silva C, Tsutsui S, Pardo CA, Keppler OT, McArthur JC, Power C. Peripheral nerve-derived HIV-1 is predominantly CCR5-dependent and causes neuronal degeneration and neuroinflammation. Virology 2005; 334:178-93. [PMID: 15780868 DOI: 10.1016/j.virol.2005.01.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 10/29/2004] [Accepted: 01/17/2005] [Indexed: 10/25/2022]
Abstract
HIV-related peripheral neuropathy is a major neurological complication of HIV infection, although little is known about its pathogenesis. We amplified HIV-1 C2V3 envelope sequences from peroneal nerves obtained from HIV/AIDS patients. Sequence analysis and infectious recombinant viruses containing peripheral nerve-derived C2V3 sequences indicated a predominance of CCR5-dependent and macrophage-tropic HIV-1, although dual tropic viruses using both CCR5 and CXCR4 were identified. The neuropathogenic effects of recombinant HIV-1 clones were investigated using a novel dorsal root ganglion culture system that was comprised of sensory neurons, macrophages and Schwann cells from transgenic rats expressing human CD4 and CCR5 on monocytoid cells. Despite restricted viral replication, HIV-1 infection caused a reduction in the percentage of neurons with neuritic processes together with significant neurite retraction, which was accompanied by induction of IL-1beta and TNF-alpha expression, depending on the individual virus. Our results suggest that HIV-1 infection of the peripheral nervous system causes axonal degeneration, possibly through the induction of pro-inflammatory cytokines.
Collapse
|
25
|
Davis ID, Kiers L, MacGregor L, Quinn M, Arezzo J, Green M, Rosenthal M, Chia M, Michael M, Bartley P, Harrison L, Daly M. A randomized, double-blinded, placebo-controlled phase II trial of recombinant human leukemia inhibitory factor (rhuLIF, emfilermin, AM424) to prevent chemotherapy-induced peripheral neuropathy. Clin Cancer Res 2005; 11:1890-8. [PMID: 15756015 DOI: 10.1158/1078-0432.ccr-04-1655] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE To determine whether recombinant human leukemia inhibitory factor (rhuLIF, AM424, emfilermin) can prevent or ameliorate the development of chemotherapy-induced peripheral neuropathy (CIPN) after treatment with carboplatin (AUC 6) and paclitaxel (175 mg/m(2) over 3 hours). EXPERIMENTAL DESIGN Randomized double-blind placebo-controlled phase II clinical trial. Eligible patients had solid tumors for which treatment with carboplatin/paclitaxel was appropriate. The primary end point was a standardized composite peripheral nerve electrophysiology (CPNE) score, based on nerve velocities and amplitudes, measured at baseline and after four cycles of chemotherapy. Secondary efficacy end points included CPNE score at last cycle and at exit evaluation, vibration perception threshold, H-reflex latency, symptom scores, and quantitative assessment of neurologic signs. Study drug was given s.c. daily for 7 days starting the day before chemotherapy. Patients were randomized to receive low-dose rhuLIF (2 microg/kg), high-dose rhuLIF (4 microg/kg), or placebo. RESULTS Patients (n = 117) were randomized across seven neurology test centers. Thirty-six patients received low dose rhuLIF (2 microg/kg), 39 received high dose rhuLIF (4 microg/kg) and 42 received placebo. rhuLIF was well tolerated with 95% compliance and no adverse effects on quality of life. No differences between groups in CPNE or any of the individual neurologic testing variables were observed between baseline and cycle 4 or by the secondary efficacy variables. CONCLUSIONS rhuLIF is not effective in preventing CIPN caused by carboplatin and paclitaxel. CPNE is a reliable and valid tool that was sensitive to the onset and progression of CIPN.
Collapse
Affiliation(s)
- Ian D Davis
- Austin Health, Studley Road, Heidelberg, Victoria 3084, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee N, Neitzel KL, Di Marco A, Laufer R, MacLennan AJ. Penetrating brain injury leads to activation of ciliary neurotrophic factor receptors. Neurosci Lett 2005; 374:161-5. [PMID: 15663954 DOI: 10.1016/j.neulet.2004.10.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 10/15/2004] [Accepted: 10/20/2004] [Indexed: 11/23/2022]
Abstract
Endogenous injury response mechanisms likely reduce secondary neuronal loss following CNS trauma by activating growth factor receptors. Therefore, it is important to determine which growth factor receptors are activated in vivo by CNS trauma and which signal transduction pathways are affected in which cell types. We present a model of penetrating brain injury utilizing stereotaxic insertion of a fine needle. This procedure can be used to anatomically characterize injury response mechanisms through immediate, local application of pharmacological agents. We find, through immunohistochemistry, that injury of the rat facial motor nucleus leads to activation of STAT3, a neuronal survival factor, in the dendrites, nuclei and cytoplasm of the motor neurons. A similar response was observed with the trigeminal motor nucleus. Use of the ciliary neurotrophic factor (CNTF) receptor antagonist, AADH-CNTF, indicated that the STAT3 activation resulted largely, and perhaps entirely, from injury-induced activation of CNTF receptors.
Collapse
Affiliation(s)
- Nancy Lee
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|
27
|
Norenberg MD, Smith J, Marcillo A. The pathology of human spinal cord injury: defining the problems. J Neurotrauma 2004; 21:429-40. [PMID: 15115592 DOI: 10.1089/089771504323004575] [Citation(s) in RCA: 442] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This article reviews the pathology of human spinal cord injury (SCI), focusing on potential differences between humans and experimental animals, as well as on aspects that may have mechanistic or therapeutic relevance. Importance is placed on astrocyte and microglial reactions. These cells carry out a myriad of functions and we review the evidence that supports their beneficial or detrimental effects. Likewise, vascular responses and the role of inflammation and demyelination in the mechanism of SCI are reviewed. Lastly, schwannosis is discussed, highlighting its high frequency and potential role when designing therapeutic interventions. We anticipate that a better understanding of the pathological responses in the human will be useful to investigators in their studies on the pathogenesis and therapy of SCI.
Collapse
Affiliation(s)
- Michael D Norenberg
- Department of Pathology, University of Miami School of Medicine, The Miami Project to Cure Paralysis, and the Miami Veterans Affairs Medical Center Miami, Florida 33101, USA.
| | | | | |
Collapse
|
28
|
Prima V, Tennant M, Gorbatyuk OS, Muzyczka N, Scarpace PJ, Zolotukhin S. Differential modulation of energy balance by leptin, ciliary neurotrophic factor, and leukemia inhibitory factor gene delivery: microarray deoxyribonucleic acid-chip analysis of gene expression. Endocrinology 2004; 145:2035-45. [PMID: 14715713 DOI: 10.1210/en.2003-1376] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Most obese animal models, whether associated with genetic, diet-induced, or age-related obesity, display pronounced leptin resistance, rendering leptin supplement therapy ineffective in treating obesity. Ciliary neurotrophic factor (CNTF) has been recently used to invoke leptin-like signaling pathways, thereby circumventing leptin resistance. In the current study, we characterize immediate and long-term molecular events in the hypothalamus of rats exposed to the sustained ectopic expression of leptin, CNTF, or leukemia inhibitory factor, another neurocytokine of IL-6 family, all delivered centrally via a viral vector. The respective transgene-encoded ligands induced similar but not identical metabolic responses as assessed by the reduction in body weight gain and changes in food intake. To define molecular mechanisms of weight-reducing and anorexigenic action of cytokines, we have analyzed the gene expression profiles of 1300 brain-specific genes in the hypothalami of normal rats subjected to the prolonged cytokine action for 10 wk. We present evidence that constitutive expression of cytokines in the brain induces changes in gene expression characteristic of chronic inflammation leading to either temporal weight reduction (CNTF) or severe cachexia (leukemia inhibitory factor). Our results convey a cautionary note regarding potential use of the tested cytokines in therapeutic applications.
Collapse
Affiliation(s)
- V Prima
- Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida, Gainesville, Florida 32610-0266, USA
| | | | | | | | | | | |
Collapse
|
29
|
Mennini T, Bigini P, Cagnotto A, Carvelli L, Di Nunno P, Fumagalli E, Tortarolo M, Buurman WA, Ghezzi P, Bendotti C. Glial activation and TNFR-I upregulation precedes motor dysfunction in the spinal cord of mnd mice. Cytokine 2004; 25:127-35. [PMID: 14698139 DOI: 10.1016/j.cyto.2003.10.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mice homozygous for the spontaneous motor neuron degeneration mutation (mnd) show at the age of 8 months a marked impairment of the motor function and accumulation of lipofuscin granules in the cytoplasm of almost all neurons of the central nervous system. We previously reported a significant increase in GFAP protein levels in the lumbar spinal cord homogenates by western blot analysis and upregulation of TNF, a proinflammatory cytokine, in the motor neurons of lumbar spinal cord of mnd mice, already in a presymptomatic stage (4 months of age). In the present study, using immunohistochemical analysis, we performed a time course in mnd mice (1, 4 and 9 months of age) evaluating the expression and the distribution of astroglial and microglial cells and the expression of both TNF receptors, TNFR-I and TNFR-II. We observed a marked increase in astroglial and microglial cells and in TNFR-I immunoreactivity already at the 4th month. Since motor neuron dysfunction occurs in mnd mice in the absence of evident loss of spinal motor neurons, the present results indicate that the activation of microglial cells and astrocytes is independent from neuronal degeneration. The role of TNF and TNFR-I on motor neurons is still to be demonstrated.
Collapse
MESH Headings
- Age Factors
- Animals
- Antigens, CD/analysis
- Antigens, CD/metabolism
- Astrocytes/chemistry
- Astrocytes/cytology
- Astrocytes/metabolism
- CD11b Antigen/analysis
- Gene Expression/genetics
- Glial Fibrillary Acidic Protein/analysis
- Glial Fibrillary Acidic Protein/genetics
- Immunohistochemistry
- In Situ Hybridization
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Neurologic Mutants
- Microglia/chemistry
- Microglia/cytology
- Motor Neuron Disease/etiology
- Motor Neuron Disease/physiopathology
- Motor Neurons/chemistry
- Neuroglia/chemistry
- Neuroglia/cytology
- Neuroglia/metabolism
- Plant Lectins/analysis
- Receptors, Tumor Necrosis Factor/analysis
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Spinal Cord/physiopathology
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Tiziana Mennini
- Department Molecular Biochemistry and Pharmacology, Mario Negri Institute for Pharmacological Research, Via Eritrea, 62, 20157, Milan, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Feeney SJ, Austin L, Bennett TM, Kurek JB, Jean-Francois MJB, Muldoon C, Byrne E. The effect of leukaemia inhibitory factor on SOD1 G93A murine amyotrophic lateral sclerosis. Cytokine 2003; 23:108-18. [PMID: 12967646 DOI: 10.1016/s1043-4666(03)00217-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Before potential therapeutic strategies for the treatment of amyotrophic lateral sclerosis (ALS) can be advanced to human clinical trials, there is a need to assess them in an animal model that best resembles the disease process. SOD1 G93A mice have close resemblance to familial ALS (fALS) and have been used in this study to evaluate the therapeutic potential of leukaemia inhibitory factor (LIF). LIF action was investigated by assessing three delivery methods: (1) daily subcutaneous injection; (2) through LIF rods placed adjacent to hind limb skeletal muscle and (3) continuous intrathecal infusion. The effect on disease progression was assessed by semi-quantitative and quantitative functional measurements, and histologically on the survival of motor neurons and number of reactive astrocytes. The results show that LIF had no beneficial effects when administered using the three methods of drug delivery. These results suggest that further evaluation of LIF in this transgenic model is required to fully characterize its' therapeutic potential.
Collapse
Affiliation(s)
- Sandra J Feeney
- Melbourne Neuromuscular Research Institute, St. Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | |
Collapse
|
31
|
De Jongh RF, Vissers KC, Meert TF, Booij LHDJ, De Deyne CS, Heylen RJ. The role of interleukin-6 in nociception and pain. Anesth Analg 2003; 96:1096-1103. [PMID: 12651667 DOI: 10.1213/01.ane.0000055362.56604.78] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IMPLICATIONS That IL-6 is an interesting target in the study of pain is underscored by its biomolecular properties, its localization after experimental pain, and its modulating effect on pain after administration.
Collapse
Affiliation(s)
- Raf F De Jongh
- *Department of Anesthesia, Intensive Care, and Emergency Care and the Multidisciplinary Pain Centre, Ziekenhuis Oost Limburg, Genk, Belgium; †Johnson & Johnson, Pharmaceutical Research and Development, Beerse, Belgium; and ‡Department of Anesthesia, University Hospital of Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Cullheim S, Wallquist W, Hammarberg H, Lindå H, Piehl F, Carlstedt T, Risling M. Properties of motoneurons underlying their regenerative capacity after axon lesions in the ventral funiculus or at the surface of the spinal cord. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 40:309-16. [PMID: 12589929 DOI: 10.1016/s0165-0173(02)00213-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Spinal motoneurons represent neurons with axons located in both the central (CNS) and peripheral (PNS) nervous systems. Following a lesion to their axons in the PNS, motoneurons are able to regenerate. The regenerative capacity of these neurons is seen also after lesion in the ventral funiculus of the spinal cord, i.e. within the CNS compartment. Thus, after an axotomy within the ventral funiculus, motoneurons respond with a changing polarity towards production of axons, sometimes even from the dendritic tree. This capacity can be used in cases of ventral root avulsion (VRA) lesions, if a conduit for outgrowing axons is presented in the form of replanted ventral roots. In human cases, this procedure may accomplish return of function in denervated muscles. The strong regenerative capacity of motoneurons provides the basis for studies of the response in motoneurons with regard to their contents of substances related to survival and regeneration. Such studies have shown that, of the large number of receptors for neurotrophic substances and extracellular matrix molecules, mRNAs for receptors or receptor components for neurotrophin-3 (NT-3), ciliary neurotrophic factor (CNTF) and leukemia inhibitory factor (LIF) are strongly downregulated after VRA, while receptors for glial cell line-derived neurotrophic factor (GDNF) and laminins are profoundly upregulated. These results should be considered in the design of combined pharmacological and surgical approaches to lesions of motor axons at or close to the CNS-PNS interface.
Collapse
Affiliation(s)
- S Cullheim
- Department of Neuroscience, Retzius väg 8; B3:3, Karolinska Institutet, SE-171 77, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
33
|
Iwasaki Y, Ikeda K, Ichikawa Y, Igarashi O, Iwamoto K, Kinoshita M. Protective effect of interleukin-3 and erythropoietin on motor neuron death after neonatal axotomy. Neurol Res 2002; 24:643-6. [PMID: 12392198 DOI: 10.1179/016164102101200681] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Several members of hematopoietic factors are known to have neuroprotective effects against axotomized motor neuron death. We carried out a study to determine whether interleukin-3 (IL-3) and erythropoietin (EPO) rescue spinal motor neuron death following axotomy. Unilateral sciatic nerve was transected in neonatal rats. Different doses of IL-3, EPO, or vehicle were administered daily for two weeks by intraperitoneal injection. After treatment, the number of spinal motor neurons was determined at the level of L4 segment In comparison with vehicle, both IL-3 (10 microg kg(-1)) and EPO (5.0 mg kg(-1)) significantly prevented the loss of motor neurons. Protective potentials is the same between them. These results suggest that IL-3 and EPO play a role for motor neuron survival in vivo and suggest the potential use of these hematopoietic factors in treating diseases that involve degeneration and death of motor neurons, such as motor neuropathy and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Yasuo Iwasaki
- The Fourth Department of Internal Medicine, Toho University Ohashi Hospital, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Oliveira ALR, Risling M, Negro A, Langone F, Cullheim S. Apoptosis of spinal interneurons induced by sciatic nerve axotomy in the neonatal rat is counteracted by nerve growth factor and ciliary neurotrophic factor. J Comp Neurol 2002; 447:381-93. [PMID: 11992523 DOI: 10.1002/cne.10248] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We have previously shown that not only motoneurons and dorsal root ganglion cells but also small neurons, presumably interneurons in the spinal cord, may undergo apoptotic cell death as a result of neonatal peripheral nerve transection in the rat. With the aid of electron microscopy, we have here demonstrated that apoptosis in the spinal cord is confined to neurons and does not involve glial cells at the survival time studied (24 hours). To define the relative importance of the loss of a potential target (motoneuron) and a potential afferent input (dorsal root ganglion cell) for the induction of apoptosis in interneurons in this situation, we have compared the distributions and time courses for TUNEL labeling, which detects apoptotic cell nuclei, in the L5 segment of the spinal cord and the L5 dorsal root ganglion after sciatic nerve transection in the neonatal (P2) rat. In additional experiments, we studied the effects on TUNEL labeling of interneurons after treatment of the cut sciatic nerve with either ciliary neurotrophic factor (CNTF) to rescue motoneurons or nerve growth factor (NGF) to rescue dorsal root ganglion cells. The time courses of the TUNEL labeling in motoneurons and interneurons induced by the lesion show great similarities (peak at 8-48 hours postoperatively), whereas the labeling in dorsal root ganglion cells occurs later (24-72 hours). Both CNTF and NGF decrease the number of TUNEL-labeled interneurons, but there is a regional difference, in that CNTF preferentially saves interneurons in deep dorsal and ventral parts of the spinal cord, whereas the rescuing effects of NGF are seen mainly in the superficial dorsal horn. The results are interpreted as signs of a trophic dependence on both the target and the afferent input for the survival of interneurons neonatally.
Collapse
|
35
|
Gregorevic P, Williams DA, Lynch GS. Effects of leukemia inhibitory factor on rat skeletal muscles are modulated by clenbuterol. Muscle Nerve 2002; 25:194-201. [PMID: 11870686 DOI: 10.1002/mus.10015] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Leukemia inhibitory factor (LIF) is implicated in skeletal muscle regeneration, but the effect of exogenous LIF on uninjured muscles is not known. We tested the hypothesis that LIF administration would stimulate muscle hypertrophy, with an increased effect during clenbuterol-induced fiber remodeling. Rats received daily injections of either saline or LIF, and either regular or clenbuterol-supplemented drinking water for 4 weeks. In the slow-twitch soleus muscles of LIF-treated rats, specific force (sP(o)) and muscle fiber size were increased by approximately 13% and approximately 26%, respectively, compared to saline-treated rats. In the soleus muscles of rats receiving LIF and clenbuterol, compared to rats receiving clenbuterol alone, maximum isometric tension (P(o)) was approximately 19% greater. LIF alone did not affect the properties of fast-twitch extensor digitorum longus (EDL) muscles, but in rats receiving LIF and clenbuterol, compared to clenbuterol alone, EDL fiber size and muscle mass were increased by approximately 20% and approximately 10%, respectively. The hypertrophic effects of exogenous LIF on uninjured skeletal muscles indicate that LIF may have application in the treatment of conditions characterized by muscle wasting.
Collapse
Affiliation(s)
- Paul Gregorevic
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
36
|
Galiano M, Liu ZQ, Kalla R, Bohatschek M, Koppius A, Gschwendtner A, Xu S, Werner A, Kloss CU, Jones LL, Bluethmann H, Raivich G. Interleukin-6 (IL6) and cellular response to facial nerve injury: effects on lymphocyte recruitment, early microglial activation and axonal outgrowth in IL6-deficient mice. Eur J Neurosci 2001; 14:327-41. [PMID: 11553283 DOI: 10.1046/j.0953-816x.2001.01647.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nerve injury triggers numerous changes in the injured neurons and surrounding non-neuronal cells. Of particular interest are molecular signals that play a role in the overall orchestration of this multifaceted cellular response. Here we investigated the function of interleukin-6 (IL6), a multifunctional neurotrophin and cytokine rapidly expressed in the injured nervous system, using the facial axotomy model in IL6-deficient mice and wild-type controls. Transgenic deletion of IL6 caused a massive decrease in the recruitment of CD3-positive T-lymphocytes and early microglial activation during the first 4 days after injury in the axotomized facial nucleus. This was accompanied by a more moderate reduction in peripheral regeneration at day 4, lymphocyte recruitment (day 14) and enhanced perikaryal sprouting (day 14). Motoneuron cell death, phagocytosis by microglial cells and recruitment of granulocytes and macrophages into injured peripheral nerve were not affected. In summary, IL6 lead to a variety of effects on the cellular response to neural trauma. However, the particularly strong actions on lymphocytes and microglia suggest that this cytokine plays a central role in the initiation of immune surveillance in the injured central nervous system.
Collapse
Affiliation(s)
- M Galiano
- Department of Neuromorphology, Max-Planck Institute for Neurobiology, Am Klopferspitz 18A, D-82152 Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yang CW, Lim SW, Han KW, Ahn HJ, Park JH, Kim YH, Kirsh M, Cha JH, Park JH, Kim YS, Kim J, Bang BK. Upregulation of ciliary neurotrophic factor (CNTF) and CNTF receptor alpha in rat kidney with ischemia-reperfusion injury. J Am Soc Nephrol 2001; 12:749-757. [PMID: 11274236 DOI: 10.1681/asn.v124749] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ciliary neurotrophic factor (CNTF) is presumed to play a role as a survival factor in neuronal cells, but little is known about its role in the kidney. To investigate this, the expression of CNTF and CNTF receptor alpha (CNTFR alpha) was analyzed in the ischemic rat kidney. An ischemia/reperfusion (I/R) injury was induced by clamping both renal arteries for 45 min. Animals were killed at 1, 2, 3, 5, 7, 14, and 28 d after ischemia. The expression of CNTF and CNTFR alpha was monitored by reverse transcription-PCR, in situ hybridization, immunoblotting, immunohistochemistry, and electron microscopy. In sham-operated rat kidneys, CNTF expression was weak and limited to the descending thin limb of the loop of Henle. With I/R injury, CNTF mRNA and protein expressions were strikingly increased as compared with the sham-operated rat kidney, and the immunoreactivity of CNTF was mainly observed in the regenerating proximal tubules. The expression of CNTFR alpha mRNA was also increased after I/R injury, and its location and expression patterns were similar to the expression of CNTF. These findings suggest a possible role of CNTF as a growth factor during renal tubular repair processes after I/R injury and an autocrine or paracrine function of CNTF acting against CNTFR alpha.
Collapse
Affiliation(s)
- Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine, Kangnam St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Sun Woo Lim
- Department of Anatomy, The College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ki Whan Han
- Department of Anatomy, The College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hee Jong Ahn
- Division of Nephrology, Department of Internal Medicine, Kangnam St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Jung Hee Park
- Division of Nephrology, Department of Internal Medicine, Kangnam St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Young Hee Kim
- Department of Anatomy, The College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Matthias Kirsh
- Institute of Anatomy, University of Freiburg, Freiburg, Germany
| | - Jung Ho Cha
- Department of Anatomy, The College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Joo Hyun Park
- Division of Nephrology, Department of Internal Medicine, Kangnam St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Yong Soo Kim
- Division of Nephrology, Department of Internal Medicine, Kangnam St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Jin Kim
- Department of Anatomy, The College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Kee Bang
- Division of Nephrology, Department of Internal Medicine, Kangnam St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
38
|
Lowry KS, Murray SS, Coulson EJ, Epa R, Bartlett PF, Barrett G, Cheema SS. Systemic administration of antisense p75(NTR) oligodeoxynucleotides rescues axotomised spinal motor neurons. J Neurosci Res 2001; 64:11-7. [PMID: 11276046 DOI: 10.1002/jnr.1048] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The 75 kD low-affinity neurotrophin receptor (p75(NTR)) is expressed in developing and axotomised spinal motor neurons. There is now convincing evidence that p75(NTR) can, under some circumstances, become cytotoxic and promote neuronal cell death. We report here that a single application of antisense p75(NTR) oligodeoxynucleotides to the proximal nerve stumps of neonatal rats significantly reduces the loss of axotomised motor neurons compared to controls treated with nonsense oligodeoxynucleotides or phosphate-buffered saline. Our investigations also show that daily systemic intraperitoneal injections of antisense p75(NTR) oligodeoxynucleotides for 14 days significantly reduce the loss of axotomised motor neurons compared to controls. Furthermore, we found that systemic delivery over a similar period continues to be effective following axotomy when intraperitoneal injections were 1) administered after a delay of 24 hr, 2) limited to the first 7 days, or 3) administered every third day. In addition, p75(NTR) protein levels were reduced in spinal motor neurons following treatment with antisense p75(NTR) oligodeoxynucleotides. There were also no obvious side effects associated with antisense p75(NTR) oligodeoxynucleotide treatments as determined by behavioural observations and postnatal weight gain. Our findings indicate that antisense-based strategies could be a novel approach for the prevention of motor neuron degeneration associated with injuries or disease.
Collapse
Affiliation(s)
- K S Lowry
- Department of Anatomy and Cell Biology, Monash University, Wellington Road, Clayton, Victoria, 3800 Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Carlstedt T, Cullheim S. Spinal cord motoneuron maintenance, injury and repair. PROGRESS IN BRAIN RESEARCH 2001; 127:501-14. [PMID: 11142045 DOI: 10.1016/s0079-6123(00)27025-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- T Carlstedt
- Peripheral Nerve Injury Unit, The Royal National Orthopaedic Hospital, Brockley Hill, Stanmore HA7 4AP, UK.
| | | |
Collapse
|
40
|
Scott RL, Gurusinghe AD, Rudvosky AA, Kozlakivsky V, Murray SS, Satoh M, Cheema SS. Expression of leukemia inhibitory factor receptor mRNA in sensory dorsal root ganglion and spinal motor neurons of the neonatal rat. Neurosci Lett 2000; 295:49-53. [PMID: 11078934 DOI: 10.1016/s0304-3940(00)01578-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Previous studies have shown that the application of leukemia inhibitory factor to the proximal nerve stump prevents the degeneration of axotomized sensory neurons in the dorsal root ganglion and motor neurons in the spinal cord of newborn rats. This study investigated the expression of leukemia inhibitory factor receptor mRNA in these neurons using in situ hybridization. Leukemia inhibitory factor receptor mRNA was detected both in sensory neurons within the dorsal root ganglion and motor neurons of the cervical spinal cord. Twenty-four hours after axotomy these neurons continue to express leukemia inhibitory factor receptor mRNA. This pattern of leukemia inhibitory factor receptor expression provides a mechanism by which endogenous and exogenous leukemia inhibitory factor could act on injured sensory and motor neurons.
Collapse
Affiliation(s)
- R L Scott
- Department of Anatomy, Monash University, 3168, Clayton, Australia
| | | | | | | | | | | | | |
Collapse
|
41
|
Hammarberg H, Piehl F, Risling M, Cullheim S. Differential regulation of trophic factor receptor mRNAs in spinal motoneurons after sciatic nerve transection and ventral root avulsion in the rat. J Comp Neurol 2000; 426:587-601. [PMID: 11027401 DOI: 10.1002/1096-9861(20001030)426:4<587::aid-cne7>3.0.co;2-r] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
After sciatic nerve lesion in the adult rat, motoneurons survive and regenerate, whereas the same lesion in the neonatal animal or an avulsion of ventral roots from the spinal cord in adults induces extensive cell death among lesioned motoneurons with limited or no axon regeneration. A number of substances with neurotrophic effects have been shown to increase survival of motoneurons in vivo and in vitro. Here we have used semiquantitative in situ hybridization histochemistry to detect the regulation in motoneurons of mRNAs for receptors to ciliary neurotrophic factor (CNTF), leukemia inhibitory factor (LIF), glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) 1-42 days after the described three types of axon injury. After all types of injury, the mRNAs for GDNF receptors (GFRalpha-1 and c-RET) and the LIF receptor LIFR were distinctly (up to 300%) up-regulated in motoneurons. The CNTF receptor CNTFRalpha mRNA displayed only small changes, whereas the mRNA for membrane glycoprotein 130 (gp130), which is a critical receptor component for LIF and CNTF transduction, was profoundly down-regulated in motoneurons after ventral root avulsion. The BDNF full-length receptor trkB mRNA was up-regulated acutely after adult sciatic nerve lesion, whereas after ventral root avulsion trkB was down-regulated. The NT-3 receptor trkC mRNA was strongly down-regulated after ventral root avulsion. The results demonstrate that removal of peripheral nerve tissue from proximally lesioned motor axons induces profound down-regulations of mRNAs for critical components of receptors for CNTF, LIF, and NT-3 in affected motoneurons, but GDNF receptor mRNAs are up-regulated in the same situation. These results should be considered in relation to the extensive cell death among motoneurons after ventral root avulsion and should also be important for the design of therapeutical approaches in cases of motoneuron death.
Collapse
Affiliation(s)
- H Hammarberg
- Department of Neuroscience, Nobels v. 12A, Karolinska Institute, S-171 77 Stockholm, Sweden.
| | | | | | | |
Collapse
|
42
|
Arruda JL, Sweitzer S, Rutkowski MD, DeLeo JA. Intrathecal anti-IL-6 antibody and IgG attenuates peripheral nerve injury-induced mechanical allodynia in the rat: possible immune modulation in neuropathic pain. Brain Res 2000; 879:216-25. [PMID: 11011025 DOI: 10.1016/s0006-8993(00)02807-9] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Interleukin-6 (IL-6) is a pleiotrophic cytokine with a diverse range of actions including the modulation of the peripheral and central nervous system. We have previously shown significant IL-6 protein and messenger RNA elevation in rat spinal cord following peripheral nerve injury that results in pain behaviors suggestive of neuropathic pain. These spinal IL-6 levels correlated directly with the mechanical allodynia intensity following nerve injury. In the current study, we sought to determine whether it is possible to attenuate mechanical allodynia and/or alter spinal glial activation resulting from peripheral nerve injury by specific manipulation of IL-6 with neutralizing antibodies or by global immune modulation utilizing immunogamma-globulin (IgG). Effects of peripheral administration of normal goat IgG and intrathecal (i.t.) administration of IL-6 neutralizing antibody, normal goat or normal rat IgG on mechanical allodynia associated with L5 spinal nerve transection were compared. Spinal glial activation was assessed at day 10 post surgery by immunohistochemistry. Low dose (0.01-0.001 microg) goat anti-rat IL-6 i.t. administration (P=0.025) significantly decreased allodynia and trended towards significance at the higher dose (0.08 microg to 0.008 microg, P=0.062). Low doses (0.01-0.001 microg) i.t. normal goat and rat IgG significantly attenuated mechanical allodynia, but not at higher doses (0.08-0.008 microg; P=0.001 for both goat and rat IgG). Peripherally administered normal goat IgG (30 or 100 mg/kg) did not attenuate mechanical allodynia. Spinal glial activation was unaltered by any treatment. These data provide further evidence for the role of central IL-6 and neuroimmune modulation in the etiology of mechanical allodynia following peripheral nerve injury.
Collapse
Affiliation(s)
- J L Arruda
- Department of Anesthesiology, Dartmouth-Hitchcock Medical Center, HB 7125, 1 Medical Center Drive, Lebanon, NH 03756, USA.
| | | | | | | |
Collapse
|
43
|
Gregorevic P, Hayes A, Lynch GS, Williams DA. Functional properties of regenerating skeletal muscle following LIF administration. Muscle Nerve 2000; 23:1586-8. [PMID: 11003796 DOI: 10.1002/1097-4598(200010)23:10<1586::aid-mus17>3.0.co;2-a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We tested the hypothesis that periodic systemic administration of the myogenic cytokine leukemia inhibitory factor (LIF) enhances the functional recovery of regenerating skeletal muscle following bupivacaine-induced degeneration. LIF had no effect on functional capacity or regenerating myofiber size in rat muscles at 7, 14, or 21 days post-injury. The results do not support exogenous administration of LIF as a treatment for acute muscle injury, but a more frequent dosing regimen should be tested.
Collapse
Affiliation(s)
- P Gregorevic
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
44
|
Herx LM, Rivest S, Yong VW. Central nervous system-initiated inflammation and neurotrophism in trauma: IL-1 beta is required for the production of ciliary neurotrophic factor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2232-9. [PMID: 10925311 DOI: 10.4049/jimmunol.165.4.2232] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Injury to the CNS results in the production and accumulation of inflammatory cytokines within this tissue. The origin and role of inflammation within the CNS remains controversial. In this paper we demonstrate that an acute trauma to the mouse brain results in the rapid elevation of IL-1beta. This increase is detectable by 15 min after injury and significantly precedes the influx of leukocytes that occurs hours after. To confirm that IL-1beta up-regulation is initiated by cells within the CNS, in situ hybridization for cytokine transcript was combined with cell type immunohistochemistry. The results reveal parenchymal microglia to be the sole source of IL-1beta at 3 h postinjury. A role for CNS-initiated inflammation was addressed by examining the expression of the neurotrophic factor, ciliary neurotrophic factor (CNTF). Analysis of their temporal relationship suggests the up-regulation of CNTF by IL-1beta, which was confirmed through three lines of evidence. First, the application of IL-1 receptor antagonist into the lesion site attenuated the up-regulation of CNTF. Second, the examination of corticectomized animals genetically deficient for IL-1beta found no CNTF up-regulation. Third, the lack of CNTF elevation in IL-1beta null mice was rescued through exogenous application of IL-1beta into the lesion site. These findings provide the first evidence of the requirement for IL-1beta in the production of CNTF following CNS trauma, and suggest that inflammation can have a beneficial impact on the regenerative capacity of the CNS.
Collapse
Affiliation(s)
- L M Herx
- Departments of Clinical Neurosciences and Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | |
Collapse
|
45
|
Abstract
1. Leukaemia inhibitory factor (LIF) is a 180 amino acid single-chain protein, named after its effect on haematopoietic cells. Leukaemia inhibitory factor belongs to a group of cytokines that includes ciliary neurotrophic factor, interleukin (IL)-6, IL-11, cardiotrophin-1 and oncostatin M. All group members use the gp130 signal transducing subunit for intracellular signalling, but show differences in biological effect. 2. Research over the past 6-8 years has shown LIF to have potent neuromuscular activity. In vitro and in vivo studies on axotomy and nerve crush models demonstrate a powerful effect of LIF in enhancing the survival of both motor and sensory neurons, while reducing denervation-induced muscle atrophy. In models of both axotomy induced neuronal death and in the wobbler mouse, LIF is active at doses as low as 1 microgram/kg delivered systemically. 3. In muscle, LIF will increase the rate of muscle regeneration in vivo when applied exogenously after injury and will stimulate intrinsic muscle repair following its targeted release to dystrophic muscle in the mdx mouse. Leukaemia inhibitory factor may also have a role as an adjunct to myoblast transfer therapy, with studies showing that the transplantation of genetically competent myoblasts into mdx mouse muscle is enhanced when cells are injected with LIF. 4. Distribution and pharmacokinetic studies have been conducted in primates with doses of 20 micrograms/kg recombinant human LIF given subcutaneously over 2 weeks tolerated without major side effects. 5. A pharmaceutical form of recombinant human LIF (AM424; AMRAD Operations, Richmond, Victoria, Australia) entered human clinical trials during 1997 and a phase I clinical trial in healthy volunteers has been completed. A phase I repeat dose study has also been completed in cancer patients undergoing chemotherapy. The primary indication for a phase II study is the treatment of chemotherapy induced peripheral neuropathy. Other potential indications include muscle wasting diseases, acute nerve trauma and motor neuron disease. 6. The role of LIF in modulating nerve loss should make it an ideal candidate for the treatment of a number of neurological conditions. The phase I study represents the first trial in a programme for the clinical development of AM424.
Collapse
Affiliation(s)
- J Kurek
- AMRAD Operations Pty Ltd, Richmond, Victoria, Australia.
| |
Collapse
|
46
|
Schwaiger FW, Hager G, Schmitt AB, Horvat A, Hager G, Streif R, Spitzer C, Gamal S, Breuer S, Brook GA, Nacimiento W, Kreutzberg GW. Peripheral but not central axotomy induces changes in Janus kinases (JAK) and signal transducers and activators of transcription (STAT). Eur J Neurosci 2000; 12:1165-76. [PMID: 10762348 DOI: 10.1046/j.1460-9568.2000.00005.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nerve injury leads to the release of a number of cytokines which have been shown to play an important role in cellular activation after peripheral nerve injury. The members of the signal transducer and activator of transcription (STAT) gene family are the main mediators in the signal transduction pathway of cytokines. After phosphorylation, STAT proteins are transported into the nucleus and exhibit transcriptional activity. Following axotomy in rat regenerating facial and hypoglossal neurons, a transient increase of mRNA for JAK2, JAK3, STAT1, STAT3 and STAT5 was detected using in situ hybridization and semi-quantitative polymerase chain reaction (PCR). Of the investigated STAT molecules, only STAT3 protein was significantly increased. In addition, activation of STAT3 by phosphorylation on position Tyr705 and enhanced nuclear translocation was found within 3 h in neurons and after 1 day in astrocytes. Unexpectedly, STAT3 tyrosine phosphorylation was obvious for more than 3 months. In contrast, none of these changes was found in response to axotomy of non-regenerating Clarke's nucleus neurons, although all the investigated models express c-Jun and growth-associated protein-43 (GAP-43) in response to axonal injury. Increased expression of Janus kinase (JAK) and STAT molecules after peripheral nerve transection suggests changes in the responsiveness of the neurons to signalling molecules. STAT3 as a transcription factor, which is expressed early and is activated persistently until the time of reinnervation, might be involved in the switch from the physiological gene expression to an 'alternative program' activated only after peripheral nerve injury.
Collapse
Affiliation(s)
- F W Schwaiger
- Department of Neuromorphology, Max-Planck Institute of Neurobiology, D-82152 Martinsried, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hayashi M, Ueyama T, Nemoto K, Tamaki T, Senba E. Sequential mRNA expression for immediate early genes, cytokines, and neurotrophins in spinal cord injury. J Neurotrauma 2000; 17:203-18. [PMID: 10757326 DOI: 10.1089/neu.2000.17.203] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this communication, we demonstrate the sequential expression of endogenous molecules, including immediate early genes (IEGs), cytokines, neurotrophins, and neurotrophin receptors in the injured spinal cord. In the acute phase, expression of IEGs and cytokines mRNAs were rapidly upregulated within 1 h in nonneuronal cells in the lesioned sites and the surrounding spinal white and gray matter. Maximal expression was observed at 1 h for c-fos and TNF-alpha mRNAs, at 3 h for c-jun and IL-6 mRNAs, and at 6 h for IL-1 beta mRNA, and these signals were virtually nondetectable after 6-12 h from the onset of the injury. Some of these genes products may promote the degeneration of damaged cells and tissues, while others may be involved in the subsequent repair processes. In the subacute phase, expression of NGF, BDNF, NT-3, p75LNGFR and Trk B mRNAs began to increase in the nonneuronal cells and neuronal cells from 6 h, and peaked at 24-72 h in the area where expression of mRNAs for IEGs and cytokines overlapped. Signals for IL-6 mRNA were also observed in motoneurons at 24-72 h after the injury, with the suggestion that these molecules may be involved in promoting axonal sprouting in the injured spinal cord. Of further interest was the finding that this upregulation of IL-1 beta, BDNF, and NT-3 mRNAs in injured spinal cord was attenuated by treatment with high dose glucocorticoids, with the suggestion that the downregulation of BDNF and NT-3 might be disadvantageous to survival and axonal sprouting of spinal neurons.
Collapse
Affiliation(s)
- M Hayashi
- Department of Orthopedic Surgery, Wakayama Medical College, Wakayama City, Japan
| | | | | | | | | |
Collapse
|
48
|
März P, Otten U, Rose-John S. Neural activities of IL-6-type cytokines often depend on soluble cytokine receptors. Eur J Neurosci 1999; 11:2995-3004. [PMID: 10510164 DOI: 10.1046/j.1460-9568.1999.00755.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytokines of the interleukin-6 (IL-6) family participate in regulatory and inflammatory processes within the nervous system. IL-6, ciliary neurotrophic factor (CNTF) and IL-11 act via specific membrane receptors which, together with their ligands, associate with signal-transducing receptor subunits thereby initiating cytoplasmic signalling. Cells which only express signal-transducing receptor subunits but no ligand binding subunits for IL-6, CNTF and IL-11 are refractory to these cytokines. An unusual feature of the IL-6 cytokine family is that the soluble forms of the ligand binding receptor subunits generated by one cell type in complex with their ligands can directly stimulate the signal-transducing receptor subunits on different cell types which lack ligand binding receptor subunits. This process has been named transsignalling. This article focuses on the importance of transsignalling events in neuronal differentiation and survival responses.
Collapse
Affiliation(s)
- P März
- Department of Medicine, Mainz University, Germany
| | | | | |
Collapse
|
49
|
Zeman RJ, Feng Y, Peng H, Etlinger JD. Clenbuterol, a beta(2)-adrenoceptor agonist, improves locomotor and histological outcomes after spinal cord contusion in rats. Exp Neurol 1999; 159:267-73. [PMID: 10486195 DOI: 10.1006/exnr.1999.7146] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An important goal of rehabilitation following spinal cord injury is recovery of locomotor function and muscular strength. In the present studies, we determined whether the beta(2)-agonist, clenbuterol, can improve recovery of locomotor function following spinal cord injury. A model of spinal cord injury was examined in which four graded levels of contusion injury were produced in rats at the level of T10 with a weight-drop device. Locomotor recovery was determined with the Basso, Beattie, and Bresnahan (BBB) scale, which distinguishes between 22 progressive levels of recovery. As observed previously, recovery during the 6 weeks following injury was inversely related to the severity of injury. However, clenbuterol caused substantial enhancement of recovery of locomotor function at the two most severe levels of injury (BBB scores 10-12 vs 2-4). In addition, the extent of recovery was directly related to sparing of spinal cord tissue at the contusion center in both untreated and clenbuterol-treated spinal cords. Optimization of beta(2)-agonist treatment may lead to a useful therapeutic modality for treatment of spinal cord contusion injury.
Collapse
Affiliation(s)
- R J Zeman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, 10595, USA
| | | | | | | |
Collapse
|
50
|
MacLennan AJ, Devlin BK, Neitzel KL, McLaurin DL, Anderson KJ, Lee N. Regulation of ciliary neurotrophic factor receptor alpha in sciatic motor neurons following axotomy. Neuroscience 1999; 91:1401-13. [PMID: 10391446 DOI: 10.1016/s0306-4522(98)00717-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Spinal motor neurons are one of the few classes of neurons capable of regenerating axons following axotomy. Injury-induced expression of neurotrophic factors and corresponding receptors may play an important role in this rare ability. A wide variety of indirect data suggests that ciliary neurotrophic factor receptor alpha may critically contribute to the regeneration of injured spinal motor neurons. We used immunohistochemistry, in situ hybridization and retrograde tracing techniques to study the regulation of ciliary neurotrophic factor receptor alpha in axotomized sciatic motor neurons. Ciliary neurotrophic factor receptor alpha immunoreactivity, detected with two independent antisera, is increased in a subpopulation of caudal sciatic motor neuron soma one, two and six weeks after sciatic nerve transection and reattachment, while no changes are detected at one day and 15 weeks post-lesion. Ciliary neurotrophic factor receptor alpha messenger RNA levels are augmented in the same classes of neurons following an identical lesion, suggesting that increased synthesis contributes, at least in part, to the additional ciliary neurotrophic factor receptor alpha protein. Separating the proximal and distal nerve stumps with a plastic barrier does not noticeably affect the injury-induced change in ciliary neurotrophic factor receptor alpha regulation, thereby indicating that this injury response is not dependent on signals distal to the lesion traveling retrogradely through the nerve or signals generated by axonal growth through the distal nerve. The prolonged increases in ciliary neurotrophic factor receptor alpha protein and messenger RNA found in regenerating sciatic motor neurons contrast with the responses of non-regenerating central neurons, which are reported to display, at most, a short-lived increase in ciliary neurotrophic factor receptor alpha messenger RNA expression following injury. The present data are the first to demonstrate, in vivo, neuronal regulation of ciliary neurotrophic factor receptor alpha protein in response to injury. Moreover, they suggest that the ability of a subpopulation of spinal motor neurons to regulate ciliary neurotrophic factor receptor alpha levels in response to injury may play a role in their survival and axonal regeneration. Consistent with such a role, we also find relatively high, and probably elevated, levels of ciliary neurotrophic factor receptor alpha immunoreactivity in regenerating axons.
Collapse
Affiliation(s)
- A J MacLennan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville 32610-0244, USA
| | | | | | | | | | | |
Collapse
|