1
|
Brankin B, Osman M, Herlihy L, Hawkins S, Cosby S. Failure to Detect Measles Virus Rna, by Reverse Transcription-Polymerase Chain Reaction, in Peripheral Blood Leucocytes of Patients with Multiple Sclerosis. Mult Scler 2018. [DOI: 10.1177/135245859600100403] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have examined peripheral blood leucocytes (PBLs) from 17 multiple sclerosis patients, two patients with rheumatoid arthritis, one case of acute childhood measles and one case of subacute sclerosing panencephalitis, as well as 19 healthy adult controls for measles virus (MV) RNA, by the technique of reverse transcription-polymerase chain reaction. MV nucleocapsid gene specific primers were used to amplify all PBL-derived cDNA samples. These proved to be negative with the exception of the sample derived from the acute measles case. Selected cases were examined further, using fusion gene and matrix gene specific primers. MV RNA could not be detected.
Collapse
Affiliation(s)
- B. Brankin
- Division of Molecular Biology, School of Biology and Biochemistry, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - M. Osman
- Division of Molecular Biology, School of Biology and Biochemistry, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - L. Herlihy
- Division of Molecular Biology, School of Biology and Biochemistry, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL
| | - S.A. Hawkins
- Department of Neurology, Royal Victoria Hospital, Grosvenor Road, Belfast BT12 6BL, UK
| | - S.L. Cosby
- Division of Molecular Biology, School of Biology and Biochemistry, Medical Biology Centre, The Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL
| |
Collapse
|
2
|
Griffin DE, Lin WH, Pan CH. Measles virus, immune control, and persistence. FEMS Microbiol Rev 2012; 36:649-62. [PMID: 22316382 DOI: 10.1111/j.1574-6976.2012.00330.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 12/31/2022] Open
Abstract
Measles remains one of the most important causes of child morbidity and mortality worldwide with the greatest burden in the youngest children. Most acute measles deaths are owing to secondary infections that result from a poorly understood measles-induced suppression of immune responses. Young children are also vulnerable to late development of subacute sclerosing panencephalitis, a progressive, uniformly fatal neurologic disease caused by persistent measles virus (MeV) infection. During acute infection, the rash marks the appearance of the adaptive immune response and CD8(+) T cell-mediated clearance of infectious virus. However, after clearance of infectious virus, MeV RNA persists and can be detected in blood, respiratory secretions, urine, and lymphoid tissue for many weeks to months. This prolonged period of virus clearance may help to explain measles immunosuppression and the development of lifelong immunity to re-infection, as well as occasional infection of the nervous system. Once MeV infects neurons, the virus can spread trans-synaptically and the envelope proteins needed to form infectious virus are unnecessary, accumulate mutations, and can establish persistent infection. Identification of the immune mechanisms required for the clearance of MeV RNA from multiple sites will enlighten our understanding of the development of disease owing to persistent infection.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
3
|
Measles virus-induced immunosuppression: from effectors to mechanisms. Med Microbiol Immunol 2010; 199:227-37. [DOI: 10.1007/s00430-010-0152-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Indexed: 12/11/2022]
|
4
|
Pan CH, Greer CE, Hauer D, Legg HS, Lee EY, Bergen MJ, Lau B, Adams RJ, Polo JM, Griffin DE. A chimeric alphavirus replicon particle vaccine expressing the hemagglutinin and fusion proteins protects juvenile and infant rhesus macaques from measles. J Virol 2010; 84:3798-807. [PMID: 20130066 PMCID: PMC2849488 DOI: 10.1128/jvi.01566-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 12/21/2009] [Indexed: 11/20/2022] Open
Abstract
Measles remains a major cause of child mortality, in part due to an inability to vaccinate young infants with the current live attenuated virus vaccine (LAV). To explore new approaches to infant vaccination, chimeric Venezuelan equine encephalitis/Sindbis virus (VEE/SIN) replicon particles were used to express the hemagglutinin (H) and fusion (F) proteins of measles virus (MV). Juvenile rhesus macaques vaccinated intradermally with a single dose of VEE/SIN expressing H or H and F proteins (VEE/SIN-H or VEE/SIN-H+F, respectively) developed high titers of MV-specific neutralizing antibody and gamma-interferon (IFN-gamma)-producing T cells. Infant macaques vaccinated with two doses of VEE/SIN-H+F also developed neutralizing antibody and IFN-gamma-producing T cells. Control animals were vaccinated with LAV or with a formalin-inactivated measles vaccine (FIMV). Neutralizing antibody remained above the protective level for more than 1 year after vaccination with VEE/SIN-H, VEE/SIN-H+F, or LAV. When challenged with wild-type MV 12 to 17 months after vaccination, all vaccinated juvenile and infant monkeys vaccinated with VEE/SIN-H, VEE/SIN-H+F, and LAV were protected from rash and viremia, while FIMV-vaccinated monkeys were not. Antibody was boosted by challenge in all groups. T-cell responses to challenge were biphasic, with peaks at 7 to 25 days and at 90 to 110 days in all groups, except for the LAV group. Recrudescent T-cell activity coincided with the presence of MV RNA in peripheral blood mononuclear cells. We conclude that VEE/SIN expressing H or H and F induces durable immune responses that protect from measles and offers a promising new approach for measles vaccination. The viral and immunological factors associated with long-term control of MV replication require further investigation.
Collapse
Affiliation(s)
- Chien-Hsiung Pan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Catherine E. Greer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Debra Hauer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Harold S. Legg
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Eun-Young Lee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - M. Jeff Bergen
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Brandyn Lau
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Robert J. Adams
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - John M. Polo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| |
Collapse
|
5
|
Sion-Vardy N, Lasarov I, Delgado B, Gopas J, Benharroch D, Ariad S. Measles virus: evidence for association with lung cancer. Exp Lung Res 2010; 35:701-12. [PMID: 19895323 DOI: 10.3109/01902140902853176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In recent years the frequency of nonsmokers among lung cancer patients has increased to 10% to 15%. The measles virus has rarely been evoked as an etiological agent in malignant tumors and its role in carcinogenesis remains doubtful. It has been suggested that measles virus phosphoprotein may inhibit ubiquitination of Pirh2, which has been reported to be overexpressed in lung carcinoma and is responsible for degrading the cell cycle regulator p53. The authors conducted a clinicopathological study of newly diagnosed patients with non-small cell lung carcinoma of all stages seen in a 10-year period. Immunohistochemical studies for measles virus antigens, p53, and Pirh2 were performed using the avidin-biotin peroxidase complex. The authors found expression of measles virus antigens in 54 of 65 cases of non-small cell lung carcinoma. This finding is associated with the older age of the patients and with expression of Pirh2. The presence of Pirh2 itself was associated with improved survival.
Collapse
Affiliation(s)
- Netta Sion-Vardy
- Department of Pathology, Soroka University Medical Center, Beer Sheva, Israel.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Genetic, environmental, and hormonal factors contribute to disease susceptibility in systemic lupus erythematosus. Among environmental factors, infectious agents play a major role. When considering the complex relationship between genetic predisposition and infections in the pathogenesis of systemic lupus erythematosus, we have to consider that infectious agents can interact with the immune system in several ways. For example, molecular mimicry, altered apoptosis of the host cells, exposure of as yet masked antigens to the immune system by a given microorganism, and direct viral invasion of immunocompetent cells are all mechanisms that may give rise to dysfunction of the immune system; in addition, some genetically determined deficit of the immune system, such as complement deficiency or deficit of mannose binding lectine, may cause insufficient clearance of infectious agents, whose persistence in the host may determine autoimmunity. Finally, evidence has been emerging suggesting that the production of autoantibodies, by infected B-lymphocytes, may be drawn by altered expression of particular microRNA in these cells. In this paper, we review some of the distinct scenarios that can account for the role of infectious agents, acting on a genetically prone host, in determining systemic lupus erythematosus.
Collapse
|
7
|
Abstract
This review describes the two interrelated and interdependent processes of transcription and replication for measles virus. First, we concentrate on the ribonucleoprotein (RNP) complex, which contains the negative sense genomic template and in encapsidated in every virion. Second, we examine the viral proteins involved in these processes, placing particular emphasis on their structure, conserved sequence motifs, their interaction partners and the domains which mediate these associations. Transcription is discussed in terms of sequence motifs in the template, editing, co-transcriptional modifications of the mRNAs and the phase of the gene start sites within the genome. Likewise, replication is considered in terms of promoter strength, copy numbers and the remarkable plasticity of the system. The review emphasises what is not known or known only by analogy rather than by direct experimental evidence in the MV replication cycle and hence where additional research, using reverse genetic systems, is needed to complete our understanding of the processes involved.
Collapse
Affiliation(s)
- B K Rima
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | | |
Collapse
|
8
|
Schneider-Schaulies S, Schneider-Schaulies J. Measles virus-induced immunosuppression. Curr Top Microbiol Immunol 2008; 330:243-69. [PMID: 19203113 DOI: 10.1007/978-3-540-70617-5_12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immunosuppression is the major cause of infant death associated with acute measles and therefore of substantial clinical importance. Major hallmarks of this generalized modulation of immune functions are (1) lymphopenia, (2) a prolonged cytokine imbalance consistent with suppression of cellular immunity to secondary infections, and (3) silencing of peripheral blood lymphocytes, which cannot expand in response to ex vivo stimulation. Lymphopenia results from depletion, which can occur basically at any stage of lymphocyte development, and evidently, expression of the major MV receptor CD150 plays an important role in targeting these cells. Virus transfer to T cells is thought to be mediated by dendritic cells (DCs), which are considered central to the induction of T cell silencing and functional skewing. As a consequence of MV interaction, viability and functional differentiation of DCs and thereby their expression pattern of co-stimulatory molecules and soluble mediators are modulated. Moreover, MV proteins expressed by these cells actively silence T cells by interfering with signaling pathways essential for T cell activation.
Collapse
Affiliation(s)
- S Schneider-Schaulies
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany.
| | | |
Collapse
|
9
|
Chapter 4 Receptor Interactions, Tropism, and Mechanisms Involved in Morbillivirus‐Induced Immunomodulation. Adv Virus Res 2008; 71:173-205. [DOI: 10.1016/s0065-3527(08)00004-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Permar SR, Griffin DE, Letvin NL. Immune containment and consequences of measles virus infection in healthy and immunocompromised individuals. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:437-43. [PMID: 16603610 PMCID: PMC1459643 DOI: 10.1128/cvi.13.4.437-443.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sallie R Permar
- Division of Viral Pathogenesis, BIDMC, 330 Brookline Ave., RE-113, Boston, MA 02115, USA
| | | | | |
Collapse
|
11
|
Takemoto M, Kira R, Kusuhara K, Torisu H, Sakai Y, Hara T. Gene expression profiles in peripheral blood mononuclear cells from patients with subacute sclerosing panencephalitis using oligonucleotide microarrays. J Neurovirol 2005; 11:299-305. [PMID: 16036810 DOI: 10.1080/13550280590953825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
To investigate the molecular basis for measles virus persistence in patients with subacute sclerosing panencephalitis (SSPE), the authors used a high-density oligonucleotide microarray, and found that the expression of granulysin in peripheral blood mononuclear cells was significantly lower in the patients than in the controls. By a quantitative reverse transcriptase-polymerase chain reaction, the mRNA levels of granulysin were decreased in 30 SSPE patients, and were increased in 7 measles patients, as compared to the 23 controls. These results imply that granulysin might play a role in the host defense against measles virus and possibly be involved in the pathogenesis or pathophysiology of SSPE.
Collapse
Affiliation(s)
- Megumi Takemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
As measles virus causes subacute sclerosing panencephalitis and measles inclusion body encephalitis due to its ability to establish human persistent infection, without symptoms for the time between the acute infection and the onset of clinical symptoms, it has been the paradigm for a long term persistent as opposed to chronic infection by an RNA virus. We have reviewed the mechanisms of persistence of the virus and discuss specific mutations associated with CNS infection affecting the matrix and fusion protein genes. These are placed in the context of our current understanding of the viral replication cycle. We also consider the proposed mechanisms of persistence of the virus in replicating cell cultures and conclude that no general mechanistic model can be derived from our current state of knowledge. Finally, we indicate how reverse genetics approaches and the use of mouse models with specific knock-out and knock-in modifications can further our understanding of measles virus persistence.
Collapse
Affiliation(s)
- Bertus K Rima
- School of Biology and Biochemistry and Centre for Cancer Research and Cell Biology, The Queen's University of Belfast, Belfast BT9 7BL, Northern Ireland, UK.
| | | |
Collapse
|
13
|
Abstract
Morbilliviruses are a group of viruses that belong to the family Paramyxoviridae. The most instantly recognizable member is measles virus (MV) and individuals acutely infected with the virus exhibit a wide range of clinical symptoms ranging from a characteristic mild self-limiting infection to death. Canine distemper virus (CDV) and rinderpest virus (RPV) cause a similar but distinctive pathology in dogs and cattle, respectively, and these, alongside experimental MV infection of primates, have been useful models for MV pathogenesis. Traditionally, viruses were identified because a distinctive disease was observed in man or animals; an infectious agent was subsequently isolated, cultured, and this could be used to recapitulate the disease in an experimentally infected host. Thus, satisfying Koch's postulates has been the norm. More recently, particularly due to the advent of exceedingly sensitive molecular biological assays, many researchers have looked for infectious agents in disease conditions for which a viral aetiology has not been previously established. For these cases, the modified Koch's postulates of Bradford Hill have been developed as criteria to link a virus to a specific disease. Only in a few cases have these conditions been fulfilled. Therefore, many viruses have over the years been definitely and tentatively linked to human diseases and in this respect the morbilliviruses are no different. In this review, human diseases associated with morbillivirus infection have been grouped into three broad categories: (1) those which are definitely caused by the infection; (2) those which may be exacerbated or facilitated by an infection; and (3) those which currently have limited, weak, unsubstantiated or no credible scientific evidence to support any link to a morbillivirus. Thus, an attempt has been made to clarify the published data and separate human diseases actually linked to morbilliviruses from those that are merely anecdotally associated.
Collapse
Affiliation(s)
- Bertus K Rima
- School of Biomedical Sciences and Centre for Cancer Research and Cell Biology, The Queen's University of Belfast, UK.
| | | |
Collapse
|
14
|
Klagge IM, Abt M, Fries B, Schneider-Schaulies S. Impact of measles virus dendritic-cell infection on Th-cell polarization in vitro. J Gen Virol 2004; 85:3239-3247. [PMID: 15483237 DOI: 10.1099/vir.0.80125-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Interference of measles virus (MV) with dendritic-cell (DC) functions and deregulation of T-cell differentiation have been proposed to be central to the profound suppression of immune responses to secondary infections up to several weeks after the acute disease. To address the impact of MV infection on the ability of DCs to promote Th-cell differentiation, an in vitro system was used where uninfected, tumour necrosis factor alpha/interleukin (IL) 1 beta-primed DCs were co-cultured with CD45RO(-) T cells in the presence of conditioned media from MV-infected DCs primed under neutral or DC-polarizing conditions. It was found that supernatants of DCs infected with an MV vaccine strain strongly promoted Th1 differentation, whereas those obtained from wild-type MV-infected DCs generated a mixed Th1/Th0 response, irrespective of the conditions used for DC priming. Th-cell commitment in this system did not correlate with the production of IL12 p70, IL18 or IL23. Thus, a combination of these or other, as yet undefined, soluble factors is produced upon MV infection of DCs that strongly promotes Th1/Th0 differentiation.
Collapse
Affiliation(s)
- Ingo M Klagge
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| | - Marion Abt
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| | - Bianca Fries
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| | - Sibylle Schneider-Schaulies
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| |
Collapse
|
15
|
Sasaki H, Takei M, Kobayashi M, Pollard RB, Suzuki F. Effect of glycyrrhizin, an active component of licorice roots, on HIV replication in cultures of peripheral blood mononuclear cells from HIV-seropositive patients. Pathobiology 2003; 70:229-36. [PMID: 12679601 DOI: 10.1159/000069334] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Accepted: 11/07/2002] [Indexed: 11/19/2022] Open
Abstract
The effect of glycyrrhizin (GR) on HIV replication in cultures of peripheral blood mononuclear cells (PBMC) from HIV-infected patients was investigated. After the depletion of CD8+ T cells, PBMC from HIV+ patients (patient PBMC) and PBMC from healthy donors (healthy PBMC) were cocultured in the presence or absence of GR (100 microg/ml) for 21 days. In cultures of 13 of 42 samples of patient PBMC (13/42, 31%), GR inhibited more than 90% of HIV replication. Among 42 samples of patient PBMC, 20 were identified to be infected with a non-syncytium-inducing variant of HIV (NSI-HIV), 15 with a syncytium-inducing variant of HIV (SI-HIV), and the remaining 7 were classified as cells infected with SI-HIV and/or NSI-HIV. GR inhibited more than 90% of HIV replication in cultures of 12 patient PBMC samples infected with NSI-HIV (12/20, 60%). In patient PBMC infected with SI-HIV, GR inhibited HIV replication in only 1 patient (1/15, 7%). In cultures of patient PBMC, GR induced the production of CC chemokine ligand (CCL)4 and CCL5 in a dose-dependent manner. When the assay was performed in PBMC cultures supplemented with a mixture of monoclonal antibodies for CCL4 and CCL5, no evidence of anti-HIV activity of GR was found. These results indicate that GR has the potential to inhibit NSI-HIV replication in patient PBMC cultures by inducing the production of beta-chemokines.
Collapse
Affiliation(s)
- Hidetaka Sasaki
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Tex 77555-0435, USA
| | | | | | | | | |
Collapse
|
16
|
Bieback K, Breer C, Nanan R, Meulen VT, Schneider-Schaulies S. Expansion of human gamma/delta T cells in vitro is differentially regulated by the measles virus glycoproteins. J Gen Virol 2003; 84:1179-1188. [PMID: 12692283 DOI: 10.1099/vir.0.19027-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Impaired proliferative response of lymphocytes after mitogenic stimulation ex vivo is a key feature of the generalized immunosuppression induced by measles virus (MV). Compelling evidence suggests that negative signalling by the MV glycoprotein (gp) complex and the surface of uninfected lymphocytes is essential for this effect. So far, the inhibitory activity of this complex applied to all lymphocyte subpopulations irrespective of the mode of stimulation and could not be overcome by external stimulation. This study shows that the isopentenyl pyrophosphate (IPP)/IL-2-stimulated expansion of human gamma/delta T cell receptor (TCR) T cells from peripheral blood mononuclear cells (PBMCs) is inhibited efficiently when the MV gp complex is expressed on the surface of persistently MV-infected T or monocytic cells. In contrast, persistently infected B cells or infected human dendritic cells (DCs) do not interfere with expansion of gamma/delta TCR T cells from PBMCs. These particular two cell populations, however, efficiently inhibit IPP/IL-2-stimulated expansion of gamma/delta TCR T cells from purified T cells and this is reverted by resubstitution with monocytes. As revealed by filter experiments, cocultivation with B cells and DCs empower monocytes, at least partially by soluble mediators, to provide membrane contact-dependent costimulatory signals that neutralize the inhibitory effect of the MV gp complex. Thus, gamma/delta TCR T cells are sensitive to MV gp-mediated inhibition; however, this is overcome efficiently by signals delivered from monocytes conditioned by B cells and DCs.
Collapse
Affiliation(s)
- Karen Bieback
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| | - Claudia Breer
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| | - Ralph Nanan
- Children's Hospital, University of Würzburg, Josef-Schneider-Str. 2, D-97078 Würzburg, Germany
| | - Volker Ter Meulen
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| | - Sibylle Schneider-Schaulies
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| |
Collapse
|
17
|
Frisk AL, König M, Moritz A, Baumgärtner W. Detection of canine distemper virus nucleoprotein RNA by reverse transcription-PCR using serum, whole blood, and cerebrospinal fluid from dogs with distemper. J Clin Microbiol 1999; 37:3634-43. [PMID: 10523566 PMCID: PMC85712 DOI: 10.1128/jcm.37.11.3634-3643.1999] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/1999] [Accepted: 07/26/1999] [Indexed: 11/20/2022] Open
Abstract
Reverse transcription-PCR (RT-PCR) was used to detect canine distemper virus (CDV) nucleoprotein (NP) RNA in serum, whole blood, and cerebrospinal fluid (CSF) samples from 38 dogs with clinically suspected distemper. Results were correlated to clinical findings, anti-CDV neutralizing antibody titers, postmortem findings, and demonstration of CDV NP antigen by immunohistochemistry. The specificity of the RT-PCR was ensured by amplification of RNA from various laboratory CDV strains, restriction enzyme digestion, and Southern blot hybridization. In 29 of 38 dogs, CDV infection was confirmed by postmortem examination and immunohistochemistry. The animals displayed the catarrhal, systemic, and nervous forms of distemper. Seventeen samples (serum, whole blood, or CSF) from dogs with distemper were tested with three sets of primers targeted to different regions of the NP gene of the CDV Onderstepoort strain. Expected amplicons were observed in 82, 53, and 41% of the 17 samples, depending upon the primer pair used. With the most sensitive primer pair (primer pair I), CDV NP RNA was detected in 25 of 29 (86%) serum samples and 14 of 16 (88%) whole blood and CSF samples from dogs with distemper but not in body fluids from immunohistochemically negative dogs. Nucleotide sequence analysis of five RT-PCR amplicons from isolates from the field revealed few silent point mutations. These isolates exhibited greater homology to the Rockborn (97 to 99%) than to the Onderstepoort (95 to 96%) CDV strain. In summary, although the sensitivity of the RT-PCR for detection of CDV is strongly influenced by the location of the selected primers, this nucleic acid detection system represents a highly specific and sensitive method for the antemortem diagnosis of distemper in dogs, regardless of the form of distemper, humoral immune response, and viral antigen distribution.
Collapse
Affiliation(s)
- A L Frisk
- Institut für Veterinär-Pathologie, Fachbereich Veterinärmedizin, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | | | | | | |
Collapse
|
18
|
Schneider-Schaulies S, ter Meulen V. Pathogenic aspects of measles virus infections. ARCHIVES OF VIROLOGY. SUPPLEMENTUM 1999; 15:139-58. [PMID: 10470275 DOI: 10.1007/978-3-7091-6425-9_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Measles virus (MV) infections normally cause an acute self limiting disease which is resumed by a virus-specific immune response and leads to the establishment of a lifelong immunity. Complications associated with acute measles can, on rare occasions, involve the central nervous system (CNS). These are postinfectious measles encephalitis which develops soon after infection, and, months to years after the acute disease, measles inclusion body encephalitis (MIBE) and subacute sclerosing panencephalitis (SSPE) which are based on a persistent MV infection of brain cells. Before the advent of HIV, SSPE was the best studied slow viral infection of the CNS, and particular restrictions of MV gene expression as well as MV interactions with neural cells have revealed important insights into the pathogenesis of persistent viral CNS infections. MV CNS complication do, however, not large contribute to the high rate of mortality seen in association with acute measles worldwide. The latter is due to a virus-induced suppression of immune functions which favors the establishment of opportunistic infections. Mechanisms underlying MV-mediated immunosuppression are not well understood. Recent studies have indicated that MV-induced disruption of immune functions may be multifactorial including the interference with cytokine synthesis, the induction of soluble inhibitory factors or apoptosis and negative signalling to T cells by the viral glycoproteins expressed on the surface of infected cells, particularly dendritic cells.
Collapse
|
19
|
Chadwick N, Bruce IJ, Schepelmann S, Pounder RE, Wakefield AJ. Measles virus RNA is not detected in inflammatory bowel disease using hybrid capture and reverse transcription followed by the polymerase chain reaction. J Med Virol 1998. [DOI: 10.1002/(sici)1096-9071(199808)55:4<305::aid-jmv9>3.0.co;2-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Schnorr JJ, Xanthakos S, Keikavoussi P, Kämpgen E, ter Meulen V, Schneider-Schaulies S. Induction of maturation of human blood dendritic cell precursors by measles virus is associated with immunosuppression. Proc Natl Acad Sci U S A 1997; 94:5326-31. [PMID: 9144236 PMCID: PMC24677 DOI: 10.1073/pnas.94.10.5326] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/1997] [Accepted: 03/17/1997] [Indexed: 02/04/2023] Open
Abstract
As well as inducing a protective immune response against reinfection, acute measles is associated with a marked suppression of immune functions against superinfecting agents and recall antigens, and this association is the major cause of the current high morbidity and mortality rate associated with measles virus (MV) infections. Dendritic cells (DCs) are antigen-presenting cells crucially involved in the initiation of primary and secondary immune responses, so we set out to define the interaction of MV with these cells. We found that both mature and precursor human DCs generated from peripheral blood monocytic cells express the major MV protein receptor CD46 and are highly susceptible to infection with both MV vaccine (ED) and wild-type (WTF) strains, albeit with different kinetics. Except for the down-regulation of CD46, the expression pattern of functionally important surface antigens on mature DCs was not markedly altered after MV infection. However, precursor DCs up-regulated HLA-DR, CD83, and CD86 within 24 h of WTF infection and 72 h after ED infection, indicating their functional maturation. In addition, interleukin 12 synthesis was markedly enhanced after both ED and WTF infection in DCs. On the other hand, MV-infected DCs strongly interfered with mitogen-dependent proliferation of freshly isolated peripheral blood lymphocytes in vitro. These data indicate that the differentiation of effector functions of DCs is not impaired but rather is stimulated by MV infection. Yet, mature, activated DCs expressing MV surface antigens do give a negative signal to inhibit lymphocyte proliferation and thus contribute to MV-induced immunosuppression.
Collapse
Affiliation(s)
- J J Schnorr
- Institute for Virology and Immunobiology of the University of Würzburg, Versbacher Strasse 7, D-97078 Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- M B Oldstone
- Scripps Research Institute, Department of Neuropharmacology, La Jolla, CA 92037, USA
| |
Collapse
|
22
|
Schneider-Schaulies J, Schnorr JJ, Schlender J, Dunster LM, Schneider-Schaulies S, ter Meulen V. Receptor (CD46) modulation and complement-mediated lysis of uninfected cells after contact with measles virus-infected cells. J Virol 1996; 70:255-63. [PMID: 8523534 PMCID: PMC189812 DOI: 10.1128/jvi.70.1.255-263.1996] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recently, it has been observed that the infection of human target cells with certain measles virus (MV) strains leads to the downregulation of the major MV receptor CD46. Here we report that CD46 downregulation can be rapidly induced in uninfected cells after surface contact with MV particles or MV-infected cells. Receptor modulation is detectable after 30 min of cocultivation of uninfected cells with MV-infected cells and is complete after 2 to 4 h, a time after which newly synthesized MV hemagglutinin (MV-H) cannot be detected in freshly infected target cells. This contact-mediated receptor modulation is also induced by recombinant MV-H expressed by vaccinia virus and is inhibitable with antibodies against CD46 and MV-H. By titrating the effect with MV Edmonston strain-infected cells, a significant contact-mediated CD46 modulation was detectable up to a ratio of 1 infected to 64 uninfected cells. As a result of CD46 downregulation, an increased susceptibility of uninfected cells for complement-mediated lysis was observed. This phenomenon, however, is MV strain dependent, as observed for the downregulation of CD46 after MV infection. These data suggest that in acute measles or following measles vaccination, uninfected cells might also be destroyed by complement after contacting an MV-infected cell.
Collapse
|
23
|
Nakayama T, Mori T, Yamaguchi S, Sonoda S, Asamura S, Yamashita R, Takeuchi Y, Urano T. Detection of measles virus genome directly from clinical samples by reverse transcriptase-polymerase chain reaction and genetic variability. Virus Res 1995; 35:1-16. [PMID: 7754670 DOI: 10.1016/0168-1702(94)00074-m] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A simple and sensitive method for the detection of measles virus genome was developed, amplifying the regions encoding the nucleocapsid (N) protein and hemagglutinin (H) protein of measles virus by reverse transcriptase-polymerase chain reaction (RT-PCR). We examined a variety of measles patients: 28 patients with natural infection, 4 with measles encephalitis and 1 with subacute sclerosing panencephalitis (SSPE). In 28 patients with natural measles infection a single step PCR amplifying the N region resulted in a high detection rate for all plasma samples (28/28) within 3 days of the onset of rash and 80% (20/25) even on day 7 of the onset of rash and later. Within 3 days of the onset of rash, 24/25 (96.0%) of nasopharyngeal secretions (NPS) and 27/28 (96.4%) of peripheral blood mononuclear cells (PBMC) were positive for the N region PCR and the positivity rate of PCR decreased in NPS and PBMC after 7 days of the rash. In acute measles infection, measles genome was detected in all cell fractions, CD4, CD8, B cells, and monocytes/macrophages by the H gene nested PCR. Measles genome was also detected from cerebrospinal fluids (CSF) in patients with measles encephalitis, SSPE, and acute measles by the H gene nested PCR. PCR products of the N and H regions were sequenced and we confirmed the presence of measles genome. Based on the sequence data, chronological sequence differences were observed over the past 10 years. The sequences obtained from the SSPE patient were closely related to those of the wild viruses that were circulating at the time when the patient initially acquired measles. RT-PCR for NPS, PBMC, CSF, and plasma provides a useful method for the diagnosis of measles and molecular epidemiological study in addition to virus isolation.
Collapse
Affiliation(s)
- T Nakayama
- Kitasato Institute, Department of Virology, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Affiliation(s)
- P Borrow
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
25
|
|
26
|
Schnorr JJ, Schneider-Schaulies S, Simon-Jödicke A, Pavlovic J, Horisberger MA, ter Meulen V. MxA-dependent inhibition of measles virus glycoprotein synthesis in a stably transfected human monocytic cell line. J Virol 1993; 67:4760-8. [PMID: 8392613 PMCID: PMC237862 DOI: 10.1128/jvi.67.8.4760-4768.1993] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The alpha/beta (type I) interferon-inducible human MxA protein confers resistance to vesicular stomatitis virus (VSV) and influenza A virus in MxA-transfected mouse 3T3 cells (3T3/MxA). We investigated the inhibitory effects of the MxA protein on measles virus (MV) and VSV in the human monocytic cell line U937. In transfected U937 clones which constitutively express MxA (U937/MxA), the release of infectious MV and VSV was reduced approximately 100-fold in comparison with control titers. Transcription of VSV was inhibited similar to that observed for 3T3/MxA cells, whereas no difference was detected for MV in the rates of transcription or the levels of MV-specific mRNAs. In contrast, analysis of MV protein expression by immunofluorescence and immunoprecipitation revealed a significant reduction in the synthesis of MV glycoproteins F and H in U937/MxA cells. These data demonstrate a virus-specific effect of MxA which may, in the case of MV, contribute to the establishment of a persistent infection in human monocytic cells.
Collapse
Affiliation(s)
- J J Schnorr
- Institute for Virology and Immunobiology, Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
McQuaid S, Kirk J, Zhou AL, Allen IV. Measles virus infection of cells in perivascular infiltrates in the brain in subacute sclerosing panencephalitis: confirmation by non-radioactive in situ hybridization, immunocytochemistry and electron microscopy. Acta Neuropathol 1993; 85:154-8. [PMID: 8442407 DOI: 10.1007/bf00227762] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
As part of continuing multidisciplinary studies on the neuropathogenesis of subacute sclerosing panencephalitis (SSPE), in situ hybridisation, immunocytochemistry and electron microscopy were used to detect measles virus nucleic acid, protein and nucleocapsids in brain perivascular infiltrates of three cases. Perivascular cuffing cells which contained measles virus nucleic acid and antigens were found in all cases. Infected cuffs occurred predominantly in areas of general parenchymal cell infection and in many of these a high proportion of the infiltrating cells were infected. Other cuffs in these areas were either uninfected or contained only a few infected cells. Occasional infected cells were also seen in cuffs in non-infected areas. In contrast, no specific immunocytochemical reactions or in situ hybridisation for measles virus was observed in brain tissue from a patient with herpes encephalitis. By electron microscopy viral nucleocapsid, consistent with measles virus, was found within the cytoplasm of plasma cells in the inflammatory cuffs in SSPE brain tissue. Possible explanations for our results are that infiltrates become infected on arrival in the CNS or alternatively, that the infected infiltrates reflect a generalised infection of the reticuloendothelial system. The frequent presence of uninfected cuffs favours the former explanation.
Collapse
|
28
|
Hirano A. Subacute sclerosing panencephalitis virus dominantly interferes with replication of wild-type measles virus in a mixed infection: implication for viral persistence. J Virol 1992; 66:1891-8. [PMID: 1548746 PMCID: PMC288976 DOI: 10.1128/jvi.66.4.1891-1898.1992] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Interaction between the Edmonston or Nagahata strain of acute measles virus (MV) and the defective Biken strain of MV isolated from a patient with subacute sclerosing panencephalitis (SSPE) was examined by a cell fusion protocol. Biken-CV-1 cells nonproductively infected with Biken strain SSPE virus were fused with neomycin-resistant CV-1 cells. All the fused cells selected with the neomycin analog G418 expressed Biken viral proteins, as determined by an immunofluorescence assay. This procedure enabled the transfer of Biken viral genomes into cells previously infected with MV. In the fused cells coinfected by Biken strain SSPE virus and Edmonston or Nagahata strain MV, early MV gene expression was suppressed, as determined by immunoprecipitation with strain-specific antibodies. Maturation of Edmonston strain MV was also suppressed. When the coinfected fused cells were selected with G418, Biken viral proteins remained at a constant level for up to 7 weeks. Wild-type MV proteins gradually decreased to a barely detectable level after 4 weeks and became undetectable after 7 weeks. Immunofluorescence studies showed a steady decline in cells expressing wild-type MV proteins in the coinfected cultures. These results suggest that Biken strain SSPE virus dominantly interferes with the replication of wild-type MV. The possible mechanisms of dominant interference and the implication for evolution of a persistent MV infection are discussed.
Collapse
Affiliation(s)
- A Hirano
- Department of Microbiology, University of Washington School of Medicine, Seattle 98195
| |
Collapse
|
29
|
Yanagi Y, Cubitt BA, Oldstone MB. Measles virus inhibits mitogen-induced T cell proliferation but does not directly perturb the T cell activation process inside the cell. Virology 1992; 187:280-9. [PMID: 1736530 DOI: 10.1016/0042-6822(92)90316-h] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Measles virus (MV) inhibits lymphocyte function in patients, as well as in cells infected in vitro. The proliferation of phytohemagglutinin-stimulated T lymphocytes is suppressed by in vitro MV infection, as shown by the diminished incorporation of [3H]thymidine into DNA and the reduced frequency of cells in the S phase of the cell cycle, as compared with mock-infected cells. MV infection itself, however, does not completely block DNA synthesis in infected cells, because infected T cells expressing MV antigens on the cell surface, isolated by fluorescence-activated cell sorter, could still proliferate. Northern blot analysis indicated that the expression of genes induced during T cell activation, such as those encoding interleukin 2 (IL-2), c-myc, IL-2 receptor, IL-6, c-myb, and cdc-2, was not significantly suppressed in MV-infected cells, suggesting that MV does not interfere with the T cell activation process. When anti-MV serum or carbobenzoxy-D-Phe-L-Phe-Gly, a synthetic oligopeptide known to inhibit MV-induced fusion, was added 24 hr after infection, the inhibition of T cell proliferation was reversed in a dose-dependent manner. From these results we propose a model for the inhibition of T cell proliferation by MV; MV glycoproteins expressed on the cell surface of infected cells interact with the MV receptor or other molecules on the cell membrane of adjacent T cells, which in turn affects the proliferation of those T cells.
Collapse
Affiliation(s)
- Y Yanagi
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, California 92037
| | | | | |
Collapse
|