1
|
Chen L, Chen A, Zhang XD, Saenz Robles MT, Han HS, Xiao Y, Xiao G, Pipas JM, Weitz DA. Targeted whole-genome recovery of single viral species in a complex environmental sample. Proc Natl Acad Sci U S A 2024; 121:e2404727121. [PMID: 39052829 PMCID: PMC11295033 DOI: 10.1073/pnas.2404727121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024] Open
Abstract
Characterizing unknown viruses is essential for understanding viral ecology and preparing against viral outbreaks. Recovering complete genome sequences from environmental samples remains computationally challenging using metagenomics, especially for low-abundance species with uneven coverage. We present an experimental method for reliably recovering complete viral genomes from complex environmental samples. Individual genomes are encapsulated into droplets and amplified using multiple displacement amplification. A unique gene detection assay, which employs an RNA-based probe and an exonuclease, selectively identifies droplets containing the target viral genome. Labeled droplets are sorted using a microfluidic sorter, and genomes are extracted for sequencing. We demonstrate this method's efficacy by spiking two known viral genomes, Simian virus 40 (SV40, 5,243 bp) and Human Adenovirus 5 (HAd5, 35,938 bp), into a sewage sample with a final abundance in the droplets of around 0.1% and 0.015%, respectively. We achieve 100% recovery of the complete sequence of the spiked-in SV40 genome with uniform coverage distribution. For the larger HAd5 genome, we cover approximately 99.4% of its sequence. Notably, genome recovery is achieved with as few as one sorted droplet, which enables the recovery of any desired genomes in complex environmental samples, regardless of their abundance. This method enables single-genome whole-genome amplification and targeting characterizations of rare viral species and will facilitate our ability to access the mutational profile in single-virus genomes and contribute to an improved understanding of viral ecology.
Collapse
Affiliation(s)
- Liyin Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Anqi Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Xinge Diana Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | | | - Hee-Sun Han
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Yi Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Gao Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - James M. Pipas
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA15260
| | - David A. Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- Department of Physics, Harvard University, Cambridge, MA02138
| |
Collapse
|
2
|
Fischer J, Fedotova A, Bühler C, Darriba L, Schreiner S, Ruzsics Z. Expanding the Scope of Adenoviral Vectors by Utilizing Novel Tools for Recombination and Vector Rescue. Viruses 2024; 16:658. [PMID: 38793540 PMCID: PMC11125593 DOI: 10.3390/v16050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Recombinant adenoviruses are widely used in clinical and laboratory applications. Despite the wide variety of available sero- and genotypes, only a fraction is utilized in vivo. As adenoviruses are a large group of viruses, displaying many different tropisms, immune epitopes, and replication characteristics, the merits of translating these natural benefits into vector applications are apparent. This translation, however, proves difficult, since while research has investigated the application of these viruses, there are no universally applicable rules in vector design for non-classical adenovirus types. In this paper, we describe a generalized workflow that allows vectorization, rescue, and cloning of all adenoviral species to enable the rapid development of new vector variants. We show this using human and simian adenoviruses, further modifying a selection of them to investigate their gene transfer potential and build potential vector candidates for future applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Zsolt Ruzsics
- Institute of Virology, University Medical Center Freiburg, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany; (J.F.); (A.F.); (S.S.)
| |
Collapse
|
3
|
Zhang H, Wang H, An Y, Chen Z. Construction and application of adenoviral vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102027. [PMID: 37808925 PMCID: PMC10556817 DOI: 10.1016/j.omtn.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Adenoviral vectors have been widely used as vaccine candidates or potential vaccine candidates against infectious diseases due to the convenience of genome manipulation, their ability to accommodate large exogenous gene fragments, easy access of obtaining high-titer of virus, and high efficiency of transduction. At the same time, adenoviral vectors have also been used extensively in clinical research for cancer gene therapy and treatment of diseases caused by a single gene defect. However, application of adenovirus also faces a series of challenges such as poor targeting, strong immune response against the vector itself, and they cannot be used repeatedly. It is believed that these problems will be solved gradually with further research and technological development in related fields. Here, we review the construction methods of adenoviral vectors, including "gutless" adenovirus and discuss application of adenoviral vectors as prophylactic vaccines for infectious pathogens and their application prospects as therapeutic vaccines for cancer and other kinds of chronic infectious disease such as human papillomavirus, hepatitis B virus, and hepatitis C virus.
Collapse
Affiliation(s)
- Hongbo Zhang
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Hongdan Wang
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Youcai An
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| | - Ze Chen
- Department of Basic Research, Ab&B Bio-Tech CO., LTD. JS, Taizhou, Jiangsu, China
| |
Collapse
|
4
|
Chen L, Chen A, Zhang XD, Robles MST, Han HS, Xiao Y, Xiao G, Pipas JM, Weitz DA. High-sensitivity whole-genome recovery of single viral species in environmental samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566948. [PMID: 38014300 PMCID: PMC10680796 DOI: 10.1101/2023.11.13.566948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Characterizing unknown viruses is essential for understanding viral ecology and preparing against viral outbreaks. Recovering complete genome sequences from environmental samples remains computationally challenging using metagenomics, especially for low-abundance species with uneven coverage. This work presents a method for reliably recovering complete viral genomes from complex environmental samples. Individual genomes are encapsulated into droplets and amplified using multiple displacement amplification. A novel gene detection assay, which employs an RNA-based probe and an exonuclease, selectively identifies droplets containing the target viral genome. Labeled droplets are sorted using a microfluidic sorter, and genomes are extracted for sequencing. Validation experiments using a sewage sample spiked with two known viruses demonstrate the method's efficacy. We achieve 100% recovery of the spiked-in SV40 (Simian virus 40, 5243bp) genome sequence with uniform coverage distribution, and approximately 99.4% for the larger HAd5 genome (Human Adenovirus 5, 35938bp). Notably, genome recovery is achieved with as few as one sorted droplet, which enables the recovery of any desired genomes in complex environmental samples, regardless of their abundance. This method enables targeted characterizations of rare viral species and whole-genome amplification of single genomes for accessing the mutational profile in single virus genomes, contributing to an improved understanding of viral ecology.
Collapse
Affiliation(s)
- Liyin Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Anqi Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Xinge Diana Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Maria Saenz T Robles
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yi Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Gao Xiao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - James M Pipas
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| | - David A Weitz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
5
|
MacNeil KM, Dodge MJ, Evans AM, Tessier TM, Weinberg JB, Mymryk JS. Adenoviruses in medicine: innocuous pathogen, predator, or partner. Trends Mol Med 2023; 29:4-19. [PMID: 36336610 PMCID: PMC9742145 DOI: 10.1016/j.molmed.2022.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
The consequences of human adenovirus (HAdV) infections are generally mild. However, despite the perception that HAdVs are harmless, infections can cause severe disease in certain individuals, including newborns, the immunocompromised, and those with pre-existing conditions, including respiratory or cardiac disease. In addition, HAdV outbreaks remain relatively common events and the recent emergence of more pathogenic genomic variants of various genotypes has been well documented. Coupled with evidence of zoonotic transmission, interspecies recombination, and the lack of approved AdV antivirals or widely available vaccines, HAdVs remain a threat to public health. At the same time, the detailed understanding of AdV biology garnered over nearly 7 decades of study has made this group of viruses a molecular workhorse for vaccine and gene therapy applications.
Collapse
Affiliation(s)
- Katelyn M MacNeil
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Mackenzie J Dodge
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Andris M Evans
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Tanner M Tessier
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Jason B Weinberg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA; Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA.
| | - Joe S Mymryk
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada; Department of Otolaryngology, Head & Neck Surgery, The University of Western Ontario, London, ON, Canada; Department of Oncology, The University of Western Ontario, London, ON, Canada; London Regional Cancer Program, Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
6
|
An insertion and deletion mutant of adenovirus in Muscovy ducks. Arch Virol 2022; 167:1879-1883. [PMID: 35729280 DOI: 10.1007/s00705-022-05474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
Abstract
Duck adenovirus 3 (DuAdV-3; strain HB) was isolated and sequenced. The genome of the Muscovy-duck-origin virus contains a 54-bp insertion in pVIII, a 3-bp deletion in the overlap region of 100K, 22K, and 33K, a 42-bp deletion at the junction of ORF64 and ORF67, and a 715-bp deletion in right noncoding region of the genome. Notably, HB has a strikingly shorter right inverted terminal repeat (ITR) of 50 bp, whereas all other DuAdV-3 isolates have a 721-bp ITR. These findings demonstrate that HB is an insertion and deletion mutant of DuAdV-3.
Collapse
|
7
|
Zhao S, Guan W, Ma K, Yan Y, Ou J, Zhang J, Yu Z, Wu J, Zhang Q. Development and Application of a Fast Method to Acquire the Accurate Whole-Genome Sequences of Human Adenoviruses. Front Microbiol 2021; 12:661382. [PMID: 34054762 PMCID: PMC8160523 DOI: 10.3389/fmicb.2021.661382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
The whole-genome sequencing (WGS) of human adenoviruses (HAdVs) plays an important role in identifying, typing, and mutation analysis of HAdVs. Nowadays, three generations of sequencing have been developed. The accuracy of first-generation sequencing is up to 99.99%, whereas this technology relies on PCR and is time consuming; the next-generation sequencing (NGS) is expensive and not cost effective for determining a few special samples; and the third-generation sequencing technology has a higher error rate. In this study, first, we developed an efficient HAdV genomic DNA extraction method. Using the complete genomic DNA instead of the PCR amplicons as the direct sequencing template and a set of walking primers, we developed the HAdV WGS method based on first-generation sequencing. The HAdV whole genomes were effectively sequenced by a set of one-way sequencing primers designed, which reduced the sequencing time and cost. More importantly, high sequence accuracy is guaranteed. Four HAdV strains (GZ01, GZ02, HK35, and HK91) were isolated from children with acute respiratory diseases (ARDs), and the complete genomes were sequenced using this method. The accurate sequences of the whole inverted terminal repeats (ITRs) at both ends of the HAdV genomes were also acquired. The genome sequence of human adenovirus type 14 (HAdV-B14) strain GZ01 acquired by this method is identical to the sequence released in GenBank, which indicates that this novel sequencing method has high accuracy. The comparative genomic analysis identified that strain GZ02 isolated in September 2010 had the identical genomic sequence with the HAdV-B14 strain GZ01 (October 2010). Therefore, strain GZ02 is the first HAdV-B14 isolate emergent in China (September 2010; GenBank acc no. MW692349). The WGS of HAdV-C2 strain HK91 and HAdV-E4 strain HK35 isolated from children with acute respiratory disease in Hong Kong were also determined by this sequencing method. In conclusion, this WGS method is fast, accurate, and universal for common human adenovirus species B, C, and E. The sequencing strategy may also be applied to the WGS of the other DNA viruses.
Collapse
Affiliation(s)
- Shan Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wenyi Guan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kui Ma
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yuqian Yan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Junxian Ou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zhiwu Yu
- Division of Laboratory Science, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
8
|
Liu S, Yuan S, Gao X, Tao X, Yu W, Li X, Chen S, Xu A. Functional regulation of an ancestral RAG transposon ProtoRAG by a trans-acting factor YY1 in lancelet. Nat Commun 2020; 11:4515. [PMID: 32908127 PMCID: PMC7481187 DOI: 10.1038/s41467-020-18261-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 08/09/2020] [Indexed: 01/04/2023] Open
Abstract
The discovery of ancestral RAG transposons in early deuterostomia reveals the origin of vertebrate V(D)J recombination. Here, we analyze the functional regulation of a RAG transposon, ProtoRAG, in lancelet. We find that a specific interaction between the cis-acting element within the TIR sequences of ProtoRAG and a trans-acting factor, lancelet YY1-like (bbYY1), is important for the transcriptional regulation of lancelet RAG-like genes (bbRAG1L and bbRAG2L). Mechanistically, bbYY1 suppresses the transposition of ProtoRAG; meanwhile, bbYY1 promotes host DNA rejoins (HDJ) and TIR-TIR joints (TTJ) after TIR-dependent excision by facilitating the binding of bbRAG1L/2 L to TIR-containing DNA, and by interacting with the bbRAG1L/2 L complex. Our data thus suggest that bbYY1 has dual functions in fine-tuning the activity of ProtoRAG and maintaining the genome stability of the host.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Shaochun Yuan
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 266237, Qingdao, People's Republic of China.
| | - Xiaoman Gao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Xin Tao
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Wenjuan Yu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Xu Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China.
- School of Life Sciences, Beijing University of Chinese Medicine, 100029, Beijing, People's Republic of China.
| |
Collapse
|
9
|
Kang J, Ismail AM, Dehghan S, Rajaiya J, Allard MW, Lim HC, Dyer DW, Chodosh J, Seto D. Genomics-based re-examination of the taxonomy and phylogeny of human and simian Mastadenoviruses: an evolving whole genomes approach, revealing putative zoonosis, anthroponosis, and amphizoonosis. Cladistics 2020; 36:358-373. [PMID: 34618969 DOI: 10.1111/cla.12422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
With the advent of high-resolution and cost-effective genomics and bioinformatics tools and methods contributing to a large database of both human (HAdV) and simian (SAdV) adenoviruses, a genomics-based re-evaluation of their taxonomy is warranted. Interest in these particular adenoviruses is growing in part due to the applications of both in gene transfer protocols, including gene therapy and vaccines, as well in oncolytic protocols. In particular, the re-evaluation of SAdVs as appropriate vectors in humans is important as zoonosis precludes the assumption that human immune system may be naïve to these vectors. Additionally, as important pathogens, adenoviruses are a model organism system for understanding viral pathogen emergence through zoonosis and anthroponosis, particularly among the primate species, along with recombination, host adaptation, and selection, as evidenced by one long-standing human respiratory pathogen HAdV-4 and a recent re-evaluation of another, HAdV-76. The latter reflects the insights on amphizoonosis, defined as infections in both directions among host species including "other than human", that are possible with the growing database of nonhuman adenovirus genomes. HAdV-76 is a recombinant that has been isolated from human, chimpanzee, and bonobo hosts. On-going and potential impacts of adenoviruses on public health and translational medicine drive this evaluation of 174 whole genome sequences from HAdVs and SAdVs archived in GenBank. The conclusion is that rather than separate HAdV and SAdV phylogenetic lineages, a single, intertwined tree is observed with all HAdVs and SAdVs forming mixed clades. Therefore, a single designation of "primate adenovirus" (PrAdV) superseding either HAdV and SAdV is proposed, or alternatively, keeping HAdV for human adenovirus but expanding the SAdV nomenclature officially to include host species identification as in ChAdV for chimpanzee adenovirus, GoAdV for gorilla adenovirus, BoAdV for bonobo adenovirus, and ad libitum.
Collapse
Affiliation(s)
- June Kang
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Ashrafali Mohamed Ismail
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Shoaleh Dehghan
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.,Chemistry Department, American University, Washington, DC, 20016, USA
| | - Jaya Rajaiya
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Marc W Allard
- Division of Microbiology (HFS-710), Center for Food Safety & Applied Nutrition, US Food & Drug Administration, College Park, MD, 20740, USA
| | - Haw Chuan Lim
- Department of Biology, George Mason University Manassas, VA, 20110, USA
| | - David W Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - James Chodosh
- Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| |
Collapse
|
10
|
A Zoonotic Adenoviral Human Pathogen Emerged through Genomic Recombination among Human and Nonhuman Simian Hosts. J Virol 2019; 93:JVI.00564-19. [PMID: 31243128 DOI: 10.1128/jvi.00564-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022] Open
Abstract
Genomics analysis of a historically intriguing and predicted emergent human adenovirus (HAdV) pathogen, which caused pneumonia and death, provides insight into a novel molecular evolution pathway involving "ping-pong" zoonosis and anthroponosis. The genome of this promiscuous pathogen is embedded with evidence of unprecedented multiple, multidirectional, stable, and reciprocal cross-species infections of hosts from three species (human, chimpanzee, and bonobo). This recombinant genome, typed as HAdV-B76, is identical to two recently reported simian AdV (SAdV) genomes isolated from chimpanzees and bonobos. Additionally, the presence of a critical adenoviral replication element found in HAdV genomes, in addition to genes that are highly similar to counterparts in other HAdVs, reinforces its potential as a human pathogen. Reservoirs in nonhuman hosts may explain periods of apparent absence and then reemergence of human adenoviral pathogens, as well as present pathways for the genesis of those thought to be newly emergent. The nature of the HAdV-D76 genome has implications for the use of SAdVs as gene delivery vectors in human gene therapy and vaccines, selected to avoid preexisting and potentially fatal host immune responses to HAdV.IMPORTANCE An emergent adenoviral human pathogen, HAdV-B76, associated with a fatality in 1965, shows a remarkable degree of genome identity with two recently isolated simian adenoviruses that contain cross-species genome recombination events from three hosts: human, chimpanzee, and bonobo. Zoonosis (nonhuman-to-human transmission) and anthroponosis (human to nonhuman transmission) may play significant roles in the emergence of human adenoviral pathogens.
Collapse
|
11
|
A Survey of Recent Adenoviral Respiratory Pathogens in Hong Kong Reveals Emergent and Recombinant Human Adenovirus Type 4 (HAdV-E4) Circulating in Civilian Populations. Viruses 2019; 11:v11020129. [PMID: 30708990 PMCID: PMC6410123 DOI: 10.3390/v11020129] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/30/2019] [Indexed: 12/20/2022] Open
Abstract
Human adenovirus type 4 (HAdV-E4), which is intriguingly limited to military populations, causes acute respiratory disease with demonstrated morbidity and mortality implications. This respiratory pathogen contains genome identity with chimpanzee adenoviruses, indicating zoonotic origins. A signature of these “old” HAdV-E4 is the absence of a critical replication motif, NF-I, which is found in all HAdV respiratory pathogens and most HAdVs. However, our recent survey of flu-like disease in children in Hong Kong reveals that the emergent HAdV-E4 pathogens circulating in civilian populations contain NF-I, indicating recombination and reflecting host-adaptation that enables the “new” HAdV-E4 to replicate more efficiently in human cells and foretells more potential HAdV-E4 outbreaks in immune-naïve civilian populations. Special attention should be paid by clinicians to this emergent and recombinant HAdV-E4 circulating in civilian populations.
Collapse
|
12
|
Ismail AM, Lee JS, Lee JY, Singh G, Dyer DW, Seto D, Chodosh J, Rajaiya J. Adenoviromics: Mining the Human Adenovirus Species D Genome. Front Microbiol 2018; 9:2178. [PMID: 30254627 PMCID: PMC6141750 DOI: 10.3389/fmicb.2018.02178] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/19/2022] Open
Abstract
Human adenovirus (HAdV) infections cause disease world-wide. Whole genome sequencing has now distinguished 90 distinct genotypes in 7 species (A-G). Over half of these 90 HAdVs fall within species D, with essentially all of the HAdV-D whole genome sequences generated in the last decade. Herein, we describe recent new findings made possible by mining of this expanded genome database, and propose future directions to elucidate new functional elements and new functions for previously known viral components.
Collapse
Affiliation(s)
- Ashrafali M Ismail
- Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Ji Sun Lee
- Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Jeong Yoon Lee
- Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States.,Molecular Virology Laboratory, Korea Zoonosis Research Institute, Jeonbuk National University, Jeonju, South Korea
| | - Gurdeep Singh
- Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States.,Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - David W Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VI, United States
| | - James Chodosh
- Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Jaya Rajaiya
- Howe Laboratory, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
13
|
Dogbevia GK, Roβmanith M, Sprengel R, Hasan MT. Flexible, AAV-equipped Genetic Modules for Inducible Control of Gene Expression in Mammalian Brain. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e309. [PMID: 27070301 PMCID: PMC5014524 DOI: 10.1038/mtna.2016.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/01/2016] [Indexed: 12/17/2022]
Abstract
Controlling gene expression in mammalian brain is of utmost importance to causally link the role of gene function to cell circuit dynamics under normal conditions and disease states. We have developed recombinant adeno-associated viruses equipped with tetracycline-controlled genetic switches for inducible and reversible control of gene expression in a cell type specific and brain subregion selective manner. Here, we characterize a two-virus approach to efficiently and reliably switch gene expression on and off, repetitively, both in vitro and in vivo. Our recombinant adeno-associated virus (rAAV)-Tet approach is highly flexible and it has great potential for application in basic and biomedical neuroscience research and gene therapy.
Collapse
Affiliation(s)
- Godwin K Dogbevia
- Department of Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Martin Roβmanith
- Department of Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Rolf Sprengel
- Max Planck Research Group at the Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Mazahir T Hasan
- Department of Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany.,Charité-Universitätsmedizin, NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
14
|
Dehghan S, Seto J, Jones MS, Dyer DW, Chodosh J, Seto D. Simian adenovirus type 35 has a recombinant genome comprising human and simian adenovirus sequences, which predicts its potential emergence as a human respiratory pathogen. Virology 2013; 447:265-73. [PMID: 24210123 DOI: 10.1016/j.virol.2013.09.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/05/2013] [Accepted: 09/12/2013] [Indexed: 11/19/2022]
Abstract
Emergent human and simian adenoviruses (HAdVs) may arise from genome recombination. Computational analysis of SAdV type 35 reveals a genome comprising a chassis with elements mostly from two simian adenoviruses, SAdV-B21 and -B27, and regions of high sequence similarity shared with HAdV-B21 and HAdV-B16. Although recombination direction cannot be determined, the presence of these regions suggests prior infections of humans by an ancestor of SAdV-B35, and/or vice versa. Absence of this virus in humans may reflect non-optimal conditions for zoonosis or incomplete typing, e.g., limited epitope-based. The presence of both a critical viral replication element found in HAdV genomes and genes that are highly similar to ones in HAdVs suggest the potential to establish in a human host. This allows a prediction that this virus may be a nascent human respiratory pathogen. The recombination potential of human and simian adenovirus genomes should be considered in the use of SAdVs as vectors for gene delivery in humans.
Collapse
Affiliation(s)
- Shoaleh Dehghan
- Chemistry Department, American University, Washington, D.C. 20016, USA; Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | |
Collapse
|
15
|
Dehghan S, Seto J, Liu EB, Walsh MP, Dyer DW, Chodosh J, Seto D. Computational analysis of four human adenovirus type 4 genomes reveals molecular evolution through two interspecies recombination events. Virology 2013; 443:197-207. [PMID: 23763770 DOI: 10.1016/j.virol.2013.05.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 11/17/2022]
Abstract
Computational analysis of human adenovirus type 4 (HAdV-E4), a pathogen that is the only HAdV member of species E, provides insights into its zoonotic origin and molecular adaptation. Its genome encodes a domain of the major capsid protein, hexon, from HAdV-B16 recombined into the genome chassis of a simian adenovirus. Genomes of two recent field strains provide a clue to its adaptation to the new host: recombination of a NF-I binding site motif, which is required for efficient viral replication, from another HAdV genome. This motif is absent in the chimpanzee adenoviruses and the HAdV-E4 prototype, but is conserved amongst other HAdVs. This is the first report of an interspecies recombination event for HAdVs, and the first documentation of a lateral partial gene transfer from a chimpanzee AdV. The potential for such recombination events are important when considering chimpanzee adenoviruses as candidate gene delivery vectors for human patients.
Collapse
Affiliation(s)
- Shoaleh Dehghan
- Chemistry Department, American University, Washington, D.C. 20016, USA; Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Li G, Kawashima H, Ogose A, Ariizumi T, Xu Y, Hotta T, Urata Y, Fujiwara T, Endo N. Efficient virotherapy for osteosarcoma by telomerase-specific oncolytic adenovirus. J Cancer Res Clin Oncol 2011; 137:1037-51. [PMID: 21193997 DOI: 10.1007/s00432-010-0969-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 12/17/2010] [Indexed: 01/07/2023]
Abstract
PURPOSE A telomerase-specific oncolytic adenovirus, Telomelysin, can selectively kill cancer cells, and be attenuated in normal cells. We herein describe the oncolytic effect of Telomelysin on human osteosarcoma both in vitro and in vivo. METHODS The anti-tumor effects of Telomelysin were evaluated on human osteosarcoma cell lines in vitro and in a mouse xenograft model of human osteosarcoma in vivo. The replication efficiencies of Telomelysin in human osteosarcoma cell lines and normal cell lines and in osteosarcoma xenografts were determined by the expression levels of E1 mRNA and E1A protein using real-time quantitative PCR, Western blot analysis and immunohistochemistry. The in vitro telomerase-specific replication and the viral infection rate were also confirmed by TelomeScan (Telomelysin-GFP), using fluorescent microscopy and flow cytometry, respectively. The cell viabilities were examined by XTT assay, and the tumor volumes were measured every 2 days. The induction of apoptosis was assessed by Western blot analysis, as well as by TUNEL assay. RESULTS TelomeScan and Telomelysin were efficiently replicated in human osteosarcoma cell lines and led to a dose- and time-dependent expression of GFP, E1 mRNA and E1A protein. Telomelysin infection induced marked cytolysis and apoptosis in osteosarcoma cell lines in vitro. Neither cytotoxicity nor apoptosis were induced in normal human cell lines. In the human osteosarcoma cell xenograft model, intratumoral injection of Telomelysin resulted in increased viral replication, significant tumor growth suppression and distinct apoptotic cell death. CONCLUSIONS This study indicated that virotherapy with Telomelysin may provide a promising strategy for the treatment of human osteosarcoma.
Collapse
Affiliation(s)
- Guidong Li
- Division of Orthopedic Surgery, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rauschhuber C, Wolf A, Ehrhardt A. Transcriptional activity of inverted terminal repeats of various human adenovirus serotypes. J Gen Virol 2010; 92:669-74. [PMID: 21084492 DOI: 10.1099/vir.0.026542-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fifty-three human adenovirus serotypes were identified, which are divided into seven subgroups A, B1, B2, C, D, E and F. All types of recombinant adenoviruses have serotype-specific left and right inverted terminal repeats (ITRs). There is evidence that sequences in the ITRs of subgroup C exhibit promoter activity, which in turn might influence the expression of coding sequences that are in close proximity. We investigated whether ITRs from the complete spectrum of adenovirus subgroups show transcriptional activity. We found that ITRs from subgroups A, C and F cloned in a forward orientation display robust transcriptional activity in a cell-type independent manner. In the reverse orientation only subgroup B2 showed transcriptional activity. Unexpectedly, we also found that most ITRs when located upstream of a ubiquitously active promoter drastically reduced reporter gene expression, suggesting that ITRs may have a repressive activity on transcription.
Collapse
Affiliation(s)
- Christina Rauschhuber
- Department of Virology, Max von Pettenkofer Institute, Ludwig-Maximilians University Munich, Pettenkoferstr. 9A, 80336 Munich, Germany
| | | | | |
Collapse
|
18
|
Stephen SL, Freestone K, Dunn S, Twigg MW, Homer-Vanniasinkam S, Walker JH, Wheatcroft SB, Ponnambalam S. Scavenger receptors and their potential as therapeutic targets in the treatment of cardiovascular disease. Int J Hypertens 2010; 2010:646929. [PMID: 20981357 PMCID: PMC2958427 DOI: 10.4061/2010/646929] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/07/2010] [Indexed: 12/12/2022] Open
Abstract
Scavenger receptors act as membrane-bound and soluble proteins that bind to macromolecular complexes and pathogens. This diverse supergroup of proteins mediates binding to modified lipoprotein particles which regulate the initiation and progression of atherosclerotic plaques. In vascular tissues, scavenger receptors are implicated in regulating intracellular signaling, lipid accumulation, foam cell development, and cellular apoptosis or necrosis linked to the pathophysiology of atherosclerosis. One approach is using gene therapy to modulate scavenger receptor function in atherosclerosis. Ectopic expression of membrane-bound scavenger receptors using viral vectors can modify lipid profiles and reduce the incidence of atherosclerosis. Alternatively, expression of soluble scavenger receptors can also block plaque initiation and progression. Inhibition of scavenger receptor expression using a combined gene therapy and RNA interference strategy also holds promise for long-term therapy. Here we review our current understanding of the gene delivery by viral vectors to cells and tissues in gene therapy strategies and its application to the modulation of scavenger receptor function in atherosclerosis.
Collapse
Affiliation(s)
- Sam L Stephen
- Endothelial Cell Biology Unit, Institute of Molecular & Cellular Biology, LIGHT Laboratories, University of Leeds, Clarendon Way, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hofmayer S, Madisch I, Darr S, Rehren F, Heim A. Unique sequence features of the Human adenovirus 31 complete genomic sequence are conserved in clinical isolates. BMC Genomics 2009; 10:557. [PMID: 19939241 PMCID: PMC2794291 DOI: 10.1186/1471-2164-10-557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 11/25/2009] [Indexed: 11/25/2022] Open
Abstract
Background Human adenoviruses (HAdV) are causing a broad spectrum of diseases. One of the most severe forms of adenovirus infection is a disseminated disease resulting in significant morbidity and mortality. Several reports in recent years have identified HAdV-31 from species A (HAdV-A31) as a cause of disseminated disease in children following haematopoetic stem cell transplantation (hSCT) and liver transplantation. We sequenced and analyzed the complete genome of the HAdV-A31 prototype strain to uncover unique sequence motifs associated with its high virulence. Moreover, we sequenced coding regions known to be essential for tropism and virulence (early transcription units E1A, E3, E4, the fiber knob and the penton base) of HAdV-A31 clinical isolates from patients with disseminated disease. Results The genome size of HAdV-A31 is 33763 base pairs (bp) in length with a GC content of 46.36%. Nucleotide alignment to the closely related HAdV-A12 revealed an overall homology of 84.2%. The genome organization into early, intermediate and late regions is similar to HAdV-A12. Sequence analysis of the prototype strain showed unique sequence features such as an immunoglobulin-like domain in the species A specific gene product E3 CR1 beta and a potentially integrin binding RGD motif in the C-terminal region of the protein IX. These features were conserved in all analyzed clinical isolates. Overall, amino acid sequences of clinical isolates were highly conserved compared to the prototype (99.2 to 100%), but a synonymous/non synonymous ratio (S/N) of 2.36 in E3 CR1 beta suggested positive selection. Conclusion Unique sequence features of HAdV-A31 may enhance its ability to escape the host's immune surveillance and may facilitate a promiscuous tropism for various tissues. Moderate evolution of clinical isolates did not indicate the emergence of new HAdV-A31 subtypes in the recent years.
Collapse
Affiliation(s)
- Soeren Hofmayer
- Institut für Virologie, Medizinische Hochschule Hannover, Hannover, Germany.
| | | | | | | | | |
Collapse
|
20
|
Chattopadhyay S, Ely A, Bloom K, Weinberg MS, Arbuthnot P. Inhibition of hepatitis B virus replication with linear DNA sequences expressing antiviral micro-RNA shuttles. Biochem Biophys Res Commun 2009; 389:484-9. [PMID: 19733548 DOI: 10.1016/j.bbrc.2009.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 09/01/2009] [Indexed: 12/29/2022]
Abstract
RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR) shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.
Collapse
Affiliation(s)
- Saket Chattopadhyay
- Antiviral Gene Therapy Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | |
Collapse
|
21
|
Dorer DE, Nettelbeck DM. Targeting cancer by transcriptional control in cancer gene therapy and viral oncolysis. Adv Drug Deliv Rev 2009; 61:554-71. [PMID: 19394376 DOI: 10.1016/j.addr.2009.03.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 03/05/2009] [Indexed: 01/02/2023]
Abstract
Cancer-specificity is the key requirement for a drug or treatment regimen to be effective against malignant disease--and has rarely been achieved adequately to date. Therefore, targeting strategies need to be implemented for future therapies to ensure efficient activity at the site of patients' tumors or metastases without causing intolerable side-effects. Gene therapy and viral oncolysis represent treatment modalities that offer unique opportunities for tumor targeting. This is because both the transfer of genes with anti-cancer activity and viral replication-induced cell killing, respectively, facilitate the incorporation of multiple mechanisms restricting their activity to cancer. To this end, cellular mechanisms of gene regulation have been successfully exploited to direct therapeutic gene expression and viral cell lysis to cancer cells. Here, transcriptional targeting has been the role model and most widely investigated. This approach exploits cellular gene regulatory elements that mediate cell type-specific transcription to restrict the expression of therapeutic genes or essential viral genes, ideally to cancer cells. In this review, we first discuss the rationale for such promoter targeting and its limitations. We then give an overview how tissue-/tumor-specific promoters are being identified and characterized. Strategies to apply and optimize such promoters for the engineering of targeted viral gene transfer vectors and oncolytic viruses-with respect to promoter size, selectivity and activity in the context of viral genomes-are described. Finally, we discuss in more detail individual examples for transcriptionally targeted virus drugs. First highlighting oncolytic viruses targeted by prostate-specific promoters and by the telomerase promoter as representatives of tissue-targeted and pan-cancer-specific virus drugs respectively, and secondly recent developments of the last two years.
Collapse
Affiliation(s)
- Dominik E Dorer
- Helmholtz-University Group Oncolytic Adenoviruses, German Cancer Research Center (DKFZ) and Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | | |
Collapse
|
22
|
Walsh MP, Chintakuntlawar A, Robinson CM, Madisch I, Harrach B, Hudson NR, Schnurr D, Heim A, Chodosh J, Seto D, Jones MS. Evidence of molecular evolution driven by recombination events influencing tropism in a novel human adenovirus that causes epidemic keratoconjunctivitis. PLoS One 2009; 4:e5635. [PMID: 19492050 PMCID: PMC2685984 DOI: 10.1371/journal.pone.0005635] [Citation(s) in RCA: 180] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/08/2009] [Indexed: 11/19/2022] Open
Abstract
In 2005, a human adenovirus strain (formerly known as HAdV-D22/H8 but renamed here HAdV-D53) was isolated from an outbreak of epidemic keratoconjunctititis (EKC), a disease that is usually caused by HAdV-D8, -D19, or -D37, not HAdV-D22. To date, a complete change of tropism compared to the prototype has never been observed, although apparent recombinant strains of other viruses from species Human adenovirus D (HAdV-D) have been described. The complete genome of HAdV-D53 was sequenced to elucidate recombination events that lead to the emergence of a viable and highly virulent virus with a modified tropism. Bioinformatic and phylogenetic analyses of this genome demonstrate that this adenovirus is a recombinant of HAdV-D8 (including the fiber gene encoding the primary cellular receptor binding site), HAdV-D22, (the epsilon determinant of the hexon gene), HAdV-D37 (including the penton base gene encoding the secondary cellular receptor binding site), and at least one unknown or unsequenced HAdV-D strain. Bootscanning analysis of the complete genomic sequence of this novel adenovirus, which we have re-named HAdV-D53, indicated at least five recombination events between the aforementioned adenoviruses. Intrahexon recombination sites perfectly framed the epsilon neutralization determinant that was almost identical to the HAdV-D22 prototype. Additional bootscan analysis of all HAdV-D hexon genes revealed recombinations in identical locations in several other adenoviruses. In addition, HAdV-D53 but not HAdV-D22 induced corneal inflammation in a mouse model. Serological analysis confirmed previous results and demonstrated that HAdV-D53 has a neutralization profile representative of the epsilon determinant of its hexon (HAdV-D22) and the fiber (HAdV-D8) proteins. Our recombinant hexon sequence is almost identical to the hexon sequences of the HAdV-D strain causing EKC outbreaks in Japan, suggesting that HAdV-D53 is pandemic as an emerging EKC agent. This documents the first genomic, bioinformatic, and biological descriptions of the molecular evolution events engendering an emerging pathogenic adenovirus.
Collapse
Affiliation(s)
- Michael P. Walsh
- Department of Bioinformatics and Computational Biology, George Mason University, Manassas, Virginia, United States of America
| | - Ashish Chintakuntlawar
- Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christopher M. Robinson
- Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ijad Madisch
- Insitut für Virologie, Medizinische Hochschule, Hannover, Germany
| | - Balázs Harrach
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nolan R. Hudson
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis AFB, California, United States of America
| | - David Schnurr
- Viral and Rickettsial Disease Laboratory, California Department of Public Health, Richmond, California, United States of America
| | - Albert Heim
- Insitut für Virologie, Medizinische Hochschule, Hannover, Germany
| | - James Chodosh
- Howe Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Donald Seto
- Department of Bioinformatics and Computational Biology, George Mason University, Manassas, Virginia, United States of America
| | - Morris S. Jones
- Clinical Investigation Facility, David Grant USAF Medical Center, Travis AFB, California, United States of America
| |
Collapse
|
23
|
Robust in vivo transduction of a genetically stable Epstein-Barr virus episome to hepatocytes in mice by a hybrid viral vector. J Virol 2009; 83:3249-57. [PMID: 19158239 DOI: 10.1128/jvi.01721-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To make a safe, long-lasting gene delivery vehicle, we developed a hybrid vector that leverages the relative strengths of adenovirus and Epstein-Barr virus (EBV). A fully gene-deleted helper-dependent adenovirus (HDAd) is used as the delivery vehicle for its scalability and high transduction efficiency. Upon delivery, a portion of the HDAd vector is recombined to form a circular plasmid. This episome includes two elements from EBV: an EBV nuclear antigen 1 (EBNA1) expression cassette and an EBNA1 binding region. Along with a human replication origin, these elements provide considerable genetic stability to the episome in replicating cells while avoiding insertional mutagenesis. Here, we demonstrate that this hybrid approach is highly efficient at delivering EBV episomes to target cells in vivo. We achieved nearly 100% transduction of hepatocytes after a single intravenous injection in mice. This is a substantial improvement over the transduction efficiency of previously available physical and viral methods. Bioluminescent imaging of vector-transduced mice demonstrated that luciferase transgene expression from the hybrid was robust and compared well to a traditional HDAd vector. Quantitative PCR analysis confirmed that the EBV episome was stable at approximately 30 copies per cell for up to 50 weeks and that it remained circular and extrachromosomal. Approaches for adapting the HDAd-EBV hybrid to a variety of disease targets and the potential benefits of this approach are discussed.
Collapse
|
24
|
Abstract
The results of studies of Adenovirus have contributed to our basic understanding of the molecular biology of the cell. While a great body of knowledge has been developed concerning Ad gene expression, viral replication, and effects on the infected host, the molecular details of the assembly process of Adenovirus particles are largely unknown. In this article, we would like to propose a theoretical model for the packaging and assembly of Adenovirus and present an overview of the studies that have contributed to our present understanding. In particular, we will summarize the molecular details of the process for packaging of viral DNA into virus particles and highlight the events in packaging and assembly that require further study.
Collapse
Affiliation(s)
- Philomena Ostapchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York 11794, USA
| | | |
Collapse
|
25
|
Rohmer S, Mainka A, Knippertz I, Hesse A, Nettelbeck DM. Insulated hsp70B′ promoter: stringent heat-inducible activity in replication-deficient, but not replication-competent adenoviruses. J Gene Med 2008; 10:340-54. [DOI: 10.1002/jgm.1157] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
26
|
Nettelbeck DM. Cellular genetic tools to control oncolytic adenoviruses for virotherapy of cancer. J Mol Med (Berl) 2007; 86:363-77. [PMID: 18214411 DOI: 10.1007/s00109-007-0291-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 10/30/2007] [Accepted: 11/15/2007] [Indexed: 12/18/2022]
Abstract
Key challenges facing cancer therapy are the development of tumor-specific drugs and the implementation of potent multimodal treatment regimens. Oncolytic adenoviruses, featuring cancer-selective viral cell lysis and spread, constitute a particularly interesting drug platform towards both goals. First, as complex biological agents, adenoviruses allow for rational drug development by genetic incorporation of targeting mechanisms that exert their function at different stages of the viral replication cycle. Secondly, therapeutic genes implementing diverse cancer cell-killing activities can be inserted into the oncolytic adenovirus genome without loss of replication potential, thus deriving a "one-agent combination therapy". This article reviews an intriguing approach to derive oncolytic adenoviruses, which is to insert cellular genetic regulatory elements into adenovirus genomes for control of virus replication and therapeutic gene expression. This approach has been thoroughly investigated and optimized during the last decade for transcriptional targeting of adenovirus replication and gene expression to a wide panel of tumor types. More recently, further cellular regulatory mechanisms, such as mRNA stability and translation regulation, have been reported as tools for virus control. Consequently, oncolytic adenoviruses with a remarkable specificity profile for prostate cancer, gastrointestinal cancers, liver cancer, breast cancer, lung cancer, melanoma, and other cancers were derived. Such specificity profiles allow for the engineering of new generations of oncolytic adenoviruses with improved potency by enhancing viral cell binding and entry or by expressing therapeutic genes. Clearly, genetic engineering of viruses has great potential for the development of innovative antitumor drugs--towards targeted and multimodal cancer therapy.
Collapse
Affiliation(s)
- Dirk M Nettelbeck
- Helmholtz-University Group Oncolytic Adenoviruses, German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany.
| |
Collapse
|
27
|
Hama S, Akita H, Iida S, Mizuguchi H, Harashima H. Quantitative and mechanism-based investigation of post-nuclear delivery events between adenovirus and lipoplex. Nucleic Acids Res 2007; 35:1533-43. [PMID: 17287293 PMCID: PMC1865055 DOI: 10.1093/nar/gkl1165] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Quantitative and mechanism-based information on differences in transfection efficiency between viral and non-viral vectors would be highly useful for improving the effectiveness of non-viral vectors. A previous quantitative comparison of intracellular trafficking between adenovirus and LipofectAMINE PLUS (LFN) revealed that the three orders of magnitude lower transfection efficiency of LFN was dominantly rate limited by the post-nuclear delivery process. In the present study, the contribution of transcription and translation processes to the overall differences in the transgene expression efficiency of nucleus-delivered DNA was independently evaluated by quantifying mRNA. As a result, transcription efficiency (Etranscript) of LFN, denoted as transgene expression divided by the amount of nuclear pDNA was about 16 times less than that for adenovirus. Furthermore, translation efficiency (Etranslate), denoted as transfection activity divided by mRNA expression was approximately 460 times less in LFN. Imaging of the decondensed form of DNA by in situ hybridization revealed that poor decondensation efficiency of LFN is involved in the inferior Etranscript. Moreover, the inferior translation efficiency (Etranslate) of LFN was mainly due to electrostatic interactions between LFN and mRNA. Collectively, an improvement in nuclear decondensation and the diminution of the interaction between vector and mRNA is essential for the development of new generations of non-viral vectors.
Collapse
Affiliation(s)
- Susumu Hama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan, Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan and CREST, Japan Science and Technology Corporation (JST), Japan
| | - Hidetaka Akita
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan, Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan and CREST, Japan Science and Technology Corporation (JST), Japan
| | - Shinya Iida
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan, Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan and CREST, Japan Science and Technology Corporation (JST), Japan
| | - Hiroyuki Mizuguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan, Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan and CREST, Japan Science and Technology Corporation (JST), Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan, Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka 567-0085, Japan and CREST, Japan Science and Technology Corporation (JST), Japan
- *To whom correspondence should be addressed. +81 11 706 3919+81 11 706 4879
| |
Collapse
|
28
|
Hartman ZC, Black EP, Amalfitano A. Adenoviral infection induces a multi-faceted innate cellular immune response that is mediated by the toll-like receptor pathway in A549 cells. Virology 2007; 358:357-72. [PMID: 17027060 DOI: 10.1016/j.virol.2006.08.041] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 07/18/2006] [Accepted: 08/23/2006] [Indexed: 01/15/2023]
Abstract
Adenovirus vectors are known to induce certain genes and impact innate response networks, but a broad understanding of this process and its mechanisms is currently lacking. For this reason, we chose to investigate and characterize Ad innate immunity using homogeneous, primary MEF cells replete with all the elements of the pathogen-sensing Toll-Like Receptor (TLR) pathway. By using an array-based approach to maximally define transcriptome changes induced upon Ad vector infection, we discovered that Ad infection induces a potent gene and transcription factor network response. This response is characterized by significant changes in the expression of genes involved in focal adhesion, tight junction, and RNA regulation, in addition to TLR pathway and other innate sensing genes. Further investigation using human A549 cells knocked down for various TLR pathway adaptors, revealed significant impacts on the Ad initiation of NF-kB and interferon responses, thus confirming TLR involvement in Ad-mediated immunity across diverse species.
Collapse
Affiliation(s)
- Zachary C Hartman
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
29
|
Abstract
Conserved motifs of eukaryotic gene promoters, such as TATA box and CAAT box sequences, of E1A of human adenoviruses (e.g human adenovirus 5) lie between the left inverted terminal repeat (ITR) and the ATG of E1A. However, analysis of the left end of the bovine adenovirus 3 (BAdV-3) genome revealed that the conserved sequences of the E1A promoter are present only in the ITR. As such, the promoter activity of ITR was tested in the context of a BAdV-3 vector or a plasmid-based system. Different regions of the left end of the BAdV-3 genome initiated transcription of the red fluorescent protein gene in a plasmid-based system. Moreover, BAdV-3 mutants in which the open reading frame of E1A was placed immediately downstream of the ITR produced E1A transcript and could be propagated in non-E1A-complementing Madin-Darby bovine kidney cells. These results suggest that the left ITR contains the sole BAdV-3 E1A promoter.
Collapse
Affiliation(s)
- Li Xing
- Vectored Vaccine Program, Vaccine and Infectious Disease Organization, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Suresh Kumar Tikoo
- Vectored Vaccine Program, Vaccine and Infectious Disease Organization, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| |
Collapse
|
30
|
Mathis JM, Williams BJ, Sibley DA, Carroll JL, Li J, Odaka Y, Barlow S, Nathan CAO, Li BDL, DeBenedetti A. Cancer-specific targeting of an adenovirus-delivered herpes simplex virus thymidine kinase suicide gene using translational control. J Gene Med 2006; 8:1105-20. [PMID: 16802401 DOI: 10.1002/jgm.935] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two technical hurdles, gene delivery and target specificity, have hindered the development of effective cancer gene therapies. In order to circumvent the problem of tumor specificity, the suicide gene, HSV-1 thymidine kinase (HSV-Tk), was modified with a complex 5' upstream-untranslated region (5'-UTR) that limits efficient translation to cells expressing high levels of the translation initiation factor, eIF4E. Since previous studies have shown that most tumor cells express elevated levels of eIF4E, tumor-specific gene delivery was optimized by incorporation of the 5'-UTR-modified suicide gene (HSV-UTk) into an adenovirus vector (Ad-CMV-UTk). The efficacy of this novel approach of targeting suicide gene expression and limiting cytotoxicity by means of translational restriction was tested in vitro with the use of the human breast cancer cell lines (MCF-7, MDA-MB435, and ZR-75-1). As controls, normal MCF10A, HMEC, and HMSC cell lines that express relatively low levels of eIF4E were used. Real-time reverse-transcription polymerase chain reaction (RT-PCR) was used to quantify HSV-Tk mRNA for cells infected with Ad-CMV-UTk as well as with Ad-CMV-Tk (a control adenovirus in which HSV-Tk is not regulated at the level of translation). Translation of HSV-Tk in the Ad-infected cells was measured by Western blot analysis. In addition, cytotoxicity was determined following treatment with the pro-drug ganciclovir (GCV) using an MTT viability assay. Finally, microPET imaging was used to assess cancer cell-specific expression of HSV-Tk and expression in normal tissues in vivo after intraperitoneal injection of Ad-CMV-Tk or Ad-CMV-UTk. These data collectively showed enhanced cancer cell-specific gene expression and reduced normal tissue gene expression for the Ad-HSV-UTk compared to the Ad-CMV-Tk, leading to increased cancer cell-enhanced GCV cytotoxicity. These results indicate that translational targeting of suicide gene expression in tumor cells in vitro and in vivo is effective and may provide a platform for enhanced cancer gene therapy specificity.
Collapse
Affiliation(s)
- J Michael Mathis
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hama S, Akita H, Ito R, Mizuguchi H, Hayakawa T, Harashima H. Quantitative Comparison of Intracellular Trafficking and Nuclear Transcription between Adenoviral and Lipoplex Systems. Mol Ther 2006; 13:786-94. [PMID: 16364692 DOI: 10.1016/j.ymthe.2005.10.007] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2005] [Revised: 09/30/2005] [Accepted: 10/01/2005] [Indexed: 10/25/2022] Open
Abstract
To develop nonviral gene vectors that are sufficient for clinical application, it is necessary to understand why and to what extent nonviral vectors are inferior to viral vectors, which in general show a more efficient transfection activity. This study describes a systematic and quantitative comparison of the cellular uptake and subsequent intracellular distribution (e.g., endosome/lysosome, cytosol, and nucleus) of exogenous DNA transfected by viral and nonviral vectors in living cells, using a combination of TaqMan PCR and a recently developed confocal image-assisted three-dimensionally integrated quantification method. As a model, adenovirus (Ad) and Lipofectamine Plus (LFN) were used for comparison since they are highly potent and widely used viral and nonviral vectors, respectively. The findings indicate that the efficiency of cellular uptake for LFN is significantly higher than that for Ad. Once taken up by a cell, Ad exhibited comparable endosomal escape and slightly higher nuclear transfer efficiency compared with LFN. In contrast, LFN requires 3 orders of magnitude more intranuclear gene copies to exhibit a transgene expression comparable to that of the Ad, suggesting that the difference in transfection efficiency principally arises from differences in nuclear transcription efficiency and not from a difference in intracellular trafficking between Ad and LFN.
Collapse
Affiliation(s)
- Susumu Hama
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Jin F, Kretschmer PJ, Hermiston TW. Identification of novel insertion sites in the Ad5 genome that utilize the Ad splicing machinery for therapeutic gene expression. Mol Ther 2005; 12:1052-63. [PMID: 16165398 DOI: 10.1016/j.ymthe.2005.07.696] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 07/28/2005] [Accepted: 07/28/2005] [Indexed: 11/18/2022] Open
Abstract
Therapeutic transgene expression from oncolytic viruses represents one approach to increasing the effectiveness of these agents as cancer therapeutics. In the case of the oncolytic adenovirus (Ad), however, the genomic packaging capacity is constrained. To address this, we explored whether a transposon-based system could identify sites in the viral genome where endogenous Ad promoters could drive transgene expression via splicing and still maintain the replication capacity of the virus. Using GFP as a reporter gene and an E3-deleted Ad genome as a target, we tested three splicing signals. RACE analysis confirmed that gene expression from the GFP-expressing Ads occurs via splicing and traced expression to the Ad major late promoter (MLP). Replacement of the GFP transposon by an equivalent splice acceptor-luciferase expression cassette in the same orientation confirmed that substitute transgenes are also expressed via splicing from the MLP. Interestingly, insertion of the substitute transgene in the opposite orientation also resulted in expression that, in some cases, originated from within the ITR region of the viral genome. In summary, splice acceptor sequences can be used to control transgene expression from endogenous Ad promoters and this represents a genomically economical approach to arming oncolytic Ads.
Collapse
Affiliation(s)
- Fang Jin
- Gene Therapy Research Department, Berlex Biosciences, 2600 Hilltop Drive, Richmond, CA 94804, USA
| | | | | |
Collapse
|
33
|
Martin-Duque P, Jezzard S, Kaftansis L, Vassaux G. Direct comparison of the insulating properties of two genetic elements in an adenoviral vector containing two different expression cassettes. Hum Gene Ther 2005; 15:995-1002. [PMID: 15585115 DOI: 10.1089/hum.2004.15.995] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Targeted gene expression can be achieved through the use of cell-selective promoters. However, when the expression cassette is delivered by an adenovirus, "promoter interference," resulting in the loss of specificity, has been reported. To overcome this problem, insulator elements (the bovine growth hormone transcription stop signal or HS4 chromatin insulators of the chicken beta-globin locus) have been used. The present study examines the efficacy of these insulators elements, when two independent expression cassettes (one in which a strong, ubiquitous promoter drives the expression of the green fluorescent protein and another in which the "cancer-selective" ERBB2 promoter drives the expression of the herpes simplex virus thymidine kinase [HSVtk] gene) are incorporated into the same recombinant adenovirus. As expected, the presence of either insulator does not alter the expression of HSVtk in ERBB2-positive cells, measured through sensitization of the cells to ganciclovir. When ERBB2-negative cells were infected at a multiplicity of infection (MOI) of 10, the uninsulated virus sensitized ERBB2-negative cells to the same extent as it did for ERBB2-positive cells; partial sensitization was observed when transcriptional terminators were used, indicating a partial insulating effect; and complete insulation (no sensitization to ganciclovir) was observed when HS4 chromatin insulators were used. However, this complete insulation was lost when the MOI of virus was increased to 100. Our study demonstrates the possibility of insulating a conditionally expressed transgene in the vicinity of another expression cassette, but this insulating effect is lost when the multiplicity of infection is increased.
Collapse
Affiliation(s)
- Pilar Martin-Duque
- Molecular Oncology Unit, Cancer Research UK Clinical Centre, Barts and the London School of Medicine and Dentistry, John Vane Science Centre, London EC1M 6BQ, United Kingdom
| | | | | | | |
Collapse
|
34
|
Cheng WS, Kraaij R, Nilsson B, van der Weel L, de Ridder CMA, Tötterman TH, Essand M. A novel TARP-promoter-based adenovirus against hormone-dependent and hormone-refractory prostate cancer. Mol Ther 2005; 10:355-64. [PMID: 15294182 DOI: 10.1016/j.ymthe.2004.05.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 05/13/2004] [Indexed: 11/19/2022] Open
Abstract
TARP (T cell receptor gamma-chain alternate reading frame protein) is a protein that in males is uniquely expressed in prostate epithelial cells and prostate cancer cells. We have previously shown that the transcriptional activity of a chimeric sequence comprising the TARP promoter (TARPp) and the PSA enhancer (PSAe) is strictly controlled by testosterone and highly restricted to cells of prostate origin. Here we report that a chimeric sequence comprising TARPp and the PSMA enhancer (PSMAe) is highly active in testosterone-deprived prostate cancer cells, while a regulatory sequence comprising PSAe, PSMAe, and TARPp (PPT) has high prostate-specific activity both in the presence and in the absence of testosterone. Therefore, the PPT sequence may, in a gene therapy setting, be beneficial to prostate cancer patients that have been treated with androgen withdrawal. A recombinant adenovirus vector with the PPT sequence, shielded from interfering adenoviral sequences by the mouse H19 insulator, yields high and prostate-specific transgene expression both in cell cultures and when prostate cancer, PC-346C, tumors were grown orthotopically in nude mice. Intravenous virus administration reveals both higher activity and higher selectivity for the insulator-shielded PPT sequence than for the immediate-early CMV promoter. Therefore, we believe that an adenovirus with therapeutic gene expression controlled by an insulator-shielded PPT sequence is a promising candidate for gene therapy of prostate cancer.
Collapse
Affiliation(s)
- Wing-Shing Cheng
- Clinical Immunology, Rudbeck Laboratory, Uppsala University, SE-75185, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
35
|
Hoffmann D, Jogler C, Wildner O. Effects of the Ad5 upstream E1 region and gene products on heterologous promoters. J Gene Med 2005; 7:1356-66. [PMID: 15945123 DOI: 10.1002/jgm.771] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND All recombinant adenovirus vectors contain the upstream region of the E1A gene comprising the viral origin of replication, encapsidation signal, and cis-acting regulatory elements for transcription of the E1A and other early genes. Using different reporter genes, some previous studies demonstrated the maintenance of heterologous promoter specificity in the adenoviral context, while others reported that adenoviral sequences interfere with promoter activity. METHODS Plasmid DNA-based luciferase reporter gene assays and adenovirus type 5 (Ad5) infection were combined to examine the effect of the Ad5 (nt 1-353) element and/or adenoviral gene products on tissue-specific (Midkine (MK) and COX-2), cell cycle associated (Ki-67 and E2F1) and viral promoters (Ad5 E1, Ad5 E4 and SV40). As a proof of concept, data were verified in the setting of recombinant replication-defective and replication-competent adenoviral vectors. RESULTS Viral and E2F1 promoter activities were enhanced by the Ad5 (nt 1-353) segment by approximately 100% and 145%, respectively, regardless of its position. A polyadenylation sequence (polyA) upstream of the promoter had no effect, confirming an enhancer element within the Ad5 (nt 1-353) segment. Ad5 (nt 1-353) increased COX-2 promoter activity by 146% but was blocked by an upstream polyA, indicating a cryptic transcription start site. When placing the reporter gene cassette in a replication-defective adenovirus, similar data were obtained. In the plasmid vector-based system, adenoviral gene products transactivated the E2F1 and viral promoters by 194%, 19%, 67%, and 16%, respectively. Tissue-specific promoter activities were not significantly affected by the Ad5 (nt 1-353) segment, nor adenoviral gene products. In concert with these data, we were able to target replication-competent adenoviral vectors with the COX-2 promoter, but not with the cell cycle associated promotor. CONCLUSIONS The adenovirus E1A upstream regulatory region and gene products interact with some but not all heterologous promoters. Often, the basal promoter activity can be reduced with an upstream polyA. Since the data obtained in our plasmid vector-based assay with internal control and infection with adenovirus could be confirmed in the adenoviral setting, our system might be suitable to speed up the identification of promoters which maintain their specificity in the adenoviral context and circumvent the problems associated with determining infectious adenovirus titers.
Collapse
Affiliation(s)
- Dennis Hoffmann
- Ruhr-Universität Bochum, Abteilung für Molekulare und Medizinische Virologie, Bldg. MA, Rm. 6/40, D-44801 Bochum, Germany
| | | | | |
Collapse
|
36
|
Xing L, Tikoo SK. Promoter activity of left inverted terminal repeat and downstream sequences of porcine adenovirus type 3. Virus Res 2004; 109:51-8. [PMID: 15826912 DOI: 10.1016/j.virusres.2004.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 10/12/2004] [Accepted: 10/12/2004] [Indexed: 11/27/2022]
Abstract
Early region 1 (E1) of porcine adenovirus type 3 (PAdV-3) consists of E1A and E1B transcription units. The authentic promoter region of E1A contains a TATA box at nucleotide position (nt) 449 and a bifunctional regulatory element between nt 374 and 431, which enhances the transcription of E1A, but represses that of E1B. Here, we investigated the role of the left inverted terminal repeat (ITR) and its downstream sequences (between nt 151 and 312) in the transcription of early viral genes, and viral replication. Mutant PAdV-3s without the authentic E1A promoter region could be rescued by transfection of mutant genomic DNA into fetal porcine retina cells. Moreover, the mutant PAdV-3s produced E1A-specific mRNA and remained viable in swine testis (ST) cells suggesting that the left-terminal 151 bp including the ITR, can serve as a promoter for E1A expression. However, mutant PAdV-3s containing deletion including authentic E1A promoter region, displayed both reduced steady-state levels of early gene mRNAs (E1A, E1B, E2A, E3, and E4) and decreased rate of viral replication in ST cells. Interestingly, mutant PAdV-3s containing the left-terminal 312 bp displayed increased transcription of early genes including E1A. Our results suggest that the left ITR of PAdV-3 contain the promoter like elements and the sequences (between nt 151 and 312) downstream of left ITR can enhance its promoter activity.
Collapse
Affiliation(s)
- Li Xing
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan, Canada S7N 5E3
| | | |
Collapse
|
37
|
Cho WK, Seong YR, Lee YH, Kim MJ, Hwang KS, Yoo J, Choi S, Jung CR, Im DS. Oncolytic effects of adenovirus mutant capable of replicating in hypoxic and normoxic regions of solid tumor. Mol Ther 2004; 10:938-49. [PMID: 15509511 DOI: 10.1016/j.ymthe.2004.07.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 07/19/2004] [Indexed: 11/29/2022] Open
Abstract
Solid tumors contain normoxic and hypoxic regions depending on the distance from the capillary. Normal cells may also be exposed to hypoxia under certain physiological conditions. Tumor hypoxia has been shown to associate strongly with tumor propagation and malignant progression. Hypoxia-inducible factor (HIF)-1alpha is stable under hypoxia and induces transcription of target genes by binding to the hypoxia-response element (HRE). Here we investigated the oncolytic effects of a novel adenovirus mutant with a deleted E1B55 gene (Ad.Delta55.HRE), in which the expression of E1A, which is essential for adenoviral replication, is regulated under the control of an HRE-expression system. Ad.Delta55.HRE expressed E1A under normoxia and more E1A under hypoxia and exhibited oncolytic effects on various cultured tumor cells, but its cytotoxic effect is relatively attenuated in normal fibroblast cells under normoxic and hypoxic conditions. Ad.Delta55.HRE lysed Huh-7 hepatoma cells stably expressing HIF-1alpha more effectively compared to parental cells. Ad.Delta55.HRE treatment exhibited significant antitumor activity in PC-3 prostate- and MDA-MB-435 breast tumor-bearing nude mice in which HIF-1alpha protein was immunohistochemically detected. The E1A and hexon proteins of adenovirus were immunostained in MDA-MB-435 xenografts after Ad.Delta55.HRE treatment, suggestive of viral replication. Our results suggest that Ad.Delta55.HRE may be useful for the treatment of solid tumors.
Collapse
Affiliation(s)
- Won-Kyung Cho
- Gene Therapy Research Unit/Cell Biology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Yusong, Daejeon 305-333, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lauer KP, Llorente I, Blair E, Seto J, Krasnov V, Purkayastha A, Ditty SE, Hadfield TL, Buck C, Tibbetts C, Seto D. Natural variation among human adenoviruses: genome sequence and annotation of human adenovirus serotype 1. J Gen Virol 2004; 85:2615-2625. [PMID: 15302955 DOI: 10.1099/vir.0.80118-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The 36,001 base pair DNA sequence of human adenovirus serotype 1 (HAdV-1) has been determined, using a 'leveraged primer sequencing strategy' to generate high quality sequences economically. This annotated genome (GenBank AF534906) confirms anticipated similarity to closely related species C (formerly subgroup), human adenoviruses HAdV-2 and -5, and near identity with earlier reports of sequences representing parts of the HAdV-1 genome. A first round of HAdV-1 sequence data acquisition used PCR amplification and sequencing primers from sequences common to the genomes of HAdV-2 and -5. The subsequent rounds of sequencing used primers derived from the newly generated data. Corroborative re-sequencing with primers selected from this HAdV-1 dataset generated sparsely tiled arrays of high quality sequencing ladders spanning both complementary strands of the HAdV-1 genome. These strategies allow for rapid and accurate low-pass sequencing of genomes. Such rapid genome determinations facilitate the development of specific probes for differentiation of family, serotype, subtype and strain (e.g. pathogen genome signatures). These will be used to monitor epidemic outbreaks of acute respiratory disease in a defined test bed by the Epidemic Outbreak Surveillance (EOS) project.
Collapse
Affiliation(s)
- Kim P Lauer
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Isabel Llorente
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Eric Blair
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Jason Seto
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Vladimir Krasnov
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Anjan Purkayastha
- Epidemic Outbreak Surveillance (EOS) Consortium, 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- HQ USAF Surgeon General Office, Directorate of Modernization (SGR), 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| | - Susan E Ditty
- Epidemic Outbreak Surveillance (EOS) Consortium, 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- Division of Microbiology, Department of Infectious and Parasitic Diseases Pathology, Armed Forces Institute of Pathology, 5300 Georgia Avenue NW, Washington, DC 20306, USA
| | - Ted L Hadfield
- Epidemic Outbreak Surveillance (EOS) Consortium, 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- Division of Microbiology, Department of Infectious and Parasitic Diseases Pathology, Armed Forces Institute of Pathology, 5300 Georgia Avenue NW, Washington, DC 20306, USA
| | - Charles Buck
- Department of Virology, American Type Culture Collection (ATCC), Manassas, VA 20108, USA
| | - Clark Tibbetts
- Epidemic Outbreak Surveillance (EOS) Consortium, 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- HQ USAF Surgeon General Office, Directorate of Modernization (SGR), 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
| | - Donald Seto
- Epidemic Outbreak Surveillance (EOS) Consortium, 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- HQ USAF Surgeon General Office, Directorate of Modernization (SGR), 5201 Leesburg Pike, Suite 1401, Falls Church, VA 22041, USA
- Bioinformatics and Computational Biology, School of Computational Sciences, George Mason University, 10900 University Boulevard, MSN 5B3, Manassas, VA 20110, USA
| |
Collapse
|
39
|
Xing L, Tikoo SK. Porcine adenovirus type 3 E1 transcriptional control region contains a bifunctional regulatory element. Virology 2004; 318:37-44. [PMID: 14972533 DOI: 10.1016/j.virol.2003.09.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Revised: 09/19/2003] [Accepted: 09/25/2003] [Indexed: 11/29/2022]
Abstract
We identified a bifunctional regulatory element located between nt 374 and 431 upstream of TATA box of porcine adenovirus (PAV) 3 E1A promoter. Deletion of the element dramatically reduced the steady-state level of E1A mRNA, but increased that of E1B, which lies immediately downstream of E1A. The mutant virus displayed defective replication at early times of infection, but replicated nearly as efficiently as wild-type PAV-3 at late times of infection. This defect was complemented with coinfecting wild-type virus in a mixed infection. The results indicated that the upstream activation sequences (UAS) of E1A overlap the upstream repression sequences (URS) of E1B, although both transcription units are transcribed from different promoters.
Collapse
Affiliation(s)
- Li Xing
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E3
| | | |
Collapse
|
40
|
Ye X, Liang M, Meng X, Ren X, Chen H, Li ZY, Ni S, Lieber A, Hu F. Insulation from viral transcriptional regulatory elements enables improvement to hepatoma-specific gene expression from adenovirus vectors. Biochem Biophys Res Commun 2003; 307:759-64. [PMID: 12878174 DOI: 10.1016/s0006-291x(03)01251-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We previously reported that the HS-4 insulator, derived from the chicken beta-globin locus, was able to shield a downstream inducible promoter from viral enhancers or silencers present in the genome of adenovirus vectors. In this study, we constructed two recombinant adenoviruses (Ad) that express an alkaline phosphatase (AP) reporter gene driven by an alpha-fetoprotein (AFP) enhancer/promoter with and without HS-4 insulator (Ad.HS4.AFP-AP and Ad.AFP-AP). The insulated vector, Ad.HS4.AFP-AP, conferred significantly higher AP expression than Ad.AFP-AP in all AFP-producing hepatocellular carcinoma cell lines (HepG2, Hep3B, and HuH7) examined. AP expression from Ad.HS4.AFP-AP was specific to hepatoma cells and barely detectable in AFP-negative tumor cell lines and normal human cells, including human hepatocytes. Intravenous infusion of viral vectors into mice with liver metastasis derived from Hep3B hepatoma cells resulted in AP expression exclusively localized to tumor cells. The number of tumor cells with detectable AP expression was significantly higher in mice infused with Ad.HS4.AFP-AP than in mice that received the non-insulated vector. This study demonstrates that the HS-4 insulator in the context of an Ad vector can increase the activity of the AFP promoter, while maintaining its tumor-specificity in vitro and in vivo. Considering that the anti-tumor activity of oncolytic vectors often depends on the level of pro-apoptotic or suicide gene expression, insulators might be a useful tool to improve the efficacy and specificity of these vectors.
Collapse
Affiliation(s)
- Xun Ye
- Shanghai Sunway Biotech, No.1150, GuiQiao Road, Pudong, Shanghai 201206, China
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Yamamoto M, Davydova J, Takayama K, Alemany R, Curiel DT. Transcription initiation activity of adenovirus left-end sequence in adenovirus vectors with e1 deleted. J Virol 2003; 77:1633-7. [PMID: 12502881 PMCID: PMC140768 DOI: 10.1128/jvi.77.2.1633-1637.2003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the transcription initiation activity of the left-end sequence (first 342 bp) of the adenovirus genome in the context of an adenovirus vector with E1 deleted in in vitro and in vivo gene transfer models. While nucleotide sequences 1 to 190 and 1 to 342 showed strong activity in three out of three lung cancer cell lines, nucleotide sequence 1 to 103 showed limited activity in H358, cells which show characteristics of type 2 alveolar cells. In vivo, the transcription initiation activities of nucleotide sequence 1 to 103 in the liver and the lung were minimal, while nucleotide sequences 1 to 190 and 1 to 342 showed strong activity comparable to that of the cytomegalovirus promoter. Further understanding of the transcription initiation activity of the left-end sequence of the adenovirus genome should lead to optimization of adenovirus vectors.
Collapse
Affiliation(s)
- Masato Yamamoto
- Division of Human Gene Therapy, Department of Medicine, and the Gene Therapy Center, University of Alabama at Birmingham, 35294-2172, USA.
| | | | | | | | | |
Collapse
|
42
|
Buvoli M, Langer SJ, Bialik S, Leinwand LA. Potential limitations of transcription terminators used as transgene insulators in adenoviral vectors. Gene Ther 2002; 9:227-31. [PMID: 11859427 DOI: 10.1038/sj.gt.3301640] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2001] [Accepted: 11/20/2001] [Indexed: 11/09/2022]
Abstract
The presence of adenoviral cis-elements interfering with the activity of tissue-specific promoters has seriously impaired the use of transcriptional targeting adenoviruses for gene therapy purposes. As an approach to overcome this limitation, transcription terminators were previously employed in cultured cells to insulate a transgene promoter from viral activation. To extend these studies in vivo, we have injected into heart and skeletal muscle, adenoviruses containing the human growth hormone terminator and the cardiac-specific alpha-myosin heavy chain promoter (alphaMyHC) driving the chloramphenicol acetyltransferase (CAT) reporter gene. Promoterless CAT constructs were also tested to study interfering viral transcription and terminator activity. Here we demonstrate that the presence of a terminator can produce undesirable effects on the activity of heterologous promoters. Our analysis shows that in particular conditions, a terminator can reduce the tissue specificity of the transgene promoter. By RNAse protection assay performed on cardiac myocytes, we also show that adenoviral elements can direct high levels of autonomous transcription within the E1A enhancer region. This finding supports the model that passive readthrough of the transgene promoter is responsible for loss of selective expression.
Collapse
Affiliation(s)
- M Buvoli
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, CO 80309-0347, USA
| | | | | | | |
Collapse
|
43
|
Dán A, Elo P, Harrach B, Zádori Z, Benko M. Four new inverted terminal repeat sequences from bovine adenoviruses reveal striking differences in the length and content of the ITRs. Virus Genes 2001; 22:175-9. [PMID: 11324754 DOI: 10.1023/a:1008125324346] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The inverted terminal repeat (ITR) of the genome of four bovine adenovirus (BAdV) types have been sequenced, analysed and compared to the ITRs of other adenoviruses. The length of ITRs of the examined BAdVs ranged between 59 and 368 base pairs, thus the presently known longest adenovirus ITR sequence is from BAdV-10. The conserved motifs and characteristic sequence elements of the ITRs providing different binding sites for replicative proteins of viral and cellular origin seemed to be distributed according to the proposed genus classification of BAdVs. The ITRs of BAdV-10 share similarity with the members of the genus Mastadenovirus, while the ITRs of the other three sequenced serotypes (BAdV-4, 5 and strain Rus) which are candidate members of the genus Atadenovirus are very short and contain NFI and Sp1 binding sites only. The analysis of the new ITRs implied that the nucleotide sequence of the so-called core origin is highly preserved within the mastadenovirus genus only.
Collapse
Affiliation(s)
- A Dán
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, Budapest.
| | | | | | | | | |
Collapse
|
44
|
Rubinchik S, Lowe S, Jia Z, Norris J, Dong J. Creation of a new transgene cloning site near the right ITR of Ad5 results in reduced enhancer interference with tissue-specific and regulatable promoters. Gene Ther 2001; 8:247-53. [PMID: 11313797 DOI: 10.1038/sj.gt.3301364] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2000] [Accepted: 10/18/2000] [Indexed: 11/09/2022]
Abstract
Tissue-specific transgene expression is a valuable research tool and is of great importance in delivering toxic gene products with adenovirus vectors to tumors. Limiting cytotoxic gene expression to the target cells is highly desirable. While a number of successful applications of tissue- and tumor-specific gene expression using Ad vectors has been reported, cloning of some promoters into Ad vectors resulted in modulation or loss of tissue specificity. This phenomenon is likely the result of the interaction of E1A enhancer (and possibly other Ad sequences) with the promoter cloned in the E1 region. We have compared performance parameters of prostate-specific and tet-regulatable promoters in plasmids containing the terminal repeat sequences of Ad5 with or without the E1A enhancer. Subsequently, adenoviral vectors were constructed containing identical expression units either in the E1 region or near the right ITR, and tested in several cell lines. Here, we report that promoters placed near the right ITR of Ad5 retain higher selectivity and lower background expression in both plasmid and adenovirus vectors. We confirm that the E1A enhancer can interfere with the desired activity of nearby promoters, and describe an alternative transgene insertion site for construction of Ad vectors.
Collapse
Affiliation(s)
- S Rubinchik
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425-2230, USA
| | | | | | | | | |
Collapse
|
45
|
Steinwaerder DS, Lieber A. Insulation from viral transcriptional regulatory elements improves inducible transgene expression from adenovirus vectors in vitro and in vivo. Gene Ther 2000; 7:556-67. [PMID: 10819570 DOI: 10.1038/sj.gt.3301139] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recombinant adenoviruses (Ad) are attractive vectors for gene transfer in vitro and in vivo. However, the widely used E1-deleted vectors as well as newer generation vectors contain viral sequences, including transcriptional elements for viral gene expression. These viral regulatory elements can interfere with heterologous promoters used to drive transgene expression and may impair tissue-specific or inducible transgene expression. This study demonstrates that the activity of a metal-inducible promoter is affected by Ad sequences both upstream and downstream of the transgene cassette in both orientations. Interference with expression from the heterologous promoter was particularly strong by viral regulatory elements located within Ad sequences nucleotides 1-341. This region is present in all recombinant Ad vectors, including helper-dependent vectors. An insulator element derived from the chicken gamma-globin locus (HS-4) was employed to shield the inducible promoter from viral enhancers as tested after gene transfer with first-generation Ad vectors in vitro and in vivo. Optimal shielding was obtained when the transgene expression cassette was flanked on both sides by HS-4 elements, except for when the HS-4 element was placed in 3'-->5' orientation in front of the promoter. The insulators reduced basal expression to barely detectable levels in the non-induced stage, and allowed for induction factors of approximately 40 and approximately 230 in vitro and in vivo, respectively. Induction ratios from Ad vectors without insulators were approximately 40-fold lower in vitro and approximately 15-fold lower in vivo. This study proves the potential of insulators to improve inducible or tissue-specific gene expression from adenovirus vectors, which is important for studying gene functions as well as for gene therapy approaches. Furthermore, our data show that insulators exert enhancer-blocking effects in episomal DNA.
Collapse
Affiliation(s)
- D S Steinwaerder
- Division of Medical Genetics, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
46
|
Reddy PS, Idamakanti N, Song JY, Lee JB, Hyun BH, Park JH, Cha SH, Tikoo SK, Babiuk LA. Sequence and transcription map analysis of early region-1 of porcine adenovirus type-3. Virus Res 1998; 58:97-106. [PMID: 9879766 DOI: 10.1016/s0168-1702(98)00107-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The nucleotide sequence of a region of the genome of porcine adenovirus-3 (PAV-3) between map units 1 and 12.2 was determined. The sequenced region included four major open reading frames, and several transcription control elements. Homology studies, using the deduced amino acid sequences of the open reading frames, revealed genes coding for the E1A, E1B 202R, E1B 474R and pIX proteins. The region was characterized by Northern blot analysis and sequencing of cDNA clones. In PAV-3, the E1A region is located between 1.5 and 3.8 map units. Alternate splice donor sites are used to produce four different types of transcripts from the primary transcript of the E1A region. The E1A proteins of PAV-3 contain a consensus zinc finger motif, which was shown to be the principal transactivation region of human adenovirus-5 (HAV-5) E1A proteins. The PAV-3 E1A proteins also contain a retinoblastoma susceptibility protein (pRb) binding motif, which in HAVs interacts with cellular Rb protein to overcome the pRb mediated transcription repression. The E1B region in PAV-3 maps between 4.0 and 12.2 map units, and shares a polyadenylation signal and polyadenylation sites with the gene coding for pIX. A single major and a number of minor mRNA species are produced from the E1B region. The open reading frame (ORF) analysis of cDNA representing major mRNA produced from the E1B region showed two overlapping ORFs corresponding to 19K and 55K ORFs of HAV-2. In PAV-3, the gene coding for pIX is located between 9.9 and 12.2 map units and codes for a protein of 199 amino acids.
Collapse
Affiliation(s)
- P S Reddy
- Veterinary Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Affiliation(s)
- L A Lucher
- Department of Biological Sciences, Illinois State, University, Normal 61761, USA
| |
Collapse
|
48
|
Yoshida K, Higashino F, Fujinaga K. Transcriptional regulation of the adenovirus E1A gene. Curr Top Microbiol Immunol 1995; 199 ( Pt 3):113-30. [PMID: 7555073 DOI: 10.1007/978-3-642-79586-2_6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- K Yoshida
- Department of Molecular Biology, Sapporo Medical University, School of Medicine, Japan
| | | | | |
Collapse
|
49
|
Hatfield L, Hearing P. The NFIII/OCT-1 binding site stimulates adenovirus DNA replication in vivo and is functionally redundant with adjacent sequences. J Virol 1993; 67:3931-9. [PMID: 8510211 PMCID: PMC237760 DOI: 10.1128/jvi.67.7.3931-3939.1993] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The inverted terminal repeat (ITR) of adenovirus type 5 (Ad5) is 103 bp in length and contains the origin of DNA replication. Cellular transcription factors NFI/CTF and NFIII/OCT-1 bind to sites within the ITR and participate in the initiation of viral DNA replication in vitro. The ITR also contains multiple copies of two conserved sequence motifs that bind the cellular transcription factors SP1 and ATF. We have analyzed a series of viruses that carry deletions at the left terminus of Ad5. A virus carrying a deletion of the NFIII/OCT-1, SP1, and ATF sites within the ITR (mutant dl309-44/107) was wild type for virus growth. However, the deletion of these elements in addition to sequences immediately flanking the ITR (mutant dl309-44/195) resulted in a virus that grew poorly. The analysis of growth parameters of these and other mutants demonstrate that the NFIII/OCT-1 and adjacent SP1 sites augment the accumulation of viral DNA following infection. The function of these elements was most evident in coinfections with a wild-type virus, suggesting that these sites enhance the ability of a limiting trans-acting factor(s), that stimulates viral DNA replication, to interact with the ITR. The results of these analyses indicate functional redundancy between different transcription elements at the left terminus of the Ad5 genome and demonstrate that the NFIII/OCT-1 site and adjacent SP1 site, previously thought to be nonessential for adenovirus growth, play a role in viral DNA replication in vivo.
Collapse
Affiliation(s)
- L Hatfield
- Department of Microbiology, State University of New York, Stony Brook 11794-7621
| | | |
Collapse
|
50
|
Convergent regulation of NF-IL6 and Oct-1 synthesis by interleukin-6 and retinoic acid signaling in embryonal carcinoma cells. Mol Cell Biol 1993. [PMID: 8455626 DOI: 10.1128/mcb.13.4.2515] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nuclear signaling by the pleiotropic cytokine interleukin-6 (IL-6) has been investigated in human embryonal carcinoma cells and T cells. We show that Oct-1, a ubiquitously expressed octamer-binding protein known to be regulated posttranslationally, can also be regulated at the levels of mRNA and protein synthesis by IL-6 and by retinoic acid (RA) in human embryonal carcinoma cells. NF-IL6, an IL-6-inducible transcription factor of the C/EBP family, can confer this regulation and is itself regulated by both signals. The abundance and the molar ratios of the three forms of NF-IL6, corresponding to peptides initiated in frame from different AUGs of the same NF-IL6 mRNA species, are regulated by IL-6 and by RA. These results suggest that the two signal transduction pathways overlap in human embryonal carcinoma cells and that Oct-1 may be downstream of NF-IL6 in the shared regulatory cascade. Enhanced Oct-1 synthesis correlates with one of the functions of Oct-1, i.e., stimulation of adenovirus DNA replication. This provides an example of a possible functional consequence of IL-6 and RA signaling that is mediated by NF-IL6 and Oct-1 regulation.
Collapse
|