1
|
He Y, Taylor RL, Bai H, Ashwell CM, Zhao K, Li Y, Sun G, Zhang H, Song J. Transgenerational epigenetic inheritance and immunity in chickens that vary in Marek's disease resistance. Poult Sci 2023; 102:103036. [PMID: 37832188 PMCID: PMC10568563 DOI: 10.1016/j.psj.2023.103036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 10/15/2023] Open
Abstract
Marek's disease virus (MDV), a naturally oncogenic, highly contagious alpha herpesvirus, induces a T cell lymphoma in chickens that causes severe economic loss. Marek's disease (MD) outcome in an individual is attributed to genetic and environmental factors. Further investigation of the host-virus interaction mechanisms that impact MD resistance is needed to achieve greater MD control. This study analyzed genome-wide DNA methylation patterns in 2 highly inbred parental lines 63 and 72 and 5 recombinant congenic strains (RCS) C, L, M, N, and X strains from those parents. Lines 63 and 72, are MD resistant and susceptible, respectively, whereas the RCS have different combinations of 87.5% Line 63 and 12.5% Line 72. Our DNA methylation cluster showed a strong association with MD incidence. Differentially methylated regions (DMRs) between the parental lines and the 5 RCS were captured. MD-resistant and MD-susceptible markers of DNA methylation were identified as transgenerational epigenetic inheritable. In addition, the growth of v-src DNA tumors and antibody response against sheep red blood cells differed among the 2 parental lines and the RCS. Overall, our results provide very solid evidence that DNA methylation patterns are transgenerational epigenetic inheritance (TEI) in chickens and also play a vital role in MD tumorigenesis and other immune responses; the specific methylated regions may be important modulators of general immunity.
Collapse
Affiliation(s)
- Yanghua He
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822 USA; Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Robert L Taylor
- Division of Animal and Nutritional Sciences West Virginia University, Morgantown, WV 26508 USA
| | - Hao Bai
- Department of Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Christopher M Ashwell
- Division of Animal and Nutritional Sciences West Virginia University, Morgantown, WV 26508 USA
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Yaokun Li
- College of Animal Science, South China Agricultural University, Guangzhou, GD 510642, China
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Huanmin Zhang
- USDA, Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA.
| |
Collapse
|
2
|
Gallardo RA, da Silva AP. Immune Responses and B Complex Associated Resistance to Infectious Bronchitis Virus in Chickens. Avian Dis 2021; 65:612-618. [DOI: 10.1637/aviandiseases-d-21-00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Rodrigo A. Gallardo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| | - Ana P. da Silva
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, 4008 VM3B, Davis, CA 95616
| |
Collapse
|
3
|
da Silva AP, Gallardo RA. The Chicken MHC: Insights into Genetic Resistance, Immunity, and Inflammation Following Infectious Bronchitis Virus Infections. Vaccines (Basel) 2020; 8:vaccines8040637. [PMID: 33147703 PMCID: PMC7711580 DOI: 10.3390/vaccines8040637] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022] Open
Abstract
The chicken immune system has provided an immense contribution to basic immunology knowledge by establishing major landmarks and discoveries that defined concepts widely used today. One of many special features on chickens is the presence of a compact and simple major histocompatibility complex (MHC). Despite its simplicity, the chicken MHC maintains the essential counterpart genes of the mammalian MHC, allowing for a strong association to be detected between the MHC and resistance or susceptibility to infectious diseases. This association has been widely studied for several poultry infectious diseases, including infectious bronchitis. In addition to the MHC and its linked genes, other non-MHC loci may play a role in the mechanisms underlying such resistance. It has been reported that innate immune responses, such as macrophage function and inflammation, might be some of the factors driving resistance or susceptibility, consequently influencing the disease outcome in an individual or a population. Information about innate immunity and genetic resistance can be helpful in developing effective preventative measures for diseases such as infectious bronchitis, to which a systemic antibody response is often not associated with disease protection. In this review, we summarize the importance of the chicken MHC in poultry disease resistance, particularly to infectious bronchitis virus (IBV) infections and the role played by innate immunity and inflammation on disease outcome. We highlight how future studies focusing on the MHC and non-MHC genes can potentially bring clarity to observed resistance in some chicken B haplotype lines.
Collapse
|
4
|
Zhang J, Goto RM, Miller MM. A simple means for MHC-Y genotyping in chickens using short tandem repeat sequences. Immunogenetics 2020; 72:325-332. [PMID: 32488290 DOI: 10.1007/s00251-020-01166-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/28/2020] [Indexed: 12/28/2022]
Abstract
Described here is a new, more efficient method for defining major histocompatibility complex-Y (MHC-Y) genotypes in chickens. The MHC-Y region is genetically independent from the classical MHC (MHC-B) region. MHC-Y is highly polymorphic and potentially important in the genetics of disease resistance. MHC-Y haplotypes contain variable numbers of specialized MHC class I-like genes, along with members of four additional gene families. Previously, MHC-Y haplotypes were defined by patterns of restriction fragments (RF) generated in labor-intensive procedures that were difficult to use to define MHC-Y genotypes for large numbers of samples. The method reported here is much simpler. MHC-Y genotypes are distinguished via patterns of PCR products generated from heritable short tandem repeat (STR) regions found immediately upstream of the MHC class I-like genes located throughout MHC-Y haplotypes. To validate the method, fully pedigreed families were analyzed for STR-defined haplotypes in light of haplotypes defined previously by RF patterns. STR-defined MHC-Y patterns segregate in fully pedigreed families as expected and correspond with haplotypes assigned by RF patterns. The patterns provided in STR chromatograms generated by capillary electrophoresis are distinct for different haplotypes and can be scored easily. Investigations into the influence of MHC-Y genetics on immune responses can now realistically be conducted with large sample sets.
Collapse
Affiliation(s)
- Jibin Zhang
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Ronald M Goto
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Marcia M Miller
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|
5
|
Fulton JE. Advances in methodologies for detecting MHC-B variability in chickens. Poult Sci 2020; 99:1267-1274. [PMID: 32111304 PMCID: PMC7587895 DOI: 10.1016/j.psj.2019.11.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 11/19/2022] Open
Abstract
The chicken major histocompatibility B complex (MHC-B) region is of great interest owing to its very strong association with resistance to many diseases. Variation in the MHC-B was initially identified by hemagglutination of red blood cells with specific alloantisera. New technologies, developed to identify variation in biological materials, have been applied to the chicken MHC. Protein variation encoded by the MHC genes was examined by immunoprecipitation and 2-dimensional gel electrophoresis. Increased availability of DNA probes, PCR, and sequencing resulted in the application of DNA-based methods for MHC detection. The chicken reference genome, completed in 2004, allowed further refinements in DNA methods that enabled more rapid examination of MHC variation and extended such analyses to include very diverse chicken populations. This review progresses from the inception of MHC-B identification to the present, describing multiple methods, plus their advantages and disadvantages.
Collapse
Affiliation(s)
- J E Fulton
- Research and Development, Hy-Line International, Dallas Center, IA 50063, USA.
| |
Collapse
|
6
|
Fulton JE, Berres ME, Kantanen J, Honkatukia M. MHC-B variability within the Finnish Landrace chicken conservation program. Poult Sci 2018; 96:3026-3030. [PMID: 28453652 DOI: 10.3382/ps/pex102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/05/2017] [Indexed: 11/20/2022] Open
Abstract
The major histocompatibility complex (MHC) is a cluster of genes involved with immune responses. The chicken MHC has been shown to influence resistance to viruses, bacteria, and infections from both internal and external parasites. The highly variable chicken MHC haplotypes were initially identified by the use of haplotype-specific serological reagents. A novel SNP-based panel encompassing 210,000 bp of the MHC-B locus was developed to allow fine scale genetic analyses including rapid identification of novel haplotypes for which serological reagents are not available. The Finnish Landrace breed of chickens traces its origins to almost 1,000 years ago, with multiple lineages maintained as small populations in isolated villages. The breed is well adapted to the cooler Finnish climate and is considered to be an infrequent egg layer. Conservation efforts to protect this endangered breed were initiated by a hobby breeder in the 1960s. An official conservation program was established in 1998 and now 12 different populations are currently maintained by a network of volunteer hobbyist breeders. Variation in the MHC-B region in these populations was examined using a panel of 90 selected SNP. A total of 195 samples from 12 distinct populations (average of 15 individuals sampled per population) were genotyped with the 90 SNP panel specific for the MHC-B region, spanning 210,000 bp. There were 36 haplotypes found, 16 of which are a subset of 78 that had been previously identified in either commercially utilized or heritage breeds from North America with the remaining 20 haplotypes being novel. The average number of MHC-B haplotypes found within each Finnish Landrace population was 5.9, and ranged from one to 13. While haplotypes common to multiple populations were found, population-specific haplotypes were also identified. This study shows that substantial MHC-B region diversity exists in the Finnish Landrace breed and exemplifies the significance tied to conserving multiple populations of rare breeds.
Collapse
Affiliation(s)
- J E Fulton
- Hy-Line International, Dallas Center, IA.
| | | | - J Kantanen
- Green Technology, Natural Resources Institute Finland (LUKE), FI-31600 Jokioinen, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland
| | - M Honkatukia
- Green Technology, Natural Resources Institute Finland (LUKE), FI-31600 Jokioinen, Finland
| |
Collapse
|
7
|
Mucksová J, Plachý J, Staněk O, Hejnar J, Kalina J, Benešová B, Trefil P. Cytokine response to the RSV antigen delivered by dendritic cell-directed vaccination in congenic chicken lines. Vet Res 2017; 48:18. [PMID: 28381295 PMCID: PMC5382389 DOI: 10.1186/s13567-017-0423-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/12/2017] [Indexed: 01/05/2023] Open
Abstract
Systems of antigen delivery into antigen-presenting cells represent an important novel strategy in chicken vaccine development. In this study, we verified the ability of Rous sarcoma virus (RSV) antigens fused with streptavidin to be targeted by specific biotinylated monoclonal antibody (anti-CD205) into dendritic cells and induce virus-specific protective immunity. The method was tested in four congenic lines of chickens that are either resistant or susceptible to the progressive growth of RSV-induced tumors. Our analyses confirmed that the biot-anti-CD205-SA-FITC complex was internalized by chicken splenocytes. In the cytokine expression profile, several significant differences were evident between RSV-challenged progressor and regressor chicken lines. A significant up-regulation of IL-2, IL-12, IL-15, and IL-18 expression was detected in immunized chickens of both regressor and progressor groups. Of these cytokines, IL-2 and IL-12 were most up-regulated 14 days post-challenge (dpc), while IL-15 and IL-18 were most up-regulated at 28 dpc. On the contrary, IL-10 expression was significantly down-regulated in all immunized groups of progressor chickens at 14 dpc. We detected significant up-regulation of IL-17 in the group of immunized progressors. LITAF down-regulation with iNOS up-regulation was especially observed in the progressor group of immunized chickens that developed large tumors. Based on the increased expression of cytokines specific for activated dendritic cells, we conclude that our system is able to induce partial stimulation of specific cell types involved in cell-mediated immunity.
Collapse
Affiliation(s)
- Jitka Mucksová
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Jílové U Prahy, Czech Republic
| | - Jiří Plachý
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ondřej Staněk
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Hejnar
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Kalina
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Jílové U Prahy, Czech Republic
| | - Barbora Benešová
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Jílové U Prahy, Czech Republic
| | - Pavel Trefil
- BIOPHARM, Research Institute of Biopharmacy and Veterinary Drugs, Jílové U Prahy, Czech Republic.
| |
Collapse
|
8
|
Fulton JE, Lund AR, McCarron AM, Pinegar KN, Korver DR, Classen HL, Aggrey S, Utterbach C, Anthony NB, Berres ME. MHC variability in heritage breeds of chickens. Poult Sci 2016; 95:393-9. [PMID: 26827122 DOI: 10.3382/ps/pev363] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/01/2015] [Indexed: 11/20/2022] Open
Abstract
The chicken Major Histocompatibility Complex (MHC) is very strongly associated with disease resistance and thus is a very important region of the chicken genome. Historically, MHC (B locus) has been identified by the use of serology with haplotype specific alloantisera. These antisera can be difficult to produce and frequently cross-react with multiple haplotypes and hence their application is generally limited to inbred and MHC-defined lines. As a consequence, very little information about MHC variability in heritage chicken breeds is available. DNA-based methods are now available for examining MHC variability in these previously uncharacterized populations. A high density SNP panel consisting of 101 SNP that span a 230,000 bp region of the chicken MHC was used to examine MHC variability in 17 heritage populations of chickens from five universities from Canada and the United States. The breeds included 6 heritage broiler lines, 3 Barred Plymouth Rock, 2 New Hampshire and one each of Rhode Island Red, Light Sussex, White Leghorn, Dark Brown Leghorn, and 2 synthetic lines. These heritage breeds contained from one to 11 haplotypes per line. A total of 52 unique MHC haplotypes were found with only 10 of them identical to serologically defined haplotypes. Furthermore, nine MHC recombinants with their respective parental haplotypes were identified. This survey confirms the value of these non-commercially utilized lines in maintaining genetic diversity. The identification of multiple MHC haplotypes and novel MHC recombinants indicates that diversity is being generated and maintained within these heritage populations.
Collapse
Affiliation(s)
- J E Fulton
- Hy-Line International, Dallas Center, IA
| | - A R Lund
- Hy-Line International, Dallas Center, IA
| | | | | | | | | | - S Aggrey
- University of Georgia, Athens, GA
| | | | | | | |
Collapse
|
9
|
Miller MM, Taylor RL. Brief review of the chicken Major Histocompatibility Complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance. Poult Sci 2016; 95:375-92. [PMID: 26740135 PMCID: PMC4988538 DOI: 10.3382/ps/pev379] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/11/2015] [Indexed: 12/25/2022] Open
Abstract
Nearly all genes presently mapped to chicken chromosome 16 (GGA 16) have either a demonstrated role in immune responses or are considered to serve in immunity by reason of sequence homology with immune system genes defined in other species. The genes are best described in regional units. Among these, the best known is the polymorphic major histocompatibility complex-B (MHC-B) region containing genes for classical peptide antigen presentation. Nearby MHC-B is a small region containing two CD1 genes, which encode molecules known to bind lipid antigens and which will likely be found in chickens to present lipids to specialized T cells, as occurs with CD1 molecules in other species. Another region is the MHC-Y region, separated from MHC-B by an intervening region of tandem repeats. Like MHC-B, MHC-Y is polymorphic. It contains specialized class I and class II genes and c-type lectin-like genes. Yet another region, separated from MHC-Y by the single nucleolar organizing region (NOR) in the chicken genome, contains olfactory receptor genes and scavenger receptor genes, which are also thought to contribute to immunity. The structure, distribution, linkages and patterns of polymorphism in these regions, suggest GGA 16 evolves as a microchromosome devoted to immune defense. Many GGA 16 genes are polymorphic and polygenic. At the moment most disease associations are at the haplotype level. Roles of individual MHC genes in disease resistance are documented in only a very few instances. Provided suitable experimental stocks persist, the availability of increasingly detailed maps of GGA 16 genes combined with new means for detecting genetic variability will lead to investigations defining the contributions of individual loci and more applications for immunogenetics in breeding healthy poultry.
Collapse
Affiliation(s)
- Marcia M Miller
- Beckman Research Institute, City of Hope, Department of Molecular and Cellular Biology, Duarte, CA 91010
| | - Robert L Taylor
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
10
|
Schulten E, Briles W, Taylor R. Rous sarcoma growth in lines congenic for major histocompatibility (B) complex recombinants. Poult Sci 2009; 88:1601-7. [DOI: 10.3382/ps.2009-00085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Golemboski KA, Taylor RL, Briles WE, Briles RW, Dietert RR. Inflammatory function of macrophages from chickens with B-recombinant haplotypes. Avian Pathol 2009; 24:347-52. [PMID: 18645791 DOI: 10.1080/03079459508419074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Both in vivo macrophage activation and in vitro monocyte activation were compared using chickens homozygous for each of two biochemically and serologically similar B-complex recombinant (B(F2-G23)) haplotypes. Chickens carrying the parental (non-recombinant) B haplotypes (B2 and B23) were included for relative comparison, although the genetic backgrounds for these strains were different from the background of the recombinants. Elicited peritoneal macrophages from R4/R4 (international designation B(2r3)) chickens expressed levels of sheep erythrocyte phagocytosis which were significantly higher (P< 0.05) than those from R2/R2 (B(2rl)) chickens. Differences between chickens with B genotypes were analogous to the differences demonstrated previously between B2/B2 and B23/B23 chickens. Similarly, lipopolysaccharide (LPS)-activated monocytes from R4/R4 chickens also expressed significantly higher (P< 0.05) levels of phagocytosis when compared with R2/R2 and B23/B23. In both cases, the functional level of macrophages from R2/R2 chickens was similar to that of B23/B23 cells, whereas macrophages from R4/R4 chickens were similar in functional capacity to those from B2/B2 chickens. These results suggest that R2 and R4 recombinants, despite their demonstrated similarities, may differ in DNA regions which include genetic factors controlling macrophage responsiveness.
Collapse
Affiliation(s)
- K A Golemboski
- Department of Microbiology, Immunology, and Parasitology, Cornell University, Ithaca, New York, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
Collaborative research efforts across disciplines typically result in more insight toward the hypothesis being tested due to the omnibus nature of the projects. For example, nutritional experiments evaluating a nutrient response will benefit greatly by incorporating biochemical, physiological, and immunological endpoints for measurement. Clearly, commercial poultry producers do not have the luxury of focusing on specific disciplines when field problems occur. Hence, in practice interplay exists among nutrition, genetics, management, and diseases. Dietary composition impacts immune function of the chicken. As research in the area of nutritional immunology has increased, it is becoming apparent that nutrient needs for immunity do not coincide with those for growth or skeletal tissue accretion. This review is not a comprehensive assessment of nutrient needs for immunity in the chicken. Rather, this review is concerned with nutritional modulation of immunity in broilers that offers insight for nutritionists and researchers to implement nutritional regimens to reduce the severity of disease and to test or validate nutritional regimens that heighten immunity. Nutritional modulation of the hen diet and in ovo nutrient modulation to improve chick immunity and disease resistance are discussed.
Collapse
Affiliation(s)
- M T Kidd
- Department of Poultry Science, Mississippi State University, Box 9665, Mississippi State, Mississippi 39762-9665, USA.
| |
Collapse
|
13
|
Hofmann A, Plachy J, Hunt L, Kaufman J, Hala K. v-src oncogene-specific carboxy-terminal peptide is immunoprotective against Rous sarcoma growth in chickens with MHC class I allele B-F12. Vaccine 2003; 21:4694-9. [PMID: 14585677 DOI: 10.1016/s0264-410x(03)00516-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
B(12) haplotype of the inbred chicken line CB (B12/B12) contains, like the bulk of chicken MHC(B) haplotypes, only a single dominantly expressed class I molecule (B-F). The peptide binding motifs for this major B-F12 molecule in chickens of Rous sarcoma regressor line CB (B12/B12) have been determined. Using stringent and relaxed motifs, several peptides were found in the v-src molecule of the PR-RSV-C, but most of these peptides are identical with that of endogenous c-src. Only the v-src C-tail peptide(517-524) (LPACVLEV) contains critical anchor amino acids (valine at positions 5 and 8) and shows a sequence different from the corresponding c-src peptide. This v-src C-tail peptide up-regulates expression of the B-F12 class I molecule on PBL, as assessed by FACS analysis, and stimulates T cell proliferation in a [3H]thymidine uptake assay. A protective effect of the immune response to LPACVLEV against RSV challenge was demonstrated in CB (B12/B12) chickens immunised with peptides encapsulated in liposomes.
Collapse
Affiliation(s)
- Andrea Hofmann
- Medical School, Institute for Pathophysiology, University of Innsbruck, Fritz Pregl Strasse 3, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
14
|
Medarova Z, Briles WE, Taylor RL. Alloantigen system L affects the outcome of rous sarcomas. Exp Biol Med (Maywood) 2002; 227:158-63. [PMID: 11856813 DOI: 10.1177/153537020222700302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study was designed to examine the alloantigen system L effects on Rous sarcomas in three B complex genotypes. The parental stock was 50% Modified Wisconsin Line 3 x White Leghorn Line NIU 4 and 50% inbred Line 6.15-5. Pedigree matings of two B(2)B(5) L(1)L(2) sires to five B(2)B(5) L(1)L(2) dams per sire produced experimental chicks segregating for B and L genotypes. Chicks were inoculated with 20 pock-forming units (pfu) of Rous sarcoma virus (RSV) at 6 weeks of age. Tumors were scored six times over 10 weeks postinoculation after which the tumor scores were used to assign a tumor profile index (TPI) to each chicken. Tumor growth over time and TPI were evaluated by repeated-measures analysis of variance and analysis of variance, respectively. Six trials were conducted with a total of 151 chickens. The major histocompatibility (B) complex affected the responses as the B(2)B(2) and B(2)B(5) genotypes had significantly lower tumor growth over time and TPI than the B(5)B(5) genotype. Separate analyses revealed no significant L system effect in B(2)B(2) or B(2)B(5) backgrounds. However, L genotype significantly affected (P < 0.05) both tumor growth over time and TPI in B(5)B(5) chickens. B(5)B(5) L(1)L(2) birds had TPI significantly lower than B(5)B(5) L(1)L(1) chickens but not B(5)B(5) L(2)L(2). Mortality was lower in the B(5)B(5) L(1)L(2) birds than in B(5)B(5) L(2)L(2) chickens. The L system, or one closely linked, affects the growth and ultimate outcome of Rous sarcomas. The response may depend upon the genetic background as well as MHC type.
Collapse
Affiliation(s)
- Zdravka Medarova
- Department of Animal and Nutritional Sciences, University of New Hampshire, Durham, New Hampshire 03824, USA
| | | | | |
Collapse
|
15
|
Senseney HL, Briles WE, Abplanalp H, Taylor RL. Allelic complementation between MHC haplotypes B(Q) and B17 increases regression of Rous sarcomas. Poult Sci 2000; 79:1736-40. [PMID: 11194035 DOI: 10.1093/ps/79.12.1736] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Major histocompatibility (B) complex haplotypes B(Q) and B17 were examined for their effect on Rous sarcoma outcome. Pedigree matings of B(Q)B17 chickens from the second backcross generation (BC2) of Line UCD 001 (B(Q)B(Q)) mated to Line UCD 003 (B17B17) produced progeny with genotypes B(Q)B(Q), B(Q)B17, and B17B17. Six-week-old chickens were injected with subgroup A Rous sarcoma virus (RSV). The tumors were scored for size at 2, 3, 4, 6, 8, and 10 weeks postinoculation. A tumor profile index (TPI) was assigned to each bird based on the six tumor scores. Two experiments with two trials each were conducted. In Experiment 1, chickens (n = 84) were inoculated with 30 pock-forming units (pfu) RSV. There was no significant B genotype effect on tumor growth over time or TPI among the 70 chickens that developed tumors. Chickens (n = 141) were injected with 15 PFU RSV in Experiment 2. The B genotype significantly affected tumor growth pattern over time in the 79 chickens with sarcomas. The B(Q)B17 chickens had the lowest TPI, which was significantly different from B17B17 but not B(Q)B(Q). The data indicate complementation because more tumor regression occurs in the B(Q)B17 heterozygote than in either B(Q)B(Q) or B17B17 genotypes at a 15 pfu RSV dose and significantly so compared to B17B17. By contrast, the 30 pfu RSV dose utilized in the first experiment overwhelmed all genotypic combinations of the B(Q) and B17 haplotypes, suggesting that certain MHC genotypes affect the immune response under modest levels of viral challenge.
Collapse
Affiliation(s)
- H L Senseney
- Department of Animal and Nutritional Sciences, University of New Hampshire, Durham 03824, USA
| | | | | | | |
Collapse
|
16
|
LePage KT, Briles WE, Kopti F, Taylor RL. Nonmajor histocompatibility complex alloantigen effects on the fate of Rous sarcomas. Poult Sci 2000; 79:343-8. [PMID: 10735200 DOI: 10.1093/ps/79.3.343] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rous sarcoma virus-induced tumor outcome is controlled by the MHC (B). Additional data, using controlled segregation in families, has indicated non-MHC effects as well, but few studies have focused on blood groups other than the B complex. Segregating combinations of genes encoding erythrocyte (Ea) alloantigen systems A, C, D, E, H, I, P, and L in B2B5 and B5B5 MHC (B) backgrounds were examined for their effects on Rous sarcomas. Six-week-old chickens were inoculated in the wing-web with 30 pfu of Rous sarcoma virus (RSV). Tumors were scored six times over a 10-wk period. A tumor profile index (TPI) was assigned to each chicken based on the six tumor size scores. Response was evaluated using tumor size at each measurement period, TPI, and mortality. The genotypes of Ea systems A, C, D, E, H, I, and P had no significant effect on any parameter in either B complex population. The Ea-L system had an effect on Rous sarcomas in the B2B5 intermediate responders and B5B5 progressors. Tumor size, TPI, and mortality were all significantly lower in B2B5 L1L1 chickens than in B2B5 L1L2 chickens. Mortality was lower in the B5B5 L1L1 birds than in B5B5 L1L2 chickens. It appears that the Ea-L system, or one closely linked, is acting in a manner independent of the B complex in response to RSV challenge.
Collapse
Affiliation(s)
- K T LePage
- Department of Animal and Nutritional Sciences and University Genetics Program, University of New Hampshire, Durham 03824, USA
| | | | | | | |
Collapse
|
17
|
Abstract
The genetics of a bird or flock has a profound impact on its ability to resist disease, because genetics define the maximum achievable performance level. Careful attention should be paid to genetics as an important component of a comprehensive disease management program including high-level biosecurity, sanitation, and appropriate vaccination programs. Some specific genes (e.g., the MHC) are known to play a role in disease resistance, but resistance is generally a polygenic phenomenon. Future research directions will expand knowledge of the impact of genetics on disease resistance by identifying non-MHC genetic control of resistance and by further elucidating mechanisms regulating expression of genes related to immune response.
Collapse
Affiliation(s)
- S J Lamont
- Department of Animal Science, Iowa State University, Ames 50011-3150, USA.
| |
Collapse
|
18
|
Taylor RL, England JM, Kopen GC, Christou AA, Halpern MS. Sequence variation in the src gene product affects metastasis formation: the central, but not exclusive, role of the tumor immune response. Int J Cancer 1996; 68:228-31. [PMID: 8900433 DOI: 10.1002/(sici)1097-0215(19961009)68:2<228::aid-ijc15>3.0.co;2-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sequence variation in the src gene product could, in principle, influence metastasis formation through either of 2 effects: an alteration in tumor antigenicity or a non-immune-mediated change in one or more src-associated functions. Our present results establish that both mechanisms underlie the difference in relative levels of metastasis formation induced by the v-src vs. the c-src(527) oncogene. A point that emerges from this analysis is the segregation, within a chicken line genotypically uniform at the major histocompatibility (B) complex (MHC), of a phenotype defined by strong resistance to secondary v-src-induced tumor challenge. The pattern of segregation is consonant with the possibility that a gene unlinked to the MHC governs immune response levels to v-src-encoded tumor antigen.
Collapse
Affiliation(s)
- R L Taylor
- Department of Animal and Nutritional Sciences, University of New Hampshire, Durham, USA
| | | | | | | | | |
Collapse
|
19
|
Miller MM, Goto RM, Taylor RL, Zoorob R, Auffray C, Briles RW, Briles WE, Bloom SE. Assignment of Rfp-Y to the chicken major histocompatibility complex/NOR microchromosome and evidence for high-frequency recombination associated with the nucleolar organizer region. Proc Natl Acad Sci U S A 1996; 93:3958-62. [PMID: 8632997 PMCID: PMC39467 DOI: 10.1073/pnas.93.9.3958] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rfp-Y is a second region in the genome of the chicken containing major histocompatibility complex (MHC) class I and II genes. Haplotypes of Rfp-Y assort independently from haplotypes of the B system, a region known to function as a MHC and to be located on chromosome 16 (a microchromosome) with the single nucleolar organizer region (NOR) in the chicken genome. Linkage mapping with reference populations failed to reveal the location of Rfp-Y, leaving Rfp-Y unlinked in a map containing >400 markers. A possible location of Rfp-Y became apparent in studies of chickens trisomic for chromosome 16 when it was noted that the intensity of restriction fragments associated with Rfp-Y increased with increasing copy number of chromosome 16. Further evidence that Rfp-Y might be located on chromosome 16 was obtained when individuals trisomic for chromosome 16 were found to transmit three Rfp-Y haplotypes. Finally, mapping of cosmid cluster III of the molecular map of chicken MHC genes (containing a MHC class II gene and two rRNA genes) to Rfp-Y validated the assignment of Rfp-Y to the MHC/NOR microchromosome. A genetic map can now be drawn for a portion of chicken chromosome 16 with Rfp-Y, encompassing two MHC class I and three MHC class II genes, separated from the B system by a region containing the NOR and exhibiting highly frequent recombination.
Collapse
Affiliation(s)
- M M Miller
- Department of Molecular Biology, Beckman Research Institute of the City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Dix MC, Taylor RL. Differential antibody responses in 6.B major histocompatibility (B) complex congenic chickens. Poult Sci 1996; 75:203-7. [PMID: 8833372 DOI: 10.3382/ps.0750203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Lines 6.6-2 (B2B2) and 6.15-5 (B2B2), congenic for the major histocompatibility (B) complex with > 99.9% background gene uniformity, were used to examine primary antibody responses to two antigens. In each of two trials, 1 mL of 5% SRBC, a T cell-dependent antigen, or 0.1 mL of Brucella abortus (BA), a T cell-independent antigen, was injected into separate groups of each B genotype aged 3 and 6 wk. Blood samples were taken from the chickens 7 d after immunization. Serum titers (log2) for both total antibody and mercaptoethanol (ME)-sensitive antibody to detect IgG were assayed by microtiter procedures. Least squares analysis of variance and Fisher's protected Least Significant Difference at P < 0.05 were used to evaluate the data. The total anti-SRBC antibody titer was significantly higher in B5B5 chicks than in B2B2 chicks at 4 and 7 wk of age. There was no significant difference in ME sensitive antibody to SRBC. Chicks of the B5B5 genotype also had significantly higher total and IgG antibody titers to BA at both ages than B2B2 chicks. The results indicate that 4- and 7-wk-old B5B5 chicks had a significantly stronger antibody response to SRBC or BA than B2B2 chicks.
Collapse
Affiliation(s)
- M C Dix
- Department of Animal and Nutritional Sciences, University of New Hampshire, Durham 03824, USA
| | | |
Collapse
|
21
|
Halpern MS, England JM, Kopen GC, Christou AA, Taylor RL. Endogenous c-src as a determinant of the tumorigenicity of src oncogenes. Proc Natl Acad Sci U S A 1996; 93:824-7. [PMID: 8570642 PMCID: PMC40141 DOI: 10.1073/pnas.93.2.824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have compared the tumorigenicity of two src oncogenes, v-src and c-src(527), whose respective protein products pp60v-src and pp60c-src(527) show a different spectrum of amino acid substitutions vis-à-vis the c-src protooncogene-encoded product pp60c-src. Whereas the extent of primary tumor growth induced by c-src(527) was quite similar in the two chicken lines tested, the extent of v-src-induced tumor growth showed a marked line dependence. As examined with a line of chickens that shows immune-mediated regression of v-src-induced tumors, a weaker tumor immunity, as correlated with a greater level of primary tumor growth, resulted from inoculation of c-src(527) DNA than of v-src DNA. These observations indicated that the v-src-specific amino acid substitutions define a major tumor antigenicity. That a separate src-associated antigenicity is also targetable by the tumor immune response followed from the finding that the level of protective immunity against the growth of c-src(527) DNA-induced tumors was augmented under conditions of the prior regression of v-src DNA-induced tumors. As this latter antigenicity may include one or more c-src(527)-encoded peptides that are equivalent to c-src-encoded self peptides, these observations suggest that a host tolerance to pp60c-src can be broken so as to permit a tumor immune response based on recognition of self peptides of pp60c-src(527).
Collapse
Affiliation(s)
- M S Halpern
- Department of Pathology and Laboratory Medicine, Medical College of Pennsylvania, Philadelphia, USA
| | | | | | | | | |
Collapse
|
22
|
White EC, Briles WE, Briles RW, Taylor RL. Response of six major histocompatibility (B) complex recombinant haplotypes to Rous sarcomas. Poult Sci 1994; 73:836-42. [PMID: 8072926 DOI: 10.3382/ps.0730836] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Six B complex recombinants, BR1 (F24-G23), BR2 (F2-G23), BR3 (F2-G23), BR4 (F2-G23), BR5 (F21-G19), and BR6 (F21-G23), from the fourth backcross generation to highly inbred line UCD 003 (B17B17) were studied for their response to Rous sarcomas. Eight hatches were produced from heterozygous (BRnB17) parents. Chicks were wingweb inoculated with 50 pock-forming units of Rous sarcoma virus (RSV) at 6 wk of age. A tumor profile index (TPI), based on degree of tumor regression, was evaluated by analysis of variance. BR2, BR3, and BR4 are serologically similar F2-G23 recombinants. Haplotype B2, the origin of BF2, is a known tumor regressor, yet BR2BR2 chickens had a significantly lower TPI than BR3BR3 and BR4BR4 chickens. The TPI of BR2BR2 (F2-G23) chickens was also significantly lower than the TPI of chickens homozygous for BR1 (F24-G23) and BR5 (F21-G19). The BR6BR6 (F21-G23) chickens had significantly lower TPI than all homozygotes except BR2BR2 (F2-G23). Among heterozygous genotypes, BR2B17, BR5B17, and BR6B17 differed significantly from BR1B17, BR3B17, and BR4B17. These results suggest that serologically similar recombinants that contain (F2-G23) possess different genes affecting tumor regression. In addition, degrees of tumor regression in BR5 (F21-G19) and BR6 (F21-G23), both of which contain BF21, may be due to genetic differences within the B-F/B-L or B-G regions.
Collapse
Affiliation(s)
- E C White
- Department of Animal and Nutritional Sciences, University of New Hampshire, Durham 03824
| | | | | | | |
Collapse
|
23
|
Qureshi MA, Taylor RL. Analysis of macrophage functions in Rous sarcoma-induced tumor regressor and progressor 6.B congenic chickens. Vet Immunol Immunopathol 1993; 37:285-94. [PMID: 8236804 DOI: 10.1016/0165-2427(93)90200-n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Macrophage functional competence was studied in two congenic chicken lines 6.6-2 (B2B2) and 6.15-5 (B5B5) which are regressors and progressors, respectively, of Rous sarcoma-induced tumors. Sephadex-elicited abdominal exudate cells (AEC) were harvested from 4-week-old chickens to determine their total number, glass adherence potential, percentage of adherent macrophages and phagocytosis of antibody coated (ops) and uncoated (unops) sheep red blood cells (SRBC). Tumoricidal abilities of culture medium conditioned with lipopolysaccharide treated macrophages and of macrophages cocultured with target cells were assessed against 51Cr-labelled tumor cell targets. The congenic lines did not differ in total AEC or percent macrophages. However, AEC from B5B5 birds exhibited significantly lower (P < 0.05) glass-adherence potential than AEC from B2B2 birds exhibited significantly lower (P < 0.05) glass-adherence potential than AEC from B2B2 birds. The percentage of phagocytic macrophages did not differ between lines for unop-SRBC, whereas a higher percentage of B5B5 compared with B2B2 birds (P < 0.05) macrophages phagocytized ops-SRBC. Macrophages from B5B5 birds had significantly (P < 0.05) lower activity in both tumoricidal tests. These results imply that the tumor progression in B5B5 birds is associated with reduced activation of macrophages towards a tumoricidal pathway.
Collapse
Affiliation(s)
- M A Qureshi
- Department of Poultry Science, North Carolina State University, Raleigh 27695-7608
| | | |
Collapse
|