1
|
Smith AM, Li Y, Velarde A, Cheng Y, Frankel AD. The HIV-1 Nuclear Export Complex Reveals the Role of RNA in Crm1 Cargo Recognition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614349. [PMID: 39345625 PMCID: PMC11430062 DOI: 10.1101/2024.09.22.614349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Crm1 is a highly conserved nuclear exportin that transports >1000 human proteins including ribonucleoprotein (RNP) complexes. The interface between Crm1 and RNP cargos is unknown. The HIV regulatory protein, Rev, was one of the first identified cargos for Crm1 and contains a prototypic nuclear export sequence (NES). We present the cryo-electron microscopy structure of the HIV-1 nuclear export complex (Crm1/Ran-GTP and the Rev/RRE RNP). Rev binds at a previously unseen protein-protein binding site that stabilizes a unique Crm1 dimer and positions two NESs within the Crm1 dimer. The orientation of Rev binding positions the RRE within a charged pocket on the inside of the Crm1 toroid, mediating direct RNA-Ran-GTP contacts, highlighting the significant role of the RRE in the interaction. Structure based mutations, combined with cell-based assays, show that Crm1 has multiple distinct cargo recognition sites and explains how Crm1 can recognize a diverse range of protein and RNP cargos.
Collapse
|
2
|
Chaudhary P, Proulx J, Park IW. Ubiquitin-protein ligase E3A (UBE3A) mediation of viral infection and human diseases. Virus Res 2023; 335:199191. [PMID: 37541588 PMCID: PMC10430597 DOI: 10.1016/j.virusres.2023.199191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/06/2023]
Abstract
The Ubiquitin-protein ligase E3A, UBE3A, also known as E6-associated protein (E6-AP), is known to play an essential role in regulating the degradation of various proteins by transferring Ub from E2 Ub conjugating enzymes to the substrate proteins. Several studies indicate that UBE3A regulates the stabilities of key viral proteins in the virus-infected cells and, thereby, the infected virus-mediated diseases, even if it were reported that UBE3A participates in non-viral-related human diseases. Furthermore, mutations such as deletions and duplications in the maternally inherited gene in the brain cause human neurodevelopmental disorders such as Angelman syndrome (AS) and autism. It is also known that UBE3A functions as a transcriptional coactivator for the expression of steroid hormone receptors. These reports establish that UBE3A is distinguished by its multitudinous functions that are paramount to viral pathology and human diseases. This review is focused on molecular mechanisms for such intensive participation of UBE3A in disease formation and virus regulation.
Collapse
Affiliation(s)
- Pankaj Chaudhary
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| | - Jessica Proulx
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics, School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX 76107, United States.
| |
Collapse
|
3
|
Identification of a Novel Post-transcriptional Transactivator from the Equine Infectious Anemia Virus. J Virol 2022; 96:e0121022. [PMID: 36448796 PMCID: PMC9769392 DOI: 10.1128/jvi.01210-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
All lentiviruses encode a post-transcriptional transactivator, Rev, which mediates the export of viral mRNA from the nucleus to the cytoplasm and which is required for viral gene expression and viral replication. In the current study, we demonstrate that equine infectious anemia virus (EIAV), an equine lentivirus, encodes a second post-transcriptional transactivator that we designate Grev. Grev is encoded by a novel transcript with a single splicing event that was identified using reverse transcription-PCR (RT-PCR) and RNA-seq in EIAV-infected horse tissues and cells. Grev is about 18 kDa in size, comprises the first 18 amino acids (aa) of Gag protein together with the last 82 aa of Rev, and was detected in EIAV-infected cells. Similar to Rev, Grev is localized to the nucleus, and both are able to mediate the expression of Mat (a recently identified viral protein of unknown function from EIAV), but Rev can mediate the expression of EIAV Gag/Pol, while Grev cannot. We also demonstrate that Grev, similar to Rev, specifically binds to rev-responsive element 2 (RRE-2, located in the first exon of mat mRNAs) to promote nuclear export of mat mRNA via the chromosome region maintenance 1 (CRM1) pathway. However, unlike Rev, whose function depends on its multimerization, we could not detect multimerization of Grev using coimmunoprecipitation (co-IP) or bimolecular fluorescence complementation (BiFC) assays. Together, these data suggest that EIAV encodes two post-transcriptional transactivators, Rev and Grev, with similar, but not identical, functions. IMPORTANCE Nuclear export of viral transcripts is a crucial step for viral gene expression and viral replication in lentiviruses, and this export is regulated by a post-transcriptional transactivator, Rev, that is shared by all lentiviruses. Here, we report that the equine infectious anemia virus (EIAV) encodes a novel viral protein, Grev, and demonstrated that Grev, like Rev, mediates the expression of the viral protein Mat by binding to the first exon of mat mRNAs via the chromosome region maintenance 1 (CRM1) pathway. Grev is encoded by a single-spliced transcript containing two exons, whereas Rev is encoded by a multiple-spliced transcript containing four exons. Moreover, Rev is able to mediate EIAV Gag/Pol expression by binding to rev-responsive element (RRE) located within the Env-coding region, while Grev cannot. Therefore, the present study demonstrates that EIAV encodes two post-transcriptional regulators, Grev and Rev, suggesting that post-transcriptional regulation patterns in lentivirus are diverse and complex.
Collapse
|
4
|
Spittler D, Indorato RL, Boeri Erba E, Delaforge E, Signor L, Harris SJ, Garcia-Saez I, Palencia A, Gabel F, Blackledge M, Noirclerc-Savoye M, Petosa C. Binding stoichiometry and structural model of the HIV-1 Rev/importin β complex. Life Sci Alliance 2022; 5:5/10/e202201431. [PMID: 35995566 PMCID: PMC9396022 DOI: 10.26508/lsa.202201431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
HIV-1 Rev mediates the nuclear export of intron-containing viral RNA transcripts and is essential for viral replication. Rev is imported into the nucleus by the host protein importin β (Impβ), but how Rev associates with Impβ is poorly understood. Here, we report biochemical, mutational, and biophysical studies of the Impβ/Rev complex. We show that Impβ binds two Rev monomers through independent binding sites, in contrast to the 1:1 binding stoichiometry observed for most Impβ cargos. Peptide scanning data and charge-reversal mutations identify the N-terminal tip of Rev helix α2 within Rev's arginine-rich motif (ARM) as a primary Impβ-binding epitope. Cross-linking mass spectrometry and compensatory mutagenesis data combined with molecular docking simulations suggest a structural model in which one Rev monomer binds to the C-terminal half of Impβ with Rev helix α2 roughly parallel to the HEAT-repeat superhelical axis, whereas the other monomer binds to the N-terminal half. These findings shed light on the molecular basis of Rev recognition by Impβ and highlight an atypical binding behavior that distinguishes Rev from canonical cellular Impβ cargos.
Collapse
Affiliation(s)
- Didier Spittler
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Rose-Laure Indorato
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Elisabetta Boeri Erba
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Elise Delaforge
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Luca Signor
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Simon J Harris
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Isabel Garcia-Saez
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Andrés Palencia
- Institute for Advanced Biosciences, Structural Biology of Novel Targets in Human Diseases, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Frank Gabel
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Martin Blackledge
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Marjolaine Noirclerc-Savoye
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| | - Carlo Petosa
- Université Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Structurale, Grenoble, France
| |
Collapse
|
5
|
Sharp B, Rallabandi R, Devaux P. Advances in RNA Viral Vector Technology to Reprogram Somatic Cells: The Paramyxovirus Wave. Mol Diagn Ther 2022; 26:353-367. [PMID: 35763161 DOI: 10.1007/s40291-022-00599-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/24/2022]
Abstract
Ethical issues are a significant barrier to the use of embryonic stem cells in patients due to their origin: human embryos. To further the development of stem cells in a patient application, alternative sources of cells were sought. A process referred to as reprogramming was established to create induced pluripotent stem cells from somatic cells, resolving the ethical issues, and vectors were developed to deliver the reprogramming factors to generate induced pluripotent stem cells. Early viral vectors used integrating retroviruses and lentiviruses as delivery vehicles for the transcription factors required to initiate reprogramming. However, because of the inherent risk associated with vectors that integrate into the host genome, non-integrating approaches were explored. The development of non-integrating viral vectors offers a safer alternative, and these modern vectors are reliable, efficient, and easy to use to achieve induced pluripotent stem cells suitable for direct patient application in the growing field of individualized medicine. This review summarizes all the RNA viral vectors in the field of reprogramming with a special focus on the emerging delivery vectors based on non-integrating Paramyxoviruses, Sendai and measles viruses. We discuss their design and evolution towards being safe and efficient reprogramming vectors in generating induced pluripotent stem cells from somatic cells.
Collapse
Affiliation(s)
- Brenna Sharp
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ramya Rallabandi
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA.,Regenerative Sciences Program, Mayo Clinic, Rochester, MN, USA
| | - Patricia Devaux
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN, 55905, USA. .,Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN, USA. .,Regenerative Sciences Program, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Hanson HM, Willkomm NA, Yang H, Mansky LM. Human Retrovirus Genomic RNA Packaging. Viruses 2022; 14:1094. [PMID: 35632835 PMCID: PMC9142903 DOI: 10.3390/v14051094] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023] Open
Abstract
Two non-covalently linked copies of the retrovirus genome are specifically recruited to the site of virus particle assembly and packaged into released particles. Retroviral RNA packaging requires RNA export of the unspliced genomic RNA from the nucleus, translocation of the genome to virus assembly sites, and specific interaction with Gag, the main viral structural protein. While some aspects of the RNA packaging process are understood, many others remain poorly understood. In this review, we provide an update on recent advancements in understanding the mechanism of RNA packaging for retroviruses that cause disease in humans, i.e., HIV-1, HIV-2, and HTLV-1, as well as advances in the understanding of the details of genomic RNA nuclear export, genome translocation to virus assembly sites, and genomic RNA dimerization.
Collapse
Affiliation(s)
- Heather M. Hanson
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA;
- Institute for Molecular Virology, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA; (N.A.W.); (H.Y.)
| | - Nora A. Willkomm
- Institute for Molecular Virology, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA; (N.A.W.); (H.Y.)
- DDS-PhD Dual Degree Program, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA; (N.A.W.); (H.Y.)
- Comparative Molecular Biosciences Graduate Program, University of Minnesota—Twin Cities, St. Paul, MN 55455, USA
| | - Louis M. Mansky
- Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA;
- Institute for Molecular Virology, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA; (N.A.W.); (H.Y.)
- DDS-PhD Dual Degree Program, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Comparative Molecular Biosciences Graduate Program, University of Minnesota—Twin Cities, St. Paul, MN 55455, USA
- Masonic Cancer Center, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota—Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Proulx J, Ghaly M, Park IW, Borgmann K. HIV-1-Mediated Acceleration of Oncovirus-Related Non-AIDS-Defining Cancers. Biomedicines 2022; 10:biomedicines10040768. [PMID: 35453518 PMCID: PMC9024568 DOI: 10.3390/biomedicines10040768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022] Open
Abstract
With the advent of combination antiretroviral therapy (cART), overall survival has been improved, and the incidence of acquired immunodeficiency syndrome (AIDS)-defining cancers has also been remarkably reduced. However, non-AIDS-defining cancers among human immunodeficiency virus-1 (HIV-1)-associated malignancies have increased significantly so that cancer is the leading cause of death in people living with HIV in certain highly developed countries, such as France. However, it is currently unknown how HIV-1 infection raises oncogenic virus-mediated cancer risks in the HIV-1 and oncogenic virus co-infected patients, and thus elucidation of the molecular mechanisms for how HIV-1 expedites the oncogenic viruses-triggered tumorigenesis in the co-infected hosts is imperative for developing therapeutics to cure or impede the carcinogenesis. Hence, this review is focused on HIV-1 and oncogenic virus co-infection-mediated molecular processes in the acceleration of non-AIDS-defining cancers.
Collapse
|
8
|
High level stable expression of recombinant HIV gp120 in glutamine synthetase gene deficient HEK293T cells. Protein Expr Purif 2021; 181:105837. [PMID: 33529763 DOI: 10.1016/j.pep.2021.105837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 11/23/2022]
Abstract
Due to the important pathological roles of the HIV-1 gp120, the protein has been intensively used in the research of HIV. However, recombinant gp120 preparation has proven to be difficult because of extremely low expression levels. In order to facilitate gp120 expression, previous methods predominantly involved the replacement of native signal peptide with a heterologous one, resulting in very limited improvement. Currently, preparation of recombinant gp120 with native glycans relies solely on transient expression systems, which are not amendable for large scale production. In this work, we employed a different approach for gp120 expression. Besides replacing the native gp120 signal peptide with that of rat serum albumin and optimizing its codon usage, we generated a stable gp120-expressing cell line in a glutamine synthetase knockout HEK293T cell line that we established for the purpose of amplification of recombinant gene expressions. The combined usage of these techniques dramatically increased gp120 expression levels and yielded a functional product with human cell derived glycan. This method may be applicable to large scale preparation of other viral envelope proteins, such as that of the emerging SARS-CoV-2, or other glycoproteins which require the presence of authentic human glycans.
Collapse
|
9
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) proteome is expressed from alternatively spliced and unspliced genomic RNAs. However, HIV-1 RNAs that are not fully spliced are perceived by the host machinery as defective and are retained in the nucleus. During late infection, HIV-1 bypasses this regulatory mechanism by expression of the Rev protein from a fully spliced mRNA. Once imported into the nucleus, Rev mediates the export of unprocessed HIV-1 RNAs to the cytoplasm, leading to the production of the viral progeny. While regarded as a canonical RNA export factor, Rev has also been linked to HIV-1 RNA translation, stabilization, splicing and packaging. However, Rev's functions beyond RNA export have remained poorly understood. Here, we revisit this paradigmatic protein, reviewing recent data investigating its structure and function. We conclude by asking: what remains unknown about this enigmatic viral protein?
Collapse
Affiliation(s)
| | - Aino Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
10
|
Wang Y, Zhang H, Na L, Du C, Zhang Z, Zheng YH, Wang X. ANP32A and ANP32B are key factors in the Rev-dependent CRM1 pathway for nuclear export of HIV-1 unspliced mRNA. J Biol Chem 2019; 294:15346-15357. [PMID: 31444273 PMCID: PMC6802516 DOI: 10.1074/jbc.ra119.008450] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/10/2019] [Indexed: 12/21/2022] Open
Abstract
The nuclear export receptor CRM1 is an important regulator involved in the shuttling of various cellular and viral RNAs between the nucleus and the cytoplasm. HIV-1 Rev interacts with CRM1 in the late phase of HIV-1 replication to promote nuclear export of unspliced and single spliced HIV-1 transcripts. However, other cellular factors involved in the CRM1-dependent viral RNA nuclear export remain largely unknown. Here, we demonstrate that ANP32A and ANP32B mediate the export of unspliced or partially spliced viral mRNA via interactions with Rev and CRM1. We found that a double, but not single, knockout of ANP32A and ANP32B significantly decreased the expression of gag protein. Reconstitution of either ANP32A or ANP32B restored the viral production equally. Disruption of both ANP32A and ANP32B expression led to a dramatic accumulation of unspliced viral mRNA in the nucleus. We further identified that ANP32A and ANP32B interact with both Rev and CRM1 to promote RNA transport. Our data strongly suggest that ANP32A and ANP32B play an important role in the Rev-CRM1 pathway, which is essential for HIV-1 replication, and our findings provide a candidate therapeutic target for host defense against retroviral infection.
Collapse
Affiliation(s)
- Yujie Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Haili Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lei Na
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Cheng Du
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhenyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yong-Hui Zheng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824
| | - Xiaojun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
11
|
Skittrall JP, Ingemarsdotter CK, Gog JR, Lever AML. A scale-free analysis of the HIV-1 genome demonstrates multiple conserved regions of structural and functional importance. PLoS Comput Biol 2019; 15:e1007345. [PMID: 31545786 PMCID: PMC6791557 DOI: 10.1371/journal.pcbi.1007345] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/14/2019] [Accepted: 08/19/2019] [Indexed: 12/22/2022] Open
Abstract
HIV-1 replicates via a low-fidelity polymerase with a high mutation rate; strong conservation of individual nucleotides is highly indicative of the presence of critical structural or functional properties. Identifying such conservation can reveal novel insights into viral behaviour. We analysed 3651 publicly available sequences for the presence of nucleic acid conservation beyond that required by amino acid constraints, using a novel scale-free method that identifies regions of outlying score together with a codon scoring algorithm. Sequences with outlying score were further analysed using an algorithm for producing local RNA folds whilst accounting for alignment properties. 11 different conserved regions were identified, some corresponding to well-known cis-acting functions of the HIV-1 genome but also others whose conservation has not previously been noted. We identify rational causes for many of these, including cis functions, possible additional reading frame usage, a plausible mechanism by which the central polypurine tract primes second-strand DNA synthesis and a conformational stabilising function of a region at the 5' end of env.
Collapse
Affiliation(s)
- Jordan P. Skittrall
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Carin K. Ingemarsdotter
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Julia R. Gog
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Centre for Mathematical Sciences, Cambridge, United Kingdom
| | - Andrew M. L. Lever
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
12
|
Abstract
RNA structures play a pivotal role in many biological processes and the progression of human disease, making them an attractive target for therapeutic development. Often RNA structures operate through the formation of complexes with RNA-binding proteins, however, much like protein-protein interactions, RNA-protein interactions span large surface areas and often lack traditional druggable properties, making it challenging to target them with small molecules. Peptides provide much greater surface areas and therefore greater potential for forming specific and high affinity interactions with RNA. In this chapter, we discuss our approach for engineering peptides that bind to structured RNAs by highlighting methods and design strategies from previous successful projects aimed at inhibiting the HIV Tat-TAR interaction and the biogenesis of oncogenic microRNAs.
Collapse
Affiliation(s)
- Matthew J Walker
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA, United States.
| |
Collapse
|
13
|
Palazzo AF, Lee ES. Sequence Determinants for Nuclear Retention and Cytoplasmic Export of mRNAs and lncRNAs. Front Genet 2018; 9:440. [PMID: 30386371 PMCID: PMC6199362 DOI: 10.3389/fgene.2018.00440] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/14/2018] [Indexed: 11/26/2022] Open
Abstract
Eukaryotes are divided into two major compartments: the nucleus where RNA is synthesized and processed, and the cytoplasm, where mRNA is translated into proteins. Although many different RNAs are made, only a subset is allowed access to the cytoplasm, primarily RNAs involved in protein synthesis (mRNA, tRNA, and rRNA). In contrast, nuclear retained transcripts are mostly long non-coding RNAs (lncRNAs) whose role in cell physiology has been a source of much investigation in the past few years. In addition, it is likely that many non-functional RNAs, which arise by spurious transcription and misprocessing of functional RNAs, are also retained in the nucleus and degraded. In this review, the main sequence features that dictate whether any particular mRNA or lncRNA is a substrate for retention in the nucleus, or export to the cytoplasm, are discussed. Although nuclear export is promoted by RNA-splicing due to the fact that the spliceosome can help recruit export factors to the mature RNA, nuclear export does not require splicing. Indeed, most stable unspliced transcripts are well exported and associate with these same export factors in a splicing-independent manner. In contrast, nuclear retention is promoted by specialized cis-elements found in certain RNAs. This new understanding of the determinants of nuclear retention and cytoplasmic export provides a deeper understanding of how information flow is regulated in eukaryotic cells. Ultimately these processes promote the evolution of complexity in eukaryotes by shaping the genomic content through constructive neutral evolution.
Collapse
|
14
|
The KT Jeang Retrovirology prize 2017: Michael Emerman. Retrovirology 2017. [PMID: 28637466 PMCID: PMC5480113 DOI: 10.1186/s12977-017-0362-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
15
|
Haddox HK, Dingens AS, Bloom JD. Experimental Estimation of the Effects of All Amino-Acid Mutations to HIV's Envelope Protein on Viral Replication in Cell Culture. PLoS Pathog 2016; 12:e1006114. [PMID: 27959955 PMCID: PMC5189966 DOI: 10.1371/journal.ppat.1006114] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/27/2016] [Accepted: 12/07/2016] [Indexed: 11/18/2022] Open
Abstract
HIV is notorious for its capacity to evade immunity and anti-viral drugs through rapid sequence evolution. Knowledge of the functional effects of mutations to HIV is critical for understanding this evolution. HIV's most rapidly evolving protein is its envelope (Env). Here we use deep mutational scanning to experimentally estimate the effects of all amino-acid mutations to Env on viral replication in cell culture. Most mutations are under purifying selection in our experiments, although a few sites experience strong selection for mutations that enhance HIV's replication in cell culture. We compare our experimental measurements of each site's preference for each amino acid to the actual frequencies of these amino acids in naturally occurring HIV sequences. Our measured amino-acid preferences correlate with amino-acid frequencies in natural sequences for most sites. However, our measured preferences are less concordant with natural amino-acid frequencies at surface-exposed sites that are subject to pressures absent from our experiments such as antibody selection. Our data enable us to quantify the inherent mutational tolerance of each site in Env. We show that the epitopes of broadly neutralizing antibodies have a significantly reduced inherent capacity to tolerate mutations, rigorously validating a pervasive idea in the field. Overall, our results help disentangle the role of inherent functional constraints and external selection pressures in shaping Env's evolution.
Collapse
Affiliation(s)
- Hugh K. Haddox
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, Washington, United States of America
| | - Adam S. Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, Washington, United States of America
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
16
|
Abstract
Viruses have evolved diverse strategies to maximize the functional and coding capacities of their genetic material. Individual viral RNAs are often used as substrates for both replication and translation and can contain multiple, sometimes overlapping open reading frames. Further, viral RNAs engage in a wide variety of interactions with both host and viral proteins to modify the activities of important cellular factors and direct their own trafficking, packaging, localization, stability, and translation. However, adaptations increasing the information density of small viral genomes can have unintended consequences. In particular, viral RNAs have developed features that mark them as potential targets of host RNA quality control pathways. This minireview focuses on ways in which viral RNAs run afoul of the cellular mRNA quality control and decay machinery, as well as on strategies developed by viruses to circumvent or exploit cellular mRNA surveillance.
Collapse
|
17
|
Schröder HC, Ushijima H, Bek A, Merz H, Pfeifer K, Müller WEG. Inhibition of Formation of Rev-RRE Complex by Pyronin Y. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/095632029300400205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interaction of pyronin Y, an RNA intercalating drug, with the binding of Rev protein from human immunodeficiency virus type 1 (HIV-1) to Rev-responsive element (RRE)-containing env RNA was studied. In gel retardation assays, recombinant Rev protein tightly bound to in vitro transcribed RRE RNA. Nitrocellulose-filter-binding studies revealed a dissociation constant of ≈(1–2) = 10−10M (Pfeifer et al., 1991). Pyronin Y efficiently suppressed formation of the Rev-RRE complex. At a concentration of 1 μg ml−1, complex formation was almost completely inhibited. Electron microscopy showed that Rev oligomerizes in the presence of RRE-containing RNA with the formation of short rod-like structures or long filaments, depending on the length of the transcript. Assembly of Rev protein along RRE-containing RNAs was abolished after addition of pyronin Y. Thus pyronin Y represents the first compound described to inhibit Rev-RRE complex formation.
Collapse
Affiliation(s)
- H. C. Schröder
- Institut für Physiologische Chemie, Universität, Duesbergweg 6, 6500 Mainz, Germany
| | - H. Ushijima
- AIDS Research Center, National Institute of Health, Gakuen 4-7-1, Musashimurayama-shi, Tokyo 208, Japan
| | - A. Bek
- Institut für Physiologische Chemie, Universität, Duesbergweg 6, 6500 Mainz, Germany
| | - H. Merz
- Institut für Physiologische Chemie, Universität, Duesbergweg 6, 6500 Mainz, Germany
| | - K. Pfeifer
- Institut für Physiologische Chemie, Universität, Duesbergweg 6, 6500 Mainz, Germany
| | - W. E. G. Müller
- Institut für Physiologische Chemie, Universität, Duesbergweg 6, 6500 Mainz, Germany
| |
Collapse
|
18
|
Ren XX, Wang HB, Li C, Jiang JF, Xiong SD, Jin X, Wu L, Wang JH. HIV-1 Nef-associated Factor 1 Enhances Viral Production by Interacting with CRM1 to Promote Nuclear Export of Unspliced HIV-1 gag mRNA. J Biol Chem 2016; 291:4580-8. [PMID: 26733199 PMCID: PMC4813482 DOI: 10.1074/jbc.m115.706135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 12/18/2015] [Indexed: 12/21/2022] Open
Abstract
HIV-1 depends on host-cell-encoded factors to complete its life cycle. A comprehensive understanding of how HIV-1 manipulates host machineries during viral infection can facilitate the identification of host targets for antiviral drugs or gene therapy. The cellular protein Naf1 (HIV-1 Nef-associated factor 1) is a CRM1-dependent nucleo-cytoplasmic shuttling protein, and has been identified to regulate multiple receptor-mediated signal pathways in inflammation. The cytoplasm-located Naf1 can inhibit NF-κB activation through binding to A20, and the loss of Naf1 controlled NF-κB activation is associated with multiple autoimmune diseases. However, the effect of Naf1 on HIV-1 mRNA expression has not been characterized. In this study we found that the nucleus-located Naf1 could promote nuclear export of unspliced HIV-1 gag mRNA. We demonstrated that the association between Naf1 and CRM1 was required for this function as the inhibition or knockdown of CRM1 expression significantly impaired Naf1-promoted HIV-1 production. The mutation of Naf1 nuclear export signals (NESs) that account for CRM1 recruitment for nuclear export decreased Naf1 function. Additionally, the mutation of the nuclear localization signal (NLS) of Naf1 diminished its ability to promote HIV-1 production, demonstrating that the shuttling property of Naf1 is required for this function. Our results reveal a novel role of Naf1 in enhancing HIV-1 production, and provide a potential therapeutic target for controlling HIV-1 infection.
Collapse
Affiliation(s)
- Xiao-Xin Ren
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China, Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Hai-Bo Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Chuan Li
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Jin-Feng Jiang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Si-Dong Xiong
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xia Jin
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Li Wu
- Center for Retrovirus Research, Department of Veterinary Biosciences, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio 43210
| | - Jian-Hua Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China, and
| |
Collapse
|
19
|
Rojas-Araya B, Ohlmann T, Soto-Rifo R. Translational Control of the HIV Unspliced Genomic RNA. Viruses 2015; 7:4326-51. [PMID: 26247956 PMCID: PMC4576183 DOI: 10.3390/v7082822] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 05/18/2015] [Accepted: 07/17/2015] [Indexed: 01/16/2023] Open
Abstract
Post-transcriptional control in both HIV-1 and HIV-2 is a highly regulated process that commences in the nucleus of the host infected cell and finishes by the expression of viral proteins in the cytoplasm. Expression of the unspliced genomic RNA is particularly controlled at the level of RNA splicing, export, and translation. It appears increasingly obvious that all these steps are interconnected and they result in the building of a viral ribonucleoprotein complex (RNP) that must be efficiently translated in the cytosolic compartment. This review summarizes our knowledge about the genesis, localization, and expression of this viral RNP.
Collapse
Affiliation(s)
- Bárbara Rojas-Araya
- Molecular and Cellular Virology Laboratory, Program of Virology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 834100, Santiago, Chile.
| | - Théophile Ohlmann
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon 69007, France.
- Inserm, U1111, Lyon 69007, France.
- Ecole Normale Supérieure de Lyon, Lyon 69007, France.
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69007, France.
- CNRS, UMR5308, Lyon 69007, France.
| | - Ricardo Soto-Rifo
- Molecular and Cellular Virology Laboratory, Program of Virology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Independencia 834100, Santiago, Chile.
| |
Collapse
|
20
|
Kantor B, McCown T, Leone P, Gray SJ. Clinical applications involving CNS gene transfer. ADVANCES IN GENETICS 2015; 87:71-124. [PMID: 25311921 DOI: 10.1016/b978-0-12-800149-3.00002-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diseases of the central nervous system (CNS) have traditionally been the most difficult to treat by traditional pharmacological methods, due mostly to the blood-brain barrier and the difficulties associated with repeated drug administration targeting the CNS. Viral vector gene transfer represents a way to permanently provide a therapeutic protein within the nervous system after a single administration, whether this be a gene replacement strategy for an inherited disorder or a disease-modifying protein for a disease such as Parkinson's. Gene therapy approaches for CNS disorders has evolved considerably over the last two decades. Although a breakthrough treatment has remained elusive, current strategies are now considerably safer and potentially much more effective. This chapter will explore the past, current, and future status of CNS gene therapy, focusing on clinical trials utilizing adeno-associated virus and lentiviral vectors.
Collapse
Affiliation(s)
- Boris Kantor
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Thomas McCown
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paola Leone
- Department of Cell Biology, Rowan University, Camden, NJ, USA
| | - Steven J Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Booth DS, Cheng Y, Frankel AD. The export receptor Crm1 forms a dimer to promote nuclear export of HIV RNA. eLife 2014; 3:e04121. [PMID: 25486595 PMCID: PMC4360530 DOI: 10.7554/elife.04121] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 12/06/2014] [Indexed: 12/16/2022] Open
Abstract
The HIV Rev protein routes viral RNAs containing the Rev Response Element (RRE) through the Crm1 nuclear export pathway to the cytoplasm where viral proteins are expressed and genomic RNA is delivered to assembling virions. The RRE assembles a Rev oligomer that displays nuclear export sequences (NESs) for recognition by the Crm1-Ran(GTP) nuclear receptor complex. Here we provide the first view of an assembled HIV-host nuclear export complex using single-particle electron microscopy. Unexpectedly, Crm1 forms a dimer with an extensive interface that enhances association with Rev-RRE and poises NES binding sites to interact with a Rev oligomer. The interface between Crm1 monomers explains differences between Crm1 orthologs that alter nuclear export and determine cellular tropism for viral replication. The arrangement of the export complex identifies a novel binding surface to possibly target an HIV inhibitor and may point to a broader role for Crm1 dimerization in regulating host gene expression.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Binding Sites
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cell Nucleus/virology
- Crystallography, X-Ray
- Cytosol/metabolism
- Cytosol/virology
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Gene Expression Regulation
- HEK293 Cells
- HIV-1/genetics
- HIV-1/metabolism
- HeLa Cells
- Host-Pathogen Interactions
- Humans
- Karyopherins/chemistry
- Karyopherins/genetics
- Karyopherins/metabolism
- Models, Molecular
- Protein Binding
- Protein Multimerization
- RNA Splicing
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Response Elements
- Signal Transduction
- T-Lymphocytes/metabolism
- T-Lymphocytes/virology
- Virus Replication/genetics
- ran GTP-Binding Protein/chemistry
- ran GTP-Binding Protein/genetics
- ran GTP-Binding Protein/metabolism
- rev Gene Products, Human Immunodeficiency Virus/chemistry
- rev Gene Products, Human Immunodeficiency Virus/genetics
- rev Gene Products, Human Immunodeficiency Virus/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- David S Booth
- Graduate Group in Biophysics, University of California, San Francisco, San Francisco, United States
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| | - Alan D Frankel
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
22
|
Taniguchi I, Mabuchi N, Ohno M. HIV-1 Rev protein specifies the viral RNA export pathway by suppressing TAP/NXF1 recruitment. Nucleic Acids Res 2014; 42:6645-58. [PMID: 24753416 PMCID: PMC4041468 DOI: 10.1093/nar/gku304] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/31/2014] [Accepted: 03/31/2014] [Indexed: 01/11/2023] Open
Abstract
Nuclear RNA export pathways in eukaryotes are often linked to the fate of a given RNA. Therefore, the choice of export pathway should be well-controlled to avoid an unfavorable effect on gene expression. Although some RNAs could be exported by more than one pathway, little is known about how the choice is regulated. This issue is highlighted when the human immunodeficiency virus type 1 (HIV-1) Rev protein induces the export of singly spliced and unspliced HIV-1 transcripts. How these RNAs are exported is not well understood because such transcripts should have the possibility of utilizing CRM1-dependent export via Rev or cellular TAP/NXF1-dependent export via the transcription/export (TREX) complex, or both. Here we found that Rev suppressed TAP/NXF1-dependent export of model RNA substrates that recapitulated viral transcripts. In this effect, Rev interacted with the cap-binding complex and inhibited the recruitment of the TREX complex. Thus, Rev controls the identity of the factor occupying the cap-proximal region that determines the RNA export pathway. This ribonucleoprotein remodeling activity of Rev may favor viral gene expression.
Collapse
Affiliation(s)
- Ichiro Taniguchi
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Naoto Mabuchi
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Mutsuhito Ohno
- Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
23
|
Woods MW, Tong JG, Tom SK, Szabo PA, Cavanagh PC, Dikeakos JD, Haeryfar SMM, Barr SD. Interferon-induced HERC5 is evolving under positive selection and inhibits HIV-1 particle production by a novel mechanism targeting Rev/RRE-dependent RNA nuclear export. Retrovirology 2014; 11:27. [PMID: 24693865 PMCID: PMC4021598 DOI: 10.1186/1742-4690-11-27] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type I interferon (IFN) inhibits virus replication by activating multiple antiviral mechanisms and pathways. It has long been recognized that type I IFNs can potently block HIV-1 replication in vitro; as such, HIV-1 has been used as a system to identify and characterize IFN-induced antiviral proteins responsible for this block. IFN-induced HERC5 contains an amino-terminal Regulator of Chromosome Condensation 1 (RCC1)-like domain and a carboxyl-terminal Homologous to the E6-AP Carboxyl Terminus (HECT) domain. HERC5 is the main cellular E3 ligase that conjugates the IFN-induced protein ISG15 to proteins. This E3 ligase activity was previously shown to inhibit the replication of evolutionarily diverse viruses, including HIV-1. The contribution of the RCC1-like domain to the antiviral activity of HERC5 was previously unknown. RESULTS In this study, we showed that HERC5 inhibits HIV-1 particle production by a second distinct mechanism that targets the nuclear export of Rev/RRE-dependent RNA. Unexpectedly, the E3 ligase activity of HERC5 was not required for this inhibition. Instead, this activity required the amino-terminal RCC1-like domain of HERC5. Inhibition correlated with a reduction in intracellular RanGTP protein levels and/or the ability of RanGTP to interact with RanBP1. Inhibition also correlated with altered subcellular localization of HIV-1 Rev. In addition, we demonstrated that positive evolutionary selection is operating on HERC5. We identified a region in the RCC1-like domain that exhibits an exceptionally high probability of having evolved under positive selection and showed that this region is required for HERC5-mediated inhibition of nuclear export. CONCLUSIONS We have identified a second distinct mechanism by which HERC5 inhibits HIV-1 replication and demonstrate that HERC5 is evolving under strong positive selection. Together, our findings contribute to a growing body of evidence suggesting that HERC5 is a novel host restriction factor.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stephen Dominic Barr
- Department of Microbiology and Immunology, Dental Sciences Building Room 3006b, The University of Western Ontario, Schulich School of Medicine and Dentistry, Center for Human Immunology, London, Ontario, Canada.
| |
Collapse
|
24
|
Kantor B, Bailey RM, Wimberly K, Kalburgi SN, Gray SJ. Methods for gene transfer to the central nervous system. ADVANCES IN GENETICS 2014; 87:125-97. [PMID: 25311922 DOI: 10.1016/b978-0-12-800149-3.00003-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene transfer is an increasingly utilized approach for research and clinical applications involving the central nervous system (CNS). Vectors for gene transfer can be as simple as an unmodified plasmid, but more commonly involve complex modifications to viruses to make them suitable gene delivery vehicles. This chapter will explain how tools for CNS gene transfer have been derived from naturally occurring viruses. The current capabilities of plasmid, retroviral, adeno-associated virus, adenovirus, and herpes simplex virus vectors for CNS gene delivery will be described. These include both focal and global CNS gene transfer strategies, with short- or long-term gene expression. As is described in this chapter, an important aspect of any vector is the cis-acting regulatory elements incorporated into the vector genome that control when, where, and how the transgene is expressed.
Collapse
Affiliation(s)
- Boris Kantor
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Rachel M Bailey
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keon Wimberly
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sahana N Kalburgi
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven J Gray
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Ophthalmology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Tareen SU, Nicolai CJ, Campbell DJ, Flynn PA, Slough MM, Vin CD, Kelley-Clarke B, Odegard JM, Robbins SH. A Rev-Independent gag/pol Eliminates Detectable psi-gag Recombination in Lentiviral Vectors. Biores Open Access 2013; 2:421-30. [PMID: 24380052 PMCID: PMC3869434 DOI: 10.1089/biores.2013.0037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lentiviral vectors (LVs) are being developed for clinical use in humans for applications including gene therapy and immunotherapy. A safety concern for use of LVs in humans is the generation of replication-competent lentivirus (RCL), which may arise due to recombination between the split genomes of third-generation LVs. Although no RCL has been detected to date, design optimizations that minimize recombination events between split genome vectors would provide an added safety benefit that may further reduce the risk of RCL formation. Here we describe design elements introduced to the gag/pol plasmid with the intention of eliminating psi-gag recombination between the vector genome and gag/pol. These design changes, consisting of codon optimization of the gag/pol sequence and the deletion of the Rev-responsive element, abrogate the requirement for Rev in expression of Gag protein, thus the resulting gag/pol construct being Rev independent (RI gag/pol). We show that generating vector using the RI gag/pol construct has no effect on particle production or transduction titers. The RI and wild-type gag/pol vectors function equivalently as antigen-specific immunotherapy, potently inducing antigen-specific CD8 T cells that protect against challenge with vaccinia virus. Most importantly, the designed RI gag/pol eliminated detectable psi-gag recombination. Interestingly, we detected recombination between the vector genome and gag/pol from regions without sequence homology. Our findings imply that although unpredictable recombination events may still occur, the RI gag/pol design is sufficient to prevent psi-gag recombination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Scott H Robbins
- Immune Design Corporation , Seattle, Washington. ; TRIA Bioscience Corporation , Seattle, Washington
| |
Collapse
|
26
|
Design of a novel integration-deficient lentivector technology that incorporates genetic and posttranslational elements to target human dendritic cells. Mol Ther 2013; 22:575-587. [PMID: 24419083 DOI: 10.1038/mt.2013.278] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 12/01/2013] [Indexed: 11/08/2022] Open
Abstract
As sentinels of the immune system, dendritic cells (DCs) play an essential role in regulating cellular immune responses. One of the main challenges of developing DC-targeted therapies includes the delivery of antigen to DCs in order to promote the activation of antigen-specific effector CD8 T cells. With the goal of creating antigen-directed immunotherapeutics that can be safely administered directly to patients, Immune Design has developed a platform of novel integration-deficient lentiviral vectors that target and deliver antigen-encoding nucleic acids to human DCs. This platform, termed ID-VP02, utilizes a novel genetic variant of a Sindbis virus envelope glycoprotein with posttranslational carbohydrate modifications in combination with Vpx, a SIVmac viral accessory protein, to achieve efficient targeting and transduction of human DCs. In addition, ID-VP02 incorporates safety features in its design that include two redundant mechanisms to render ID-VP02 integration-deficient. Here, we describe the characteristics that allow ID-VP02 to specifically transduce human DCs, and the advances that ID-VP02 brings to conventional third-generation lentiviral vector design as well as demonstrate upstream production yields that will enable manufacturing feasibility studies to be conducted.
Collapse
|
27
|
Gordon H, Ajamian L, Valiente-Echeverrìa F, Lévesque K, Rigby WF, Mouland AJ. Depletion of hnRNP A2/B1 overrides the nuclear retention of the HIV-1 genomic RNA. RNA Biol 2013; 10:1714-25. [PMID: 24157614 DOI: 10.4161/rna.26542] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
hnRNP A2 is a cellular protein that is important for nucleocytoplasmic and cytosolic trafficking of the HIV-1 genomic RNA. Both hnRNP A2's interaction with HIV-1 RNA and its expression levels influence the activities of Rev in mediating nucleocytoplasmic export of the HIV-1 genomic RNA. While the lack of Rev expression during HIV-1 gene expression results in nuclear retention of HIV-1 genomic RNA, we show here by fluorescence in situ hybridization and fractionation studies that the genomic RNA translocates to the cytoplasm when hnRNP A2/B1 are depleted from cells. Polyribosome analyses revealed that the genomic RNA was shunted into a cytoplasmic, dense polyribosomal fraction. This fraction contained several RNA-binding proteins involved in viral gene expression and RNA trafficking but did not contain the translation initiation factor, eIF4G1. Amino acid incorporation into nascent polypeptides in this fraction was also greatly reduced, demonstrating that this fraction contains mRNAs that are poorly translated. These results demonstrate that hnRNP A2/B1 expression plays roles in the nuclear retention of the HIV-1 genomic RNA in the absence of Rev and in the release of the genomic RNA from translationally inactive, cytoplasmic RNP complexes.
Collapse
Affiliation(s)
- Heather Gordon
- HIV-1 RNA Trafficking Laboratory; Lady Davis Institute at the Jewish General Hospital; Montréal, Québec, Canada; Department of Microbiology & Immunology; McGill University; Montréal, Québec, Canada
| | - Lara Ajamian
- HIV-1 RNA Trafficking Laboratory; Lady Davis Institute at the Jewish General Hospital; Montréal, Québec, Canada; Department of Medicine; Division of Experimental Medicine; McGill University; Montréal, Québec, Canada
| | - Fernando Valiente-Echeverrìa
- HIV-1 RNA Trafficking Laboratory; Lady Davis Institute at the Jewish General Hospital; Montréal, Québec, Canada; Department of Medicine; Division of Experimental Medicine; McGill University; Montréal, Québec, Canada
| | - Kathy Lévesque
- HIV-1 RNA Trafficking Laboratory; Lady Davis Institute at the Jewish General Hospital; Montréal, Québec, Canada; Department of Medicine; Division of Experimental Medicine; McGill University; Montréal, Québec, Canada
| | - William F Rigby
- Dartmouth Medical School; Department of Medicine; Lebanon, NH, USA
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory; Lady Davis Institute at the Jewish General Hospital; Montréal, Québec, Canada; Department of Microbiology & Immunology; McGill University; Montréal, Québec, Canada; Department of Medicine; Division of Experimental Medicine; McGill University; Montréal, Québec, Canada
| |
Collapse
|
28
|
Lusvarghi S, Sztuba-Solinska J, Purzycka KJ, Pauly GT, Rausch JW, Grice SFJL. The HIV-2 Rev-response element: determining secondary structure and defining folding intermediates. Nucleic Acids Res 2013; 41:6637-49. [PMID: 23640333 PMCID: PMC3711434 DOI: 10.1093/nar/gkt353] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Interaction between the viral protein Rev and the RNA motifs known as Rev response elements (RREs) is required for transport of unspliced and partially spliced human immunodeficiency virus (HIV)-1 and HIV-2 RNAs from the nucleus to the cytoplasm during the later stages of virus replication. A more detailed understanding of these nucleoprotein complexes and the host factors with which they interact should accelerate the development of new antiviral drugs targeting cis-acting RNA regulatory signals. In this communication, the secondary structures of the HIV-2 RRE and two RNA folding precursors have been identified using the SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) chemical probing methodology together with a novel mathematical approach for determining the secondary structures of RNA conformers present in a mixture. A complementary chemical probing technique was also used to support these secondary structure models, to confirm that the RRE2 RNA undergoes a folding transition and to obtain information about the relative positioning of RRE2 substructures in three dimensions. Our analysis collectively suggests that the HIV-2 RRE undergoes two conformational transitions before assuming the energetically most favorable conformer. The 3D models for the HIV-2 RRE and folding intermediates are also presented, wherein the Rev-binding stem–loops (IIB and I) are located coaxially in the former, which is in agreement with previous models for HIV-1 Rev-RRE binding.
Collapse
Affiliation(s)
- Sabrina Lusvarghi
- HIV Drug Resistance Program, Reverse Transcriptase Biochemistry Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
29
|
Mutational analysis of the internal membrane proximal domain of the HIV glycoprotein C-terminus. Virology 2013; 440:31-40. [DOI: 10.1016/j.virol.2013.01.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/28/2013] [Accepted: 01/31/2013] [Indexed: 01/26/2023]
|
30
|
Fernandes J, Jayaraman B, Frankel A. The HIV-1 Rev response element: an RNA scaffold that directs the cooperative assembly of a homo-oligomeric ribonucleoprotein complex. RNA Biol 2012; 9:6-11. [PMID: 22258145 PMCID: PMC3342944 DOI: 10.4161/rna.9.1.18178] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The HIV-1 Rev response element (RRE) is a ~350 nucleotide, highly structured, cis-acting RNA element essential for viral replication. It is located in the env coding region of the viral genome and is extremely well conserved across different HIV-1 isolates. It is present on all partially spliced and unspliced viral mRNA transcripts, and serves as an RNA framework onto which multiple molecules of the viral protein Rev assemble. The Rev-RRE oligomeric complex mediates the export of these messages from the nucleus to the cytoplasm, where they are translated to produce essential viral proteins and/or packaged as genomes for new virions.
Collapse
Affiliation(s)
- Jason Fernandes
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | | | | |
Collapse
|
31
|
Hohenadl C, Gunzburg WH, Salmons B, Indik S. The 5' leader sequence of mouse mammary tumor virus enhances expression of the envelope and reporter genes. J Gen Virol 2011; 93:308-318. [PMID: 22113011 DOI: 10.1099/vir.0.035196-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mouse mammary tumor virus (MMTV) is a complex betaretrovirus, which utilizes a Rev-like auxiliary protein Rem to export the unspliced viral RNA from the nucleus. MMTV env mRNA appears to be exported via a distinct, Rem-independent, mechanism. Here, we analysed the effect of an extensively folded region coinciding with the 5' leader sequence on env gene expression. We found that the presence of the 5' leader stimulates expression of the envelope protein. Enhanced Env production was accompanied by increased cytoplasmic levels of env mRNA. The 5' leader promotes nucleocytoplasmic translocation and increases stability of env mRNA. The region responsible for this effect was mapped to the distal part of the 5' leader. Furthermore, the 5' leader inserted in the sense orientation into a heterologous luciferase expression construct increased luciferase activity.
Collapse
Affiliation(s)
- Christine Hohenadl
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Walter H Gunzburg
- Christian Doppler Laboratory for Gene Therapeutic Vector Development, Vienna, Austria.,Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Stanislav Indik
- Institute of Virology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
32
|
Liu J, Henao-Mejia J, Liu H, Zhao Y, He JJ. Translational regulation of HIV-1 replication by HIV-1 Rev cellular cofactors Sam68, eIF5A, hRIP, and DDX3. J Neuroimmune Pharmacol 2011; 6:308-21. [PMID: 21360055 DOI: 10.1007/s11481-011-9265-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
Nuclear export and translation of HIV-1 RNA are two important posttranscriptional events for HIV-1 gene expression and replication. HIV-1 Rev functions to export unspliced and incompletely spliced HIV-1 RNA from the nucleus to the cytoplasm; it requires interaction with several cellular cofactors such as Sam68, eIF5A, hRIP, and DDX3. Meanwhile, some studies have also implicated Rev and some of its cofactors such as Sam68 in HIV-1 RNA translation. Thus, in this study, we aimed to characterize the potential function of all these four Rev cofactors in HIV-1 RNA translation. Ectopic expression, siRNA knockdown, and trans-complementation assays confirmed that all these cofactors were very important for HIV-1 gene expression and production through Rev and, accordingly, Rev-dependent reporter gene expression. Importantly, these studies revealed for the first time that each of these cofactors also regulated Rev-independent reporter gene expression. To directly determine the roles of these cofactors in HIV-1 RNA translation, we designed and synthesized a full-length capped HIV-1 RNA in vitro, transfected it into cells to bypass the RNA nuclear export step, and determined HIV-1 Gag expression from the cytoplasmic RNA in the cells that had ectopically expressed or siRNA knocked down cofactors. Gag expression was found to closely correlate with the expression levels of all these cofactors. Furthermore, we took advantage of a HIV-1 internal ribosomal entry site (IRES)-based bicistronic reporter gene assay and determined the effects of these cofactors on cap-independent IRES-mediated HIV-1 translation. The results showed that DDX3, eIF5A, and hRIP enhanced HIV-1 IRES-mediated translation, whereas Sam68 did not. Taken together, these results show that HIV-1 Rev cofactors Sam68, eIF5A, hRIP, and DDX3 also function in the translation of HIV-1 RNA and suggest that the regulatory mechanisms of HIV-1 RNA translation are likely different among these cofactors.
Collapse
Affiliation(s)
- Jinfeng Liu
- The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
Abstract
Although the viral Rev protein is necessary for HIV replication, its main function in the viral replication cycle has been controversial. Reinvestigating the effect of Rev on the HIV-1 RNA distribution in various cell lines and primary cells revealed that Rev enhanced cytoplasmic levels of the unspliced HIV-1 RNA, mostly 3- to 12-fold, while encapsidation of the RNA and viral infectivity could be stimulated >1,000-fold. Although this clearly questions the general notion that the nuclear export of viral RNAs is the major function of Rev, mechanistically encapsidation seems to be linked to nuclear export, since the tethering of the nuclear export factor TAP to the HIV-1 RNA also enhanced encapsidation. Interference with the formation of an inhibitory ribonucleoprotein complex in the nucleus could lead to enhanced accessibility of the cytoplasmic HIV-1 RNA for translation and encapsidation. This might explain why Rev and tethered TAP exert the same pattern of pleiotropic effects.
Collapse
|
34
|
Groom HCT, Anderson EC, Dangerfield JA, Lever AML. Rev regulates translation of human immunodeficiency virus type 1 RNAs. J Gen Virol 2009; 90:1141-1147. [DOI: 10.1099/vir.0.007963-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Full-length human immunodeficiency virus type 1 (HIV-1) RNA acts as both mRNA, encoding Gag and Gag–Pol polyproteins, and genomic RNA. Translation of this RNA must be tightly controlled to allow sufficient protein synthesis prior to a switch to particle production. The viral protein Rev stimulates nuclear export of unspliced HIV-1 RNAs containing the Rev response element, but may also stimulate translation of these RNAs. We previously identified an additional Rev binding site in the 5′ untranslated region of the HIV-1 RNA. We show that Rev inhibits translation non-specifically at high concentrations and stimulates translation of HIV-1 RNAs at intermediate concentrations in vitro. Stimulation is dependent on the presence of the Rev binding site within the 5′ untranslated region and not on the Rev response element. In COS-1 cells, translation from an HIV-1 reporter is specifically increased by coexpression of Rev.
Collapse
Affiliation(s)
| | - Emma C. Anderson
- Department of Biological Sciences, University of Warwick, Warwick CV4 7AL, UK
| | - John A. Dangerfield
- Christian Doppler Laboratory for Gene Therapeutic Vectors, Research Institute of Virology and Biomedicine, University for Veterinary Sciences, Vienna, Austria
| | | |
Collapse
|
35
|
Genetic evidence for a connection between Rous sarcoma virus gag nuclear trafficking and genomic RNA packaging. J Virol 2009; 83:6790-7. [PMID: 19369339 DOI: 10.1128/jvi.00101-09] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The packaging of retroviral genomic RNA (gRNA) requires cis-acting elements within the RNA and trans-acting elements within the Gag polyprotein. The packaging signal psi, at the 5' end of the viral gRNA, binds to Gag through interactions with basic residues and Cys-His box RNA-binding motifs in the nucleocapsid. Although specific interactions between Gag and gRNA have been demonstrated previously, where and when they occur is not well understood. We discovered that the Rous sarcoma virus (RSV) Gag protein transiently localizes to the nucleus, although the roles of Gag nuclear trafficking in virus replication have not been fully elucidated. A mutant of RSV (Myr1E) with enhanced plasma membrane targeting of Gag fails to undergo nuclear trafficking and also incorporates reduced levels of gRNA into virus particles compared to those in wild-type particles. Based on these results, we hypothesized that Gag nuclear entry might facilitate gRNA packaging. To test this idea by using a gain-of-function genetic approach, a bipartite nuclear localization signal (NLS) derived from the nucleoplasmin protein was inserted into the Myr1E Gag sequence (generating mutant Myr1E.NLS) in an attempt to restore nuclear trafficking. Here, we report that the inserted NLS enhanced the nuclear localization of Myr1E.NLS Gag compared to that of Myr1E Gag. Also, the NLS sequence restored gRNA packaging to nearly wild-type levels in viruses containing Myr1E.NLS Gag, providing genetic evidence linking nuclear trafficking of the retroviral Gag protein with gRNA incorporation.
Collapse
|
36
|
Abstract
Rev remains a hot topic. In this review, we revisit the insights that have been gained into the control of gene expression by the retroviral protein Rev and speculate on where current research is leading. We outline what is known about the role of Rev in translation and encapsidation and how these are linked to its more traditional role of nuclear export, underlining the multifaceted nature of this small viral protein. We discuss what more is to be learned in these fields and why continuing research on these 116 amino acids and understanding their function is still important in devising methods to combat AIDS.
Collapse
Affiliation(s)
- H C T Groom
- Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - E C Anderson
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - A M L Lever
- Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| |
Collapse
|
37
|
Moehle K, Athanassiou Z, Patora K, Davidson A, Varani G, Robinson J. Design von β-Haarnadel-Peptidmimetika zur Hemmung der Bindung des α-helicalen HIV-1-Rev-Proteins an das Rev-RNA-Erkennungselement. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200702801] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Wu Y, Beddall MH, Marsh JW. Rev-dependent lentiviral expression vector. Retrovirology 2007; 4:12. [PMID: 17286866 PMCID: PMC1797186 DOI: 10.1186/1742-4690-4-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 02/07/2007] [Indexed: 11/10/2022] Open
Abstract
Background HIV-responsive expression vectors are all based on the HIV promoter, the long terminal repeat (LTR). While responsive to an early HIV protein, Tat, the LTR is also responsive to cellular activation states and to the local chromatin activity where the integration has occurred. This can result in high HIV-independent activity, and has restricted the use of LTR-based reporter vectors to cloned cells, where aberrantly high expressing (HIV-negative) cells can be eliminated. Enhancements in specificity would increase opportunities for expression vector use in detection of HIV as well as in experimental gene expression in HIV-infected cells. Results We have constructed an expression vector that possesses, in addition to the Tat-responsive LTR, numerous HIV DNA sequences that include the Rev-response element and HIV splicing sites that are efficiently used in human cells. It also contains a reading frame that is removed by cellular splicing activity in the absence of HIV Rev. The vector was incorporated into a lentiviral reporter virus, permitting detection of replicating HIV in living cell populations. The activity of the vector was measured by expression of green fluorescence protein (GFP) reporter and by PCR of reporter transcript following HIV infection. The vector displayed full HIV dependency. Conclusion As with the earlier developed Tat-dependent expression vectors, the Rev system described here is an exploitation of an evolved HIV process. The inclusion of Rev-dependency renders the LTR-based expression vector highly dependent on the presence of replicating HIV. The application of this vector as reported here, an HIV-dependent reporter virus, offers a novel alternative approach to existing methods, in situ PCR or HIV antigen staining, to identify HIV-positive cells. The vector permits examination of living cells, can express any gene for basic or clinical experimentation, and as a pseudo-typed lentivirus has access to most cell types and tissues.
Collapse
Affiliation(s)
- Yuntao Wu
- Section on Molecular Virology, Laboratory of Cellular and Molecular Regulation, NIMH, Bethesda, MD, 20892-4483, USA
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, VA, 20110, USA
| | - Margaret H Beddall
- Section on Molecular Virology, Laboratory of Cellular and Molecular Regulation, NIMH, Bethesda, MD, 20892-4483, USA
| | - Jon W Marsh
- Section on Molecular Virology, Laboratory of Cellular and Molecular Regulation, NIMH, Bethesda, MD, 20892-4483, USA
| |
Collapse
|
39
|
Moehle K, Athanassiou Z, Patora K, Davidson A, Varani G, Robinson JA. Design of beta-hairpin peptidomimetics that inhibit binding of alpha-helical HIV-1 Rev protein to the rev response element RNA. Angew Chem Int Ed Engl 2007; 46:9101-4. [PMID: 17893894 PMCID: PMC3809837 DOI: 10.1002/anie.200702801] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kerstin Moehle
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland), Fax: (+41) 44-1635-6833
| | | | - Krystyna Patora
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich; (Switzerland), Fax: (+41) 44-1635-6833
| | - Amy Davidson
- Department of Chemistry, University of Washington, Seattle, WA 98195 (USA)
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle, WA 98195 (USA)
- Department of Biochemistry, University of Washington, Seattle, WA 98195 (USA)
| | - John A. Robinson
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich (Switzerland), Fax: (+41) 44-1635-6833
| |
Collapse
|
40
|
Felber BK, Zolotukhin AS, Pavlakis GN. Posttranscriptional Control of HIV‐1 and Other Retroviruses and Its Practical Applications. ADVANCES IN PHARMACOLOGY 2007; 55:161-97. [PMID: 17586315 DOI: 10.1016/s1054-3589(07)55005-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | |
Collapse
|
41
|
Graf M, Ludwig C, Kehlenbeck S, Jungert K, Wagner R. A quasi-lentiviral green fluorescent protein reporter exhibits nuclear export features of late human immunodeficiency virus type 1 transcripts. Virology 2006; 352:295-305. [PMID: 16777165 DOI: 10.1016/j.virol.2006.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 02/23/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
We have previously shown that Rev-dependent expression of HIV-1 Gag from CMV immediate early promoter critically depends on the AU-rich codon bias of the gag gene. Here, we demonstrate that adaptation of the green fluorescent protein (GFP) reporter gene to HIV codon bias is sufficient to turn this hivGFP RNA into a quasi-lentiviral message following the rules of late lentiviral gene expression. Accordingly, GFP expression was significantly decreased in transfected cells strictly correlating with reduced RNA levels. In the presence of the HIV 5' major splice donor, the hivGFP RNAs were stabilized in the nucleus and efficiently exported to the cytoplasm following fusion of the 3' Rev-responsive element (RRE) and coexpression of HIV-1 Rev. This Rev-dependent translocation was specifically inhibited by leptomycin B suggesting export via the CRM1-dependent pathway used by late lentiviral transcripts. In conclusion, this quasi-lentiviral reporter system may provide a new platform for developing sensitive Rev screening assays.
Collapse
Affiliation(s)
- Marcus Graf
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology and Gene Therapy, University of Regensburg, 93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
42
|
Lützelberger M, Reinert LS, Das AT, Berkhout B, Kjems J. A novel splice donor site in the gag-pol gene is required for HIV-1 RNA stability. J Biol Chem 2006; 281:18644-51. [PMID: 16675444 DOI: 10.1074/jbc.m513698200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Productive infection and successful replication of human immunodeficiency virus 1 (HIV-1) requires the balanced expression of all viral genes. This is achieved by a combination of alternative splicing events and regulated nuclear export of viral RNA. Because viral splicing is incomplete and intron-containing RNAs must be exported from the nucleus where they are normally retained, it must be ensured that the unspliced HIV-1 RNA is actively exported from the nucleus and protected from degradation by processes such as nonsense-mediated decay. Here we report the identification of a novel 178-nt-long exon located in the gag-pol gene of HIV-1 and its inclusion in at least two different mRNA species. Although efficiently spliced in vitro, this exon appears to be tightly repressed and infrequently used in vivo. The splicing is activated or repressed in vitro by the splicing factors ASF/SF2 and heterogeneous nuclear ribonucleoprotein A1, respectively, suggesting that splicing is controlled by these factors. Interestingly, mutations in the 5'-splice site resulted in a dramatic reduction in the steady-state level of HIV-1 RNA, and this effect was partially reversed by expression of U1 small nuclear RNA harboring the compensatory mutation. This implies that U1 small nuclear RNA binding to optimal but non-functional splice sites might have a role in protecting unspliced HIV-1 mRNA from degradation.
Collapse
Affiliation(s)
- Martin Lützelberger
- Department of Molecular Biology, University of Aarhus, C. F. Møllers Allé 130, 8000 Arhus C, Denmark
| | | | | | | | | |
Collapse
|
43
|
Famulok M, Szostak JW. In-vitro-Selektion spezifisch ligandenbindender Nucleinsäuren. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.19921040806] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Abstract
Human immunodeficiency virus type-1 (HIV-1) relies on both partial and complete splicing of its full-length RNA transcripts to generate a distribution of essential spliced mRNA products. The complexity of the splicing process, which can employ multiple alternative splice sites, challenges our ability to understand how mutations in splice sites may influence the composition of the resulting mRNA pool and, more broadly, the development of viral progeny. Here, we begin to systematically address these issues by developing a mechanistic mathematical model for the splicing process. We identify as key parameters the probabilities that the cellular splice machinery selects specific splice acceptors, and we show how the splicing process depends on these probabilities. Further, by incorporating this splicing model into a detailed kinetic model for HIV-1 intracellular development we find that an increase in the fraction of either rev or tat mRNA in the HIV-1 mRNA pool is generally beneficial for HIV-1 growth. However, a splice site mutation that excessively increases the fraction of either mRNA can be detrimental due to the corresponding reduction in the other mRNA, suggesting that a balance of Rev and Tat is needed in order for HIV-1 to optimize its growth. Although our model is based on still very limited quantitative data on RNA splicing, Rev-mediated splicing regulation and nuclear export, and the effects of associated mutations, it serves as a starting point for better understanding how variations in essential post-transcriptional functions can impact the intracellular development of HIV-1.
Collapse
Affiliation(s)
- Hwijin Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 3633 Engineering Hall, 1415 Engineering Drive, Madison, Wisconsin 53706-1607, USA
| | | |
Collapse
|
45
|
Dangerfield JA, Hohenadl C, Egerbacher M, Kodajova P, Salmons B, Günzburg WH. HIV-1 Rev can specifically interact with MMTV RNA and upregulate gene expression. Gene 2005; 358:17-30. [PMID: 16023306 DOI: 10.1016/j.gene.2005.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 04/26/2005] [Accepted: 05/10/2005] [Indexed: 10/25/2022]
Abstract
We present evidence that the HIV-1 Rev protein can heterologously regulate expression of the simple beta retrovirus mouse mammary tumour virus (MMTV). Up to 10-fold upregulation was seen in a functional assay system when specific MMTV sequences were substituted for the HIV-1 Rev responsive element (RRE). RNA gel shift analysis showed that purified recombinant Rev could specifically bind to MMTV unique region 3 prime (U3) RNA and that these sequences could compete for wild-type Rev-RRE binding approximately 20-fold more efficiently than a non-specific competitor RNA. Using a combination of in silico and deletion mutation analyses, it was not possible to define any single specific secondary structure responsive to Rev, suggesting that a structure or combination of structures that only form in the context of the complete U3 transcript is/are required to interact with Rev. Taken together, these results suggest that HIV-1 Rev can directly bind to MMTV RNA as well as mediate upregulation of MMTV gene expression.
Collapse
Affiliation(s)
- John A Dangerfield
- Research Institute of Virology and Biomedicine, University of Veterinary Medicine, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The persistence of human immunodeficiency virus type-1 (HIV-1) has long been attributed to its high mutation rate and the capacity of its resulting heterogeneous virus populations to evade host immune responses and antiviral drugs. However, this view is incomplete because it does not explain how the virus persists in light of the adverse effects mutations in the viral genome and variations in host functions can potentially have on viral functions and growth. Here we show that the resilience of HIV-1 can be credited, at least in part, to a robust response to perturbations that emerges as an intrinsic property of its intracellular development. Specifically, robustness in HIV-1 arises through the coupling of two feedback loops: a Rev-mediated negative feedback and a Tat-mediated positive feedback. By employing a mechanistic kinetic model for its growth we found that HIV-1 buffers the effects of many potentially detrimental variations in essential viral and cellular functions, including the binding of Rev to mRNA; the level of rev mRNA in the pool of fully spliced mRNA; the splicing of mRNA; the Rev-mediated nuclear export of incompletely-spliced mRNAs; and the nuclear import of Tat and Rev. The virus did not, however, perform robustly to perturbations in all functions. Notably, HIV-1 tended to amplify rather than buffer adverse effects of variations in the interaction of Tat with viral mRNA. This result shows how targeting therapeutics against molecular components of the viral positive-feedback loop open new possibilities and potential in the effective treatment of HIV-1.
Collapse
Affiliation(s)
- Hwijin Kim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706-1607, USA
| | | |
Collapse
|
47
|
Daelemans D, Costes SV, Cho EH, Erwin-Cohen RA, Lockett S, Pavlakis GN. In Vivo HIV-1 Rev Multimerization in the Nucleolus and Cytoplasm Identified by Fluorescence Resonance Energy Transfer. J Biol Chem 2004; 279:50167-75. [PMID: 15294891 DOI: 10.1074/jbc.m407713200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear export of intron-containing human immunodeficiency virus type 1 RNA is mediated by the viral Rev protein. Rev is a nucleocytoplasmic transport protein that directly binds to its cis-acting Rev-responsive element RNA. Rev function depends on its ability to multimerize. The in vivo dynamics and the subcellular dependence of this process are still largely unexplored. To visualize and quantitatively analyze the mechanism of Rev multimeric assembly in live cells, we used high resolution in vivo fluorescence resonance energy transfer (FRET) and fluorescence recovery after photobleaching. By using two different dynamic FRET approaches (acceptor photobleaching and donor bleaching time measurements), we observed a strong Rev-Rev interaction in the nucleoli of living cells. Most interestingly, we could also detect Rev multimerization in the cytoplasm; however, FRET efficiency in the cytoplasm was significantly lower than in the nucleolus. By using fluorescence recovery after photobleaching, we investigated the mobility of Rev within the nucleolus. Mathematical modeling of the fluorescence recovery after photobleaching recoveries enabled us to extract relative association and dissociation constants and the diffusion coefficient of Rev in the nucleolus. Our results show that Rev multimerizes in the nucleolus of living cells, suggesting an important role of the nucleolus in nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Dirk Daelemans
- Human Retrovirus Section, Basic Research Laboratory and Image Analysis Laboratory, Science Application International Corporation, NCI-Frederick, Frederick, Maryland 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Rozanne M Sandri-Goldin
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-4025, USA.
| |
Collapse
|
49
|
Federoff HJ. CNS diseases amenable to gene therapy. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2004:117-58. [PMID: 12894455 DOI: 10.1007/978-3-662-05352-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- H J Federoff
- Center for Aging and Development, University of Rochester School of Medicine and Dentistry, Box 645, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
50
|
Breckpot K, Heirman C, Neyns B, Thielemans K. Exploiting dendritic cells for cancer immunotherapy: genetic modification of dendritic cells. J Gene Med 2004; 6:1175-88. [PMID: 15468193 DOI: 10.1002/jgm.615] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs) are pivotal regulators of immune reactivity and immune tolerance. The observation that DCs can recruit naive T cells has invigorated cancer immunology and led to the proposal of DCs as the basis for vaccines designed for the treatment of cancer. Designing effective strategies to load DCs with antigens is a challenging field of research. The successful realization of gene transfer to DCs will be highly dependent on the employed vector system. Here, we review various viral and non-viral gene transfer systems, and discuss their distinct characteristics and possible advantages and disadvantages in respect to their use in DC-based immunotherapy.
Collapse
Affiliation(s)
- Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | | | | | | |
Collapse
|