1
|
Asadi Y, Moundounga RK, Chakroborty A, Pokokiri A, Wang H. FOXOs and their roles in acute and chronic neurological disorders. Front Mol Biosci 2025; 12:1538472. [PMID: 40260403 PMCID: PMC12010098 DOI: 10.3389/fmolb.2025.1538472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/10/2025] [Indexed: 04/23/2025] Open
Abstract
The forkhead family of transcription factors of class O (FOXOs) consisting of four functionally related proteins, FOXO1, FOXO3, FOXO4, and FOXO6, are mammalian homologs of daf-16 in Caenorhabditis elegans and were previously identified as tumor suppressors, oxidative stress sensors, and cell survival modulators. Under normal physiological conditions, FOXO protein activities are negatively regulated by phosphorylation via the phosphoinositide 3-kinase (PI3K)-Akt pathway, a well-known cell survival pathway: Akt phosphorylates FOXOs to inactivate their transcriptional activity by relocalizing FOXOs from the nucleus to the cytoplasm for degradation. However, under oxidative stress or absent the cellular survival drive of growth factors, FOXO proteins translocate to the nucleus and upregulate a series of target genes, thereby promoting cell growth arrest and cell death and altering mitochondrial homeostasis. FOXO gene expression is also regulated by other transcriptional factors such as p53 or autoregulation by their activities and end products. Here we summarize the structure, posttranslational modifications, and translocation of FOXOs linking to their transcriptional control of cellular functions, survival, and death, emphasizing their role in regulating the cellular response to some acute insults and chronic neurological disorders. This review will conclude with a brief section on potential therapeutic interventions that can be used to modulate FOXOs' activities when treating acute and chronic neurological disorders.
Collapse
Affiliation(s)
- Yasin Asadi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Rozenn K. Moundounga
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Anand Chakroborty
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Augustina Pokokiri
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Hongmin Wang
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
2
|
Jiang J, Shen T, Chen D, Dai Z, Wang X, Meng Q, Yang Z, Zhang D, Guo X, Xu J, Gu J, Wang C. FOXM1, a super enhancer-associated gene, is related to poorer prognosis and gemcitabine resistance in pancreatic cancer. Cell Biochem Biophys 2025:10.1007/s12013-024-01653-7. [PMID: 39899193 DOI: 10.1007/s12013-024-01653-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 02/04/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive solid tumor; however, the barrier of chemoresistance has yet to be overcome for longer survival. Aberrant gene expression due to epigenetic modification plays an important role in tumorigenesis and treatment. Super enhancers are epigenetic elements that promote targeted gene transcription and ultimately lead to chemoresistance. This study found that the expression of FOXM1 was higher in PDAC tissues and negatively correlated with prognosis. Through RNA sequencing and chromatin immunoprecipitation-sequencing analyses, FOXM1 was found to be regulated by a BRD4-associated super enhancer, which finally promoted gemcitabine resistance via TGFβ/Smad signaling pathway activation. Both TGFβ/Smad-specific inhibitor LY364947 and the BRD4 inhibitor JQ1 decreased the IC50 value of gemcitabine in vitro. Furthermore, combined gemcitabine and JQ1 therapy could not only enhance the therapeutic effect of gemcitabine but also reverse drug resistance in vivo. In conclusion, the super enhancer-associated gene FOMX1 contributes to gemcitabine resistance and is a promising target in PDAC treatment.
Collapse
Affiliation(s)
- Jian Jiang
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianci Shen
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dan Chen
- Department of Pathology, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zihao Dai
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuelong Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zhuo Yang
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, China
| | - Di Zhang
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaoyi Guo
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, Liaoning, China
| | - Jiangning Gu
- Department of Endoscope, General Hospital of Northern Theater Command, Shenyang, China.
| | - Changmiao Wang
- Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
3
|
Yuan M, Saeki H, Hayashi T, Horimoto Y, Fujino K, Terao Y, Yao T. FOXA1 expression and its association with mucin expression and KRAS mutation in ovarian mucinous tumors: implications for tumor progression and differentiation. Virchows Arch 2025:10.1007/s00428-025-04025-5. [PMID: 39992437 DOI: 10.1007/s00428-025-04025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 02/25/2025]
Abstract
This study aimed to investigate forkhead box A1 (FOXA1) expression in ovarian mucinous tumors and its association with mucin expression and KRAS mutation status to clarify its role in tumor progression and differentiation. We analyzed 57 normal tissues or benign ovarian lesions, 110 mucinous ovarian tumors, including mucinous carcinomas, and 214 other ovarian epithelial carcinomas using immunohistochemistry for FOXA1, MUC2, MUC5AC, and MUC6. We also performed KRAS mutation analysis. Strong nuclear staining of FOXA1 was observed in Walthard nests, Brenner tumors, and fallopian tube ciliated epithelium. FOXA1 expression was significantly associated with mucinous histology in ovarian epithelial carcinomas (P < 0.001). In mucinous tumors, FOXA1 was expressed in 73.6% of cystadenomas, 91.4% of borderline tumors, 100% of borderline tumors with intraepithelial carcinomas, and 87.5% of carcinomas. MUC2 expression progressively increased from mucinous cystadenomas to borderline tumors (P < 0.050) and significantly correlated with FOXA1 expression (P = 0.024). The prevalence of KRAS mutations also tended to increase with the malignancy of mucinous tumors (P < 0.050); however, KRAS mutations were significantly enriched in FOXA1-negative cystadenomas compared with FOXA1-positive cystadenomas (P < 0.050). A stepwise increase was noted in the percentage of both KRAS mutations and FOXA1 expression from cystadenoma to carcinoma. Mucinous ovarian tumors commonly express FOXA1. The co-occurrence of KRAS mutations and FOXA1 expression may be important for driving the progression and intestinal differentiation of mucinous ovarian tumors.
Collapse
Affiliation(s)
- Men Yuan
- Department of Human Pathology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Harumi Saeki
- Department of Human Pathology, Faculty of Medicine, Juntendo University, Tokyo, Japan.
| | - Takuo Hayashi
- Department of Human Pathology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yoshiya Horimoto
- Department of Human Pathology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Department of Breast Surgery and Oncology, Tokyo Medical University, Tokyo, Japan
| | - Kazunari Fujino
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Yasuhisa Terao
- Department of Obstetrics and Gynecology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Yao
- Department of Human Pathology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
4
|
Zheng Y, Wu L, Hu Z, Liao H, Li X. Role of the Forkhead box family protein FOXF2 in the progression of solid tumor: systematic review. J Cancer Res Clin Oncol 2024; 151:14. [PMID: 39724282 PMCID: PMC11671575 DOI: 10.1007/s00432-024-06047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND FOXF2 was reported to involve in a variety of biological behaviors that include the development of the central nervous system, tissue homeostasis, epithelia-mesenchymal interactions, regulation of embryonic development, and organogenesis. PURPOSE Understanding how FOXF2 influences the growth and development of cancer could provide valuable insights for researchers to develop novel therapeutic strategies. RESULTS In this review, we investigate the underlying impact of FOXF2 on tumor cells, including the transformation of cellular phenotype, capacity for migration, invasion, and proliferation, colonization of circulating cells, and formation of metastatic nodules. In addition, we discuss the molecular mechanisms of FOXF2 in different cancers, including hepatocellular, esophageal, breast, colon, lung, prostate gland, as well as its role in embryonic development. CONCLUSION FOXF2 is a gene encoding a forkhead transcription factor belonging to the Forkhead Box family. The protein functions by recruiting activation transcription factors and basic components to activate the transcription of genes that interact with the complex. This review provides an in-depth analysis of the FOXF2's function and pleiotropic roles in cancer development and progression.
Collapse
Affiliation(s)
- Yuzhen Zheng
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liusheng Wu
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China
| | - Zhenyu Hu
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongying Liao
- Department of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Xiaoqiang Li
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
5
|
Perumal CM, Thulo M, Buthelezi S, Naicker P, Stoychev S, Lakhi A, Fanucchi S. Unraveling the interplay between the leucine zipper and forkhead domains of FOXP2: Implications for DNA binding, stability and dynamics. Proteins 2024; 92:1177-1189. [PMID: 38747678 DOI: 10.1002/prot.26699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 10/26/2024]
Abstract
FOXP2 is a transcription factor associated with speech and language. Like other FOX transcription factors, it has a DNA binding region called the forkhead domain (FHD). This domain can exist as a monomer or a domain swapped dimer. In addition to the FHD, the leucine zipper region (LZ) of FOXP2 is also believed to be associated with both DNA binding and oligomerization. To better understand the relationship between DNA binding and oligomerization of FOXP2, we investigated its structure, stability and dynamics, focusing specifically on the FHD and the LZ. We did this by using two constructs: one containing the isolated FHD and one containing both the LZ and the FHD (LZ-END). We demonstrate in this work, that while the FHD maintains a monomeric form that is capable of binding DNA, the LZ-END undergoes a dynamic transition between oligomeric states in the presence of DNA. Our findings suggest that FOXP2's LZ domain influences DNA binding affinity through a change in oligomeric state. We show through hydrogen exchange mass spectroscopy that certain parts of the FHD and interlinking region become less dynamic when in the presence of DNA, confirming DNA binding and oligomerization in these regions. Moreover, the detection of a stable equilibrium intermediate state during LZ-END unfolding supports the idea of cooperation between these two domains. Overall, our study sheds light on the interplay between two FOXP2 domains, providing insight into the protein's ability to respond dynamically to DNA, and enriching our understanding of FOXP2's role in gene regulation.
Collapse
Affiliation(s)
- Cardon Maria Perumal
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Monare Thulo
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | | | | | | | - Aasiya Lakhi
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Sylvia Fanucchi
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, Gauteng, South Africa
| |
Collapse
|
6
|
Park J, Jeon H, Hwangbo A, Min K, Ko J, Kim JE, Kim S, Shin JY, Lee YH, Lee YW, Son H. A winged-helix DNA-binding protein is essential for self-fertility during sexual development of the homothallic fungus Fusarium graminearum. mSphere 2024; 9:e0051124. [PMID: 39189781 PMCID: PMC11423578 DOI: 10.1128/msphere.00511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/19/2024] [Indexed: 08/28/2024] Open
Abstract
Sexual reproduction is crucial for increasing the genetic diversity of populations and providing overwintering structures, such as perithecia and associated tissue, in the destructive plant pathogenic fungus Fusarium graminearum. While mating-type genes serve as master regulators in fungal sexual reproduction, the molecular mechanisms underlying this process remain elusive. Winged-helix DNA-binding proteins are key regulators of embryogenesis and cell differentiation in higher eukaryotes. These proteins are implicated in the morphogenesis and development of several fungal species. However, their involvement in sexual reproduction remains largely unexplored in F. graminearum. Here, we investigated the function of winged-helix DNA-binding proteins in vegetative growth, conidiation, and sexual reproduction, with a specific focus on the FgWING27, which is highly conserved among Fusarium species. Deletion of FgWING27 resulted in an abnormal pattern characterized by a gradual increase in the expression of mating-type genes during sexual development, indicating its crucial role in the stage-specific genetic regulation of MAT genes in the late stages of sexual development. Furthermore, using chromatin immunoprecipitation followed by sequencing analysis, we identified Fg17056 as a downstream gene of Fgwing27, which is essential for sexual reproduction. These findings underscore the significance of winged-helix DNA-binding proteins in fungal development and reproduction in F. graminearum, and highlight the pivotal role of Fgwing27 as a core genetic factor in the intricate genetic regulatory network governing sexual reproduction.IMPORTANCEFusarium graminearum is a devastating plant pathogenic fungus causing significant economic losses due to reduced crop yields. In Fusarium Head Blight epidemics, spores produced through sexual and asexual reproduction serve as inoculum, making it essential to understand the fungal reproduction process. Here, we focus on winged-helix DNA-binding proteins, which have been reported to play crucial roles in cell cycle regulation and differentiation, and address their requirement in the sexual reproduction of F. graminearum. Furthermore, we identified a highly conserved protein in Fusarium as a key factor in self-fertility, along with the discovery of its direct downstream genes. This provides crucial information for constructing the complex genetic regulatory network of sexual reproduction and significantly contribute to further research on sexual reproduction in Fusarium species.
Collapse
Affiliation(s)
- Jiyeun Park
- Institute for Plant Sciences, University of Cologne, Cologne, Germany
| | - Hosung Jeon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Aram Hwangbo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Kyunghun Min
- Department of Plant Science, Gangneung-Wonju National University, Gangneung, South Korea
| | - Jaeho Ko
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jung-Eun Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, South Korea
| | - Sieun Kim
- Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Wanju, South Korea
| | - Ji Young Shin
- Honam National Institute of Biological Resources, Mokpo, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul, South Korea
- Center for Plant Microbiome Research, Seoul National University, Seoul, South Korea
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
7
|
Lebovich L, Alisch T, Redhead ES, Parker MO, Loewenstein Y, Couzin ID, de Bivort BL. Spatiotemporal dynamics of locomotor decisions in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.04.611038. [PMID: 39282352 PMCID: PMC11398310 DOI: 10.1101/2024.09.04.611038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Decision-making in animals often involves choosing actions while navigating the environment, a process markedly different from static decision paradigms commonly studied in laboratory settings. Even in decision-making assays in which animals can freely locomote, decision outcomes are often interpreted as happening at single points in space and single moments in time, a simplification that potentially glosses over important spatiotemporal dynamics. We investigated locomotor decision-making in Drosophila melanogaster in Y-shaped mazes, measuring the extent to which their future choices could be predicted through space and time. We demonstrate that turn-decisions can be reliably predicted from flies' locomotor dynamics, with distinct predictability phases emerging as flies progress through maze regions. We show that these predictability dynamics are not merely the result of maze geometry or wall-following tendencies, but instead reflect the capacity of flies to move in ways that depend on sustained locomotor signatures, suggesting an active, working memory-like process. Additionally, we demonstrate that fly mutants known to have sensory and information-processing deficits exhibit altered spatial predictability patterns, highlighting the role of visual, mechanosensory, and dopaminergic signaling in locomotor decision-making. Finally, highlighting the broad applicability of our analyses, we generalize our findings to other species and tasks. We show that human participants in a virtual Y-maze exhibited similar decision predictability dynamics as flies. This study advances our understanding of decision-making processes, emphasizing the importance of spatial and temporal dynamics of locomotor behavior in the lead-up to discrete choice outcomes.
Collapse
Affiliation(s)
- Lior Lebovich
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Tom Alisch
- Department of Organismic & Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, Massachusetts, U.S.A
| | | | | | - Yonatan Loewenstein
- The Edmond and Lily Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, Dept. of Cognitive and Brain Sciences and The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Iain D Couzin
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Benjamin L de Bivort
- Department of Organismic & Evolutionary Biology & Center for Brain Science, Harvard University, Cambridge, Massachusetts, U.S.A
| |
Collapse
|
8
|
Russo R, Ragusa MA, Arancio W, Zito F. Gene, Protein, and in Silico Analyses of FoxO, an Evolutionary Conserved Transcription Factor in the Sea Urchin Paracentrotus lividus. Genes (Basel) 2024; 15:1078. [PMID: 39202438 PMCID: PMC11353378 DOI: 10.3390/genes15081078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
FoxO is a member of the evolutionary conserved family of transcription factors containing a Forkhead box, involved in many signaling pathways of physiological and pathological processes. In mammals, mutations or dysfunctions of the FoxO gene have been implicated in diverse diseases. FoxO homologs have been found in some invertebrates, including echinoderms. We have isolated the FoxO cDNA from the sea urchin Paracentrotus lividus (Pl-foxo) and characterized the corresponding gene and mRNA. In silico studies showed that secondary and tertiary structures of Pl-foxo protein corresponded to the vertebrate FoxO3 isoform, with highly conserved regions, especially in the DNA-binding domain. A phylogenetic analysis compared the Pl-foxo deduced protein with proteins from different animal species and confirmed its evolutionary conservation between vertebrates and invertebrates. The increased expression of Pl-foxo mRNA following the inhibition of the PI3K signaling pathway paralleled the upregulation of Pl-foxo target genes involved in apoptosis or cell-cycle arrest events (BI-1, Bax, MnSod). In silico studies comparing molecular data from sea urchins and other organisms predicted a network of Pl-foxo protein-protein interactions, as well as identified potential miRNAs involved in Pl-foxo gene regulation. Our data may provide new perspectives on the knowledge of the signaling pathways underlying sea urchin development.
Collapse
Affiliation(s)
- Roberta Russo
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (W.A.); (F.Z.)
| | - Maria Antonietta Ragusa
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16, 90128 Palermo, Italy;
| | - Walter Arancio
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (W.A.); (F.Z.)
| | - Francesca Zito
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; (W.A.); (F.Z.)
| |
Collapse
|
9
|
Shafaati T, Gopal K. Forkhead box O1 transcription factor; a therapeutic target for diabetic cardiomyopathy. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13193. [PMID: 39206323 PMCID: PMC11349536 DOI: 10.3389/jpps.2024.13193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular disease including diabetic cardiomyopathy (DbCM) represents the leading cause of death in people with diabetes. DbCM is defined as ventricular dysfunction in the absence of underlying vascular diseases and/or hypertension. The known molecular mediators of DbCM are multifactorial, including but not limited to insulin resistance, altered energy metabolism, lipotoxicity, endothelial dysfunction, oxidative stress, apoptosis, and autophagy. FoxO1, a prominent member of forkhead box O transcription factors, is involved in regulating various cellular processes in different tissues. Altered FoxO1 expression and activity have been associated with cardiovascular diseases in diabetic subjects. Herein we provide an overview of the role of FoxO1 in various molecular mediators related to DbCM, such as altered energy metabolism, lipotoxicity, oxidative stress, and cell death. Furthermore, we provide valuable insights into its therapeutic potential by targeting these perturbations to alleviate cardiomyopathy in settings of type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Tanin Shafaati
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Zhu X, Hua E, Tu Q, Liu M, Xu L, Feng J. Foxq1 Promotes Alveolar Epithelial Cell Death through Tle1-mediated Inhibition of the NF-κB Signaling Pathway. Am J Respir Cell Mol Biol 2024; 71:53-65. [PMID: 38574238 DOI: 10.1165/rcmb.2023-0317oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 04/03/2024] [Indexed: 04/06/2024] Open
Abstract
Acute lung injury (ALI) is a common respiratory disease characterized by diffuse alveolar injury and interstitial edema, as well as a hyperinflammatory response, lung cell damage, and oxidative stress. Foxq1, a member of the FOX family of transcription factors, is expressed in various tissues, such as the lungs, liver, and kidneys, and contributes to various biological processes, such as stress, metabolism, cell cycle arrest, and aging-related apoptosis. However, the role of Foxq1 in ALI is unknown. We constructed ex vivo and in vivo ALI models by LPS tracheal perfusion of ICR mice and conditioned medium stimulation of injured MLE-12 cells. Foxq1 expression was increased, and its localization was altered, in our ALI model. In normal or injured MLE-12 cells, knockdown of Foxq1 promoted cell survival, and overexpression had the opposite effect. This regulatory effect was likely mediated by Tle1 and the NF-κB/Bcl2/Bax signaling pathway. These data suggest a potential link between Foxq1 and ALI, indicating that Foxq1 can be used as a biomarker for the diagnosis of ALI. Targeted inhibition of Foxq1 expression could promote alveolar epithelial cell survival and may provide a strategy for mitigating ALI.
Collapse
Affiliation(s)
- Xi Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, China; and
| | - Ershi Hua
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, China; and
| | - Qifeng Tu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Liqin Xu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, China; and
| | - Jian Feng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, China; and
| |
Collapse
|
11
|
Kamal MM, Teeya ST, Rahman MM, Talukder MEK, Sarmin S, Wani TA, Hasan MM. Prediction and assessment of deleterious and disease causing nonsynonymous single nucleotide polymorphisms (nsSNPs) in human FOXP4 gene: An in - silico study. Heliyon 2024; 10:e32791. [PMID: 38994097 PMCID: PMC11237951 DOI: 10.1016/j.heliyon.2024.e32791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
In humans, FOXP gene family is involved in embryonic development and cancer progression. The FOXP4 (Forkhead box protein P4) gene belongs to this FOXP gene family. FOXP4 gene plays a crucial role in oncogenesis. Single nucleotide polymorphisms are biological markers and common determinants of human diseases. Mutations can largely affect the function of the corresponding protein. Therefore, the molecular mechanism of nsSNPs in the FOXP4 gene needs to be elucidated. Initially, the SNPs of the FOXP4 gene were extracted from the dbSNP database and a total of 23124 SNPs was found, where 555 nonsynonymous, 20525 intronic, 1114 noncoding transcript, 334 synonymous were obtained and the rest were unspecified. Then, a series of bioinformatics tools (SIFT, PolyPhen2, SNAP2, PhD SNP, PANTHER, I-Mutant2.0, MUpro, GOR IV, ConSurf, NetSurfP 2.0, HOPE, DynaMut2, GeneMANIA, STRING and Schrodinger) were used to explore the effect of nsSNPs on FOXP4 protein function and structural stability. First, 555 nsSNPs were analyzed using SIFT, of which 57 were found as deleterious. Following, PolyPhen2, SNAP2, PhD SNP and PANTHER analyses, 10 nsSNPs (rs372762294, rs141899153, rs142575732, rs376938850, rs367607523, rs112517943, rs140387832, rs373949416, rs373949416 and rs376160648) were common and observed as deleterious, damaging and diseases associated. Following that, using I-Mutant2.0 and MUpro servers, 7 nsSNPs were found to be the most unstable. GOR IV predicted that these seven nsSNPs affect protein structure by altering the protein contents of alpha helixes, extended strands, and random coils. Following DynaMut2, 5 nsSNPs showed a decrease in the ΔΔG value compared with the wild-type and were found to be responsible for destabilizing the corresponding protein. GeneMANIA and STRING network revealed interaction of FOXP4 with other genes. Finally, molecular dynamics simulation analysis revealed consistent fluctuation in RMSD and RMSF values, Rg and hydrogen bonds in the mutant proteins compared with WT, which might alter the functional and structural stability of the corresponding protein. As a result, the aforementioned integrated comprehensive bioinformatic analyses provide insight into how various nsSNPs of the FOXP4 gene change the structural and functional properties of the corresponding protein, potentially proceeding with the pathophysiology of human diseases.
Collapse
Affiliation(s)
- Md Mostafa Kamal
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Computational Biology, Biological Solution Centre, Jashore, 7408, Bangladesh
| | - Shamiha Tabassum Teeya
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Mahfuzur Rahman
- Department of Genetic Engineering & Biotechnology, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, 1216, Bangladesh
| | - Md Enamul Kabir Talukder
- Department of Genetic Engineering & Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Laboratory of Computational Biology, Biological Solution Centre, Jashore, 7408, Bangladesh
| | - Sonia Sarmin
- BIRTAN-Bangladesh Institute of Research and Training on Applied Nutrition, Jhenaidah, 7300, Bangladesh
| | - Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Mahmudul Hasan
- Department of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
12
|
AitRaise I, Amalou G, Bakhchane A, Bousfiha A, Abdelghaffar H, Majida C, Bonnet C, Petit C, Barakat A. Homozygous Missense Variants in FOXI1 and TMPRSS3 Genes Associated with Non-syndromic Deafness in Moroccan Families. Biochem Genet 2024; 62:1914-1924. [PMID: 37777971 DOI: 10.1007/s10528-023-10515-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
One of the most prevalent sensorineural disorders, autosomal recessive non-syndromic hearing loss (ARNSHL) which can affect all age groups, from the newborn (congenital) to the elderly (presbycusis). Important etiologic, phenotypic, and genotypic factors can cause deafness. So far, the high genetic variability that explains deafness makes molecular diagnosis challenging. In Morocco, the GJB2 gene is the primary cause of non-syndromic hereditary deafness, while the existence of a variant in the LRTOMT gene is the second cause of this condition. After excluding these two frequently occurring GJB2 and LRTOMT variants, whole-exome sequencing was carried out in two Moroccan consanguineous families with hearing loss. As a result, two novel variants in the TMPRSS3 (c.1078G>A, p. Ala 360Thr) and FOXI1 (c.6C>G, p. Ser 2Arg) genes have been discovered in deaf patients and the pathogenic effect has been anticipated by several bioinformatics and molecular modeling systems. For the first time, these variants are identified in the Moroccan population, showing the population heterogeneity and demonstrating the value of the WES in hearing loss diagnosis.
Collapse
Affiliation(s)
- Imane AitRaise
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratory of Biochemistry, Environment and Agri-food, Faculty of Science and Techniques of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ghita Amalou
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Amina Bakhchane
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Amale Bousfiha
- Laboratory of Physiopathology and Molecular Genetics, Ben M'sik Faculty of Sciences, Hassan II University, Casablanca, Morocco
| | - Houria Abdelghaffar
- Laboratory of Biochemistry, Environment and Agri-food, Faculty of Science and Techniques of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Charif Majida
- Genetics and Immuno-cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Crystel Bonnet
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, 75012, Paris, France
| | - Christine Petit
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, 75012, Paris, France
- Collège de France, 75005, Paris, France
| | - Abdelhamid Barakat
- Genomics and Human Genetics Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
- Genomics and Human Genetics Laboratory, Département de Recherche Scientifique, Institut Pasteur du Maroc, 1 Place Louis Pasteur, 20360, Casablanca, Morocco.
| |
Collapse
|
13
|
Liu X, Min S, Zhang Q, Liu Y, Zou Z, Wang N, Zhou B. Prognostic and clinicopathological significance of FOXD1 in various cancers: a meta and bioinformation analysis. Future Sci OA 2024; 10:FSO901. [PMID: 38827805 PMCID: PMC11140636 DOI: 10.2144/fsoa-2023-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 06/05/2024] Open
Abstract
Aim: To examine both predictive and clinicopathological importance underlying FOXD1 in malignant tumors, our study adopts meta-analysis. Methods: We searched from PubMed, Embase, WOS, Wanfang and CNKI. Stata SE15.1 was used to calculate the risk ratio (HR) as well as relative risk (RR) with 95% of overall CIs to assess FOXD1 and overall survival rate (OS), disease-free survival rate as well as clinicopathological parameters. Results: 3808 individuals throughout 17 trials showed high FOXD1 expression was linked to disadvantaged OS (p < 0.001) and disease-free survival (p < 0.001) and higher TNM stage (p < 0.001). Conclusion: Elevated FOXD1 had worse predictions and clinicopathological parameters in most cancers. The GEPIA database findings also support our results.
Collapse
Affiliation(s)
- Xiaohan Liu
- Department of general surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Shengyun Min
- Department of general surgery, Changzheng Hospital, Nanchang, Jiangxi, 330100, P.R. China
| | - Qin Zhang
- Department of general surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Yan Liu
- Department of general surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
- Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Zhenhong Zou
- Department of general surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Nanye Wang
- Department of ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, P.R. China
| | - Bin Zhou
- Department of orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
14
|
Ordoñez JF, Wollesen T. Unfolding the ventral nerve center of chaetognaths. Neural Dev 2024; 19:5. [PMID: 38720353 PMCID: PMC11078758 DOI: 10.1186/s13064-024-00182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Chaetognaths are a clade of marine worm-like invertebrates with a heavily debated phylogenetic position. Their nervous system superficially resembles the protostome type, however, knowledge regarding the molecular processes involved in neurogenesis is lacking. To better understand these processes, we examined the expression profiles of marker genes involved in bilaterian neurogenesis during post-embryonic stages of Spadella cephaloptera. We also investigated whether the transcription factor encoding genes involved in neural patterning are regionally expressed in a staggered fashion along the mediolateral axis of the nerve cord as it has been previously demonstrated in selected vertebrate, insect, and annelid models. METHODS The expression patterns of genes involved in neural differentiation (elav), neural patterning (foxA, nkx2.2, pax6, pax3/7, and msx), and neuronal function (ChAT and VAChT) were examined in S. cephaloptera hatchlings and early juveniles using whole-mount fluorescent in situ hybridization and confocal microscopy. RESULTS The Sce-elav + profile of S. cephaloptera hatchlings reveals that, within 24 h of post-embryonic development, the developing neural territories are not limited to the regions previously ascribed to the cerebral ganglion, the ventral nerve center (VNC), and the sensory organs, but also extend to previously unreported CNS domains that likely contribute to the ventral cephalic ganglia. In general, the neural patterning genes are expressed in distinct neural subpopulations of the cerebral ganglion and the VNC in hatchlings, eventually becoming broadly expressed with reduced intensity throughout the CNS in early juveniles. Neural patterning gene expression domains are also present outside the CNS, including the digestive tract and sensory organs. ChAT and VAChT domains within the CNS are predominantly observed in specific subpopulations of the VNC territory adjacent to the ventral longitudinal muscles in hatchlings. CONCLUSIONS The observed spatial expression domains of bilaterian neural marker gene homologs in S. cephaloptera suggest evolutionarily conserved roles in neurogenesis for these genes among bilaterians. Patterning genes expressed in distinct regions of the VNC do not show a staggered medial-to-lateral expression profile directly superimposable to other bilaterian models. Only when the VNC is conceptually laterally unfolded from the longitudinal muscle into a flat structure, an expression pattern bearing resemblance to the proposed conserved bilaterian mediolateral regionalization becomes noticeable. This finding supports the idea of an ancestral mediolateral patterning of the trunk nervous system in bilaterians.
Collapse
Affiliation(s)
- June F Ordoñez
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, 1030, Vienna, Austria
| | - Tim Wollesen
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, 1030, Vienna, Austria.
| |
Collapse
|
15
|
Huang Y, Dai F, Chen L, Li Z, Liu H, Cheng Y. BMP4 in Human Endometrial Stromal Cells Can Affect Decidualization by Regulating FOXO1 Expression. Endocrinology 2024; 165:bqae049. [PMID: 38679470 DOI: 10.1210/endocr/bqae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
CONTEXT Recurrent spontaneous abortion (RSA) is defined as the loss of 2 or more consecutive intrauterine pregnancies with the same sexual partner in the first trimester. Despite its significance, the etiology and underlying mechanisms of RSA remain elusive. Defective decidualization is proposed as one of the potential causes of RSA, with abnormal decidualization leading to disturbances in trophoblast invasion function. OBJECTIVE To assess the role of bone morphogenetic protein 4 (BMP4) in decidualization and RSA. METHODS Decidual samples were collected from both RSA patients and healthy controls to assess BMP4 expression. In vitro cell experiments utilized the hESC cell line to investigate the impact of BMP4 on decidualization and associated aging, as well as its role in the maternal-fetal interface communication. Subsequently, a spontaneous abortion mouse model was established to evaluate embryo resorption rates and BMP4 expression levels. RESULTS Our study identified a significant downregulation of BMP4 expression in the decidua of RSA patients compared to the normal control group. In vitro, BMP4 knockdown resulted in inadequate decidualization and inhibited associated aging processes. Mechanistically, BMP4 was implicated in the regulation of FOXO1 expression, thereby influencing decidualization and aging. Furthermore, loss of BMP4 hindered trophoblast migration and invasion via FOXO1 modulation. Additionally, BMP4 downregulation was observed in RSA mice. CONCLUSION Our findings highlighted the downregulation of BMP4 in both RSA patients and mice. BMP4 in human endometrial stromal cells was shown to modulate decidualization by regulating FOXO1 expression. Loss of BMP4 may contribute to the pathogenesis of RSA, suggesting potential avenues for abortion prevention strategies.
Collapse
Affiliation(s)
- Yanjie Huang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Liping Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Zhidian Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| |
Collapse
|
16
|
Drewell RA, Klonaros D, Dresch JM. Transcription factor expression landscape in Drosophila embryonic cell lines. BMC Genomics 2024; 25:307. [PMID: 38521929 PMCID: PMC10960990 DOI: 10.1186/s12864-024-10241-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Transcription factor (TF) proteins are a key component of the gene regulatory networks that control cellular fates and function. TFs bind DNA regulatory elements in a sequence-specific manner and modulate target gene expression through combinatorial interactions with each other, cofactors, and chromatin-modifying proteins. Large-scale studies over the last two decades have helped shed light on the complex network of TFs that regulate development in Drosophila melanogaster. RESULTS Here, we present a detailed characterization of expression of all known and predicted Drosophila TFs in two well-established embryonic cell lines, Kc167 and S2 cells. Using deep coverage RNA sequencing approaches we investigate the transcriptional profile of all 707 TF coding genes in both cell types. Only 103 TFs have no detectable expression in either cell line and 493 TFs have a read count of 5 or greater in at least one of the cell lines. The 493 TFs belong to 54 different DNA-binding domain families, with significant enrichment of those in the zf-C2H2 family. We identified 123 differentially expressed genes, with 57 expressed at significantly higher levels in Kc167 cells than S2 cells, and 66 expressed at significantly lower levels in Kc167 cells than S2 cells. Network mapping reveals that many of these TFs are crucial components of regulatory networks involved in cell proliferation, cell-cell signaling pathways, and eye development. CONCLUSIONS We produced a reference TF coding gene expression dataset in the extensively studied Drosophila Kc167 and S2 embryonic cell lines, and gained insight into the TF regulatory networks that control the activity of these cells.
Collapse
Affiliation(s)
- Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA.
| | - Daniel Klonaros
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
| | - Jacqueline M Dresch
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
| |
Collapse
|
17
|
Cheng M, Nie Y, Song M, Chen F, Yu Y. Forkhead box O proteins: steering the course of stem cell fate. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:7. [PMID: 38466341 DOI: 10.1186/s13619-024-00190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
Stem cells are pivotal players in the intricate dance of embryonic development, tissue maintenance, and regeneration. Their behavior is delicately balanced between maintaining their pluripotency and differentiating as needed. Disruptions in this balance can lead to a spectrum of diseases, underscoring the importance of unraveling the complex molecular mechanisms that govern stem cell fate. Forkhead box O (FOXO) proteins, a family of transcription factors, are at the heart of this intricate regulation, influencing a myriad of cellular processes such as survival, metabolism, and DNA repair. Their multifaceted role in steering the destiny of stem cells is evident, as they wield influence over self-renewal, quiescence, and lineage-specific differentiation in both embryonic and adult stem cells. This review delves into the structural and regulatory intricacies of FOXO transcription factors, shedding light on their pivotal roles in shaping the fate of stem cells. By providing insights into the specific functions of FOXO in determining stem cell fate, this review aims to pave the way for targeted interventions that could modulate stem cell behavior and potentially revolutionize the treatment and prevention of diseases.
Collapse
Affiliation(s)
- Mengdi Cheng
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Yujie Nie
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Min Song
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
| | - Fulin Chen
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China
| | - Yuan Yu
- Laboratory of Tissue Engineering, College of Life Sciences, Northwest University, Xi'an, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, China.
| |
Collapse
|
18
|
Hu W, Xie N, Pan M, Zhang Q, Zhang H, Wang F, Qu F. Chinese herbal medicine alleviates autophagy and apoptosis in ovarian granulosa cells induced by testosterone through PI3K/AKT1/FOXO1 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117025. [PMID: 37567425 DOI: 10.1016/j.jep.2023.117025] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polycystic ovary syndrome (PCOS) is a common gynecological endocrine and metabolic disorder. Chinese herbal medicine has some advantages in the treatment of PCOS with its unique theoretical system and rich clinical practice experiences. AIM OF THE STUDY The present study was to investigate the potential mechanisms of Bu-Shen-Jian-Pi Formula (BSJPF) on the treatment of PCOS. MATERIAL AND METHODS The combination of ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS/MS) rapid analysis, network pharmacology, molecular docking analysis and bio-experiments were firstly conducted to identify the main effective components of BSJPF, and to predict the potential mechanisms. The ovarian granulosa cell line (KGN) was treated with testosterone to construct the PCOS model in vitro, and the cells were further treated with the lyophilized powder of BSJPF. The levels of proliferation, autophagy and apoptosis were detected to explore the mechanisms of BSJPF on treating PCOS. RESULTS Firstly, thirty-six active compounds were identified in BSJPF and thirty-one potential targets on PCOS were found. Then, PI3K and PDK1 were verified to have good binding activity with the active compounds through molecular docking analysis. In bio-experiments, BSJPF significantly alleviated the arrested proliferation of KGN cells in G0/G1 phase and reduced the active levels of autophagy and apoptosis of KGN cells induced by testosterone. Additionally, the inhibition of autophagy diminished apoptosis, while the repression apoptosis enhanced autophagy. Finally, BSJPF significantly decreased the FOXO1 expression levels induced by testosterone, especially for nuclear FOXO1, and significantly activated the PI3K/AKT pathway. CONCLUSIONS BSJPF significantly alleviated the activated autophagy and apoptosis in KGN induced by testosterone through PI3K/AKT1/FOXO1pathway, which is an effective treatment for PCOS.
Collapse
Affiliation(s)
- Weihuan Hu
- Women's Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, Zhejiang, China
| | - Ningning Xie
- Women's Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, Zhejiang, China
| | - Manman Pan
- Women's Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, Zhejiang, China
| | - Qing Zhang
- Women's Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, Zhejiang, China
| | - Hui Zhang
- Zhejiang Vocational College of Special Education, Hangzhou, 310023, China
| | - Fangfang Wang
- Women's Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, Zhejiang, China
| | - Fan Qu
- Women's Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Linos K, Dermawan JK, Pulitzer M, Hameed M, Agaram NP, Agaimy A, Antonescu CR. Untying the Gordian knot of composite hemangioendothelioma: Discovery of novel fusions. Genes Chromosomes Cancer 2024; 63:e23198. [PMID: 37658696 PMCID: PMC10842102 DOI: 10.1002/gcc.23198] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023] Open
Abstract
Composite hemangioendothelioma is a rare, locally aggressive, and rarely metastasizing vascular neoplasm which affects both children and adults. Recently, a number of gene fusions including YAP1::MAML2, PTBP1::MAML2, and EPC1::PHC2 have been detected in a small subset of cases with or without neuroendocrine expression. Herein, we present four additional cases with novel in-frame fusions. The cohort comprises two females and two males with a wide age range at diagnosis (24-80 years). Two tumors were deep involving the right brachial plexus and mediastinum, while the remaining were superficial (right plantar foot and abdominal wall). The size ranged from 1.5 to 4.8 cm in greatest dimension. Morphologically, all tumors had an admixture of at least two architectural patterns including retiform hemangioendothelioma, hemangioma, epithelioid hemangioendothelioma, or angiosarcoma. The tumors were positive for endothelial markers CD31 (3/3), ERG (4/4), and D2-40 (1/4, focal), while SMA was expressed in 2/3 highlighting the surrounding pericytes. Synaptophysin showed immunoreactivity in 2/3 cases. One patient had a local recurrence after 40 months, while two patients had no evidence of disease 4 months post-resection. Targeted RNA sequencing detected novel in-frame fusions in each of the cases: HSPG2::FGFR1, YAP1::FOXR1, ACTB::MAML2, and ARID1B::MAML2. The two cases with neuroendocrine expression occurred as superficial lesions and harbored YAP1::FOXR1 and ARID1B::MAML2 fusions. Our study expands on the molecular spectrum of this enigmatic tumor, further enhancing our current understanding of the disease.
Collapse
Affiliation(s)
- Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Josephine K. Dermawan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pathology, Cleveland Clinic, Cleveland, OH
| | - Melissa Pulitzer
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Meera Hameed
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Narasimhan P. Agaram
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nurnberg, University Hospital, Erlangen, Germany
| | - Cristina R. Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
20
|
Ebrahimnezhad M, Natami M, Bakhtiari GH, Tabnak P, Ebrahimnezhad N, Yousefi B, Majidinia M. FOXO1, a tiny protein with intricate interactions: Promising therapeutic candidate in lung cancer. Biomed Pharmacother 2023; 169:115900. [PMID: 37981461 DOI: 10.1016/j.biopha.2023.115900] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
Nowadays, lung cancer is the most common cause of cancer-related deaths in both men and women globally. Despite the development of extremely efficient targeted agents, lung cancer progression and drug resistance remain serious clinical issues. Increasing knowledge of the molecular mechanisms underlying progression and drug resistance will enable the development of novel therapeutic methods. It has been revealed that transcription factors (TF) dysregulation, which results in considerable expression modifications of genes, is a generally prevalent phenomenon regarding human malignancies. The forkhead box O1 (FOXO1), a member of the forkhead transcription factor family with crucial roles in cell fate decisions, is suggested to play a pivotal role as a tumor suppressor in a variety of malignancies, especially in lung cancer. FOXO1 is involved in diverse cellular processes and also has clinical significance consisting of cell cycle arrest, apoptosis, DNA repair, oxidative stress, cancer prevention, treatment, and chemo/radioresistance. Based on the critical role of FOXO1, this transcription factor appears to be an appropriate target for future drug discovery in lung cancers. This review focused on the signaling pathways, and molecular mechanisms involved in FOXO1 regulation in lung cancer. We also discuss pharmacological compounds that are currently being administered for lung cancer treatment by affecting FOXO1 and also point out the essential role of FOXO1 in drug resistance. Future preclinical research should assess combination drug strategies to stimulate FOXO1 and its upstream regulators as potential strategies to treat resistant or advanced lung cancers.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Natami
- Department of Urology,Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Peyman Tabnak
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Ebrahimnezhad
- Department of Microbiology, Faculty of Basic Science, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
21
|
Gharbaran R. Insights into the molecular roles of FOXR2 in the pathology of primary pediatric brain tumors. Crit Rev Oncol Hematol 2023; 192:104188. [PMID: 37879492 DOI: 10.1016/j.critrevonc.2023.104188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Forkhead box gene R2 (FOXR2) belongs to the family of FOX genes which codes for highly conserved transcription factors (TFs) with critical roles in biological processes ranging from development to organogenesis to metabolic and immune regulation to cellular homeostasis. A number of FOX genes are associated with cancer development and progression and poor prognosis. A growing body of evidence suggests that FOXR2 is an oncogene. Studies suggested important roles for FOXR2 in cancer cell growth, metastasis, and drug resistance. Recent studies showed that FOXR2 is overexpressed by a subset of newly identified entities of embryonal tumors. This review discusses the role(s) FOXR2 plays in the pathology of pediatric brain cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rajendra Gharbaran
- Biological Sciences Department, Bronx Community College/City University of New York, 2155 University Avenue, Bronx, NY 10453, USA.
| |
Collapse
|
22
|
Abstract
Higher cognition in humans, compared to other primates, is often attributed to an increased brain size, especially forebrain cortical surface area. Brain size is determined through highly orchestrated developmental processes, including neural stem cell proliferation, differentiation, migration, lamination, arborization, and apoptosis. Disruption in these processes often results in either a small (microcephaly) or large (megalencephaly) brain. One of the key mechanisms controlling these developmental processes is the spatial and temporal transcriptional regulation of critical genes. In humans, microcephaly is defined as a condition with a significantly smaller head circumference compared to the average head size of a given age and sex group. A growing number of genes are identified as associated with microcephaly, and among them are those involved in transcriptional regulation. In this review, a subset of genes encoding transcription factors (e.g., homeobox-, basic helix-loop-helix-, forkhead box-, high mobility group box-, and zinc finger domain-containing transcription factors), whose functions are important for cortical development and implicated in microcephaly, are discussed.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Science Education, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| |
Collapse
|
23
|
Cheng L, Yan H, Liu Y, Guan G, Cheng P. Dissecting multifunctional roles of forkhead box transcription factor D1 in cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188986. [PMID: 37716516 DOI: 10.1016/j.bbcan.2023.188986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/18/2023]
Abstract
As a member of the forkhead box (FOX) family of transcription factors (TF), FOXD1 has recently been implicated as a crucial regulator in a variety of human cancers. Accumulating evidence has established dysregulated and aberrant FOXD1 signaling as a prominent feature in cancer development and progression. However, there is a lack of systematic review on this topic. Here, we summarized the present understanding of FOXD1 functions in cancer biology and reviewed the downstream targets and upstream regulatory mechanisms of FOXD1 as well as the related signaling pathways within the context of current reports. We highlighted the functional features of FOXD1 in cancers to identify the future research consideration of this multifunctional transcription factor and potential therapeutic strategies targeting its oncogenic activity.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Haixu Yan
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Gefei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| | - Peng Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China; Institute of Health Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
24
|
Liu S, Lei X, Cao H, Xu Z, Wu S, Chen H, Xu L, Zhan Z, Xu Q, Wei J, Qin Q. Antiviral role of grouper FoxO1 against RGNNV and SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109168. [PMID: 37844852 DOI: 10.1016/j.fsi.2023.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/18/2023]
Abstract
As a key regulator of the innate immune system, FoxO1 has a variety of activities in biological organisms. In the present study, grouper FoxO1 (EcFoxO1) was cloned and the antiviral activity in red grouper neuron necrosis virus (RGNNV) and Singapore grouper iridescent virus (SGIV) was examined. The open reading frame (ORF) of EcFoxO1 contains 2,034 base pairs that encode a protein of 677 amino acids with a predicted molecular weight of 73.21 kDa. EcFoxO1 was shown to be broadly distributed in healthy grouper tissues, and was up-regulated in vitro in response to stimulation by RGNNV and SGIV. EcFoxO1 has a whole-cell distribution in grouper spleen (GS) cells. EcFoxO1 decreased the replication of RGNNV and SGIV, and activated interferon (IFN) 3, IFN-stimulated response element (ISRE), and nuclear factor-κB (NF-κB) promoter activities. EcFoxO1 could interact with EcIRF3. Together, the results demonstrated that EcFoxO1 might be an important regulator of grouper innate immune response against RGNNV and SGIV infection.
Collapse
Affiliation(s)
- Shaoli Liu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Xiaoxia Lei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Helong Cao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Zhuqing Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Hong Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Linting Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Zhouling Zhan
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Qiongyue Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute,Guangzhou, Guangzhou, 511400,China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
25
|
Du X, Yu H, Wang Y, Liu J, Zhang Q. Comparative Studies on Duplicated foxl2 Paralogs in Spotted Knifejaw Oplegnathus punctatus Show Functional Diversification. Genes (Basel) 2023; 14:1847. [PMID: 37895196 PMCID: PMC10606028 DOI: 10.3390/genes14101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
As a member of the forkhead box L gene family, foxl2 plays a significant role in gonadal development and the regulation of reproduction. During the evolution of deuterostome, whole genome duplication (WGD)-enriched lineage diversifications and regulation mechanisms occurs. However, only limited research exists on foxl2 duplication in teleost or other vertebrate species. In this study, two foxl2 paralogs, foxl2 and foxl2l, were identified in the transcriptome of spotted knifejaw (Oplegnathus punctatus), which had varying expressions in the gonads. The foxl2 was expressed higher in the ovary, while foxl2l was expressed higher in the testis. Phylogenetic reconstruction, synteny analysis, and the molecular evolution test confirmed that foxl2 and foxl2l likely originated from the first two WGD. The expression patterns test using qRT-PCR and ISH as well as motif scan analysis revealed evidence of potentially functional divergence between the foxl2 and foxl2l paralogs in spotted knifejaw. Our results indicate that foxl2 and foxl2l may originate from the first two WGD, be active in transcription, and have undergone functional divergence. These results shed new light on the evolutionary trajectories of foxl2 and foxl2l and highlights the need for further detailed functional analysis of these two duplicated paralogs.
Collapse
Affiliation(s)
- Xinxin Du
- School of Life Science and Bioengineering, Jining University, Jining 273155, China; (X.D.); (H.Y.)
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (Y.W.); (J.L.)
| | - Haiyang Yu
- School of Life Science and Bioengineering, Jining University, Jining 273155, China; (X.D.); (H.Y.)
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (Y.W.); (J.L.)
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (Y.W.); (J.L.)
| | - Jinxiang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (Y.W.); (J.L.)
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China; (Y.W.); (J.L.)
| |
Collapse
|
26
|
Zhan F, Zhou S, Shi F, Li Q, Lin L, Qin Z. Transcriptome analysis of Macrobrachium rosenbergii hemocytes in response to Staphylococcus aureus infection. FISH & SHELLFISH IMMUNOLOGY 2023:108927. [PMID: 37406892 DOI: 10.1016/j.fsi.2023.108927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
The aquaculture industry has suffered significant financial losses as a result of disease outbreaks. In particular, disease outbreaks have become a major problem that can seriously affect the sustainable development of the Macrobrachium rosenbergii aquaculture industry. It is crucial to determine the defense mechanism of the host after pathogenic invasion in order to provide effective defense measures after disease outbreaks. Shrimp, like other invertebrates, primarily depend on their innate immune systems to defend against pathogens, and recognize and resist pathogens through humoral and cellular immune responses. In this investigation, we used RNA-seq technology to investigate the transcriptome of hemocytes from M. rosenbergii induced by Staphylococcus aureus. Our main targets were immune pathways and genes related to innate immunity. RNA-seq identified 209,069 and 204,775 unigenes in the control and experimental groups, respectively. In addition, we identified 547 and 1734 differentially expressed genes (DEGs) following S. aureus challenge after 6 and 12 h (h), respectively. GO and KEGG enrichment analysis revealed that the DEGs were significantly enriched in several biological signalling pathways, including NOD-like receptor, PI3K-Akt, Toll and Imd, IL-17, TGF-beta, RIG-I-like receptor, cAMP, apoptosis, and C-type lectin receptor. Sixteen DEGs were chosen at random for qPCR verification; these results concurred with those from sequencing. Our findings revealed that immune-related genes play an important role in antibacterial activities and have specific functions for gram-positive bacteria. These results provide more data for the prevention of M. rosenbergii diseases and offer a basis for the better prevention of diseases.
Collapse
Affiliation(s)
- Fanbin Zhan
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Shichun Zhou
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Fei Shi
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Qingqing Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, 510222, China.
| |
Collapse
|
27
|
Khan MA, Khan P, Ahmad A, Fatima M, Nasser MW. FOXM1: A small fox that makes more tracks for cancer progression and metastasis. Semin Cancer Biol 2023; 92:1-15. [PMID: 36958703 PMCID: PMC10199453 DOI: 10.1016/j.semcancer.2023.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Transcription factors (TFs) are indispensable for the modulation of various signaling pathways associated with normal cell homeostasis and disease conditions. Among cancer-related TFs, FOXM1 is a critical molecule that regulates multiple aspects of cancer cells, including growth, metastasis, recurrence, and stem cell features. FOXM1 also impact the outcomes of targeted therapies, chemotherapies, and immune checkpoint inhibitors (ICIs) in various cancer types. Recent advances in cancer research strengthen the cancer-specific role of FOXM1, providing a rationale to target FOXM1 for developing targeted therapies. This review compiles the recent studies describing the pivotal role of FOXM1 in promoting metastasis of various cancer types. It also implicates the contribution of FOXM1 in the modulation of chemotherapeutic resistance, antitumor immune response/immunotherapies, and the potential of small molecule inhibitors of FOXM1.
Collapse
Affiliation(s)
- Md Arafat Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Parvez Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aatiya Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mahek Fatima
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
28
|
Cao G, Lin M, Gu W, Su Z, Duan Y, Song W, Liu H, Zhang F. The rules and regulatory mechanisms of FOXO3 on inflammation, metabolism, cell death and aging in hosts. Life Sci 2023:121877. [PMID: 37352918 DOI: 10.1016/j.lfs.2023.121877] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The FOX family of transcription factors was originally identified in 1989, comprising the FOXA to FOXS subfamilies. FOXO3, a well-known member of the FOXO subfamily, is widely expressed in various human organs and tissues, with higher expression levels in the ovary, skeletal muscle, heart, and spleen. The biological effects of FOXO3 are mostly determined by its phosphorylation, which occurs in the nucleus or cytoplasm. Phosphorylation of FOXO3 in the nucleus can promote its translocation into the cytoplasm and inhibit its transcriptional activity. In contrast, phosphorylation of FOXO3 in the cytoplasm leads to its translocation into the nucleus and exerts regulatory effects on biological processes, such as inflammation, aerobic glycolysis, autophagy, apoptosis, oxidative stress, cell cycle arrest and DNA damage repair. Additionally, FOXO3 isoform 2 acts as an important suppressor of osteoclast differentiation. FOXO3 can also interfere with the development of various diseases, including inhibiting the proliferation and invasion of tumor cells, blocking the production of inflammatory factors in autoimmune diseases, and inhibiting β-amyloid deposition in Alzheimer's disease. Furthermore, FOXO3 slows down the aging process and exerts anti-aging effects by delaying telomere attrition, promoting cell self-renewal, and maintaining genomic stability. This review suggests that changes in the levels and post-translational modifications of FOXO3 protein can maintain organismal homeostasis and improve age-related diseases, thus counteracting aging. Moreover, this may indicate that alterations in FOXO3 protein levels are also crucial for longevity, offering new perspectives for therapeutic strategies targeting FOXO3.
Collapse
Affiliation(s)
- Guoding Cao
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Monan Lin
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Wei Gu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Zaiyu Su
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Yagan Duan
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Wuqi Song
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China
| | - Hailiang Liu
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China.
| | - Fengmin Zhang
- Wu Lien-Teh Institute, Department of Microbiology, Harbin Medical University, Heilongjiang Key Laboratory of Immunity and Infection, Harbin 150081, China.
| |
Collapse
|
29
|
Srivastava P, Zilla ML, Naous R, Marker D, Khoshnoodi P, Burgess M, Herradura A, Wu J, Surrey LF, John I. Expanding the molecular signatures of malignant ossifying fibromyxoid tumours with two novel gene fusions: PHF1::FOXR1 and PHF1::FOXR2. Histopathology 2023; 82:946-952. [PMID: 36648026 PMCID: PMC11225605 DOI: 10.1111/his.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
AIMS Ossifying fibromyxoid tumor (OFMT) is a rare enigmatic tumor of uncertain differentiation that can be classified as typical, atypical, and malignant subtypes based on cellularity, nuclear grade, and mitotic activity. The majority of OFMTs, regardless of the risk of malignancy, harbor genetic translocations. We report two malignant OFMTs, including one with evidence of dedifferentiation, with novel genefusions. METHODS AND RESULTS Case 1 was a 63-year-old male with a dedifferentiated OFMT arising in the right wrist, while case 2 was a 41-year-old male with a malignant OFMT presenting as a posterior mediastinal mass. Case 2 showed multifocal expression with EMA and synaptophysin, while desmin and S100 were absent in both tumors. NGS sequencing studies detected PHF1::FOXR1 and PHF1::FOXR2 gene fusions in cases 1 and 2, respectively. Despite aggressive regimens, both progressed with wide spread metastases resulting in death within six years of diagnosis. CONCLUSIONS We expand the genetic spectrum of OFMTs with two novel gene fusions, PHF1::FOXR1 and PHF1::FOXR2. These cases confirm the previously reported tendencies for OFMTs with rare variant fusions to demonstrate malignant behavior, unusual morphology, and non-specific immunophenotype.
Collapse
Affiliation(s)
- Pooja Srivastava
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Megan L Zilla
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rana Naous
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Daniel Marker
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Pooria Khoshnoodi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Melissa Burgess
- Department of Medical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Armando Herradura
- Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jinhua Wu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lea F Surrey
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ivy John
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Rani M, Kumari R, Singh SP, Devi A, Bansal P, Siddiqi A, Alsahli MA, Almatroodi SA, Rahmani AH, Rizvi MMA. MicroRNAs as master regulators of FOXO transcription factors in cancer management. Life Sci 2023; 321:121535. [PMID: 36906255 DOI: 10.1016/j.lfs.2023.121535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/12/2023]
Abstract
MicroRNAs are critical regulators of the plethora of genes, including FOXO "forkhead" dependent transcription factors, which are bonafide tumour suppressors. The FOXO family members modulate a hub of cellular processes like apoptosis, cell cycle arrest, differentiation, ROS detoxification, and longevity. Aberrant expression of FOXOs in human cancers has been observed due to their down-regulation by diverse microRNAs, which are predominantly involved in tumour initiation, chemo-resistance and tumour progression. Chemo-resistance is a major obstacle in cancer treatment. Over 90% of casualties in cancer patients are reportedly associated with chemo-resistance. Here, we have primarily discussed the structure, functions of FOXO and also their post-translational modifications which influence the activities of these FOXO family members. Further, we have addressed the role of microRNAs in carcinogenesis by regulating the FOXOs at post-transcriptional level. Therefore, microRNAs-FOXO axis can be exploited as a novel cancer therapy. The administration of microRNA-based cancer therapy is likely to be beneficial to curb chemo-resistance in cancers.
Collapse
Affiliation(s)
- Madhu Rani
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rashmi Kumari
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shashi Prakash Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India; Centre for Pharmacology and Therapeutics, Rosewell Park Comprehensive Care Centre, 665 Elm Street, Buffalo, NY, USA 14203
| | - Annu Devi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Preeti Bansal
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aisha Siddiqi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Buraydah 51452, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Buraydah 51452, Saudi Arabia
| | - M Moshahid Alam Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
31
|
Cheatle Jarvela AM, Trelstad CS, Pick L. Anterior-posterior patterning of segments in Anopheles stephensi offers insights into the transition from sequential to simultaneous segmentation in holometabolous insects. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:116-130. [PMID: 34734470 PMCID: PMC9061899 DOI: 10.1002/jez.b.23102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 11/10/2022]
Abstract
The gene regulatory network for segmentation in arthropods offers valuable insights into how networks evolve owing to the breadth of species examined and the extremely detailed knowledge gained in the model organism Drosophila melanogaster. These studies have shown that Drosophila's network represents a derived state that acquired changes to accelerate segment patterning, whereas most insects specify segments gradually as the embryo elongates. Such heterochronic shifts in segmentation have potentially emerged multiple times within holometabolous insects, resulting in many mechanistic variants and difficulties in isolating underlying commonalities that permit such shifts. Recent studies identified regulatory genes that work as timing factors, coordinating gene expression transitions during segmentation. These studies predict that changes in timing factor deployment explain shifts in segment patterning relative to other developmental events. Here, we test this hypothesis by characterizing the temporal and spatial expression of the pair-rule patterning genes in the malaria vector mosquito, Anopheles stephensi. This insect is a Dipteran (fly), like Drosophila, but represents an ancient divergence within this clade, offering a useful counterpart for evo-devo studies. In mosquito embryos, we observe anterior to posterior sequential addition of stripes for many pair-rule genes and a wave of broad timer gene expression across this axis. Segment polarity gene stripes are added sequentially in the wake of the timer gene wave and the full pattern is not complete until the embryo is fully elongated. This "progressive segmentation" mode in Anopheles displays commonalities with both Drosophila's rapid segmentation mechanism and sequential modes used by more distantly related insects.
Collapse
Affiliation(s)
- Alys M. Cheatle Jarvela
- Department of Entomology, University of Maryland, College Park, 4291 Fieldhouse Drive, College Park, MD 20742, U.S.A
| | - Catherine S. Trelstad
- Department of Entomology, University of Maryland, College Park, 4291 Fieldhouse Drive, College Park, MD 20742, U.S.A
| | - Leslie Pick
- Department of Entomology, University of Maryland, College Park, 4291 Fieldhouse Drive, College Park, MD 20742, U.S.A
| |
Collapse
|
32
|
Khan MA, Sadaf, Ahmad I, Aloliqi AA, Eisa AA, Najm MZ, Habib M, Mustafa S, Massey S, Malik Z, Sunita K, Pawar JS, Akhter N, Shukla NK, Deo S, Husain SA. FOXO3 gene hypermethylation and its marked downregulation in breast cancer cases: A study on female patients. Front Oncol 2023; 12:1078051. [PMID: 36727057 PMCID: PMC9885168 DOI: 10.3389/fonc.2022.1078051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Background FOXO3, a member of the FOX transcription factor family, is frequently described as being deregulated in cancer. Additionally, notable role of FOXO3 can be easily recognized in the process of ageing and survival. Even though various studies have been done to acknowledge the tumour-suppressive or oncogenic role of FOXO3 in cancer, still there exist a lack of understanding in terms of cancer prognosis and treatment. Therefore, to provide better insight, our study aims to evaluate the role and function of FOXO3 in breast cancer in Indian female patients. We examined the FOXO3 expression levels in breast cancer samples by analyzing mRNA and protein expression along with its clinicopathological parameters. Results A total of 127 cases of breast cancer with equal normal cases (n=127) were assessed with methylation (MS-PCR), Immunohistochemistry (IHC), mRNA expression using Real-time PCR was analysed and 66.14% cases at mRNA level were found to be downregulated, while 81.10% of cases had little or very little protein expression. Our data state, the promoter hypermethylation of the FOXO3 gene and the downregulated protein expression are significantly correlated (p=0.0004). Additionally, we found a significant correlation between the level of FOXO3 mRNA with ER (p=0.04) and status of lymph node (p=0.01) along with this. Conclusion Data suggests the prognostic significance and the tumour-suppressive role of FOXO3 in breast cancer cases studied in India. However, there is a need for the extended research targeting FOXO3 to measure its clinical potential and develop well-defined therapeutic strategies.
Collapse
Affiliation(s)
- Mohammad Aasif Khan
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India,Department of Surgical Oncology BRA-IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Sadaf
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Irfan Ahmad
- Department of Medical Hematology & Medical Oncology, School of Medicine, Mays Cancer Canter, San Antonio, TX, United States
| | - Abdulaziz A. Aloliqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Alaa Abdulaziz Eisa
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad Zeeshan Najm
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina, Saudi Arabia
| | - Maria Habib
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Saad Mustafa
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Sheersh Massey
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Zoya Malik
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Kumari Sunita
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | | | - Naseem Akhter
- Department of Medical Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, United States
| | - N. K. Shukla
- Department of Neurology, Henry ford Health System, Detroit, MI, United States
| | - S.V.S. Deo
- Department of Neurology, Henry ford Health System, Detroit, MI, United States
| | - Syed Akhtar Husain
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi, India,*Correspondence: Syed Akhtar Husain, ;
| |
Collapse
|
33
|
Wang N, He J, Feng X, Liao S, Zhao Y, Tang F, Kee K. Single-cell profiling of lncRNAs in human germ cells and molecular analysis reveals transcriptional regulation of LNC1845 on LHX8. eLife 2023; 12:78421. [PMID: 36602025 PMCID: PMC9859043 DOI: 10.7554/elife.78421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023] Open
Abstract
Non-coding RNAs exert diverse functions in many cell types. In addition to transcription factors from coding genes, non-coding RNAs may also play essential roles in shaping and directing the fate of germ cells. The presence of many long non-coding RNAs (lncRNAs) which are specifically expressed in the germ cells during human gonadal development were reported and one divergent lncRNA, LNC1845, was functionally characterized. Comprehensive bioinformatic analysis of these lncRNAs indicates that divergent lncRNAs occupied the majority of female and male germ cells. Integrating lncRNA expression into the bioinformatic analysis also enhances the cell-type classification of female germ cells. Functional dissection using in vitro differentiation of human pluripotent stem cells to germ cells revealed the regulatory role of LNC1845 on a transcription factor essential for ovarian follicle development, LHX8, by modulating the levels of histone modifications, H3K4me3 and H3K27Ac. Hence, bioinformatical analysis and experimental verification provide a comprehensive analysis of lncRNAs in developing germ cells and elucidate how an lncRNA function as a cis regulator during human germ cell development.
Collapse
Affiliation(s)
- Nan Wang
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Jing He
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Xiaoyu Feng
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina
| | - Shengyou Liao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of SciencesBeijingChina
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of SciencesBeijingChina
| | - Fuchou Tang
- Biodynamic Optical Imaging Center & Department of Obstetrics and Gynecology, College of Life Sciences, Third Hospital, Peking UniversityBeijingChina
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua UniversityBeijingChina,Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua UniversityBeijingChina
| |
Collapse
|
34
|
Clark E, Battistara M, Benton MA. A timer gene network is spatially regulated by the terminal system in the Drosophila embryo. eLife 2022; 11:e78902. [PMID: 36524728 PMCID: PMC10065802 DOI: 10.7554/elife.78902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
In insect embryos, anteroposterior patterning is coordinated by the sequential expression of the 'timer' genes caudal, Dichaete, and odd-paired, whose expression dynamics correlate with the mode of segmentation. In Drosophila, the timer genes are expressed broadly across much of the blastoderm, which segments simultaneously, but their expression is delayed in a small 'tail' region, just anterior to the hindgut, which segments during germband extension. Specification of the tail and the hindgut depends on the terminal gap gene tailless, but beyond this the regulation of the timer genes is poorly understood. We used a combination of multiplexed imaging, mutant analysis, and gene network modelling to resolve the regulation of the timer genes, identifying 11 new regulatory interactions and clarifying the mechanism of posterior terminal patterning. We propose that a dynamic Tailless expression gradient modulates the intrinsic dynamics of a timer gene cross-regulatory module, delineating the tail region and delaying its developmental maturation.
Collapse
Affiliation(s)
- Erik Clark
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Margherita Battistara
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridgeUnited Kingdom
| | - Matthew A Benton
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
- Developmental Biology Unit, EMBLHeidelbergGermany
| |
Collapse
|
35
|
Czerny CC, Borschel A, Cai M, Otto M, Hoyer-Fender S. FOXA1 is a transcriptional activator of Odf2/Cenexin and regulates primary ciliation. Sci Rep 2022; 12:21468. [PMID: 36509813 PMCID: PMC9744847 DOI: 10.1038/s41598-022-25966-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Primary cilia are sensory organelles essential for embryonic and postnatal development, and tissue homeostasis in adulthood. They are generated in a cell cycle-dependent manner and found on most cells of the body. Although cilia formation is intensively investigated virtually nothing is known about the transcriptional regulation of primary ciliation. We used here Odf2/Cenexin, encoding a protein of the mother centriole and the basal body that is mandatory for primary cilia formation, as the target gene for the identification of transcriptional activators. We identified a consensus binding site for Fox transcription factors (TFs) in its promoter region and focused here on the Fox family. We found transcriptional activation of Odf2 neither by FOXO TFs nor by the core TF for multiciliation, FOXJ1. However, we identified FOXA1 as a transcriptional activator of Odf2 by reporter gene assays and qRT-PCR, and showed by qWB that Foxa1 knockdown caused a decrease in ODF2 and CP110 proteins. We verified the binding sequence of FOXA1 in the Odf2 promoter by ChIP. Finally, we demonstrated that knockdown of FOXA1 affected primary cilia formation. We, thus, showed for the first time, that FOXA1 regulates primary ciliation by transcriptional activation of ciliary genes.
Collapse
Affiliation(s)
- Christian Carl Czerny
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Anett Borschel
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Mingfang Cai
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| | - Madeline Otto
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany ,grid.424957.90000 0004 0624 9165Present Address: Thermo Fisher Scientific GENEART, Regensburg, Germany
| | - Sigrid Hoyer-Fender
- grid.7450.60000 0001 2364 4210Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology – Developmental Biology, GZMB, Ernst-Caspari-Haus, Georg-August-Universität, Justus-von-Liebig-Weg 11, Göttingen, Germany
| |
Collapse
|
36
|
Alleviating experimental pulmonary hypertension via co-delivering FoxO1 stimulus and apoptosis activator to hyperproliferating pulmonary arteries. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
37
|
Chen K, Gao P, Li Z, Dai A, Yang M, Chen S, Su J, Deng Z, Li L. Forkhead Box O Signaling Pathway in Skeletal Muscle Atrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1648-1657. [PMID: 36174679 DOI: 10.1016/j.ajpath.2022.09.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Skeletal muscle atrophy is the consequence of protein degradation exceeding protein synthesis because of disease, aging, and physical inactivity. Patients with skeletal muscle atrophy have decreased muscle mass and fiber cross-sectional area, and experience reduced survival quality and motor function. The forkhead box O (FOXO) signaling pathway plays an important role in the pathogenesis of skeletal muscle atrophy by regulating E3 ubiquitin ligases and some autophagy factors. However, the mechanism of FOXO signaling pathway leading to skeletal muscle atrophy is still unclear. The development of treatment strategies for skeletal muscle atrophy has been a thorny clinical problem. FOXO-targeted therapy to treat skeletal muscle atrophy is a promising approach, and an increasing number of relevant studies have been reported. This article reviews the mechanism and therapeutic targets of the FOXO signaling pathway mediating skeletal muscle atrophy, and provides ideas for the clinical treatment of this condition.
Collapse
Affiliation(s)
- Kun Chen
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Peng Gao
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Zongchao Li
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Aonan Dai
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Ming Yang
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Siyu Chen
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China; School of Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Jingyue Su
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China; School of Medicine, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China; School of Medicine, Guangxi University of Chinese Medicine, Nanning, China.
| | - Liangjun Li
- Department of Orthopaedics, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
| |
Collapse
|
38
|
Seudre O, Martín-Zamora FM, Rapisarda V, Luqman I, Carrillo-Baltodano AM, Martín-Durán JM. The Fox Gene Repertoire in the Annelid Owenia fusiformis Reveals Multiple Expansions of the foxQ2 Class in Spiralia. Genome Biol Evol 2022; 14:evac139. [PMID: 36099507 PMCID: PMC9539403 DOI: 10.1093/gbe/evac139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
Fox genes are a large and conserved family of transcription factors involved in many key biological processes, including embryogenesis and body patterning. Although the role of Fox genes has been studied in an array of model systems, comprehensive comparative studies in Spiralia-a large clade of invertebrate animals including molluscs and annelids-are scarce but much needed to better understand the evolutionary history of this gene family. Here, we reconstruct and functionally characterize the Fox gene complement in the annelid Owenia fusiformis, a slow evolving species and member of the sister group to all remaining annelids. The genome of O. fusiformis contains at least a single ortholog for 20 of the 22 Fox gene classes that are ancestral to Bilateria, including an ortholog of the recently discovered foxT class. Temporal and spatial expression dynamics reveal a conserved role of Fox genes in gut formation, mesoderm patterning, and apical organ and cilia formation in Annelida and Spiralia. Moreover, we uncover an ancestral expansion of foxQ2 genes in Spiralia, represented by 11 paralogs in O. fusiformis. Notably, although all foxQ2 copies have apical expression in O. fusiformis, they show variable spatial domains and staggered temporal activation, which suggest cooperation and sub-functionalization among foxQ2 genes for the development of apical fates in this annelid. Altogether, our study informs the evolution and developmental roles of Fox genes in Annelida and Spiralia generally, providing the basis to explore how regulatory changes in Fox gene expression might have contributed to developmental and morphological diversification in Spiralia.
Collapse
Affiliation(s)
- Océane Seudre
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - Francisco M Martín-Zamora
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - Valentina Rapisarda
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - Imran Luqman
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - Allan M Carrillo-Baltodano
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, E1 4NSUnited Kingdom
| |
Collapse
|
39
|
Zheng B, Seltzsam S, Wang C, Schierbaum L, Schneider S, Wu CHW, Dai R, Connaughton DM, Nakayama M, Mann N, Stajic N, Mane S, Bauer SB, Tasic V, Nam HJ, Shril S, Hildebrandt F. Whole-exome sequencing identifies FOXL2, FOXA2 and FOXA3 as candidate genes for monogenic congenital anomalies of the kidneys and urinary tract. Nephrol Dial Transplant 2022; 37:1833-1843. [PMID: 34473308 PMCID: PMC9755999 DOI: 10.1093/ndt/gfab253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Congenital anomalies of the kidneys and urinary tract (CAKUT) constitute the most common cause of chronic kidney disease in the first three decades of life. Variants in four Forkhead box (FOX) transcription factors have been associated with CAKUT. We hypothesized that other FOX genes, if highly expressed in developing kidneys, may also represent monogenic causes of CAKUT. METHODS We here performed whole-exome sequencing (WES) in 541 families with CAKUT and generated four lists of CAKUT candidate genes: (A) 36 FOX genes showing high expression during renal development, (B) 4 FOX genes known to cause CAKUT to validate list A, (C) 80 genes that we identified as unique potential novel CAKUT candidate genes when performing WES in 541 CAKUT families and (D) 175 genes identified from WES as multiple potential novel CAKUT candidate genes. RESULTS To prioritize potential novel CAKUT candidates in the FOX gene family, we overlapped 36 FOX genes (list A) with lists C and D of WES-derived CAKUT candidates. Intersection with list C identified a de novo FOXL2 in-frame deletion in a patient with eyelid abnormalities and ureteropelvic junction obstruction, and a homozygous FOXA2 missense variant in a patient with horseshoe kidney. Intersection with list D identified a heterozygous FOXA3 missense variant in a CAKUT family with multiple affected individuals. CONCLUSIONS We hereby identified FOXL2, FOXA2 and FOXA3 as novel monogenic candidate genes of CAKUT, supporting the utility of a paralog-based approach to discover mutated genes associated with human disease.
Collapse
Affiliation(s)
- Bixia Zheng
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Steve Seltzsam
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chunyan Wang
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca Schierbaum
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sophia Schneider
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Chen-Han Wilfred Wu
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rufeng Dai
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dervla M Connaughton
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Makiko Nakayama
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nina Mann
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Natasa Stajic
- Department of Pediatric Nephrology, Institute for Mother and Child Health Care, Belgrade, Serbia
| | - Shrikant Mane
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Stuart B Bauer
- Department of Urology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Velibor Tasic
- Medical Faculty of Skopje, University Children's Hospital, Skopje, Macedonia
| | - Hyun Joo Nam
- Department of Biological and Environmental Science, Texas A&M University at Commerce, Commerce, TX, USA
| | - Shirlee Shril
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Yang YQ, Ge P, Lv MQ, Yu PF, Liu ZG, Zhang J, Zhao WB, Han SP, Sun RF, Zhou DX. Rno_circRNA_008646 regulates formaldehyde induced lung injury through Rno-miR-224 mediated FOXI1/CFTR axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113999. [PMID: 35998475 DOI: 10.1016/j.ecoenv.2022.113999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Formaldehyde (FA) serves as a prevailing air pollutant, which has seriously threatened public health in recent years. Of all the known health effects, lung injury is one of the most severe risks. However, little is known about the circRNAs related molecular mechanism in the development of lung injury induced by FA. This study was designed to explore the potential roles of dysregulated circRNAs as well as its mechanism in FA-induced lung injury. In the present study, 24 male SD rats were exposed to formaldehyde (control, 0.5, 2.46 and 5 mg/m3) for 8 h per day for 8 weeks to induce lung injury. We used H&E staining to evaluate the histopathological changes of lung injury indifferent groups. The expression of circRNAs in lung tissue was detected by real-time PCR. Meanwhile, circRNA/miRNA/mRNA interaction networks were predicted by bioinformatics analysis. Our study revealed that formaldehyde exposure resulted in abnormal histopathological changes in lung tissues. Moreover, the expression of rno_circRNA_008646 was significantly higher in lung tissues of formaldehyde exposure rats than in control. Bioinformatics analysis showed that one potential target miRNA/mRNA for rno_circRNA_008646 was rno-miR-224/Forkhead Box I1 (FOXI1). Besides, luciferase report gene confirmed that there was targeted binding relationship between rno_circRNA_008646 and rno-miR-224, rno-miR-224 and FOXI1. Further verification experiments indicated that the expression of rno_circRNA_008646 was negatively correlated rno-miR-224, while it was positively correlated with FOXI1. JASPAR database showed transcription factor FOXI1 located in promotor of CF Transmembrane Conductance Regulator (CFTR). Both FOXI1 and CFTR were up-regulated in lung tissues after formaldehyde exposure. In conclusion, our findings suggested that formaldehyde may induce lung injury, and this may be caused by up-regulatedrno_circRNA_008646, which medicated rno-miR-224/FOXI1/CFTR axis.
Collapse
Affiliation(s)
- Yan-Qi Yang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi PR China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Pan Ge
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi PR China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Mo-Qi Lv
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi PR China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Peng-Fei Yu
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Changlexi St. 127#, Xi'an, Shaanxi, PR China
| | - Zhi-Gang Liu
- Department of Thoracic Surgery, Tumor Hospital of Shaanxi Province, Affiliated to the Medical College of Xi'an Jiaotong University, Xi'an 710061, Shaanxi, PR China
| | - Jian Zhang
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi PR China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Wen-Bao Zhao
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi PR China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Shui-Ping Han
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi PR China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China
| | - Rui-Fang Sun
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi PR China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China.
| | - Dang-Xia Zhou
- Department of Pathology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi PR China; Institute of Genetics and Developmental Biology, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi, PR China.
| |
Collapse
|
41
|
Kang Y, Zhang K, Sun L, Zhang Y. Regulation and roles of FOXK2 in cancer. Front Oncol 2022; 12:967625. [PMID: 36172141 PMCID: PMC9510715 DOI: 10.3389/fonc.2022.967625] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/17/2022] [Indexed: 12/24/2022] Open
Abstract
Forkhead box K2 (FOXK2) is a member of the forkhead box transcription factor family that contains an evolutionarily conserved winged-helix DNA-binding domain. Recently, an increasing number of studies have demonstrated that FOXK2 plays an important role in the transcriptional regulation of cancer. Here, we provide an overview of the mechanisms underlying the regulation of FOXK2 expression and function and discuss the roles of FOXK2 in tumor pathogenesis. Additionally, we evaluated the prognostic value of FOXK2 expression in patients with various cancers. This review presents an overview of the different roles of FOXK2 in tumorigenesis and will help inform the design of experimental studies involving FOXK2. Ultimately, the information presented here will help enhance the therapeutic potential of FOXK2 as a cancer target.
Collapse
|
42
|
Liu APY, Northcott PA. Pursuing FOXR2-Driven Oncogenesis. Cancer Res 2022; 82:2977-2979. [PMID: 36052493 DOI: 10.1158/0008-5472.can-22-2259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
FOXR2 encodes a Forkhead-Box transcription factor that has been recently described as a proto-oncogene. In this issue of Cancer Research, Tsai and colleagues present the first pan-cancer study summarizing the prevalence of FOXR2 overexpression beyond rare childhood-onset malignancies. Identification of a previously unknown mechanism of epigenetic activation and the expansion of FOXR2 transcriptional targets enhance the mechanistic understanding of FOXR2-driven malignancy, with the potential to uncover new therapeutic opportunities. See related article by Tsai et al., p. 2980.
Collapse
Affiliation(s)
- Anthony P Y Liu
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, P.R. China.,Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong SAR, P.R. China
| | - Paul A Northcott
- Division of Brain Tumor Research, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
43
|
Janssen R, Schomburg C, Prpic NM, Budd GE. A comprehensive study of arthropod and onychophoran Fox gene expression patterns. PLoS One 2022; 17:e0270790. [PMID: 35802758 PMCID: PMC9269926 DOI: 10.1371/journal.pone.0270790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Fox genes represent an evolutionary old class of transcription factor encoding genes that evolved in the last common ancestor of fungi and animals. They represent key-components of multiple gene regulatory networks (GRNs) that are essential for embryonic development. Most of our knowledge about the function of Fox genes comes from vertebrate research, and for arthropods the only comprehensive gene expression analysis is that of the fly Drosophila melanogaster. For other arthropods, only selected Fox genes have been investigated. In this study, we provide the first comprehensive gene expression analysis of arthropod Fox genes including representative species of all main groups of arthropods, Pancrustacea, Myriapoda and Chelicerata. We also provide the first comprehensive analysis of Fox gene expression in an onychophoran species. Our data show that many of the Fox genes likely retained their function during panarthropod evolution highlighting their importance in development. Comparison with published data from other groups of animals shows that this high degree of evolutionary conservation often dates back beyond the last common ancestor of Panarthropoda.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Christoph Schomburg
- AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
- Fachgebiet Botanik, Institut für Biologie, Universität Kassel, Kassel, Germany
| | - Nikola-Michael Prpic
- AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Institut für Allgemeine Zoologie und Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Graham E. Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Zuo J, Zhang Z, Luo M, Zhou L, Nice EC, Zhang W, Wang C, Huang C. Redox signaling at the crossroads of human health and disease. MedComm (Beijing) 2022; 3:e127. [PMID: 35386842 PMCID: PMC8971743 DOI: 10.1002/mco2.127] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Redox biology is at the core of life sciences, accompanied by the close correlation of redox processes with biological activities. Redox homeostasis is a prerequisite for human health, in which the physiological levels of nonradical reactive oxygen species (ROS) function as the primary second messengers to modulate physiological redox signaling by orchestrating multiple redox sensors. However, excessive ROS accumulation, termed oxidative stress (OS), leads to biomolecule damage and subsequent occurrence of various diseases such as type 2 diabetes, atherosclerosis, and cancer. Herein, starting with the evolution of redox biology, we reveal the roles of ROS as multifaceted physiological modulators to mediate redox signaling and sustain redox homeostasis. In addition, we also emphasize the detailed OS mechanisms involved in the initiation and development of several important diseases. ROS as a double-edged sword in disease progression suggest two different therapeutic strategies to treat redox-relevant diseases, in which targeting ROS sources and redox-related effectors to manipulate redox homeostasis will largely promote precision medicine. Therefore, a comprehensive understanding of the redox signaling networks under physiological and pathological conditions will facilitate the development of redox medicine and benefit patients with redox-relevant diseases.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVictoriaAustralia
| | - Wei Zhang
- West China Biomedical Big Data CenterWest China HospitalSichuan UniversityChengduP. R. China
- Mental Health Center and Psychiatric LaboratoryThe State Key Laboratory of BiotherapyWest China Hospital of Sichuan UniversityChengduP. R. China
| | - Chuang Wang
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for BiotherapyChengduP. R. China
- Department of PharmacologyProvincial Key Laboratory of Pathophysiology, Ningbo University School of MedicineNingboZhejiangP. R. China
| |
Collapse
|
45
|
Cui H, Duan R, Niu H, Yu T, Huang K, Chen C, Hao K, Yang T, Wang C. Integrated analysis of mRNA and long noncoding RNA profiles in peripheral blood mononuclear cells of patients with bronchial asthma. BMC Pulm Med 2022; 22:174. [PMID: 35501805 PMCID: PMC9059365 DOI: 10.1186/s12890-022-01945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Background Bronchial asthma is a heterogeneous disease with distinct disease phenotypes and underlying pathophysiological mechanisms. Long non-coding RNAs (lncRNAs) are involved in numerous functionally different biological and physiological processes. The aim of this study was to identify differentially expressed lncRNAs and mRNAs in patients with asthma and further explore the functions and interactions between lncRNAs and mRNAs. Methods Ten patients with asthma and 9 healthy controls were enrolled in this study. RNA was isolated from peripheral blood mononuclear cells. We performed microarray analysis to evaluate lncRNA and mRNA expression. The functions of the differentially expressed mRNAs were analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. A global signal transduction network was constructed to identify the core mRNAs. An lncRNA–mRNA network was constructed. Five mRNAs showing the greatest differences in expression levels or high degrees in the gene–gene functional interaction network, with their correlated lncRNAs, were validated by real-time quantitative polymerase chain reaction. Results We identified 2229 differentially expressed mRNAs and 1397 lncRNAs between the asthma and control groups. Kyoto Encyclopedia of Genes and Genomes pathway analysis identified many pathways associated with inflammation and cell survival. The gene–gene functional interaction network suggested that some core mRNAs are involved in the pathogenesis of bronchial asthma. The lncRNA–mRNA co-expression network revealed correlated lncRNAs. CXCL8, FOXO3, JUN, PIK3CA, and G0S2 and their related lncRNAs NONHSAT115963, AC019050.1, MTCYBP3, KB-67B5.12, and HNRNPA1P12 were identified according to their differential expression levels and high degrees in the gene–gene network. Conclusions We identified the core mRNAs and their related lncRNAs and predicted the biological processes and signaling pathways involved in asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01945-9.
Collapse
Affiliation(s)
- Han Cui
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Department of Geriatric, Beijing Hospital, Beijing, China
| | - Ruirui Duan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hongtao Niu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tao Yu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ke Huang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Chen Chen
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ting Yang
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China. .,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China. .,Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.
| | - Chen Wang
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China. .,Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China. .,Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China. .,Institute of Respiratory Medicine, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
46
|
Fischer F, Grigolon G, Benner C, Ristow M. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiol Rev 2022; 102:1449-1494. [PMID: 35343830 DOI: 10.1152/physrev.00017.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging is the single largest risk factor for many debilitating conditions, including heart diseases, stroke, cancer, diabetes, and neurodegenerative disorders. While far from understood in its full complexity, it is scientifically well-established that aging is influenced by genetic and environmental factors, and can be modulated by various interventions. One of aging's early hallmarks are aberrations in transcriptional networks, controlling for example metabolic homeostasis or the response to stress. Evidence in different model organisms abounds that a number of evolutionarily conserved transcription factors, which control such networks, can affect lifespan and healthspan across species. These transcription factors thus potentially represent conserved regulators of longevity and are emerging as important targets in the challenging quest to develop treatments to mitigate age-related diseases, and possibly even to slow aging itself. This review provides an overview of evolutionarily conserved transcription factors that impact longevity or age-related diseases in at least one multicellular model organism (nematodes, flies, or mice), and/or are tentatively linked to human aging. Discussed is the general evidence for transcriptional regulation of aging and disease, followed by a more detailed look at selected transcription factor families, the common metabolic pathways involved, and the targeting of transcription factors as a strategy for geroprotective interventions.
Collapse
Affiliation(s)
- Fabian Fischer
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Giovanna Grigolon
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Christoph Benner
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
47
|
Schomburg C, Janssen R, Prpic NM. Phylogenetic analysis of forkhead transcription factors in the Panarthropoda. Dev Genes Evol 2022; 232:39-48. [PMID: 35230523 PMCID: PMC8918179 DOI: 10.1007/s00427-022-00686-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/07/2022] [Indexed: 02/05/2023]
Abstract
Fox genes encode transcription factors that contain a DNA binding domain, the forkhead domain, and are known from diverse animal species. The exact homology of the Fox genes of different species is debated and this makes inferences about the evolution of the Fox genes, and their duplications and losses difficult. We have performed phylogenetic analyses of the Fox gene complements of 32 panarthropod species. Our results confirm an ancestral complement of FoxA, FoxB, FoxC, FoxD, FoxF, FoxG, FoxJ1, FoxJ2/3, FoxK, FoxL1, FoxL2, FoxN1/4, FoxN2/3, FoxO, FoxP, and FoxQ2 in the Arthropoda, and additionally FoxH and FoxQ1 in the Panarthropoda (including tardigrades and onychophorans). We identify a novel Fox gene sub-family, that we designate as FoxT that includes two genes in Drosophila melanogaster, Circadianly Regulated Gene (Crg-1) and forkhead domain 3F (fd3F). In a very recent paper, the same new Fox gene sub-family was identified in insects (Lin et al. 2021). Our analysis confirms the presence of FoxT and shows that its members are present throughout Panarthropoda. We show that the hitherto unclassified gene CG32006 from the fly Drosophila melanogaster belongs to FoxJ1. We also detect gene losses: FoxE and FoxM were lost already in the panarthropod ancestor, whereas the loss of FoxH occurred in the arthropod ancestor. Finally, we find an ortholog of FoxQ1 in the bark scorpion Centruroides sculpturatus, confirmed not only by phylogenetic analysis, but also by forming an evolutionarily conserved gene cluster with FoxF, FoxC, and FoxL1. This suggests that FoxQ1 belongs to the ancestral Fox gene complement in panarthropods and also in chelicerates, but has been lost at the base of the mandibulate arthropods.
Collapse
Affiliation(s)
- Christoph Schomburg
- Fachgebiet Botanik, Institut Für Biologie, Universität Kassel, Heinrich-Plett-Straße 40, 34132, Kassel, Germany
- Institut Für Allgemeine Zoologie Und Entwicklungsbiologie, AG Zoologie Mit Dem Schwerpunkt Molekulare Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392, Gießen, Germany
| | - Ralf Janssen
- Department of Earth Sciences, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Nikola-Michael Prpic
- Institut Für Allgemeine Zoologie Und Entwicklungsbiologie, AG Zoologie Mit Dem Schwerpunkt Molekulare Entwicklungsbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392, Gießen, Germany
| |
Collapse
|
48
|
Hakeemi MS, Ansari S, Teuscher M, Weißkopf M, Großmann D, Kessel T, Dönitz J, Siemanowski J, Wan X, Schultheis D, Frasch M, Roth S, Schoppmeier M, Klingler M, Bucher G. Screens in fly and beetle reveal vastly divergent gene sets required for developmental processes. BMC Biol 2022; 20:38. [PMID: 35135533 PMCID: PMC8827203 DOI: 10.1186/s12915-022-01231-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 01/12/2022] [Indexed: 12/05/2022] Open
Abstract
Background Most of the known genes required for developmental processes have been identified by genetic screens in a few well-studied model organisms, which have been considered representative of related species, and informative—to some degree—for human biology. The fruit fly Drosophila melanogaster is a prime model for insect genetics, and while conservation of many gene functions has been observed among bilaterian animals, a plethora of data show evolutionary divergence of gene function among more closely-related groups, such as within the insects. A quantification of conservation versus divergence of gene functions has been missing, without which it is unclear how representative data from model systems actually are. Results Here, we systematically compare the gene sets required for a number of homologous but divergent developmental processes between fly and beetle in order to quantify the difference of the gene sets. To that end, we expanded our RNAi screen in the red flour beetle Tribolium castaneum to cover more than half of the protein-coding genes. Then we compared the gene sets required for four different developmental processes between beetle and fly. We found that around 50% of the gene functions were identified in the screens of both species while for the rest, phenotypes were revealed only in fly (~ 10%) or beetle (~ 40%) reflecting both technical and biological differences. Accordingly, we were able to annotate novel developmental GO terms for 96 genes studied in this work. With this work, we publish the final dataset for the pupal injection screen of the iBeetle screen reaching a coverage of 87% (13,020 genes). Conclusions We conclude that the gene sets required for a homologous process diverge more than widely believed. Hence, the insights gained in flies may be less representative for insects or protostomes than previously thought, and work in complementary model systems is required to gain a comprehensive picture. The RNAi screening resources developed in this project, the expanding transgenic toolkit, and our large-scale functional data make T. castaneum an excellent model system in that endeavor. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01231-4.
Collapse
Affiliation(s)
- Muhammad Salim Hakeemi
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Salim Ansari
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,Current address: Institute of Clinical Pharmacology, University Medical Center Göttingen, University of Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Matthias Teuscher
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Matthias Weißkopf
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Daniela Großmann
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,Current address: Department of Medical Bioinformatics, University Medical Center Göttingen, University of Göttingen, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Tobias Kessel
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.,Current address: Department of Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Gießen, Germany
| | - Jürgen Dönitz
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Janna Siemanowski
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,Current address: Institute of Pathology, University Hospital Cologne, Kerpener Str. 62, 50924, Cologne, Germany
| | - Xuebin Wan
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Dorothea Schultheis
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.,Current address: Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Frasch
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Siegfried Roth
- Institute for Zoology/Developmental Biology, University of Cologne, Biocenter, Zülpicher Straße 47b, D-50674, Köln, Germany
| | - Michael Schoppmeier
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Martin Klingler
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Gregor Bucher
- Johann-Friedrich-Blumenbach-Institut, GZMB, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| |
Collapse
|
49
|
Hettige NC, Peng H, Wu H, Zhang X, Yerko V, Zhang Y, Jefri M, Soubannier V, Maussion G, Alsuwaidi S, Ni A, Rocha C, Krishnan J, McCarty V, Antonyan L, Schuppert A, Turecki G, Fon EA, Durcan TM, Ernst C. FOXG1 dose tunes cell proliferation dynamics in human forebrain progenitor cells. Stem Cell Reports 2022; 17:475-488. [PMID: 35148845 PMCID: PMC9040178 DOI: 10.1016/j.stemcr.2022.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 10/26/2022] Open
Abstract
Heterozygous loss-of-function mutations in Forkhead box G1 (FOXG1), a uniquely brain-expressed gene, cause microcephaly, seizures, and severe intellectual disability, whereas increased FOXG1 expression is frequently observed in glioblastoma. To investigate the role of FOXG1 in forebrain cell proliferation, we modeled FOXG1 syndrome using cells from three clinically diagnosed cases with two sex-matched healthy parents and one unrelated sex-matched control. Cells with heterozygous FOXG1 loss showed significant reduction in cell proliferation, increased ratio of cells in G0/G1 stage of the cell cycle, and increased frequency of primary cilia. Engineered loss of FOXG1 recapitulated this effect, while isogenic repair of a patient mutation reverted output markers to wild type. An engineered inducible FOXG1 cell line derived from a FOXG1 syndrome case demonstrated that FOXG1 dose-dependently affects all cell proliferation outputs measured. These findings provide strong support for the critical importance of FOXG1 levels in controlling human brain cell growth in health and disease.
Collapse
Affiliation(s)
- Nuwan C Hettige
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Huashan Peng
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Hanrong Wu
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Xin Zhang
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Volodymyr Yerko
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Ying Zhang
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Malvin Jefri
- Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Vincent Soubannier
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Montreal, QC H3A 2B4, Canada; The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Gilles Maussion
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Montreal, QC H3A 2B4, Canada; The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Shaima Alsuwaidi
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Anjie Ni
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Cecilia Rocha
- The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Jeyashree Krishnan
- Institute for Computational Biomedicine, Aachen University, Pauwelsstraße 19, 52074 Aachen, Germany
| | - Vincent McCarty
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Lilit Antonyan
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada
| | - Andreas Schuppert
- Institute for Computational Biomedicine, Aachen University, Pauwelsstraße 19, 52074 Aachen, Germany
| | - Gustavo Turecki
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada
| | - Edward A Fon
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Montreal, QC H3A 2B4, Canada
| | - Thomas M Durcan
- McGill Parkinson Program and Neurodegenerative Diseases Group, Montreal Neurological Institute, Department of Neurology and Neurosurgery, Montreal, QC H3A 2B4, Canada; The Neuro's Early Drug Discovery Unit (EDDU), McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Carl Ernst
- Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada; Psychiatric Genetics Group, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
50
|
Li T, Huang S, Yan W, Zhang Y, Guo Q. FOXF2 Regulates PRUNE2 Transcription in the Pathogenesis of Colorectal Cancer. Technol Cancer Res Treat 2022; 21:15330338221118717. [PMID: 35929169 PMCID: PMC9358570 DOI: 10.1177/15330338221118717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Forkhead box F2, a member of the Forkhead box transcription factor superfamily, plays an important role in several types of cancer. However, the mechanisms of Forkhead box F2 in the progression of colorectal cancer remain unclear. PRUNE2 is closely associated with prostate cancer, neuroblastoma, glioblastoma, and melanoma. The relationship between Forkhead box F2 and PRUNE2 in colorectal cancer remains unknown. Method: We investigated the effects of Forkhead box F2 upregulation on colorectal cancer cell behavior in vitro using Cell Counting Kit-8, colony formation, flow cytometry, Transwell, reverse transcription quantitative polymerase chain reaction and Western blot analyses. Nude mouse xenografts were established to investigate the effect of Forkhead box F2 upregulation on the growth of colorectal cancer cells. Dual-luciferase reporter assays were performed to confirm the Forkhead box F2 regulation of PRUNE2 transcription. A series of in vitro assays was performed in cells with Forkhead box F2 upregulation and PRUNE2 knockdown to elucidate the function and regulatory effects of Forkhead box F2 on PRUNE2 transcription in colorectal cancer. Results: Forkhead box F2 was downregulated in colorectal cancer tissues compared with adjacent tissues. Forkhead box F2 overexpression significantly suppressed the proliferation and invasion of colorectal cancer cells in vitro and in vivo. Moreover, Forkhead box F2 directly targeted PRUNE2 to promote its transcription in colorectal cancer cells. Furthermore, PRUNE2 mediated the Forkhead box F2-regulated proliferation and invasion of colorectal cancer cells. Additionally, we demonstrated a significant positive correlation between Forkhead box F2 and PRUNE2 mRNA levels in colorectal cancer tissues. Conclusion: These results indicated that Forkhead box F2 and PRUNE2 in combination may serve as a prognostic biomarker for colorectal cancer and that Forkhead box F2 upregulation inhibits the proliferation and invasion of colorectal cancer cells by upregulating PRUNE2.
Collapse
Affiliation(s)
- Ting Li
- Faculty of Environmental Science and Engineering, 47910Kunming University of Science and Technology, Kunming, Yunnan, China.,Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Department of Gastroenterology, The Affiliated Hospital of Kunming University of Science and Technology, China.,Medical School, 47910Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Silin Huang
- Medical School, 47910Kunming University of Science and Technology, Kunming, Yunnan, China.,Department of Gastroenterology, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wei Yan
- Faculty of Environmental Science and Engineering, 47910Kunming University of Science and Technology, Kunming, Yunnan, China.,Faculty of Life Science and Technology, 47910Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yu Zhang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Department of Gastroenterology, The Affiliated Hospital of Kunming University of Science and Technology, China
| | - Qiang Guo
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China.,Department of Gastroenterology, The Affiliated Hospital of Kunming University of Science and Technology, China
| |
Collapse
|