1
|
Lim JPL, Braza MKE, Nellas RB. The effect of ligand affinity to the contact dynamics of the ligand binding domain of thyroid hormone receptor - retinoid X receptor. J Mol Graph Model 2021; 104:107829. [PMID: 33450664 DOI: 10.1016/j.jmgm.2020.107829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/19/2022]
Abstract
Ligand-based allostery has been gaining attention for its importance in protein regulation and implication in drug design. One of the interesting cases of protein allostery is the thyroid hormone receptor - retinoid x receptor (TR:RXR), which regulates the gene expression of important physiological processes, such as development and metabolism. It is regulated by the TR native ligand triiodothyronine (T3), which displays anticooperative behavior to the RXR ligand 9-cis retinoic acid (9C). In contrast to this anticooperative behavior, 9C has been shown to increase the activity of TR:RXR. Here we probed the influence of the affinity and the interactions of the TR ligand to the allostery of the TR:RXR through contact dynamics and residue networks. The TR ligand analogs were designed to have higher (G2) and lower (N1) binding energies than T3 when docked to the TR:RXR(9C) complex. The aqueous TR(N1/T3/G2):RXR(9C) complexes were subjected to 30 ns all-atom simulations using theNAMD. The program CAMERRA was used to capture the subtle perturbations of TR:RXR by mapping the residue contact dynamics. Various parts of the TR ligands; including the hydrophilic head, the iodine substituents, and the ligand tail; have been probed for their significance in ligand affinity. The results on the T3 and G2 complexes suggest that ligand affinity can be utilized as a predictor for anticooperative systems on which ligand is more likely to dissociate or remain bound. All 3 complexes also display distinct contact networks for cross-dimer signalling and ligand communication. Understanding ligand-based allostery could potentially unveil secrets of ligand-regulated protein dynamics, a foundation for the design of better and more efficient allosteric drugs.
Collapse
Affiliation(s)
- James Peter L Lim
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Mac Kevin E Braza
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines
| | - Ricky B Nellas
- Institute of Chemistry, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
| |
Collapse
|
2
|
Park S, Han CR, Park JW, Zhao L, Zhu X, Willingham M, Bodine DM, Cheng SY. Defective erythropoiesis caused by mutations of the thyroid hormone receptor α gene. PLoS Genet 2017; 13:e1006991. [PMID: 28910278 PMCID: PMC5621702 DOI: 10.1371/journal.pgen.1006991] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/29/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
Patients with mutations of the THRA gene exhibit classical features of hypothyroidism, including erythroid disorders. We previously created a mutant mouse expressing a mutated TRα1 (denoted as PV; Thra1PV/+ mouse) that faithfully reproduces the classical hypothyroidism seen in patients. Using Thra1PV/+ mice, we explored how the TRα1PV mutant acted to cause abnormalities in erythropoiesis. Thra1PV/+ mice exhibited abnormal red blood cell indices similarly as reported for patients. The total bone marrow cells and erythrocytic progenitors were markedly reduced in the bone marrow of Thra1PV/+ mice. In vitro terminal differentiation assays showed a significant reduction of mature erythrocytes in Thra1PV/+ mice. In wild-type mice, the clonogenic potential of progenitors in the erythrocytic lineage was stimulated by thyroid hormone (T3), suggesting that T3 could directly accelerate the differentiation of progenitors to mature erythrocytes. Analysis of gene expression profiles showed that the key regulator of erythropoiesis, the Gata-1 gene, and its regulated genes, such as the Klf1, β-globin, dematin genes, CAII, band3 and eALAS genes, involved in the maturation of erythrocytes, was decreased in the bone marrow cells of Thra1PV/+ mice. We further elucidated that the Gata-1 gene was a T3-directly regulated gene and that TRα1PV could impair erythropoiesis via repression of the Gata-1 gene and its regulated genes. These results provide new insights into how TRα1 mutants acted to cause erythroid abnormalities in patients with mutations of the THRA gene. Importantly, the Thra1PV/+ mouse could serve as a preclinical mouse model to identify novel molecular targets for treatment of erythroid disorders. Patients with mutations of the THRA gene exhibit erythroid disorders. The molecular pathogenesis underlying erythroid abnormalities is poorly understood. In Thra1PV/+ mice expressing a dominant negative mutant TRα1PV, we found abnormal red blood cell indices similar to patients. Total bone marrow cells, the clonogenic potential of erythrocytic progenitors, and terminal differentiation of erythrocytes were markedly decreased in Thra1PV/+ mice. We elucidated that Gata-1, a key erythroid gene, was directly positively regulated by TRα1. The erythroid defects in Thra1PV/+ mice were due, at least partly, to the TRα1PV-mediated suppression of the Gata-1 gene and its down-stream target genes. Over-expression of Gata-1 rescued impaired terminal differentiation. Our studies elucidated molecular mechanisms by which TRα1 mutants caused erythroid disorders in patients. The present study suggests that therapies aimed at GATA1 could be tested as a potential target in treating erythroid abnormalities in patients.
Collapse
Affiliation(s)
- Sunmi Park
- Laboratory of Molecular Biology, the Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Cho Rong Han
- Laboratory of Molecular Biology, the Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jeong Won Park
- Laboratory of Molecular Biology, the Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Li Zhao
- Laboratory of Molecular Biology, the Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Xuguang Zhu
- Laboratory of Molecular Biology, the Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mark Willingham
- Laboratory of Molecular Biology, the Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David M. Bodine
- Hematopoiesis Section, National Human Geneome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, the Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
3
|
Minder EI, Haldemann AR, Schneider-Yin X. Exacerbation of erythropoietic protoporphyria by hyperthyroidism. J Inherit Metab Dis 2010; 33 Suppl 3:S465-9. [PMID: 21069463 DOI: 10.1007/s10545-010-9234-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/06/2010] [Accepted: 10/14/2010] [Indexed: 11/27/2022]
Abstract
Erythropoietic protoporphyria (EPP) is a hereditary disorder caused by deficiency of ferrochelatase, the last enzyme in the heme biosynthetic pathway. The majority of EPP patients present with a clinical symptom of painful phototoxicity. Liver damage, the most serious complication of EPP, occurs in <5% of the patients. This report describes a case of an EPP patient who complained of worsening cutaneous symptoms, nervousness, and insomnia. Laboratory tests showed highly increased protoporphyrin concentration in erythrocytes and elevated serum transaminases that are indicative of EPP-related liver damage. The subsequent finding of decreased serum thyroid-stimulating hormone (TSH) and increased free triiodothyronine (FT3) and free thyroxine (FT4) concentrations, as well antibodies against both thyroid peroxidase (TPO) and TSH receptors, led to the diagnosis of Graves' disease. The patient received 500 MBq of radioiodine (I(131)). Three months after the radioactive iodine therapy, the thyroid volume was reduced to 30% of pretherapeutic volume. Although the patient was slightly hypothyroidic, his liver enzymes returned to normal, his erythrocytic protoporphyrin concentration dropped fivefold, and his skin symptoms improved dramatically. The coexistence of Graves' disease and EPP is a statistically rare event as, besides our patient, there was one additional case reported in the literature. Although the exact mechanism whereby Graves' disease interacts with EPP is yet to be explored, we recommend testing thyroid function in EPP patients with liver complication to exclude hyperthyroidism as a potential cause.
Collapse
|
4
|
Chan IH, Privalsky ML. Thyroid hormone receptor mutants implicated in human hepatocellular carcinoma display an altered target gene repertoire. Oncogene 2009; 28:4162-74. [PMID: 19749797 PMCID: PMC2787677 DOI: 10.1038/onc.2009.265] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Thyroid hormone receptors (TRs) are hormone-regulated transcription factors that control multiple aspects of normal physiology and development. Mutations in TRs have been identified at high frequency in certain cancers, including human hepatocellular carcinomas (HCCs). The majority of HCC-TR mutants bear lesions within their DNA recognition domains, and we have hypothesized that these lesions change the mutant receptors' target gene repertoire in a way crucial to their function as oncoproteins. Using stable cell transformants and expression array analysis, we determined that mutant TRs isolated from two different HCCs do, as hypothesized, display a target gene repertoire distinct from that of their normal TR progenitors. Only a subset of genes regulated by wild-type TRs was regulated by the corresponding HCC-TR mutants. More surprisingly, the HCC-TR mutants also gained the ability to regulate additional target genes not recognized by the wild-type receptors, and were not simply restricted to repression, but could also activate a subset of their target genes. We conclude that the TR mutants isolated from HCC have sustained multiple alterations from their normal progenitors that include not only changes in their transcriptional outputs, but also changes in the genes they target; both are likely to contribute to neoplasia.
Collapse
Affiliation(s)
- I H Chan
- Department of Microbiology, College of Biological Sciences, University of California at Davis, Davis, CA 95616, USA
| | | |
Collapse
|
5
|
Gamper I, Koh KR, Ruau D, Ullrich K, Bartunkova J, Piroth D, Hacker C, Bartunek P, Zenke M. GAR22: a novel target gene of thyroid hormone receptor causes growth inhibition in human erythroid cells. Exp Hematol 2009; 37:539-548.e4. [PMID: 19375645 DOI: 10.1016/j.exphem.2009.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 02/03/2009] [Accepted: 02/03/2009] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Thyroid hormone receptors (TRs) are ligand-dependent transcription factors with a major impact on erythroid cell development. Here we investigated TR activity on red cell gene expression and identified TR target genes. The impact of the TR target gene GAR22 (growth arrest-specific 2 [GAS2]-related gene on chromosome 22) on red cell differentiation was determined. MATERIALS AND METHODS Stem cell factor/erythropoietin (SCF/EPO)-dependent red cell progenitors were differentiated in vitro in the presence or absence of thyroid hormone. Hormone-induced changes in gene expression were measured by a genome-wide approach with DNA microarrays. Ectopic expression of the TR target gene GAR22 was used to determine its impact on red cell differentiation. RESULTS Ligand-activated TR effectively accelerated red cell progenitor differentiation in vitro concomitantly with inducing growth arrest. We demonstrate that activated TR-induced specific gene expression patterns of up- or downregulated genes, including distinct clusters associated with accelerated differentiation in response to treatment. Mining for T3-induced genes identified basic transcription element binding protein 1/Krüppel-like factor 9 (BTEB1/KLF9) and GAR22 as TR target genes. BTEB1/KLF9 is a known TR target gene while GAR22, initially identified as a putative tumor suppressor, represents a novel TR target gene. We demonstrate that ectopic GAR22 expression in red cell progenitors lengthens the cell cycle and causes growth inhibition, but leaves red cell gene expression unaffected. CONCLUSION This study identifies GAR22 as a novel and direct TR target gene. Our results suggest that hormone-induced GAR22 might represent an important trigger of growth inhibition induced by thyroid hormone in red cell progenitors.
Collapse
Affiliation(s)
- Ivonne Gamper
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, Aachen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Erickson RA, Liu X. Association of v-ErbA with Smad4 disrupts TGF-beta signaling. Mol Biol Cell 2009; 20:1509-19. [PMID: 19144825 PMCID: PMC2649266 DOI: 10.1091/mbc.e08-08-0836] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 12/15/2008] [Accepted: 01/05/2009] [Indexed: 11/11/2022] Open
Abstract
Disruption of the transforming growth factor-beta (TGF-beta) pathway is observed in the majority of cancers. To further understand TGF-beta pathway inactivation in cancer, we stably expressed the v-ErbA oncoprotein in TGF-beta responsive cells. v-ErbA participates in erythroleukemic transformation of cells induced by the avian erythroblastosis virus (AEV). Here we demonstrate that expression of v-ErbA was sufficient to antagonize TGF-beta-induced cell growth inhibition and that dysregulation of TGF-beta signaling required that v-ErbA associate with the Smad4 which sequesters Smad4 in the cytoplasm. We also show that AEV-transformed erythroleukemia cells were resistant to TGF-beta-induced growth inhibition and that TGF-beta sensitivity could be recovered by reducing v-ErbA expression. Our results reveal a novel mechanism for oncogenic disruption of TGF-beta signaling and provide a mechanistic explanation of v-ErbA activity in AEV-induced erythroleukemia.
Collapse
Affiliation(s)
- Richard A. Erickson
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado-Boulder, Boulder, CO 80309
| |
Collapse
|
7
|
Sen J, Harpavat S, Peters MA, Cepko CL. Retinoic acid regulates the expression of dorsoventral topographic guidance molecules in the chick retina. Development 2005; 132:5147-59. [PMID: 16251210 DOI: 10.1242/dev.02100] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Asymmetric expression of several genes in the early eye anlagen is required for the dorsoventral (DV) and anteroposterior (AP) patterning of the retina. Some of these early patterning genes play a role in determining the graded expression of molecules that are needed to form the retinotectal map. The polarized expression of retinoic acid synthesizing and degrading enzymes along the DV axis in the retina leads to several zones of varied retinoic acid (RA)activity. This is suggestive of RA playing a role in DV patterning of the retina. A dominant-negative form of the retinoic acid receptor α(DNhRARα) was expressed in the chick retina to block RA activity. RA signaling was found to play a role in regulating the expression of EphB2,EphB3 and ephrin B2, three molecules whose graded expression in the retina along the DV axis is important for establishing the correct retinotectal map. Blocking RA signaling by misexpression of a RA degrading enzyme, Cyp26A1 recapitulated some but not all the effects of DNhRARα. It also was found that Vax, a ventrally expressed transcription factor that regulates the expression of the EphB and ephrin B molecules, functions upstream of, or in parallel to, RA. Expression of DNhRARα led to increased levels of RA-synthesizing enzymes and loss of RA-degrading enzymes. Activation of such compensatory mechanisms when RA activity is blocked suggests that RA homeostasis is very strictly regulated in the retina.
Collapse
Affiliation(s)
- Jonaki Sen
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
8
|
Abstract
The v-Erb A oncoprotein of avian erythroblastosis virus is derived from c-Erb A, a hormone-activated transcription factor. Notably, v-Erb A has sustained multiple mutations relative to c-Erb A and functions as a constitutive transcriptional repressor. We report here an analysis of the contributions of these different mutations to v-Erb A function. Our experiments demonstrate that two amino-acid differences between v-Erb A and c-Erb A, located in the 'I-box,' alter the dimerization properties of the viral protein, resulting in more stable homodimer formation, increased corepressor binding, and increased target gene repression. An additional amino-acid difference between v- and c-Erb A, located in helix 3 of the hormone binding domain, renders corepressor binding by the viral protein more resistant to release by thyroid hormone. Finally, we report that a C-terminal truncation in v-Erb A not only inhibits exchange of corepressor and coactivator, as previously noted, but also permits v-Erb A to recruit both SMRT and N-CoR corepressors, whereas c-Erb A is selective for N-CoR. The latter two mutations in v-Erb A also impair its ability to suppress c-Jun function in response to T3 hormone. We propose that the acquisition of oncogenic potential by the v-Erb A protein was a multistep process involving a series of mutations that alter the transcriptional repressive properties of the viral protein through multiple mechanisms.
Collapse
Affiliation(s)
- Sangho Lee
- Section of Microbiology, Division of Biological Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Martin L Privalsky
- Section of Microbiology, Division of Biological Sciences, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA
- Correspondence: ML Privalsky; E-mail:
| |
Collapse
|
9
|
Bonamy GMC, Guiochon-Mantel A, Allison LA. Cancer promoted by the oncoprotein v-ErbA may be due to subcellular mislocalization of nuclear receptors. Mol Endocrinol 2005; 19:1213-30. [PMID: 15650025 DOI: 10.1210/me.2004-0204] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The retroviral v-ErbA oncoprotein is a highly mutated variant of the thyroid hormone receptor alpha (TRalpha), which is unable to bind T(3) and interferes with the action of TRalpha in mammalian and avian cancer cells. v-ErbA dominant-negative activity is attributed to competition with TRalpha for T(3)-responsive DNA elements and/or auxiliary factors involved in the transcriptional regulation of T(3)-responsive genes. However, competition models do not address the altered subcellular localization of v-ErbA and its possible implications in oncogenesis. Here, we report that v-ErbA dimerizes with TRalpha and the retinoid X receptor and sequesters a significant fraction of the two nuclear receptors in the cytoplasm. Recruitment of TRalpha to the cytoplasm by v-ErbA can be partially reversed in the presence of ligand and when chromatin is disrupted by the histone deacetylase inhibitor trichostatin A. These results define a new mode of action of v-ErbA and illustrate the importance of cellular compartmentalization in transcriptional regulation and oncogenesis.
Collapse
Affiliation(s)
- Ghislain M C Bonamy
- Department of Biology, College of William and Mary, P.O. Box 8795, Millington Hall 116, Williamsburg, VA 23187-8795, USA
| | | | | |
Collapse
|
10
|
DeLong LJ, Bonamy GMC, Fink EN, Allison LA. Nuclear export of the oncoprotein v-ErbA is mediated by acquisition of a viral nuclear export sequence. J Biol Chem 2004; 279:15356-67. [PMID: 14729678 DOI: 10.1074/jbc.m308214200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
v-ErbA, an oncogenic derivative of the thyroid hormone receptor alpha (TRalpha) carried by the avian erythroblastosis virus, contains several alterations including fusion of a portion of avian erythroblastosis virus Gag to its N terminus, N- and C-terminal deletions, and 13 amino acid substitutions. Nuclear export of v-ErbA occurs through a CRM1-mediated pathway. In contrast, nuclear export of TRalpha and another isoform, TRbeta, is CRM1-independent. To determine which amino acid changes in v-ErbA confer CRM1-dependent nuclear export, we expressed a panel of green and yellow fluorescent protein-tagged mutant and chimeric proteins in mammalian cells. The sensitivity of subcellular trafficking of these mutants to leptomycin B (LMB), a specific inhibitor of CRM1, was assessed by fluorescence microscopy. Our data showed that a nuclear export sequence resides within a 70-amino acid domain in the C-terminal portion of the p10 region of Gag, and in vitro binding assays demonstrated that Gag interacts directly with CRM1. However, a panel of ligand-binding domain mutants of v-ErbA lacking the Gag sequence exhibited greater nuclear localization in the presence of LMB, suggesting that the various amino acid substitutions/deletions may cause a conformation shift, unmasking an additional CRM1-dependent nuclear export sequence. In contrast, the altered DNA-binding domain of the oncoprotein did not contribute to CRM1-dependent nuclear export. Heterokaryon experiments revealed that v-ErbA did not undergo nucleocytoplasmic shuttling when the CRM1 export pathway was blocked by LMB treatment, suggesting that the ability to follow the export pathway used by TRalpha has been lost by the oncoprotein during its evolution. Our findings thus point to the intriguing possibility that acquisition of altered nuclear export capabilities contributes to the oncogenic properties of v-ErbA.
Collapse
Affiliation(s)
- Laura J DeLong
- Department of Biology, College of William and Mary, Williamsburg, Virginia 23187, USA
| | | | | | | |
Collapse
|
11
|
Bartůnek P, Králová J, Blendinger G, Dvorák M, Zenke M. GATA-1 and c-myb crosstalk during red blood cell differentiation through GATA-1 binding sites in the c-myb promoter. Oncogene 2003; 22:1927-35. [PMID: 12673198 DOI: 10.1038/sj.onc.1206281] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GATA-1 and c-Myb transcription factors represent key regulators of red blood cell development. GATA-1 is upregulated and c-myb proto-oncogene expression is downregulated when red cell progenitors differentiate into erythrocytes. Here we have employed a culture system, that faithfully recapitulates red blood cell differentiation in vitro, to follow the kinetics of GATA-1 and c-myb expression. We show that c-myb proto-oncogene expression is high in progenitors and effectively downregulated at the time when nuclear GATA-1 accumulates and cells differentiate into erythrocytes. Additionally, we identified two GATA-1 binding sites within the c-myb promoter and demonstrate that GATA-1 protein binds to these sites in vitro. Furthermore, GATA-1 represses c-myb expression through one of the GATA-1 binding sites in transient transfection experiments and this requires FOG-1. Thus, our study provides evidence for a direct molecular link between GATA-1 activity and c-myb proto-oncogene expression during terminal red cell differentiation.
Collapse
Affiliation(s)
- Petr Bartůnek
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | |
Collapse
|
12
|
Jouvenot Y, Ginjala V, Zhang L, Liu PQ, Oshimura M, Feinberg AP, Wolffe AP, Ohlsson R, Gregory PD. Targeted regulation of imprinted genes by synthetic zinc-finger transcription factors. Gene Ther 2003; 10:513-22. [PMID: 12621455 DOI: 10.1038/sj.gt.3301930] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epigenetic control of transcription is essential for mammalian development and its deregulation causes human disease. For example, loss of proper imprinting control at the IGF2-H19 domain is a hallmark of cancer and Beckwith-Wiedemann syndrome, with no targeted therapeutic approaches available. To address this deficiency, we engineered zinc-finger transcription proteins (ZFPs) that specifically activate or repress the IGF2 and H19 genes in a domain-dependent manner. Importantly, we used these ZFPs successfully to reactivate the transcriptionally silent IGF2 and H19 alleles, thus overriding the natural mechanism of imprinting and validating an entirely novel avenue for 'transcription therapy' of human disease.
Collapse
Affiliation(s)
- Y Jouvenot
- Sangamo BioSciences, Inc., Point Richmond Tech Center, Richmond, CA 94804, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Matthews JB, Fertuck KC, Celius T, Huang YW, Fong CJ, Zacharewski TR. Ability of structurally diverse natural products and synthetic chemicals to induce gene expression mediated by estrogen receptors from various species. J Steroid Biochem Mol Biol 2002; 82:181-94. [PMID: 12477484 DOI: 10.1016/s0960-0760(02)00159-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The ability of 14 structurally diverse estrogenic compounds to induce reporter gene expression mediated by estrogen receptors (ERs) from different species was examined. MCF-7 cells were transiently transfected with a Gal4-regulated luciferase reporter gene (17m5-G-Luc) and Gal4-ER chimeric receptors containing the D, E and F domains of the human alpha (Gal4-hERalphadef), mouse alpha (Gal4-mERalphadef), mouse beta (Gal4-mERbetadef), chicken (Gal4-cERalphadef), green anole (Gal4-aERalphadef), Xenopus (Gal4-xERdef) or rainbow trout alpha ERs (Gal4-rtERalphadef). The efficacy of 17beta-estradiol (E2) in inducing reporter gene expression was similar among the different constructs overall, with EC(50) values ranging from 0.05 to 0.7nM. However, Gal4-rtERalphadef had an EC(50) value at 37 degrees C of 28nM, though at 20 degrees C an EC(50) value of 1nM was observed. Despite a similar response to E2 treatment among the ERs, many differences were observed in the magnitude of the response to other structurally diverse chemicals. For example, coumestrol induced Gal4-mERbetadef- and Gal4-aERdef-mediated reporter gene expression 164- and 8-fold greater, respectively, than mediated with the other Gal4-ERs. As well, in contrast to results with other Gal4-ERs, alpha-zearalenol consistently induced Gal4-rtERalphadef-mediated reporter gene activity at lower concentrations than did E2. Overall, the results demonstrate that selected estrogenic compounds exhibit a differential ability to induce reporter gene activity mediated by ERs from different vertebrate species. These data also highlight the importance of incubation temperature when examining rtERalpha-mediated activity.
Collapse
Affiliation(s)
- J B Matthews
- Department of Biochemistry and Molecular Biology, Institute for Environmental Toxicology and National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | | | |
Collapse
|
14
|
Rietveld LE, Caldenhoven E, Stunnenberg HG. In vivo repression of an erythroid-specific gene by distinct corepressor complexes. EMBO J 2002; 21:1389-97. [PMID: 11889044 PMCID: PMC125357 DOI: 10.1093/emboj/21.6.1389] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To assess the mechanisms of repression of the erythroid-specific carbonic anhydrase II (CAII) locus we used chromatin immunoprecipitation and show that an NCoR-histone deacetylase (HDAC)3 complex is recruited by the nuclear receptor v-ErbA to the intronic HS2 enhancer turning it into a potent silencer. Furthermore we demonstrate that efficient CAII silencing requires binding of a MeCP2-targeted HDAC-containing corepressor complex to the hypermethylated CpG-island at the promoter. Activation of transcription by either AZAdC or thyroid hormone results in loss of one of the two corepressor complexes. Thyroid hormone further replaces the enhancer-bound NCoR-corepressor complex by the TRAP220 coactivator. Treatment with the HDAC inhibitor trichostatin A (TSA) causes activation of CAII transcription and histone H3 and H4 hyperacetylation at the enhancer, apparently without affecting binding of the two corepressor complexes. Unexpectedly, histone H3 and H4 at the fully repressed promoter are already hyperacetylated despite the close apposition of the MeCP2-targeted HDAC complex. Acetylation of histone H4, but not H3, at the promoter is moderately increased following TSA treatment. Our data suggest that the hyperacetylated but repressed CAII promoter is (partially) remodeled and primed for activation in v-ErbA-transformed cells.
Collapse
Affiliation(s)
| | | | - Hendrik G. Stunnenberg
- Department of Molecular Biology, NCMLS 191, University of Nijmegen, PO Box 9101, 6500 HB Nijmegen, The Netherlands
Corresponding author e-mail: L.E.G.Rietveld and E.Caldenhoven contributed equally to this work
| |
Collapse
|
15
|
Ingley E, Chappell D, Poon SY, Sarna MK, Beaumont JG, Williams JH, Stillitano JP, Tsai S, Leedman PJ, Tilbrook PA, Klinken SP. Thyroid hormone receptor-interacting protein 1 modulates cytokine and nuclear hormone signaling in erythroid cells. J Biol Chem 2001; 276:43428-34. [PMID: 11544260 DOI: 10.1074/jbc.m106645200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (Epo) and thyroid hormone (T(3)) are key molecules in the development of red blood cells. We have shown previously that the tyrosine kinase Lyn is involved in differentiation signals emanating from an activated erythropoietin receptor. Here we demonstrate that Lyn interacts with thyroid hormone receptor-interacting protein 1 (Trip-1), a transcriptional regulator associated with the T(3) receptor, providing a link between the Epo and T(3) signaling pathways. Trip-1 co-localized with Lyn and the T(3) receptor alpha in the cytoplasm/plasma membrane of erythroid cells but translocated to discrete nuclear foci shortly after Epo-induced differentiation. Our data reveal that T(3) stimulated the proliferation of immature erythroid cells, and inhibited maturation promoted by erythropoietin. Removal of T(3) reduced cell division and enhanced terminal differentiation. This was accompanied by large increases in the cell cycle inhibitor p27(Kip1) and by increasing expression of erythroid transcription factors GATA-1, EKLF, and NF-E2. Strikingly, a truncated Trip-1 inhibited both erythropoietin-induced maturation and T(3)-initiated cell division. This mutant Trip-1 acted in a dominant negative fashion by eliminating endogenous Lyn, elevating p27(Kip1), and blocking T(3) response elements. These data demonstrate that Trip-1 can simultaneously modulate responses involving both cytokine and nuclear receptors.
Collapse
Affiliation(s)
- E Ingley
- Laboratory for Cancer Medicine, Western Australian Institute for Medical Research, Royal Perth Hospital and the Department of Biochemistry, University of Western Australia, Perth, Western Australia 6000, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Heikenwälder MF, Koritschoner NP, Pajer P, Chaboissier MC, Kurz SM, Briegel KJ, Bartunek P, Zenke M. Molecular cloning, expression and regulation of the avian tubby-like protein 1 (tulp1) gene. Gene 2001; 273:131-9. [PMID: 11483369 DOI: 10.1016/s0378-1119(01)00578-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The tubby-like protein 1 (tulp1) gene is a member of the tubby multigene family which includes tub, tulp1, tulp2 and tulp3. Human and mouse tulp1 genes were cloned and mutations in tulp1 have been implicated in retinitis pigmentosa in man. Here we report on the cDNA cloning of the chicken tulp1 homologue and its protein product deduced from the nucleotide sequence. The chicken Tulp1 protein comprises 358 amino acids with a calculated molecular mass of 40 kDa. The overall structure of Tub and Tulp proteins, exemplified by the highly conserved C-terminal domain of 255 amino acids and the signature motif KLACE, is also preserved in chicken Tulp1. Phylogenetic analysis demonstrates that chicken tulp1 cDNA and protein are closely related to human and mouse tulp1. In addition, chicken tulp1 mRNA is abundantly expressed in retina similar to tulp1 expression in human and mouse. Two tulp1-specific transcripts of 2 and 3 kb in size were identified that showed differential regulation during embryonic and postnatal development. Finally, tulp1 mRNA was found to be expressed in chicken erythroid cells and upregulated by ligand-activated thyroid hormone receptor (TR alpha/c-erbA).
Collapse
Affiliation(s)
- M F Heikenwälder
- Max-Delbrück-Center for Molecular Medicine, MDC, Robert-Rössle Strasse 10, D-13122 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The nuclear hormone receptor superfamily includes receptors for thyroid and steroid hormones, retinoids and vitamin D, as well as different "orphan" receptors of unknown ligand. Ligands for some of these receptors have been recently identified, showing that products of lipid metabolism such as fatty acids, prostaglandins, or cholesterol derivatives can regulate gene expression by binding to nuclear receptors. Nuclear receptors act as ligand-inducible transcription factors by directly interacting as monomers, homodimers, or heterodimers with the retinoid X receptor with DNA response elements of target genes, as well as by "cross-talking" to other signaling pathways. The effects of nuclear receptors on transcription are mediated through recruitment of coregulators. A subset of receptors binds corepressor factors and actively represses target gene expression in the absence of ligand. Corepressors are found within multicomponent complexes that contain histone deacetylase activity. Deacetylation leads to chromatin compactation and transcriptional repression. Upon ligand binding, the receptors undergo a conformational change that allows the recruitment of multiple coactivator complexes. Some of these proteins are chromatin remodeling factors or possess histone acetylase activity, whereas others may interact directly with the basic transcriptional machinery. Recruitment of coactivator complexes to the target promoter causes chromatin decompactation and transcriptional activation. The characterization of corepressor and coactivator complexes, in concert with the identification of the specific interaction motifs in the receptors, has demonstrated the existence of a general molecular mechanism by which different receptors elicit their transcriptional responses in target genes.
Collapse
Affiliation(s)
- A Aranda
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain.
| | | |
Collapse
|
18
|
Rietveld LE, Caldenhoven E, Stunnenberg HG. Avian erythroleukemia: a model for corepressor function in cancer. Oncogene 2001; 20:3100-9. [PMID: 11420726 DOI: 10.1038/sj.onc.1204335] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcriptional regulation at the level of chromatin plays crucial roles during eukaryotic development and differentiation. A plethora of studies revealed that the acetylation status of histones is controlled by multi-protein complexes containing (de)acetylase activities. In the current model, histone deacetylases and acetyltransferases are recruited to chromatin by DNA-bound repressors and activators, respectively. Shifting the balance between deacetylation, i.e. repressive chromatin and acetylation, i.e. active chromatin can lead to aberrant gene transcription and cancer. In human acute promyelocytic leukemia (APL) and avian erythroleukemia (AEL), chromosomal translocations and/or mutations in nuclear hormone receptors, RARalpha [NR1B1] and TRalpha [NR1A1], yielded oncoproteins that deregulate transcription and alter chromatin structure. The oncogenic receptors are locked in their 'off' mode thereby constitutively repressing transcription of genes that are critical for differentiation of hematopoietic cells. AEL involves an oncogenic version of the chicken TRalpha, v-ErbA. Apart from repression by v-ErbA via recruitment of corepressor complexes, other repressors and corepressors appear to be involved in repression of v-ErbA target genes, such as carbonic anhydrase II (CAII). Reactivation of repressed genes in APL and AEL by chromatin modifying agents such as inhibitors of histone deacetylase or of methylation provides new therapeutic strategies in the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
- L E Rietveld
- Department of Molecular Biology, NCMLS, Geert Grooteplein Zuid 26, PO Box 9101 6500 HB Nijmegen, The Netherlands
| | | | | |
Collapse
|
19
|
Yoh SM, Privalsky ML. Transcriptional repression by thyroid hormone receptors. A role for receptor homodimers in the recruitment of SMRT corepressor. J Biol Chem 2001; 276:16857-67. [PMID: 11278601 DOI: 10.1074/jbc.m010022200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear hormone receptors, such as the thyroid hormone receptors (T3Rs) and retinoid X receptors (RXRs), are ligand-regulated transcription factors that control key aspects of metazoan gene expression. T3Rs can bind to DNA either as receptor homodimers or as heterodimers with RXRs. Once bound to DNA, nuclear hormone receptors regulate target gene expression by recruiting auxiliary proteins, denoted corepressors and coactivators. We report here that T3R homodimers assembled on DNA exhibit particularly strong interactions with the SMRT corepressor, whereas T3R.RXR heterodimers are inefficient at binding to SMRT. Mutants of T3R that exhibit enhanced repression properties, such as the v-Erb A oncoprotein or the T3Rbeta-Delta432 mutant found in human resistance to thyroid hormone syndrome, display enhanced homodimerization properties and exhibit unusually strong interactions with the SMRT corepressor. Significantly, the topology of a DNA binding site can determine whether that site recruits primarily homodimers or heterodimers and therefore whether corepressor is efficiently or inefficiently recruited to the resulting receptor-DNA complex. We suggest that T3R homodimers, and not heterodimers, may be important mediators of transcriptional repression and that the nature of the DNA binding site, by selecting for receptor homodimers or heterodimers, can influence the ability of the receptor to recruit corepressor.
Collapse
Affiliation(s)
- S M Yoh
- Section of Microbiology, Division of Biological Sciences, University of California, Davis, California 95616, USA
| | | |
Collapse
|
20
|
MESH Headings
- Animals
- Cell Nucleus/metabolism
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Rearrangement
- Hematopoiesis/genetics
- Humans
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/etiology
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/physiopathology
- Mice
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Proto-Oncogene Proteins
- RUNX1 Translocation Partner 1 Protein
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- F Guidez
- Leukaemia Research Fund Centre, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | | |
Collapse
|
21
|
Braliou GG, Ciana P, Klaassen W, Gandrillon O, Stunnenberg HG. The v-ErbA oncoprotein quenches the activity of an erythroid-specific enhancer. Oncogene 2001; 20:775-87. [PMID: 11314012 DOI: 10.1038/sj.onc.1204159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2000] [Revised: 11/22/2000] [Accepted: 12/06/2000] [Indexed: 11/08/2022]
Abstract
v-ErbA is a mutated variant of thyroid hormone receptor (TRalpha/NR1A1) borne by the Avian Erythroblastosis virus causing erythroleukemia. TRalpha is known to activate transcription of specific genes in the presence of its cognate ligand, T3 hormone, while in its absence it represses it. v-ErbA is unable to bind ligand, and hence is thought to contribute to leukemogenesis by actively repressing erythroid-specific genes such as the carbonic anhydrase II gene (CA II). In the prevailing model, v-ErbA occludes liganded TR from binding to its cognate elements and constitutively interacts with the corepressors NCoR/SMRT. We previously identified a v-ErbA responsive element (VRE) within a DNase I hypersensitive region (HS2) located in the second intron of the CA II gene. We now show that HS2 fulfils all the requirements for a genuine enhancer that functions independent of its orientation and position with a profound erythroid-specific activity in normal erythroid progenitors (T2ECs) and in leukemic erythroid cell lines. We find that the HS2 enhancer activity is governed by two adjacent GATA-factor binding sites. v-ErbA as well as unliganded TR prevent HS2 activity by nullifying the positive function of factors bound to GATA-sites. However, v-ErbA, in contrast to TR, does not convey active repression to silence the transcriptional activity intrinsic to a heterologous tk promoter. We propose that depending on the sequence and context of the binding site, v-ErbA contributes to leukemogenesis by occluding liganded TR as well as unliganded TR thereby preventing activation or repression, respectively.
Collapse
Affiliation(s)
- G G Braliou
- Department of Molecular Biology, NCMLS University of Nijmegen, Geert Groote plein 26 PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Abstract
Thyroid hormone is essential for normal development, differentiation, and metabolic balance. Thyroid hormone action is mediated by multiple thyroid hormone receptor isoforms derived from two distinct genes. The thyroid hormone receptors belong to a nuclear receptor superfamily that also includes receptors for other small lipophilic hormones. Thyroid hormone receptors function by binding to specific thyroid hormone-responsive sequences in promoters of target genes and by regulating transcription. Thyroid hormone receptors often form heterodimers with retinoid X receptors. Heterodimerization is regulated through distinct mechanisms that together determine the specificity and flexibility of the sequence recognition. Amino-terminal regions appear to modulate thyroid hormone receptor function in an isoform-dependent manner. Unliganded thyroid hormone receptor represses transcription through recruitment of a corepressor complex, which also includes Sin3A and histone deacetylase. Ligand binding alters the conformation of the thyroid hormone receptor in such a way as to release the corepressor complex and recruit a coactivator complex that includes multiple histone acetyltransferases, including a steroid receptor family coactivator, p300/CREB-binding protein-associated factor (PCAF), and CREB binding protein (CBP). The existence of histone-modifying activities in the transcriptional regulatory complexes indicates an important role of chromatin structure. Stoichiometric, structural, and sequence-specific rules for coregulator interaction are beginning to be understood, as are aspects of the tissue specificity of hormone action. Moreover, knockout studies suggest that the products of two thyroid hormone receptor genes mediate distinct functions in vivo. The increased understanding of the structure and function of thyroid hormone receptors and their interacting proteins has markedly clarified the molecular mechanisms of thyroid hormone action.
Collapse
Affiliation(s)
- J Zhang
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | |
Collapse
|
23
|
Urnov FD, Yee J, Sachs L, Collingwood TN, Bauer A, Beug H, Shi YB, Wolffe AP. Targeting of N-CoR and histone deacetylase 3 by the oncoprotein v-erbA yields a chromatin infrastructure-dependent transcriptional repression pathway. EMBO J 2000; 19:4074-90. [PMID: 10921888 PMCID: PMC306612 DOI: 10.1093/emboj/19.15.4074] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Transcriptional repression by nuclear hormone receptors is thought to result from a unison of targeting chromatin modification and disabling the basal transcriptional machinery. We used Xenopus oocytes to compare silencing effected by the thyroid hormone receptor (TR) and its mutated version, the oncoprotein v-ErbA, on partly and fully chromatinized TR-responsive templates in vivo. Repression by v-ErbA was not as efficient as that mediated by TR, was significantly more sensitive to histone deacetylase (HDAC) inhibitor treatment and, unlike TR, v-ErbA required mature chromatin to effect repression. We find that both v-ErbA and TR can recruit the corepressor N-CoR, but, in contrast to existing models, show a concomitant enrichment for HDAC3 that occurs without an association with Sin3, HDAC1/RPD3, Mi-2 or HDAC5. We propose a requirement for chromatin infrastructure in N-CoR/HDAC3-effected repression and suggest that the inability of v-ErbA to silence on partly chromatinized templates may stem from its impaired capacity to interfere with basal transcriptional machinery function. In support of this notion, we find v-ErbA to be less competent than TR for binding to TFIIB in vitro and in vivo.
Collapse
Affiliation(s)
- F D Urnov
- Sangamo Biosciences, Point Richmond Technology Centre, 501 Canal Boulevard, Suite A100, Richmond, CA 94804, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wolffe AP, Collingwood TN, Li Q, Yee J, Urnov F, Shi YB. Thyroid hormone receptor, v-ErbA, and chromatin. VITAMINS AND HORMONES 2000; 58:449-92. [PMID: 10668407 DOI: 10.1016/s0083-6729(00)58033-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The thyroid hormone receptor and the highly related viral oncoprotein v-erbA are found exclusively in the nucleus as stable constituents of chromatin. Unlike most transcriptional regulators, the thyroid hormone receptor binds with comparable affinity to naked and nucleosomal DNA. In vitro reconstitution experiments and in vivo genomic footprinting have delineated the chromatin structural features that facilitate association with the receptor. Chromatin bound thyroid hormone receptor and v-erbA generate Dnase I hypersensitive sites independent of ligand. The unliganded thyroid hormone receptor and v-erbA associate with a corepressor complex containing NCoR, SIN3, and histone deacetylase. The enzymatic activity of the deacetylase and a chromatin environment are essential for the dominant repression of transcription by both the unliganded thyroid hormone receptor and v-erbA. In the presence of ligand, the thyroid hormone receptor undergoes a conformational change that weakens interactions with the corepressor complex while facilitating the recruitment of transcriptional coactivators such as p300 and PCAF possessing histone acetyltransferase activity. The ligand-bound thyroid hormone receptor directs chromatin disruption events in addition to histone acetylation. Thus, the thyroid hormone receptor and v-erbA make very effective use of their stable association with chromatin and their capacity to alter the chromatin environment as a major component of the transcription regulation process. This system provides an exceptionally useful paradigm for investigating the structural and functional consequences of targeted chromatin modification.
Collapse
Affiliation(s)
- A P Wolffe
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-5431, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kaunisto K, Fleming RE, Kneer J, Sly WS, Rajaniemi H. Regional expression and androgen regulation of carbonic anhydrase IV and II in the adult rat epididymis. Biol Reprod 1999; 61:1521-6. [PMID: 10569998 DOI: 10.1095/biolreprod61.6.1521] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Carbonic anhydrase (CA) is implicated in the acidification of epididymal fluid and thereby in the regulation of sperm maturation and motility. Among the CA isoenzymes, CA IV and II have been shown to be present in the rat epididymal duct epithelium. In the present study, we examined the expression and androgen regulation of CA IV and II mRNAs along the epididymal duct. Northern blot analysis revealed the presence of CA II mRNA in all regions of the epididymis with the strongest signal in the corpus region, while CA IV mRNA was expressed predominantly in the corpus epididymidis. Three days after bilateral castration, CA IV and II mRNAs were decreased by 80-90% in the corpus epididymidis. Testosterone (T) replacement maintained the expression of CA mRNAs at 50-60% of the control levels, indicating that circulating androgens alone are not sufficient to recover the CA expression in the corpus region. However, unilateral castration did not affect the mRNA levels of CA IV and II, suggesting that factors in testicular fluid do not play a major role in the regulation of CA expression in the corpus epididymidis. Immunoblot analysis showed that CA IV protein levels decreased 3 days after castration, while T administration maintained the protein expression virtually at the precastration levels. These data demonstrate that mRNAs for CA IV and II are predominantly expressed in the corpus region of the rat epididymis and can be regulated by androgens in that region. The present data suggest that the regulation of CA expression in the corpus epididymidis by androgens contributes to the known androgen effects on epididymal acidification.
Collapse
Affiliation(s)
- K Kaunisto
- Department of Anatomy and Cell Biology, University of Oulu, 90401 Oulu, Finland.
| | | | | | | | | |
Collapse
|
26
|
Masugi J, Tamori Y, Kasuga M. Inhibition of adipogenesis by a COOH-terminally truncated mutant of PPARgamma2 in 3T3-L1 cells. Biochem Biophys Res Commun 1999; 264:93-9. [PMID: 10527847 DOI: 10.1006/bbrc.1999.1488] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor that is thought to be an important regulator of adipocyte differentiation. This ligand-dependent transcription factor is also activated by thiazolidinediones, a new class of synthetic antidiabetic drugs, resulting in a marked adipogenic response in cultured cells and enhanced insulin sensitivity in vivo. The importance of the COOH-terminal region of PPARgamma2 in thiazolidinedione-induced adipogenesis has now been investigated by expression of a mutant protein (PPARgamma2-DeltaC) that lacks the COOH-terminal 16 amino acids of full-length PPARgamma2. The mutant protein failed to bind a thiazolidinedione ligand, but its ability to bind the peroxisome proliferator response element was similar to that of the wild-type protein. Expression of PPARgamma2-DeltaC inhibited the thiazolidinedione-induced increase in trans-activation activity of endogenous PPARgamma in CV-1 cells. Furthermore, the mutant protein prevented thiazolidinedione-induced adipogenesis in 3T3-L1 cells, whereas expression of recombinant wild-type PPARgamma2 promoted adipogenesis. These data show not only that the COOH-terminal region of PPARgamma2 is indispensable for thiazolidinedione-induced adipogenesis mediated by this protein in 3T3-L1 cells, but also that the PPARgamma2-DeltaC mutant acts in a dominant negative manner by interfering with the access of endogenous PPARgamma to the peroxisome proliferator response element of target genes.
Collapse
Affiliation(s)
- J Masugi
- Second Department of Internal Medicine, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | | | | |
Collapse
|
27
|
Essner JJ, Johnson RG, Hackett PB. Overexpression of thyroid hormone receptor alpha 1 during zebrafish embryogenesis disrupts hindbrain patterning and implicates retinoic acid receptors in the control of hox gene expression. Differentiation 1999; 65:1-11. [PMID: 10448709 DOI: 10.1046/j.1432-0436.1999.6510001.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nuclear receptors play key roles in anterior/posterior (A/P) axis formation during vertebrate embryogenesis. Within this gene family, retinoic acid receptors and retinoic acid itself have profound influences on the establishment of the A/P axis. Thyroid hormone receptors are expressed during early periods of development, long before the establishment of the thyroid gland, and are able to interact with retinoic acid receptors. Here we examined the ability of the thyroid hormone receptor alpha 1 to affect early embryonic development by mRNA injection of either repressor or activator forms of the thyroid hormone receptor. Overexpression of either the thyroid hormone receptor alpha 1 or a constitutive repressor form, v-erbA, caused a swelling in the rostral hindbrain. These defects were associated with disorganization and loss of rhombomere borders as well as an increase in the number of acetylcholine esterase positive cells. This phenotype correlated with a reduction in hoxa1 expression during gastrulation. Furthermore, injection of either thyroid hormone receptor alpha 1 or v-erbA mRNA repressed a reporter gene that contained a retinoic acid response element, demonstrating the ability of the thyroid hormone receptor alpha 1 to repress retinoic acid signaling during gastrulation. In contrast, embryos treated with retinoic acid alone or embryos injected with thyroid hormone receptor alpha 1 and treated with the thyroid hormone analog TRIAC displayed a similar set of defects, including loss of the midbrain-hindbrain border and severe disruption of the rostral hindbrain. These studies support the involvement of retinoic acid and its receptors in the direct control of Hox gene expression and the early patterning of the zebrafish central nervous system.
Collapse
Affiliation(s)
- J J Essner
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108-1095, USA.
| | | | | |
Collapse
|
28
|
Lin RJ, Kao HY, Ordentlich P, Evans RM. The transcriptional basis of steroid physiology. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:577-85. [PMID: 10384323 DOI: 10.1101/sqb.1998.63.577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- R J Lin
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
29
|
Abstract
The remarkable success of retinoic acid in the treatment of acute promyelocytic leukemias and the subsequent discovery that mutant forms of a retinoid acid receptor (RARalpha) are invariably associated with this disease has generated considerable interest among both clinicians and basic scientists. Studies both in cell culture and in transgenic animals suggest that mutant RARs interfere with normal retinoid-mediated transactivation and granulocytic differentiation. More recently, a pivotal link between transcriptional silencing, the oncogenic functions of RAR mutants, and hormonal responses in APL patients has been established. These studies have greatly advanced our understanding of the molecular changes involved in leukemogenesis, have helped to reveal new aspects of cellular differentiation, and might lead to improved treatment strategies for human leukemias.
Collapse
Affiliation(s)
- R J Lin
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
30
|
Li Q, Sachs L, Shi YB, Wolffe AP. Modification of Chromatin Structure by the Thyroid Hormone Receptor. Trends Endocrinol Metab 1999; 10:157-164. [PMID: 10322411 DOI: 10.1016/s1043-2760(98)00141-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pioneering experiments and recent observations have established the thyroid hormone receptor as a master manipulator of the chromosomal environment in targeting the activation and repression of transcription. Here we review how the thyroid hormone receptor is assembled into chromatin, where in the absence of thyroid hormone the receptor recruits histone deacetylase to silence transcription. On addition of hormone, the receptor undergoes a conformational change that leads to the release of deacetylase, while facilitating the recruitment of transcriptional coactivators that act as histone acetyltransferases. We discuss the biological importance of these observations for gene control by the thyroid hormone receptor and for oncogenic transformation by the mutated thyroid hormone receptor, v-ErbA.
Collapse
Affiliation(s)
- Q Li
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, NIH, Bldg 18T, Rm 106, Bethesda, MD 20892-5431, USA
| | | | | | | |
Collapse
|
31
|
Wessely O, Bauer A, Quang CT, Deiner EM, von Lindern M, Mellitzer G, Steinlein P, Ghysdael J, Beug H. A novel way to induce erythroid progenitor self renewal: cooperation of c-Kit with the erythropoietin receptor. Biol Chem 1999; 380:187-202. [PMID: 10195426 DOI: 10.1515/bc.1999.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Red blood cells are of vital importance for oxygen transport in vertebrates. Thus, their formation during development and homeostasis requires tight control of both progenitor proliferation and terminal red cell differentiation. Self renewal (i.e. long-term proliferation without differentiation) of committed erythroid progenitors has recently been shown to contribute to this regulation. Avian erythroid progenitors expressing the EGF receptor/c-ErbB (SCF/TGFalpha progenitors) can be induced to long-term proliferation by the c-ErbB ligand transforming growth factor alpha and the steroids estradiol and dexamethasone. These progenitors have not yet been described in mammals and their factor requirements are untypical for adult erythroid progenitors. Here we describe a second, distinct type of erythroid progenitor (EpoR progenitors) which can be established from freshly isolated bone marrow and is induced to self renew by ligands relevant for erythropoiesis, i.e. erythropoietin, stem cell factor, the ligand for c-Kit and the glucocorticoid receptor ligand dexamethasone. Limiting dilution cloning indicates that these EpoR progenitors are derived from normal BFU-E/CFU-E. For a detailed study, mEpoR progenitors were generated by retroviral expression of the murine Epo receptor in bone marrow erythroblasts. These progenitors carry out the normal erythroid differentiation program in recombinant differentiation factors only. We show that mEpoR progenitors are more mature than SCF/TGFalpha progenitors and also do no longer respond to transforming growth factor alpha and estradiol. In contrast they are now highly sensitive to low levels of thyroid hormone, facilitating their terminal maturation into erythrocytes.
Collapse
Affiliation(s)
- O Wessely
- Institute of Molecular Pathology, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Stunnenberg HG, Garcia-Jimenez C, Betz JL. Leukemia: the sophisticated subversion of hematopoiesis by nuclear receptor oncoproteins. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1423:F15-33. [PMID: 9989207 DOI: 10.1016/s0304-419x(98)00036-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- H G Stunnenberg
- Department of Molecular Biology, University of Nijmegen, The Netherlands.
| | | | | |
Collapse
|
33
|
Ciana P, Braliou GG, Demay FG, von Lindern M, Barettino D, Beug H, Stunnenberg HG. Leukemic transformation by the v-ErbA oncoprotein entails constitutive binding to and repression of an erythroid enhancer in vivo. EMBO J 1998; 17:7382-94. [PMID: 9857194 PMCID: PMC1171083 DOI: 10.1093/emboj/17.24.7382] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
v-ErbA, a mutated thyroid hormone receptor alpha (TRalpha), is thought to contribute to avian erythroblastosis virus (AEV)-induced leukemic transformation by constitutively repressing transcription of target genes. However, the binding of v-ErbA or any unliganded nuclear receptor to a chromatin-embedded response element as well as the role of the N-CoR-SMRT-HDAC co-repressor complex in mediating repression remain hypothetical. Here we identify a v-ErbA-response element, VRE, in an intronic DNase I hypersensitive site (HS2) of the chicken erythroid carbonic anhydrase II (CAII) gene. In vivo footprinting shows that v-ErbA is constitutively bound to this HS2-VRE in transformed, undifferentiated erythroblasts along with other transcription factors like GATA-1. Transfection assays show that the repressed HS2 region can be turned into a potent enhancer in v-ErbA-expressing cells by mutation of the VRE. Differentiation of transformed cells alleviates v-ErbA binding concomitant with activation of CAII transcription. Co-expression of a gag-TRalpha fusion protein in AEV-transformed cells and addition of ligand derepresses CAII transcription. Treatment of transformed cells with the histone deacetylase inhibitor, trichostatin A, derepresses the endogenous, chromatin-embedded CAII gene, while a transfected HS2-enhancer construct remains repressed. Taken together, our data suggest that v-ErbA prevents CAII activation by 'neutralizing' in cis the activity of erythroid transcription factors.
Collapse
Affiliation(s)
- P Ciana
- Gene Expression Program, EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Growth and Differentiation of Human Stem Cell Factor/Erythropoietin-Dependent Erythroid Progenitor Cells In Vitro. Blood 1998. [DOI: 10.1182/blood.v92.10.3658] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Stem cell factor (SCF) and erythropoietin (Epo) effectively support erythroid cell development in vivo and in vitro. We have studied here an SCF/Epo-dependent erythroid progenitor cell from cord blood that can be efficiently amplified in liquid culture to large cell numbers in the presence of SCF, Epo, insulin-like growth factor-1 (IGF-1), dexamethasone, and estrogen. Additionally, by changing the culture conditions and by administration of Epo plus insulin, such progenitor cells effectively undergo terminal differentiation in culture and thereby faithfully recapitulate erythroid cell differentiation in vitro. This SCF/Epo-dependent erythroid progenitor is also present in CD34+ peripheral blood stem cells and human bone marrow and can be isolated, amplified, and differentiated in vitro under the same conditions. Thus, highly homogenous populations of SCF/Epo-dependent erythroid progenitors can be obtained in large cell numbers that are most suitable for further biochemical and molecular studies. We demonstrate that such cells express the recently identified adapter protein p62dok that is involved in signaling downstream of the c-kit/SCF receptor. Additionally, cells express the cyclin-dependent kinase (CDK) inhibitors p21cip1 and p27kip1 that are highly induced when cells differentiate. Thus, the in vitro system described allows the study of molecules and signaling pathways involved in proliferation or differentiation of human erythroid cells.
Collapse
|
35
|
Abstract
Stem cell factor (SCF) and erythropoietin (Epo) effectively support erythroid cell development in vivo and in vitro. We have studied here an SCF/Epo-dependent erythroid progenitor cell from cord blood that can be efficiently amplified in liquid culture to large cell numbers in the presence of SCF, Epo, insulin-like growth factor-1 (IGF-1), dexamethasone, and estrogen. Additionally, by changing the culture conditions and by administration of Epo plus insulin, such progenitor cells effectively undergo terminal differentiation in culture and thereby faithfully recapitulate erythroid cell differentiation in vitro. This SCF/Epo-dependent erythroid progenitor is also present in CD34+ peripheral blood stem cells and human bone marrow and can be isolated, amplified, and differentiated in vitro under the same conditions. Thus, highly homogenous populations of SCF/Epo-dependent erythroid progenitors can be obtained in large cell numbers that are most suitable for further biochemical and molecular studies. We demonstrate that such cells express the recently identified adapter protein p62dok that is involved in signaling downstream of the c-kit/SCF receptor. Additionally, cells express the cyclin-dependent kinase (CDK) inhibitors p21cip1 and p27kip1 that are highly induced when cells differentiate. Thus, the in vitro system described allows the study of molecules and signaling pathways involved in proliferation or differentiation of human erythroid cells.
Collapse
|
36
|
Bauer A, Mikulits W, Lagger G, Stengl G, Brosch G, Beug H. The thyroid hormone receptor functions as a ligand-operated developmental switch between proliferation and differentiation of erythroid progenitors. EMBO J 1998; 17:4291-303. [PMID: 9687498 PMCID: PMC1170763 DOI: 10.1093/emboj/17.15.4291] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The avian erythroblastosis virus (AEV) oncoprotein v-ErbA represents a mutated, oncogenic thyroid hormone receptor alpha (c-ErbA/ TRalpha). v-ErbA cooperates with the stem cell factor-activated, endogenous receptor tyrosine kinase c-Kit to induce self-renewal and to arrest differentiation of primary avian erythroblasts, the AEV transformation target cells. In this cooperation, v-ErbA substitutes for endogenous steroid hormone receptor function required for sustained proliferation of non-transformed erythroid progenitors. In this paper, we propose a novel concept of how v-ErbA transforms erythroblasts. Using culture media strictly depleted from thyroid hormone (T3) and retinoids, the ligands for c-ErbA/TRalpha and its co-receptor RXR, we show that overexpressed, unliganded c-ErbA/ TRalpha closely resembles v-ErbA in its activity on primary erythroblasts. In cooperation with ligand-activated c-Kit, c-ErbA/ TRalpha causes steroid-independent, long-term proliferation and tightly blocks differentiation. Activation of c-ErbA/ TRalpha by physiological T3 levels causes the loss of self-renewal capacity and induces synchronous, terminal differentiation under otherwise identical conditions. This T3-induced switch in erythroid progenitor development is correlated with a decrease of c-ErbA-associated histone deacetylase activity. Our results suggest that the crucial role of the mutations activating v-erbA as an oncogene is to 'freeze' c-ErbA/ TRalpha in its non-liganded, repressive conformation and to facilitate its overexpression.
Collapse
Affiliation(s)
- A Bauer
- Institute of Molecular Pathology (I.M.P.), Vienna Biocenter, Austria
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
In the absence of triiodothyronine (T3), thyroid hormone receptors (TRs) repress transcription of many genes; in the presence of T3, TRs activate transcription of those same genes. Both of these events are dependent on interactions between TRs and other nuclear proteins. TRs bind to specific DNA sequences, generally found in the 5' flanking regions of target genes. In the unliganded state, TRs interact with one of several corepressor proteins. These proteins, in turn, interact with a series of other proteins, which includes histone deacetylases. Histone deacetylation tightens chromatin structure, thus impairing access of critical transcription factors and thereby repressing transcription. In addition, corepressors may invoke mechanisms of gene repression independent of histone deacetylation. The binding of T3 causes a conformational change in the TR that results in release of the corepressor and recruitment of coactivator proteins. Several coactivator proteins appear to bind the ligand-occupied TR as a multiprotein complex. Opposite to corepressors, coactivators acetylate histones, thereby loosening chromatin structure and facilitating access of key transcription factors. Again, mechanisms independent of histone acetylation also may be involved. Overall, gene activation by T3 is a two-step process; removal of active repression, and induction of transcription to levels above the "neutral" state.
Collapse
Affiliation(s)
- R J Koenig
- Division of Endocrinology, University of Michigan Medical Center, Ann Arbor 48109-0678, USA
| |
Collapse
|
38
|
Abstract
The physiological effects of progestins are mediated by the progesterone receptor, a member of the steroid/nuclear receptor superfamily. As progesterone is required for maintenance of pregnancy, its receptor has been a target for pharmaceuticals. Here we report the 1.8 A crystal structure of a progesterone-bound ligand-binding domain of the human progesterone receptor. The nature of this structure explains the receptor's selective affinity for progestins and establishes a common mode of recognition of 3-oxy steroids by the cognate receptors. Although the overall fold of the progesterone receptor is similar to that found in related receptors, the progesterone receptor has a quite different mode of dimerization. A hormone-induced stabilization of the carboxy-terminal secondary structure of the ligand-binding domain of the progesterone receptor accounts for the stereochemistry of this distinctive dimer, explains the receptor's characteristic pattern of ligand-dependent protease resistance and its loss of repression, and indicates how the anti-progestin RU486 might work in birth control. The structure also indicates that the analogous 3-keto-steroid receptors may have a similar mechanism of action.
Collapse
Affiliation(s)
- S P Williams
- Department of Molecular Biophysics and Biochemistry, and the Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
39
|
Kass SU, Wolffe AP. DNA methylation, nucleosomes and the inheritance of chromatin structure and function. NOVARTIS FOUNDATION SYMPOSIUM 1998; 214:22-35; discussion 36-50. [PMID: 9601010 DOI: 10.1002/9780470515501.ch3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The replication of the genome during S phase is a crucial period for the establishment and maintenance of programmes of differential gene activity. Existing chromosomal structures are disrupted during replication and reassembled on both daughter chromatids. The capacity to reassemble a particular chromatin structure with defined functional properties reflects the commitment of a cell type to a particular state of determination. The core and linker histones and their modifications, enzymes that modify the histones, DNA methylation and proteins that recognize methylated DNA within chromatin may all play independent or interrelated roles in defining the functional properties of chromatin. Pre-existing protein-DNA interactions and DNA methylation in a parental chromosome will influence the structure and function of daughter chromosomes generating an epigenetic imprint. In this chapter we consider the events occurring at the eukaryotic replication fork, their consequences for pre-existing chromosomal structures and how an epigenetic imprint might be maintained.
Collapse
Affiliation(s)
- S U Kass
- Department of Experimental Molecular Biology
| | | |
Collapse
|
40
|
Wessely O, Deiner EM, Lim KC, Mellitzer G, Steinlein P, Beug H. Mammalian granulocyte-macrophage colony-stimulating factor receptor expressed in primary avian hematopoietic progenitors: lineage-specific regulation of proliferation and differentiation. J Cell Biol 1998; 141:1041-51. [PMID: 9585421 PMCID: PMC2132768 DOI: 10.1083/jcb.141.4.1041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cytokine Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) regulates proliferation, differentiation, and apoptosis during myelopoiesis and erythropoiesis. Structure-function relationships of GM-CSF interactions with its receptor (GM-R), the biochemistry of GM-R signal transduction, and GM-CSF action in vivo are relatively well understood. Much less is known, however, about GM-R function in primary hematopoietic cells. In this paper we show that expression of the human GM-R in a heterologous cell system (primary avian erythroid and myeloid cells) confirms respective results in murine or human cell lines, but also provides new insights how the GM-R regulates progenitor proliferation and differentiation. As expected, the hGM-CSF stimulated myeloid progenitor proliferation and differentiation and enhanced erythroid progenitor proliferation during terminal differentiation. In the latter cells, however, the hGM-R only partially substituted for the activities of the erythropoietin receptor (EpoR). It failed to replace the EpoR in its cooperation with c-Kit to induce long-term proliferation of erythroid progenitors. Furthermore, the hGM-R alpha chain specifically interfered with EpoR signaling, an activity neither seen for the betac subunit of the receptor complex alone, nor for the alpha chain of the closely related Interleukin-3 receptor. These results point to a novel role of the GM-R alpha chain in defining cell type-specific functions of the GM-R.
Collapse
Affiliation(s)
- O Wessely
- Institute for Molecular Pathology, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
41
|
Tzagarakis-Foster C, Privalsky ML. Phosphorylation of thyroid hormone receptors by protein kinase A regulates DNA recognition by specific inhibition of receptor monomer binding. J Biol Chem 1998; 273:10926-32. [PMID: 9556570 DOI: 10.1074/jbc.273.18.10926] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thyroid hormone receptor (T3R) alpha-1 and its oncogenic derivative, the v-ERB A protein, are phosphorylated by cAMP-dependent protein kinase A. Although this phosphorylation appears to be necessary for the oncogenic properties of v-ERB A, the mechanism by which phosphorylation influences the functions of v-ERB A and of the normal T3R has not been established. The protein kinase A phosphorylation site in T3Ralpha-1 is within a domain that is known to contribute to the DNA recognition properties of these receptors. We therefore analyzed the effects of protein kinase A phosphorylation on DNA recognition by the normal T3Ralpha and by the v-ERB A oncoprotein. We report here that phosphorylation of these receptor derivatives does not significantly alter the overall affinity of receptor dimers for DNA. However, phosphorylation does notably alter DNA recognition by preventing, or greatly inhibiting, the ability of these receptors to bind to DNA as protein monomers. These studies suggest that the phosphorylation of T3Ralpha-1 and v-ERB A by protein kinase A may provide a means of altering promoter recognition through a post-translational modification.
Collapse
Affiliation(s)
- C Tzagarakis-Foster
- Section of Microbiology and Section of Molecular and Cellular Biology, Division of Biological Sciences, University of California, Davis, California 95616, USA
| | | |
Collapse
|
42
|
Abstract
The thyroid hormone receptor genes, TRalpha and TRbeta, differ in developmental expression and tissue distribution. TRbeta knockout mice have goiter, elevated thyroid hormone and TSH levels, and a functional auditory defect. In contrast, mice with TRalpha 1/alpha2 inactivation have thyroid hypoplasia, low serum thyroid hormone levels, growth arrest and delayed small intestine maturation. Mice with selective TRalpha1 inactivation have apparent normal growth and development, but have bradycardia and reduced body temperature. The dramatic differences between these mice with TRbeta and TRalpha gene inactivations indicate the differential function of these genes. The influence of these gene inactivations on thyroid-stimulating hormone regulation is central to the resulting phenotypes.
Collapse
Affiliation(s)
- J H Hsu
- Department of Medicine, UCLA School of Medicine, Molecular Endocrinology Laboratory, Building 114, Room 230, West Los Angeles VA Medical Center, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| | | |
Collapse
|
43
|
Selmi-Ruby S, Casanova J, Malhotra S, Roussett B, Raaka BM, Samuels HH. Role of the conserved C-terminal region of thyroid hormone receptor-alpha in ligand-dependent transcriptional activation. Mol Cell Endocrinol 1998; 138:105-14. [PMID: 9685219 DOI: 10.1016/s0303-7207(98)00016-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ligand binding domain (LBD) of thyroid hormone (T3) receptors contains subdomains that participate in transcriptional activation, hormone-relieved repression and dimerization. A sequence conserved within the nuclear receptor superfamily is found at positions 397-405 of the 408-amino acid chicken T3 receptor-alpha (cTR alpha) and is deleted in the related avian v-erbA. Since v-erbA exhibits compromised ligand binding and transcriptional activation, this conserved region may play a role in ligand-dependent transcriptional activation. Transfections reveal that cTR alpha(1-392) and site-directed mutants cTR alpha(L398R) and cTR alpha(F399E) are inactive, while cTR alpha(1-403) displays reduced ligand-dependent transcriptional activity. The loss of transcriptional activity in cTR alpha(1-392) is not caused by impaired DNA binding or receptor dimer formation. Proteolytic protection assays reveal that both transcriptionally active and inactive cTR alpha derivatives undergo T3-mediated conformational changes. Gal4 chimeras containing the final 16, 35 or 44 amino acids of cTR alpha indicate that the conserved C-terminal region does not function as an independent transactivation domain. Our results are consistent with a model in which ligand plays a structural role to position the conserved C-terminal regions of cTR alpha and related receptors in a transcriptionally active conformation.
Collapse
Affiliation(s)
- S Selmi-Ruby
- Division of Molecular Endocrinology, Department of Medicine, New York University Medical Center, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
44
|
Miyoshi Y, Nakamura H, Tagami T, Sasaki S, Dorin RI, Taniyama M, Nakao K. Comparison of the functional properties of three different truncated thyroid hormone receptors identified in subjects with resistance to thyroid hormone. Mol Cell Endocrinol 1998; 137:169-76. [PMID: 9605519 DOI: 10.1016/s0303-7207(97)00244-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The tau4 domain in the extreme carboxyl (C) terminal region of thyroid hormone receptor (TR) is important to transactivation. We identified three truncated TRbeta1s with 11 (F451X), 13 (E449X) and 16 (C446X) amino acid deletions within this domain in subjects with resistance to thyroid hormone (RTH). F451X and C446X were found in a 6-year-old Japanese girl and a 31-year-old American male, respectively, who had both severe mental retardation. E449X was identified in a 16-year-old Japanese boy with no remarkable clinical symptoms except for goiter. Transient expression study revealed that all three mutants had negligible T3 binding and transcriptional activities. Each mutant TRbeta1 exhibited not only very strong dominant negative activity against wild TRbeta1, but also marked silencing activity. Interestingly, the dominant negative activity and silencing activity were significantly stronger in F451X than in E449X and C446X (P < 0.05). Gel-shift experiments revealed no apparent differences in homodimer formations of wild-type or mutant TRbeta1 proteins and in heterodimer formations with retinoid X receptor (RXR). These observations indicate that the tau4 domain affects diverse TR functions, and that the region between 11 and 13 C-terminal amino acids influences ligand-independent TR functions, including dominant negative and silencing activities. The central nervous system involvement is not necessarily determined by the dominant negative potency of the mutant TRbeta1 and other environmental or genetic factors may influence the RTH manifestations.
Collapse
Affiliation(s)
- Y Miyoshi
- Department of Medicine and Clinical Science, Kyoto University School of Medicine, Sakyoku, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Ito M, Yu RN, Jameson JL. Steroidogenic factor-1 contains a carboxy-terminal transcriptional activation domain that interacts with steroid receptor coactivator-1. Mol Endocrinol 1998; 12:290-301. [PMID: 9482669 DOI: 10.1210/mend.12.2.0059] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The orphan nuclear receptor, steroidogenic factor-1 (SF-1), plays an important role in the development of the adrenal gland and in sexual differentiation. SF-1 regulates the transcription of variety of genes, including several steroidogenic enzymes, Müllerian inhibiting substance, and gonadotropin genes. In this report, we sought to identify domains in SF-1 that are required for transactivation and to determine whether SF-1 interacts with a subset of known coactivators. Natural variants of the FTZ-F1 locus include embryonal long terminal repeat-binding protein (ELP)-1, ELP-2, and SF-1, which share the DNA-binding domain. Analyses of the transcriptional activity of these variants revealed that the activity of ELP-2 and SF-1 was much greater than ELP-1, which contains a distinct carboxy terminus. Further studies were performed using GAL4-SF-1 fusion proteins that were constructed by replacement of the zinc finger region and FTZ-F1 box of SF-1 with the DNA-binding domain of GAL4. Elimination of the putative AF-2 domain at the carboxy terminus of GAL4-SF-1 proteins resulted in a complete loss of transactivation. Several lines of evidence demonstrated that SF-1 interacts with steroid receptor coactivator-1 (SRC-1). Full-length SRC-1 enhanced GAL4-SF-1-mediated transactivation, whereas a dominant negative form of SRC-1, consisting of its interaction domain alone, inhibited the activity of GAL4-SF-1. In mammalian two-hybrid assays, fusion of the VP16 activation domain to the interaction domain of SRC-1 confirmed the interaction between SRC-1 and GAL4-SF-1 and demonstrated that the AF-2 domain is required for interaction with SRC-1. Furthermore, SRC-1, together with the cAMP responsive element binding protein (CBP) or a closely related factor, p300, synergistically enhanced transcriptional activity of GAL4-SF-1. We conclude that the carboxy-terminal AF-2 region of SF-1 functions as an activation domain and that SRC-1 and CBP/p300 are components of the coactivator complex with SF-1.
Collapse
Affiliation(s)
- M Ito
- Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
46
|
Wong J, Patterton D, Imhof A, Guschin D, Shi YB, Wolffe AP. Distinct requirements for chromatin assembly in transcriptional repression by thyroid hormone receptor and histone deacetylase. EMBO J 1998; 17:520-34. [PMID: 9430643 PMCID: PMC1170402 DOI: 10.1093/emboj/17.2.520] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Histone deacetylase and chromatin assembly contribute to the control of transcription of the Xenopus TRbetaA gene promoter by the heterodimer of Xenopus thyroid hormone receptor and 9-cis retinoic acid receptor (TR-RXR). Addition of the histone deacetylase inhibitor Trichostatin A (TSA) relieves repression of transcription due to chromatin assembly following microinjection of templates into Xenopus oocyte nuclei, and eliminates regulation of transcription by TR-RXR. Expression of Xenopus RPD3p, the catalytic subunit of histone deacetylase, represses the TRbetaA promoter, but only after efficient assembly of the template into nucleosomes. In contrast, the unliganded TR-RXR represses templates only partially assembled into nucleosomes; addition of TSA also relieves this transcriptional repression. This result indicates the distinct requirements for chromatin assembly in mediating transcriptional repression by the deacetylase alone, compared with those needed in the presence of unliganded TR-RXR. In addition, whereas hormone-bound TR-RXR targets chromatin disruption as assayed through changes in minichromosome topology and loss of a regular nucleosomal ladder on micrococcal nuclease digestion, addition of TSA relieves transcriptional repression but does not disrupt chromatin. Thus, TR-RXR can facilitate transcriptional repression in the absence of hormone through mechanisms in addition to recruitment of deacetylase, and disrupts chromatin structure through mechanisms in addition to the inhibition or release of deacetylase.
Collapse
Affiliation(s)
- J Wong
- Laboratory of Molecular Embryology, National Institute of Child Health and Human Development, Bethesda, MD 20892-5431, USA
| | | | | | | | | | | |
Collapse
|
47
|
Gill RK, Atkins LM, Hollis BW, Bell NH. Mapping the domains of the interaction of the vitamin D receptor and steroid receptor coactivator-1. Mol Endocrinol 1998; 12:57-65. [PMID: 9440810 DOI: 10.1210/mend.12.1.0048] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The vitamin D receptor (VDR) binds to the vitamin D response element (VDRE) and mediates the effects of the biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], on gene expression. The VDR binds to the VDRE as a heterodimeric complex with retinoid X receptor. In the present study, we have used a yeast two-hybrid system to clone complementary DNA that codes for VDR-interacting protein(s). We found that the human steroid receptor coactivator-1 (SRC-1) interacts with the VDR in a ligand-dependent manner, as demonstrated by beta-galactosidase production. The interaction of the VDR and the SRC-1 takes place at physiological concentrations of 1,25(OH)2D3. A 48.2-fold stimulation of beta-galactosidase activity was observed in the presence of 10(-10) M 1,25-(OH)2D3. In addition, a direct interaction between the ligand-activated glutathione-S-transferase-VDR and 35S-labeled SRC-1 was observed in vitro. Deletion-mutation analysis of the VDR established that the ligand-dependent activation domain (AF-2) of the VDR is required for the interaction with SRC-1. One deletion mutant, pGVDR-(1-418), bound the ligand but failed to interact with the SRC-1, whereas another deletion mutant, pGVDR-(1-423), bound the ligand and interacted with the SRC-1. We demonstrated that all the deletion mutants were expressed as analyzed by a Gal4 DNA-binding domain antibody. Deletion mutation analysis of the SRC-1 demonstrated that 27 amino acids (DPCNTNPTPMTKATPEEIKLEAQSQFT) of the SRC-1 are essential for interaction with the AF-2 motif of the VDR.
Collapse
Affiliation(s)
- R K Gill
- Department of Medicine, Medical University of South Carolina, Department of Veterans Affairs Medical Center, Charleston 29401-5799, USA
| | | | | | | |
Collapse
|
48
|
Zhang F, Yajima T, Masuda H, Odani A, Yamauchi O. Weak Interactions in Ternary Copper(II) Complexes with Iodotyrosinates. Biological Significance of the Iodines in Thyroid Hormones. Inorg Chem 1997; 36:5777-5784. [PMID: 11670199 DOI: 10.1021/ic9705397] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structures and spectroscopic studies have been carried out on ternary copper(II) complexes, Cu(DA)(AA), with aromatic amino acids (AA = 3,5-diiodo-L-tyrosinate (L-I(2)tyr), 3-iodo-L-tyrosinate (L-Ityr), L-tyrosinate) and diamines (DA = 1,10-phenanthroline, 2,2'-bipyridine (bpy), 2-(aminomethyl)pyridine, histamine (hista), or ethylenediamine). The charge transfer (CT) absorption bands observed in the near UV region and the CD spectral magnitude anomaly observed in the d-d region indicated an effective aromatic ring stacking interaction between the side-chain phenol ring of AA and the aromatic diamine DA in the complexes in solution. Two complexes, [Cu(bpy)(L-Ityr)(H(2)O)].NO(3).CH(3)OH.H(2)O (1) and [Cu(hista)(L-I(2)tyrO(-))(H(2)O)](2).2H(2)O (2), where O(-) represents the deprotonated form of the phenol hydroxyl group, were isolated as single crystals, and their structures were determined by X-ray analysis. Both 1 and 2 crystallized in the monoclinic space group P2(1), with a = 7.549(1) Å, b = 11.431(1) Å, c = 14.292(2) Å, beta = 100.08(1) degrees, and Z = 2 for 1 and a = 9.9642(9) Å, b = 15.825(1) Å, c = 12.451(1) Å, beta = 91.565(7) degrees, and Z = 2 for 2. The molecular structures of 1 and 2 revealed the intramolecular aromatic ring stacking between DA and the iodinated phenol ring of Ityr and I(2)tyrO(-), respectively, in correspondence with the solution spectral observations. The stacking with hista was found to be weaker than that with bpy from the interplanar distances in 1 and 2 and the CT band intensities in solution. The molecular and crystal structures revealed some intermolecular iodine-aromatic ring and iodine-oxygen interactions as well as some hydrogen bonds involving the phenol hydroxyl group.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan, and Department of Applied Chemistry, Faculty of Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466, Japan
| | | | | | | | | |
Collapse
|
49
|
Qi JS, Desai-Yajnik V, Yuan Y, Samuels HH. Constitutive activation of gene expression by thyroid hormone receptor results from reversal of p53-mediated repression. Mol Cell Biol 1997; 17:7195-207. [PMID: 9372952 PMCID: PMC232577 DOI: 10.1128/mcb.17.12.7195] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Thyroid hormone receptor (T3R) is a member of the steroid hormone receptor gene family of nuclear hormone receptors. In most cells T3R activates gene expression only in the presence of its ligand, L-triiodothyronine (T3). However, in certain cell types (e.g., GH4C1 cells) expression of T3R leads to hormone-independent constitutive activation. This activation by unliganded T3R occurs with a variety of gene promoters and appears to be independent of the binding of T3R to specific thyroid hormone response elements (TREs). Previous studies indicate that this constitutive activation results from the titration of an inhibitor of transcription. Since the tumor suppresser p53 is capable of repressing a wide variety of gene promoters, we considered the possibility that the inhibitor is p53. Evidence to support this comes from studies indicating that expression of p53 blocks T3R-mediated constitutive activation in GH4C1 cells. In contrast with hormone-independent activation by T3R, p53 had little or no effect on T3-dependent stimulation which requires TREs. In addition, p53 mutants which oligomerize with wild-type p53 and interfere with its function also increase promoter activity. This enhancement is of similar magnitude to but is not additive with the stimulation mediated by unliganded T3R, suggesting that they target the same factor. Since p53 mutants are known to target wild-type p53 in the cell, this suggests that T3R also interacts with p53 in vivo and that endogenous levels of p53 act to suppress promoter activity. Evidence supporting both functional and physical interactions of T3R and p53 in the cell is presented. The DNA binding domain (DBD) of T3R is important in mediating constitutive activation, and the receptor DBD appears to functionally interact with the N terminus of p53 in the cell. In vitro binding studies indicate that the T3R DBD is important for interaction of T3R with p53 and that this interaction is reduced by T3. These findings are consistent with the in vivo studies indicating that p53 blocks constitutive activation but not ligand-dependent stimulation. These studies provide insight into mechanisms by which unliganded nuclear hormone receptors can modulate gene expression and may provide an explanation for the mechanism of action of the v-erbA oncoprotein, a retroviral homolog of chicken T3R alpha.
Collapse
Affiliation(s)
- J S Qi
- Department of Pharmacology, New York University Medical Center, New York 10016, USA
| | | | | | | |
Collapse
|
50
|
Essner JJ, Breuer JJ, Essner RD, Fahrenkrug SC, Hackett PB. The zebrafish thyroid hormone receptor alpha 1 is expressed during early embryogenesis and can function in transcriptional repression. Differentiation 1997; 62:107-17. [PMID: 9447705 DOI: 10.1046/j.1432-0436.1997.6230107.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nuclear receptors are a large family of ligand dependent transcription factors which participate in many diverse processes during development. In this report, we describe the cloning of the zebrafish thyroid hormone receptor alpha 1 (TR alpha 1) gene, the cellular counterpart of the viral oncogene v-erbA. TR alpha 1 is expressed during oogenesis and maternally supplied to the embryo. TR alpha 1 is expressed again after the mid blastula transition. By examining the effects of increased expression of TR alpha 1 on expression of a reporter gene which responds to both TR alpha 1 and retinoic acid receptors (RARs), we show that the zebrafish TR alpha 1 can act as a repressor during early zebrafish development before thyroid hormone is present in the embryo. In addition, our data suggest that TR alpha 1 can repress retinoic acid (RA)-signaling during early development. We propose that TR alpha 1 functions during early development as a transcriptional repressor, similar to the constitutive repressor activity of its viral counterpart v-erbA, which regulates anterior-posterior (A/P) patterning by repressing RA-signaling.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blastocyst/metabolism
- Blotting, Northern
- Cloning, Molecular
- Embryo, Nonmammalian/metabolism
- Gastrula/metabolism
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Molecular Sequence Data
- Oogenesis/physiology
- RNA, Messenger/analysis
- Receptors, Retinoic Acid/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/physiology
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Ribonucleases/metabolism
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Tretinoin/metabolism
- Zebrafish/embryology
- Zebrafish/genetics
Collapse
Affiliation(s)
- J J Essner
- Department of Genetics and Cell Biology, University of Minnesota, St. Paul 55108-1095, USA
| | | | | | | | | |
Collapse
|