1
|
You Z, Masai H. Assembly, Activation, and Helicase Actions of MCM2-7: Transition from Inactive MCM2-7 Double Hexamers to Active Replication Forks. BIOLOGY 2024; 13:629. [PMID: 39194567 DOI: 10.3390/biology13080629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
In this review, we summarize the processes of the assembly of multi-protein replisomes at the origins of replication. Replication licensing, the loading of inactive minichromosome maintenance double hexamers (dhMCM2-7) during the G1 phase, is followed by origin firing triggered by two serine-threonine kinases, Cdc7 (DDK) and CDK, leading to the assembly and activation of Cdc45/MCM2-7/GINS (CMG) helicases at the entry into the S phase and the formation of replisomes for bidirectional DNA synthesis. Biochemical and structural analyses of the recruitment of initiation or firing factors to the dhMCM2-7 for the formation of an active helicase and those of origin melting and DNA unwinding support the steric exclusion unwinding model of the CMG helicase.
Collapse
Affiliation(s)
- Zhiying You
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo 156-8506, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
2
|
Khamit A, Chakraborty P, Zahorán S, Villányi Z, Orvos H, Hermesz E. Stress-Induced Changes in Nucleocytoplasmic Localization of Crucial Factors in Gene Expression Regulation. Int J Mol Sci 2024; 25:3895. [PMID: 38612704 PMCID: PMC11012061 DOI: 10.3390/ijms25073895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
This study investigates the toxic effect of harmful materials, unfiltered by the placenta, on neonatal umbilical cord (UC) vessels, focusing on stress-induced adaptations in transcriptional and translational processes. It aims to analyze changes in pathways related to mRNA condensate formation, transcriptional regulation, and DNA damage response under maternal smoking-induced stress. UC vessels from neonates born to smoking (Sm) and nonsmoking mothers (Ctr) were examined. Immunofluorescence staining and confocal microscopy assessed the localization of key markers, including Transcription Complex Subunit 1 (CNOT1) and the largest subunit of RNA polymerase II enzyme (RPB1). Additionally, markers of DNA damage response, such as Poly(ADP-ribose) polymerase-1, were evaluated. In Sm samples, dissolution of CNOT1 granules in UC vessels was observed, potentially aiding stalled translation and enhancing transcription via RPB1 assembly and translocation. Control vessels showed predominant cytoplasmic RPB1 localization. Despite adaptive responses, Sm endothelial cells exhibited significant damage, indicated by markers like Poly(ADP-ribose) polymerase-1. Ex vivo metal treatment on control vessels mirrored Sm sample alterations, emphasizing marker roles in cell survival under toxic exposure. Maternal smoking induces specific molecular adaptations in UC vessels, affecting mRNA condensate formation, transcriptional regulation, and DNA damage response pathways. Understanding these intricate molecular mechanisms could inform interventions to improve neonatal health outcomes and mitigate adverse effects of toxic exposure during pregnancy.
Collapse
Affiliation(s)
- Ali Khamit
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary; (A.K.); (P.C.); (S.Z.); (Z.V.)
| | - Payal Chakraborty
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary; (A.K.); (P.C.); (S.Z.); (Z.V.)
| | - Szabolcs Zahorán
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary; (A.K.); (P.C.); (S.Z.); (Z.V.)
| | - Zoltán Villányi
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary; (A.K.); (P.C.); (S.Z.); (Z.V.)
| | - Hajnalka Orvos
- Department of Obstetrics and Gynecology, Albert Szent-Györgyi Medical School, University of Szeged, H-6701 Szeged, Hungary;
| | - Edit Hermesz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, H-6701 Szeged, Hungary; (A.K.); (P.C.); (S.Z.); (Z.V.)
| |
Collapse
|
3
|
Shintomi K. Making Mitotic Chromosomes in a Test Tube. EPIGENOMES 2022; 6:20. [PMID: 35893016 PMCID: PMC9326633 DOI: 10.3390/epigenomes6030020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Mitotic chromosome assembly is an essential preparatory step for accurate transmission of the genome during cell division. During the past decades, biochemical approaches have uncovered the molecular basis of mitotic chromosomes. For example, by using cell-free assays of frog egg extracts, the condensin I complex central for the chromosome assembly process was first identified, and its functions have been intensively studied. A list of chromosome-associated proteins has been almost completed, and it is now possible to reconstitute structures resembling mitotic chromosomes with a limited number of purified factors. In this review, I introduce how far we have come in understanding the mechanism of chromosome assembly using cell-free assays and reconstitution assays, and I discuss their potential applications to solve open questions.
Collapse
Affiliation(s)
- Keishi Shintomi
- Chromosome Dynamics Laboratory, RIKEN, Wako 351-0198, Saitama, Japan
| |
Collapse
|
4
|
Saito Y, Santosa V, Ishiguro KI, Kanemaki MT. MCMBP promotes the assembly of the MCM2-7 hetero-hexamer to ensure robust DNA replication in human cells. eLife 2022; 11:77393. [PMID: 35438632 PMCID: PMC9018068 DOI: 10.7554/elife.77393] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/08/2022] [Indexed: 12/26/2022] Open
Abstract
The MCM2–7 hetero-hexamer is the replicative DNA helicase that plays a central role in eukaryotic DNA replication. In proliferating cells, the expression level of the MCM2–7 hexamer is kept high, which safeguards the integrity of the genome. However, how the MCM2–7 hexamer is assembled in living cells remains unknown. Here, we revealed that the MCM-binding protein (MCMBP) plays a critical role in the assembly of this hexamer in human cells. MCMBP associates with MCM3 which is essential for maintaining the level of the MCM2–7 hexamer. Acute depletion of MCMBP demonstrated that it contributes to MCM2–7 assembly using nascent MCM3. Cells depleted of MCMBP gradually ceased to proliferate because of reduced replication licensing. Under this condition, p53-positive cells exhibited arrest in the G1 phase, whereas p53-null cells entered the S phase and lost their viability because of the accumulation of DNA damage, suggesting that MCMBP is a potential target for killing p53-deficient cancers.
Collapse
Affiliation(s)
- Yuichiro Saito
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan
| | - Venny Santosa
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Japan
| |
Collapse
|
5
|
Abstract
DNA replication in eukaryotic cells initiates from large numbers of sites called replication origins. Initiation of replication from these origins must be tightly controlled to ensure the entire genome is precisely duplicated in each cell cycle. This is accomplished through the regulation of the first two steps in replication: loading and activation of the replicative DNA helicase. Here we describe what is known about the mechanism and regulation of these two reactions from a genetic, biochemical, and structural perspective, focusing on recent progress using proteins from budding yeast. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London, UK;
| | - John F X Diffley
- Chromosome Replication Laboratory, The Francis Crick Institute, London, UK;
| |
Collapse
|
6
|
Zeng T, Guan Y, Li YK, Wu Q, Tang XJ, Zeng X, Ling H, Zou J. The DNA replication regulator MCM6: An emerging cancer biomarker and target. Clin Chim Acta 2021; 517:92-98. [PMID: 33609557 DOI: 10.1016/j.cca.2021.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 01/07/2023]
Abstract
MCM6 is a significant DNA replication regulator that plays a crucial role in sustaining the cell cycle. In many cancer cells, MCM6 expression is enhanced. For example, persistently increased expression of MCM6 promotes the formation, development and progression of hepatocellular carcinoma (HCC). Up- and down-regulation studies have indicated that MCM6 regulates cell cycle, proliferation, metastasis, immune response and the maintenance of the DNA replication system. MCM6 can also regulate downstream signaling such as MEK/ERK thus promoting carcinogenesis. Accordingly, MCM6 may represent a sensitive and specific biomarker to predict adverse progression and poor outcome. Furthermore, inhibition of MCM6 may be an effective cancer treatment. The present review summarizes the latest results on the inactivating and activating functions of MCM6, underlining its function in carcinogenesis. Further studies of the carcinogenic functions of MCM6 may provide novel insight into cancer biology and shed light on new approaches for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Tian Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Yang Guan
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330000, PR China
| | - Yu-Kun Li
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Qing Wu
- Department of Digestive Medical, The Affiliated Nanhua Hospital, University of South China, Hengyang 421002, PR China
| | - Xiao-Jun Tang
- Department of Spinal Surgery, The Second Affiliated Hospital of University of South China, Hengyang, Hunan 421001, PR China
| | - Xin Zeng
- Department of Histology and Embryology, Chongqing Three Gorges Medical College, Wanzhou, Chongqing 404000, PR China
| | - Hui Ling
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| | - Juan Zou
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
7
|
Ponnusamy M, Liu F, Zhang YH, Li RB, Zhai M, Liu F, Zhou LY, Liu CY, Yan KW, Dong YH, Wang M, Qian LL, Shan C, Xu S, Wang Q, Zhang YH, Li PF, Zhang J, Wang K. Long Noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) Regulates Cardiomyocyte Proliferation and Cardiac Repair. Circulation 2019; 139:2668-2684. [PMID: 30832495 DOI: 10.1161/circulationaha.118.035832] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The adult mammalian cardiomyocytes lose their proliferative capacity, which is responsible for cardiac dysfunction and heart failure following injury. The molecular mechanisms underlying the attenuation of adult cardiomyocyte proliferation remain largely unknown. Because long noncoding RNAs (lncRNAs) have a critical role in the development of cardiovascular problems, we investigated whether lncRNAs have any role in the regulation of cardiomyocyte proliferation and cardiac repair. METHODS Using bioinformatics and initial analysis, we identified an lncRNA, named CPR (cardiomyocyte proliferation regulator), that has a potential regulatory role in cardiomyocyte proliferation. For in vivo experiments, we generated CPR knockout and cardiac-specific CPR-overexpressing mice. In isolated cardiomyocytes, we used adenovirus for silencing (CPR-small interfering RNA) or overexpressing CPR. To investigate the mechanisms of CPR function in cardiomyocyte proliferation, we performed various analyses including quantitative reverse transcription-polymerase chain reaction, Western blot, histology, cardiac function (by echocardiography), transcriptome analyses (microarray assay), RNA pull-down assay, and chromatin immunoprecipitation assay. RESULTS CPR level is comparatively higher in the adult heart than in the fetal stage. The silencing of CPR significantly increased cardiomyocyte proliferation in postnatal and adult hearts. Moreover, CPR deletion restored the heart function after myocardial injury, which was evident from increased cardiomyocyte proliferation, improvement of myocardial function, and reduced scar formation. In contrast, the neonatal cardiomyocyte proliferation and cardiac regeneration were remarkably suppressed in CPR-overexpressing mice or adeno-associated virus serotype 9-CPR-overexpressing heart. These results indicate that CPR acts as a negative regulator of cardiomyocyte proliferation and regeneration. Next, we found that CPR targets minichromosome maintenance 3, an initiator of DNA replication and cell cycle progression, to suppress cardiomyocyte proliferation. CPR silenced minichromosome maintenance 3 expression through directly interacting and recruiting DNMT3A to its promoter cysteine-phosphate-guanine sites, as evident from decreased minichromosome maintenance 3 promoter methylation and increased minichromosome maintenance 3 expression in CPR knocked-down cardiomyocytes and CPR knockout mouse heart. These results were confirmed in CPR-overexpressing cardiomyocytes and CPR-overexpressing mouse heart. CONCLUSIONS Together, our findings identified that CPR is a suppressor of cardiomyocyte proliferation and indicated that lncRNAs take part in the regulation of cardiomyocyte proliferation and cardiac repair. Our study provides an lncRNA-based therapeutic strategy for effective cardiac repair and regeneration.
Collapse
Affiliation(s)
- Murugavel Ponnusamy
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, China (M.P., L.-Y.Z., C.-Y.L., K.-W.L., Y.-H.D., M.W., L.-L.Q., C.S., S.X., Q.W., Yan-Hui Zhang, P.-F.L., K.W.)
| | - Fang Liu
- Center of Diabetic Systems Medicine, Guangxi Key Laboratory of Excellence, and Department of Anatomy, Guilin Medical University, China (Fang Liu)
| | - Yu-Hui Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (Yu-Hui Zhang, M.Z., J.Z.)
| | - Rui-Bei Li
- School of Professional Studies, Northwestern University, Chicago, IL (R.-B.L.)
| | - Mei Zhai
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (Yu-Hui Zhang, M.Z., J.Z.)
| | - Fei Liu
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine at Scott & White, Temple, TX (Fei Liu)
| | - Lu-Yu Zhou
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, China (M.P., L.-Y.Z., C.-Y.L., K.-W.L., Y.-H.D., M.W., L.-L.Q., C.S., S.X., Q.W., Yan-Hui Zhang, P.-F.L., K.W.)
| | - Cui-Yun Liu
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, China (M.P., L.-Y.Z., C.-Y.L., K.-W.L., Y.-H.D., M.W., L.-L.Q., C.S., S.X., Q.W., Yan-Hui Zhang, P.-F.L., K.W.)
| | - Kao-Wen Yan
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, China (M.P., L.-Y.Z., C.-Y.L., K.-W.L., Y.-H.D., M.W., L.-L.Q., C.S., S.X., Q.W., Yan-Hui Zhang, P.-F.L., K.W.)
| | - Yan-Han Dong
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, China (M.P., L.-Y.Z., C.-Y.L., K.-W.L., Y.-H.D., M.W., L.-L.Q., C.S., S.X., Q.W., Yan-Hui Zhang, P.-F.L., K.W.)
| | - Man Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, China (M.P., L.-Y.Z., C.-Y.L., K.-W.L., Y.-H.D., M.W., L.-L.Q., C.S., S.X., Q.W., Yan-Hui Zhang, P.-F.L., K.W.)
| | - Li-Li Qian
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, China (M.P., L.-Y.Z., C.-Y.L., K.-W.L., Y.-H.D., M.W., L.-L.Q., C.S., S.X., Q.W., Yan-Hui Zhang, P.-F.L., K.W.)
| | - Chan Shan
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, China (M.P., L.-Y.Z., C.-Y.L., K.-W.L., Y.-H.D., M.W., L.-L.Q., C.S., S.X., Q.W., Yan-Hui Zhang, P.-F.L., K.W.)
| | - Sheng Xu
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, China (M.P., L.-Y.Z., C.-Y.L., K.-W.L., Y.-H.D., M.W., L.-L.Q., C.S., S.X., Q.W., Yan-Hui Zhang, P.-F.L., K.W.)
| | - Qi Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, China (M.P., L.-Y.Z., C.-Y.L., K.-W.L., Y.-H.D., M.W., L.-L.Q., C.S., S.X., Q.W., Yan-Hui Zhang, P.-F.L., K.W.)
| | - Yan-Hui Zhang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, China (M.P., L.-Y.Z., C.-Y.L., K.-W.L., Y.-H.D., M.W., L.-L.Q., C.S., S.X., Q.W., Yan-Hui Zhang, P.-F.L., K.W.)
| | - Pei-Feng Li
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, China (M.P., L.-Y.Z., C.-Y.L., K.-W.L., Y.-H.D., M.W., L.-L.Q., C.S., S.X., Q.W., Yan-Hui Zhang, P.-F.L., K.W.)
| | - Jian Zhang
- State Key Laboratory of Cardiovascular Disease, Heart Failure Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China (Yu-Hui Zhang, M.Z., J.Z.)
| | - Kun Wang
- Center for Developmental Cardiology, Institute for Translational Medicine, College of Medicine, Qingdao University, China (M.P., L.-Y.Z., C.-Y.L., K.-W.L., Y.-H.D., M.W., L.-L.Q., C.S., S.X., Q.W., Yan-Hui Zhang, P.-F.L., K.W.)
| |
Collapse
|
8
|
Kose HB, Larsen NB, Duxin JP, Yardimci H. Dynamics of the Eukaryotic Replicative Helicase at Lagging-Strand Protein Barriers Support the Steric Exclusion Model. Cell Rep 2019; 26:2113-2125.e6. [PMID: 30784593 PMCID: PMC6381796 DOI: 10.1016/j.celrep.2019.01.086] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 12/19/2018] [Accepted: 01/24/2019] [Indexed: 12/01/2022] Open
Abstract
Progression of DNA replication depends on the ability of the replisome complex to overcome nucleoprotein barriers. During eukaryotic replication, the CMG helicase translocates along the leading-strand template and unwinds the DNA double helix. While proteins bound to the leading-strand template efficiently block the helicase, the impact of lagging-strand protein obstacles on helicase translocation and replisome progression remains controversial. Here, we show that CMG and replisome progressions are impaired when proteins crosslinked to the lagging-strand template enhance the stability of duplex DNA. In contrast, proteins that exclusively interact with the lagging-strand template influence neither the translocation of isolated CMG nor replisome progression in Xenopus egg extracts. Our data imply that CMG completely excludes the lagging-strand template from the helicase central channel while unwinding DNA at the replication fork, which clarifies how two CMG helicases could freely cross one another during replication initiation and termination.
Collapse
Affiliation(s)
- Hazal B Kose
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT London, UK
| | - Nicolai B Larsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, NW1 1AT London, UK.
| |
Collapse
|
9
|
Niu G, Wang D, Pei Y, Sun L. Systematic identification of key genes and pathways in the development of invasive cervical cancer. Gene 2017; 618:28-41. [PMID: 28341182 DOI: 10.1016/j.gene.2017.03.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/13/2017] [Accepted: 03/16/2017] [Indexed: 11/30/2022]
|
10
|
Parker MW, Botchan MR, Berger JM. Mechanisms and regulation of DNA replication initiation in eukaryotes. Crit Rev Biochem Mol Biol 2017; 52:107-144. [PMID: 28094588 DOI: 10.1080/10409238.2016.1274717] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.
Collapse
Affiliation(s)
- Matthew W Parker
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Michael R Botchan
- b Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - James M Berger
- a Department of Biophysics and Biophysical Chemistry , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
11
|
Tani Y, Maronpot RR, Foley JF, Haseman JK, Walker NJ, Nyska A. Follicular Epithelial Cell Hypertrophy Induced by Chronic Oral Administration of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin in Female Harlan Sprague—Dawley Rats. Toxicol Pathol 2016; 32:41-9. [PMID: 14713547 DOI: 10.1080/01926230490260952] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo- p-dioxin (TCDD) affects the thyroid morphologically and/or functionally in adult animals. Recently, the National Toxicology Program conducted a 2-year gavage study of TCDD in female Harlan Sprague—Dawley rats. The only treatment-related alterations found in thyroid follicles were decreased luminal size and increased height of the follicular epithelial cells, without prominent protrusion into the lumen. The present study elucidated the nature of these follicular lesions. Thyroid glands of 10 rats each from the control, high (100 ng/kg/day)-dose, and stop-study (100 ng/kg/day, 30 weeks; vehicle to study termination) groups in the 2-year study were evaluated microscopically. Twenty randomly selected follicles were measured morphometrically in each animal. TCDD treatment significantly decreased the mean ratio of luminal/epithelial areas and increased the mean sectional epithelial height of the high-dose group compared to controls. Thyroid sections were immunostained with antibody against minichromosome maintenance (MCM) proteins, a novel cell-cycle biomarker. The MCM labeling index of the high-dose group was significantly higher than that of the control; however, the TUNEL labeling index was also higher in the high-dose group than the control. All data from the stop group were comparable to those from controls. These results indicate that the follicular cell response was hypertrophic and reversible. This information should contribute to diagnosis of nonneoplastic thyroid follicular lesions in rats.
Collapse
Affiliation(s)
- Yoshiro Tani
- Laboratory of Experimental Pathology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | |
Collapse
|
12
|
Shinya M, Machiki D, Henrich T, Kubota Y, Takisawa H, Mimura S. Evolutionary diversification of MCM3 genes in Xenopus laevis and Danio rerio. Cell Cycle 2015; 13:3271-81. [PMID: 25485507 DOI: 10.4161/15384101.2014.954445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Embryonic cell cycles of amphibians are rapid and lack zygotic transcription and checkpoint control. At the mid-blastula transition, zygotic transcription is initiated and cell divisions become asynchronous. Several cell cycle-related amphibian genes retain 2 distinct forms, maternal and zygotic, but little is known about the functional differences between these 2 forms of proteins. The minichromosome maintenance (MCM) 2-7 complex, consisting of 6 MCM proteins, plays a central role in the regulation of eukaryotic DNA replication. Almost all eukaryotes retain just a single MCM gene for each subunit. Here we report that Xenopus and zebrafish have 2 copies of MCM3 genes, one of which shows a maternal and the other a zygotic expression pattern. Phylogenetic analysis shows that the Xenopus and zebrafish zygotic MCM3 genes are more similar to their mammalian MCM3 ortholog, suggesting that maternal MCM3 was lost during evolution in most vertebrate lineages. Maternal MCM3 proteins in these 2 species are functionally different from zygotic MCM3 proteins because zygotic, but not maternal, MCM3 possesses an active nuclear localization signal in its C-terminal region, such as mammalian MCM3 orthologs do. mRNA injection experiments in zebrafish embryos show that overexpression of maternal MCM3 impairs proliferation and causes developmental defects, whereas zygotic MCM3 has a much weaker effect. This difference is brought about by the difference in their C-terminal regions, which contain putative nuclear localization signals; swapping the C-terminal region between maternal and zygotic genes diminishes the developmental defects. This study suggests that evolutionary diversification has occurred in MCM3 genes, leading to distinct functions, possibly as an adaption to the rapid DNA replication required for early development of Xenopus and zebrafish.
Collapse
Affiliation(s)
- Minori Shinya
- a Genetic Strains Research Center; National Institute of Genetics ; Mishima , Shizuoka , Japan
| | | | | | | | | | | |
Collapse
|
13
|
Hast BE, Cloer EW, Goldfarb D, Li H, Siesser PF, Yan F, Walter V, Zheng N, Hayes DN, Major MB. Cancer-derived mutations in KEAP1 impair NRF2 degradation but not ubiquitination. Cancer Res 2013; 74:808-17. [PMID: 24322982 DOI: 10.1158/0008-5472.can-13-1655] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NRF2 is a transcription factor that mediates stress responses. Oncogenic mutations in NRF2 localize to one of its two binding interfaces with KEAP1, an E3 ubiquitin ligase that promotes proteasome-dependent degradation of NRF2. Somatic mutations in KEAP1 occur commonly in human cancer, where KEAP1 may function as a tumor suppressor. These mutations distribute throughout the KEAP1 protein but little is known about their functional impact. In this study, we characterized 18 KEAP1 mutations defined in a lung squamous cell carcinoma tumor set. Four mutations behaved as wild-type KEAP1, thus are likely passenger events. R554Q, W544C, N469fs, P318fs, and G333C mutations attenuated binding and suppression of NRF2 activity. The remaining mutations exhibited hypomorphic suppression of NRF2, binding both NRF2 and CUL3. Proteomic analysis revealed that the R320Q, R470C, G423V, D422N, G186R, S243C, and V155F mutations augmented the binding of KEAP1 and NRF2. Intriguingly, these "super-binder" mutants exhibited reduced degradation of NRF2. Cell-based and in vitro biochemical analyses demonstrated that despite its inability to suppress NRF2 activity, the R320Q "superbinder" mutant maintained the ability to ubiquitinate NRF2. These data strengthen the genetic interactions between KEAP1 and NRF2 in cancer and provide new insight into KEAP1 mechanics.
Collapse
Affiliation(s)
- Bridgid E Hast
- Authors' Affiliations: Department of Cell Biology and Physiology; Lineberger Comprehensive Cancer Center; and Division of Medical Oncology, Department of Internal Medicine and Otolaryngology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine; Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Pharmacology, Howard Hughes Medical Institute, University of Washington, Seattle, Washington
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hizume K, Yagura M, Araki H. Concerted interaction between origin recognition complex (ORC), nucleosomes and replication origin DNA ensures stable ORC-origin binding. Genes Cells 2013; 18:764-79. [DOI: 10.1111/gtc.12073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/14/2013] [Indexed: 01/21/2023]
Affiliation(s)
| | - Masaru Yagura
- Division of Microbial Genetics; National Institute of Genetics; Mishima; 411-8540; Japan
| | | |
Collapse
|
15
|
Gillespie PJ, Gambus A, Blow JJ. Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins. Methods 2012; 57:203-13. [PMID: 22521908 PMCID: PMC3437562 DOI: 10.1016/j.ymeth.2012.03.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/23/2012] [Accepted: 03/24/2012] [Indexed: 12/20/2022] Open
Abstract
The use of cell-free extracts prepared from eggs of the South African clawed toad, Xenopus laevis, has led to many important discoveries in cell cycle research. These egg extracts recapitulate the key nuclear transitions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. DNA added to the extract is first assembled into a nucleus and is then efficiently replicated. Progression of the extract into mitosis then allows the separation of paired sister chromatids. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. In this article we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei for the study of DNA replication in vitro. We also detail how DNA replication can be quantified in this system. In addition, we describe methods for isolating chromatin and chromatin-bound protein complexes from egg extracts. These recently developed and revised techniques provide a practical starting point for investigating the function of proteins involved in DNA replication.
Collapse
Affiliation(s)
- Peter J. Gillespie
- Wellcome Trust Centre for Gene Regulation & Expression, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Agnieszka Gambus
- School of Cancer Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - J. Julian Blow
- Wellcome Trust Centre for Gene Regulation & Expression, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
16
|
Araki H. Initiation of chromosomal DNA replication in eukaryotic cells; contribution of yeast genetics to the elucidation. Genes Genet Syst 2012; 86:141-9. [PMID: 21952204 DOI: 10.1266/ggs.86.141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chromosomal DNA replication is a fundamental process in the transmission of genetic information through generations. While the molecular mechanism of DNA replication has been studied for a long time, knowledge regarding this process in eukaryotic cells has advanced rapidly in the past 20 years. Yeast genetics contributed profoundly to this rapid advancement. Reverse genetics and genetic screenings identified all genes encoding replication proteins in budding yeast. Moreover, the genetic interactions that were used in screenings and analyses provided an insight into the molecular mechanism of chromosomal DNA replication. Further studies showed that complicated but sophisticated mechanisms govern chromosomal DNA replication. The retrospective view of the genetic approaches used to elucidate DNA replication in eukaryotes, together with current knowledge, tell us the reasons why some of the genetic screenings are successful, and also provide ideas for future directions.
Collapse
Affiliation(s)
- Hiroyuki Araki
- Division of Microbial Genetics, National Institute of Genetics, Department of Genetics, Sokendai, Yata 1111, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
17
|
Ishikawa K, Ohsumi T, Tada S, Natsume R, Kundu LR, Nozaki N, Senda T, Enomoto T, Horikoshi M, Seki M. Roles of histone chaperone CIA/Asf1 in nascent DNA elongation during nucleosome replication. Genes Cells 2011; 16:1050-62. [DOI: 10.1111/j.1365-2443.2011.01549.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Bao B, Xu WH. Identification of gene expression changes associated with the initiation of diapause in the brain of the cotton bollworm, Helicoverpa armigera. BMC Genomics 2011; 12:224. [PMID: 21569297 PMCID: PMC3277317 DOI: 10.1186/1471-2164-12-224] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 05/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diapause, a state of arrested development accompanied by a marked decrease of metabolic rate, helps insects to overcome unfavorable seasons. Helicoverpa armigera (Har) undergoes pupal diapause, but the molecular mechanism of diapause initiation is unclear. Using suppression subtractive hybridization (SSH), we investigated differentially expressed genes in diapause- and nondiapause-destined pupal brains at diapause initiation. RESULTS We constructed two SSH libraries (forward, F and reverse, R) to isolate genes that are up-regulated or down-regulated at diapause initiation. We obtained 194 unique sequences in the F library and 115 unique sequences in the R library. Further, genes expression at the mRNA and protein level in diapause- and nondiapause-destined pupal brains were confirmed by RT-PCR, Northern blot or Western blot analysis. Finally, we classified the genes and predicted their possible roles at diapause initiation. CONCLUSION Differentially expressed genes at pupal diapause initiation are possibly involved in the regulation of metabolism, energy, stress resistance, signaling pathways, cell cycle, transcription and translation.
Collapse
Affiliation(s)
- Bin Bao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, China
| | - Wei-Hua Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, China
| |
Collapse
|
19
|
Dang HQ, Tran NQ, Gill SS, Tuteja R, Tuteja N. A single subunit MCM6 from pea promotes salinity stress tolerance without affecting yield. PLANT MOLECULAR BIOLOGY 2011; 76:19-34. [PMID: 21365356 DOI: 10.1007/s11103-011-9758-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 02/17/2011] [Indexed: 05/18/2023]
Abstract
The eukaryotic pre-replicative complex (Pre-RC), including heterohexameric minichromosome maintenance (MCM2-7) proteins, ensures that the DNA in genome is replicated only once per cell division cycle. The MCMs provide DNA unwinding function during the DNA replication. Since MCM proteins play essential role in cell division and most likely are affected during stress conditions therefore their overexpression in plants may help in stress tolerance. But the role of MCMs in abiotic stress tolerance in plants has not been reported so far. In this study we report that: a) the MCM6 transcript is upregulated in pea plant in response to high salinity and cold stress and not with ABA, drought and heat stress; b) MCM6 overexpression driven by a constitutive cauliflower mosaic virus-35S promoter in tobacco plants confers salinity tolerance. The T(1) transgenics plants were able to grow to maturity and set normal viable seeds under continuous salinity stress, without yield penalty. It was observed that in salt-grown T(1) transgenic plants the Na(+) ions is mostly accumulated in mature leaves and not in seeds of T(1) transgenic lines as compared with the wild-type (WT) plants. T(1) transgenic plants exhibited better growth status under salinity stress conditions in comparison to WT plants. Furthermore, the T(1) transgenic plants maintained significantly higher levels of leaf chlorophyll content, net photosynthetic rate and therefore higher dry matter accumulation and yield with 200 mM NaCl as compared to the WT plants. Tolerance index data showed better salt tolerance potential of T(1) transgenic plants in comparison to WT. These findings provide first direct evidence that overexpression of single subunit MCM6 confers salinity stress tolerance without yield loss. The possible mechanism of salinity tolerance is discussed. These findings suggest that DNA replication machinery can be exploited for promoting stress tolerance in crop plants.
Collapse
Affiliation(s)
- Hung Quang Dang
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | |
Collapse
|
20
|
Cell proliferation index determination by immunohistochemical detection of hCDC47 protein. Appl Immunohistochem Mol Morphol 2010; 18:278-82. [PMID: 20048674 DOI: 10.1097/pai.0b013e3181c6c949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A member of the human minichromosome maintenance complex protein family, hCDC47 (alias MCM7) has been identified as a component of the regulatory mechanism in cell proliferation. The expression of this protein, as determined by immunohistochemistry, was investigated to determine its application as a proliferation marker. A mouse monoclonal antibody (Clone 47DC141, NeoMarkers, Fremont CA) raised against recombinant hCDC47 protein was tested against a wide range of tissues. Immunoreaction patterns were determined in normal and neoplastic, human tissues, including skin, tonsils and lymph nodes, primary, and metastatic brain tumors. The protein was detected in the nuclei of both, normal and neoplastic proliferating cells. Similarly, we also examined the distribution of hCDC47 in normal rat and mouse tissues, and rodent and human tumors grown in nude mice.The pattern of immunolocalization was identical to that seen in human tissue, with positive nuclear immunoreaction readily identified in proliferating cells. Western immunoblot was carried out on extracts from PANC cells (human pancreatic adenocarcinoma cell line) to confirm the specificity of the protein. To correlate Ki67 protein immunoexpression with hCDC47 antibody reactivity, semiquantitative comparisons were carried out on parallel tissue sections. There was excellent correlation in the distribution pattern of the 2 markers, although hCDC47 was more sensitive.Thus this marker may have important clinical and research applications because of its activity in formalin-fixed, paraffin-embedded, proliferating, normal, and neoplastic tissue. More significantly, its application to animal tissue makes it a reliable and easy to use, proliferation marker for experimental studies.
Collapse
|
21
|
Ishimi Y, Sugiyama T, Nakaya R, Kanamori M, Kohno T, Enomoto T, Chino M. Effect of heliquinomycin on the activity of human minichromosome maintenance 4/6/7 helicase. FEBS J 2009; 276:3382-91. [PMID: 19438708 DOI: 10.1111/j.1742-4658.2009.07064.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The antibiotic heliquinomycin, which inhibits cellular DNA replication at a half-maximal inhibitory concentration (IC(50)) of 1.4-4 microM, was found to inhibit the DNA helicase activity of the human minichromosome maintenance (MCM) 4/6/7 complex at an IC(50) value of 2.4 microM. In contrast, 14 microM heliquinomycin did not inhibit significantly either the DNA helicase activity of the SV40 T antigen and Werner protein or the oligonucleotide displacement activity of human replication protein A. At IC(50) values of 25 and 6.5 microM, heliquinomycin inhibited the RNA priming and DNA polymerization activities, respectively, of human DNA polymerase-alpha/primase. Thus, of the enzymes studied, the MCM4/6/7 complex was the most sensitive to heliquinomycin; this suggests that MCM helicase is one of the main targets of heliquinomycin in vivo. It was observed that heliquinomycin did not inhibit the ATPase activity of the MCM4/6/7 complex to a great extent in the absence of single-stranded DNA. In contrast, heliquinomycin at an IC(50) value of 5.2 microM inhibited the ATPase activity of the MCM4/6/7 complex in the presence of single-stranded DNA. This suggests that heliquinomycin interferes with the interaction of the MCM4/6/7 complex with single-stranded DNA.
Collapse
|
22
|
Abstract
Correct regulation of the replication licensing system ensures that chromosomal DNA is precisely duplicated in each cell division cycle. Licensing proteins are inappropriately expressed at an early stage of tumorigenesis in a wide variety of cancers. Here we discuss evidence that misregulation of replication licensing is a consequence of oncogene-induced cell proliferation. This misregulation can cause either under- or over-replication of chromosomal DNA, and could explain the genetic instability commonly seen in cancer cells.
Collapse
Affiliation(s)
- J Julian Blow
- Wellcome Trust Centre for Gene Regulation & Expression, University of Dundee, DD1 5EH, UK.
| | | |
Collapse
|
23
|
Takahashi TS, Basu A, Bermudez V, Hurwitz J, Walter JC. Cdc7-Drf1 kinase links chromosome cohesion to the initiation of DNA replication in Xenopus egg extracts. Genes Dev 2008; 22:1894-905. [PMID: 18628396 PMCID: PMC2492736 DOI: 10.1101/gad.1683308] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Accepted: 05/23/2008] [Indexed: 12/23/2022]
Abstract
To establish functional cohesion between replicated sister chromatids, cohesin is recruited to chromatin before S phase. Cohesin is loaded onto chromosomes in the G1 phase by the Scc2-Scc4 complex, but little is known about how Scc2-Scc4 itself is recruited to chromatin. Using Xenopus egg extracts as a vertebrate model system, we showed previously that the chromatin association of Scc2 and cohesin is dependent on the prior establishment of prereplication complexes (pre-RCs) at origins of replication. Here, we report that Scc2-Scc4 exists in a stable complex with the Cdc7-Drf1 protein kinase (DDK), which is known to bind pre-RCs and activate them for DNA replication. Immunodepletion of DDK from Xenopus egg extracts impairs chromatin association of Scc2-Scc4, a defect that is reversed by wild-type, but not catalytically inactive DDK. A complex of Scc4 and the N terminus of Scc2 is sufficient for chromatin loading of Scc2-Scc4, but not for cohesin recruitment. These results show that DDK is required to tether Scc2-Scc4 to pre-RCs, and they underscore the intimate link between early steps in DNA replication and cohesion.
Collapse
Affiliation(s)
- Tatsuro S. Takahashi
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Abhijit Basu
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Vladimir Bermudez
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Jerard Hurwitz
- Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Johannes C. Walter
- Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
24
|
Philpott A, Yew PR. The Xenopus cell cycle: an overview. Mol Biotechnol 2008; 39:9-19. [PMID: 18266114 DOI: 10.1007/s12033-008-9033-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 12/28/2007] [Indexed: 01/03/2023]
Abstract
Oocytes, eggs and embryos from the frog Xenopus laevis have been an important model system for studying cell-cycle regulation for several decades. First, progression through meiosis in the oocyte has been extensively investigated. Oocyte maturation has been shown to involve complex networks of signal transduction pathways, culminating in the cyclic activation and inactivation of Maturation Promoting Factor (MPF), composed of cyclin B and cdc2. After fertilisation, the early embryo undergoes rapid simplified cell cycles which have been recapitulated in cell-free extracts of Xenopus eggs. Experimental manipulation of these extracts has given a wealth of biochemical information about the cell cycle, particularly concerning DNA replication and mitosis. Finally, cells of older embryos adopt a more somatic-type cell cycle and have been used to study the balance between cell cycle and differentiation during development.
Collapse
Affiliation(s)
- Anna Philpott
- Department of Oncology, Hutchison/MRC Research Centre, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0XZ, England.
| | | |
Collapse
|
25
|
Matsuno K, Kumano M, Kubota Y, Hashimoto Y, Takisawa H. The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase alpha in the initiation of DNA replication. Mol Cell Biol 2006; 26:4843-52. [PMID: 16782873 PMCID: PMC1489170 DOI: 10.1128/mcb.02267-05] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Recruitment of DNA polymerases onto replication origins is a crucial step in the assembly of eukaryotic replication machinery. A previous study in budding yeast suggests that Dpb11 controls the recruitment of DNA polymerases alpha and epsilon onto the origins. Sld2 is an essential replication protein that interacts with Dpb11, but no metazoan homolog has yet been identified. We isolated Xenopus RecQ4 as a candidate Sld2 homolog. RecQ4 is a member of the metazoan RecQ helicase family, and its N-terminal region shows sequence similarity with Sld2. In Xenopus egg extracts, RecQ4 is essential for the initiation of DNA replication, in particular for chromatin binding of DNA polymerase alpha. An N-terminal fragment of RecQ4 devoid of the helicase domain could rescue the replication activity of RecQ4-depleted extracts, and antibody against the fragment inhibited DNA replication and chromatin binding of the polymerase. Further, N-terminal fragments of RecQ4 physically interacted with Cut5, a Xenopus homolog of Dpb11, and their ability to bind to Cut5 closely correlated with their ability to rescue the replication activity of the depleted extracts. Our data suggest that RecQ4 performs an essential role in the assembly of replication machinery through interaction with Cut5 in vertebrates.
Collapse
Affiliation(s)
- Kumiko Matsuno
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | |
Collapse
|
26
|
Kanemaki M, Labib K. Distinct roles for Sld3 and GINS during establishment and progression of eukaryotic DNA replication forks. EMBO J 2006; 25:1753-63. [PMID: 16601689 PMCID: PMC1440835 DOI: 10.1038/sj.emboj.7601063] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 03/06/2006] [Indexed: 01/16/2023] Open
Abstract
The Cdc45 protein is crucial for the initiation of chromosome replication in eukaryotic cells, as it allows the activation of prereplication complexes (pre-RCs) that contain the MCM helicase. This causes the unwinding of origins and the establishment of DNA replication forks. The incorporation of Cdc45 at nascent forks is a highly regulated and poorly understood process that requires, in budding yeast, the Sld3 protein and the GINS complex. Previous studies suggested that Sld3 is also important for the progression of DNA replication forks after the initiation step, as are Cdc45 and GINS. In contrast, we show here that Sld3 does not move with DNA replication forks and only associates with MCM in an unstable manner before initiation. After the establishment of DNA replication forks from early origins, Sld3 is no longer essential for the completion of chromosome replication. Unlike Sld3, GINS is not required for the initial recruitment of Cdc45 to origins and instead is necessary for stable engagement of Cdc45 with the nascent replisome. Like Cdc45, GINS then associates stably with MCM during S-phase.
Collapse
Affiliation(s)
- Masato Kanemaki
- Cancer Research UK, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | - Karim Labib
- Cancer Research UK, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK. Tel.: +44 161 446 8168; Fax: +44 161 446 3109; E-mail:
| |
Collapse
|
27
|
Assou S, Anahory T, Pantesco V, Le Carrour T, Pellestor F, Klein B, Reyftmann L, Dechaud H, De Vos J, Hamamah S. The human cumulus--oocyte complex gene-expression profile. Hum Reprod 2006; 21:1705-19. [PMID: 16571642 PMCID: PMC2377388 DOI: 10.1093/humrep/del065] [Citation(s) in RCA: 218] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The understanding of the mechanisms regulating human oocyte maturation is still rudimentary. We have identified transcripts differentially expressed between immature and mature oocytes and cumulus cells. METHODS Using oligonucleotide microarrays, genome-wide gene expression was studied in pooled immature and mature oocytes or cumulus cells from patients who underwent IVF. RESULTS In addition to known genes, such as DAZL, BMP15 or GDF9, oocytes up-regulated 1514 genes. We show that PTTG3 and AURKC are respectively the securin and the Aurora kinase preferentially expressed during oocyte meiosis. Strikingly, oocytes overexpressed previously unreported growth factors such as TNFSF13/APRIL, FGF9, FGF14 and IL4 and transcription factors including OTX2, SOX15 and SOX30. Conversely, cumulus cells, in addition to known genes such as LHCGR or BMPR2, overexpressed cell-to-cell signalling genes including TNFSF11/RANKL, numerous complement components, semaphorins (SEMA3A, SEMA6A and SEMA6D) and CD genes such as CD200. We also identified 52 genes progressively increasing during oocyte maturation, including CDC25A and SOCS7. CONCLUSION The identification of genes that were up- and down-regulated during oocyte maturation greatly improves our understanding of oocyte biology and will provide new markers that signal viable and competent oocytes. Furthermore, genes found expressed in cumulus cells are potential markers of granulosa cell tumours.
Collapse
Affiliation(s)
- Said Assou
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
| | - Tal Anahory
- UFR Médecine
Université Montpellier IMontpellier,FR
| | - Véronique Pantesco
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
| | - Tanguy Le Carrour
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
| | - Franck Pellestor
- UFR Médecine
Université Montpellier IMontpellier,FR
- IGH, Institut de génétique humaine
CNRS : UPR1142institut de Génétique humaine
141 Rue de la Cardonille
34396 MONTPELLIER CEDEX 5,FR
| | - Bernard Klein
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
| | - Lionel Reyftmann
- Service de gynécologie-obstétrique et médecine de la reproduction
CHRU MontpellierHôpital Arnaud de VilleneuveUniversité Montpellier IFR
| | - Hervé Dechaud
- Service de gynécologie-obstétrique et médecine de la reproduction
CHRU MontpellierHôpital Arnaud de VilleneuveUniversité Montpellier IFR
| | - John De Vos
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
- * Correspondence should be adressed to: John De Vos
| | - Samir Hamamah
- IRB, Institut de recherche en biothérapie
CHRU MontpellierUniversité Montpellier IHôpital Saint-Eloi
34000 Montpellier,FR
- Immunopathologie des maladies tumorales et autoimmunes
INSERM : U475IFR76Institut de recherche en biothérapieUniversité Montpellier ICentre de Recherche Inserm
99, Rue Puech Villa
34197 MONTPELLIER CEDEX 5,FR
- UFR Médecine
Université Montpellier IMontpellier,FR
- * Correspondence should be adressed to: Samir Hamamah
| |
Collapse
|
28
|
Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 2006; 8:358-66. [PMID: 16531994 DOI: 10.1038/ncb1382] [Citation(s) in RCA: 605] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 02/23/2006] [Indexed: 02/08/2023]
Abstract
The components of the replisome that preserve genomic stability by controlling the progression of eukaryotic DNA replication forks are poorly understood. Here, we show that the GINS (go ichi ni san) complex allows the MCM (minichromosome maintenance) helicase to interact with key regulatory proteins in large replisome progression complexes (RPCs) that are assembled during initiation and disassembled at the end of S phase. RPC components include the essential initiation and elongation factor, Cdc45, the checkpoint mediator Mrc1, the Tof1-Csm3 complex that allows replication forks to pause at protein-DNA barriers, the histone chaperone FACT (facilitates chromatin transcription) and Ctf4, which helps to establish sister chromatid cohesion. RPCs also interact with Mcm10 and topoisomerase I. During initiation, GINS is essential for a specific subset of RPC proteins to interact with MCM. GINS is also important for the normal progression of DNA replication forks, and we show that it is required after initiation to maintain the association between MCM and Cdc45 within RPCs.
Collapse
Affiliation(s)
- Agnieszka Gambus
- Cancer Research UK, Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | | | | | | | | | | | | |
Collapse
|
29
|
Laskey R. The Croonian Lecture 2001 hunting the antisocial cancer cell: MCM proteins and their exploitation. Philos Trans R Soc Lond B Biol Sci 2006; 360:1119-32. [PMID: 16147513 PMCID: PMC1569504 DOI: 10.1098/rstb.2005.1656] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Replicating large eukaryotic genomes presents the challenge of distinguishing replicated regions of DNA from unreplicated DNA. A heterohexamer of minichromosome maintenance (MCM) proteins is essential for the initiation of DNA replication. MCM proteins are loaded on to unreplicated DNA before replication begins and displaced progressively during replication. Thus, bound MCM proteins license DNA for one, and only one, round of replication and this licence is reissued each time a cell divides. MCM proteins are also the best candidates for the replicative helicases that unwind DNA during replication, but interesting questions arise about how they can perform this role, particularly as they are present on only unreplicated DNA, rather than clustered at replication forks. Although MCM proteins are bound and released cyclically from DNA during the cell cycle, higher eukaryotic cells retain them in the nucleus throughout the cell cycle. In contrast, MCMs are broken down when cells exit the cycle by quiescence or differentiation. We have exploited these observations to develop screening tests for the common carcinomas, starting with an attempt to improve the sensitivity of the smear test for cervical cancer. MCM proteins emerge as exceptionally promising markers for cancer screening and early diagnosis.
Collapse
Affiliation(s)
- Ronald Laskey
- MRC Cancer Cell Unit, Hutchison/MRC Research CentreHills Road, Cambridge CB2 2XZ, UK
- Department of Zoology, University of CambridgeCambridge CB2 3EJ, UK
| |
Collapse
|
30
|
Masai H, You Z, Arai KI. Control of DNA replication: regulation and activation of eukaryotic replicative helicase, MCM. IUBMB Life 2005; 57:323-35. [PMID: 16036617 DOI: 10.1080/15216540500092419] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
DNA replication is a key event of cell proliferation and the final target of signal transduction induced by growth factor stimulation. It is also strictly regulated during the ongoing cell cycle so that it occurs only once during S phase and that all the genetic materials are faithfully duplicated. DNA replication may be arrested or temporally inhibited due to a varieties of internal and external causes. Cells have developed intricate mechanisms to cope with the arrested replication forks to minimize the adversary effect on the stable maintenance of genetic materials. Helicases play a central role in DNA replication. In eukaryotes, MCM (minichromosome maintenance) protein complex plays essential roles as a replicative helicase. MCM4-6-7 complex possesses intrinsic DNA helicase activity which translocates on single-stranded DNA form 3' to 5'. Mammalian MCM4-6-7 helicase and ATPase activities are specifically stimulated by the presence of thymine-rich single-stranded DNA sequences onto which it is loaded. The activation appears to depend on the thymine content of this single-strand, and sequences derived from human replication origins can serve as potent activators of the MCM helicase. MCM is a prime target of Cdc7 kinase, known to be essential for activation of replication origins. We will discuss how the MCM may be activated at the replication origins by template DNA, phosphorylation, and interaction with other replicative proteins, and will present a model of how activation of MCM helicase by specific sequences may contribute to selection of replication initiation sites in higher eukaryotes.
Collapse
Affiliation(s)
- Hisao Masai
- Department of Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | | | | |
Collapse
|
31
|
Yoshida K, Takisawa H, Kubota Y. Intrinsic nuclear import activity of geminin is essential to prevent re-initiation of DNA replication in Xenopus eggs. Genes Cells 2005; 10:63-73. [PMID: 15670214 DOI: 10.1111/j.1365-2443.2005.00815.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Prior to S phase, eukaryotic chromosomes are licensed for initiation of DNA replication, and re-licensing is prohibited after S phase has started until late mitosis, thus ensuring that genomic DNA is duplicated precisely once in each cell cycle. Here, we report that over-expression of Cdt1, an essential licensing protein, induced re-replication in Xenopus egg extracts. Geminin, a metazoan-specific inhibitor of Cdt1, was critical for preventing re-replication induced by Cdt1. Re-replication induced by the addition of recombinant Cdt1 and/or by the depletion of geminin from extracts was enhanced by a proteasome inhibitor, which suppressed the degradation of Cdt1 in the extracts. Furthermore, a nuclear localization sequence identified in Xenopus geminin had a significant role in the suppression of re-replication induced by Cdt1. These results suggest that nuclear accumulation of geminin plays a dominant role in the licensing system of Xenopus eggs.
Collapse
Affiliation(s)
- Kazumasa Yoshida
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | |
Collapse
|
32
|
Chuang LC, Yew PR. Proliferating cell nuclear antigen recruits cyclin-dependent kinase inhibitor Xic1 to DNA and couples its proteolysis to DNA polymerase switching. J Biol Chem 2005; 280:35299-309. [PMID: 16118211 DOI: 10.1074/jbc.m506429200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Xenopus cyclin-dependent kinase (CDK) inhibitor, p27(Xic1) (Xic1), binds to CDK2-cyclins and proliferating cell nuclear antigen (PCNA), inhibits DNA synthesis in Xenopus extracts, and is targeted for ubiquitin-mediated proteolysis. Previous studies suggest that Xic1 ubiquitination and degradation are coupled to the initiation of DNA replication, but the precise timing and molecular mechanism of Xic1 proteolysis has not been determined. Here we demonstrate that Xic1 proteolysis is temporally restricted to late replication initiation following the requirements for DNA polymerase alpha-primase, replication factor C, and PCNA. Our studies also indicate that Xic1 degradation is absolutely dependent upon the binding of Xic1 to PCNA in both Xenopus egg and gastrulation stage extracts. Additionally, extracts depleted of PCNA do not support Xic1 proteolysis. Importantly, while the addition of recombinant wild-type PCNA alone restores Xic1 degradation, the addition of a PCNA mutant defective for trimer formation does not restore Xic1 proteolysis in PCNA-depleted extracts, suggesting Xic1 proteolysis requires both PCNA binding to Xic1 and the ability of PCNA to be loaded onto primed DNA by replication factor C. Taken together, our studies suggest that Xic1 is targeted for ubiquitination and degradation during DNA polymerase switching through its interaction with PCNA at a site of initiation.
Collapse
Affiliation(s)
- Li-Chiou Chuang
- University of Texas Health Science Center at San Antonio, Department of Molecular Medicine, Institute of Biotechnology, San Antonio, Texas 78245-3207, USA
| | | |
Collapse
|
33
|
Maiorano D, Cuvier O, Danis E, Méchali M. MCM8 Is an MCM2-7-Related Protein that Functions as a DNA Helicase during Replication Elongation and Not Initiation. Cell 2005; 120:315-28. [PMID: 15707891 DOI: 10.1016/j.cell.2004.12.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Revised: 10/27/2004] [Accepted: 12/09/2004] [Indexed: 11/20/2022]
Abstract
MCM2-7 proteins are replication factors required to initiate DNA synthesis and are currently the best candidates for replicative helicases. We show that the MCM2-7-related protein MCM8 is required to efficiently replicate chromosomal DNA in Xenopus egg extracts. MCM8 does not associate with the soluble MCM2-7 complex and binds chromatin upon initiation of DNA synthesis. MCM8 depletion does not affect replication licensing or MCM3 loading but slows down DNA synthesis and reduces chromatin recruitment of RPA34 and DNA polymerase-alpha. Recombinant MCM8 displays both DNA helicase and ATPase activities in vitro. Reconstitution experiments show that ATP binding in MCM8 is required to rescue DNA synthesis in MCM8-depleted extracts. MCM8 colocalizes with replication foci and RPA34 on chromatin. We suggest that MCM8 functions in the elongation step of DNA replication as a helicase that facilitates the recruitment of RPA34 and stimulates the processivity of DNA polymerases at replication foci.
Collapse
Affiliation(s)
- Domenico Maiorano
- Institute of Human Genetics, Centre National de la Recherche Scientifique, 141 rue de la Cardonille, 34396 Montpellier Cedex 05, France
| | | | | | | |
Collapse
|
34
|
Ha SA, Shin SM, Namkoong H, Lee H, Cho GW, Hur SY, Kim TE, Kim JW. Cancer-Associated Expression ofMinichromosome Maintenance 3Gene in Several Human Cancers and Its Involvement in Tumorigenesis. Clin Cancer Res 2004; 10:8386-95. [PMID: 15623617 DOI: 10.1158/1078-0432.ccr-04-1029] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of our study was to identify an unique gene that shows cancer-associated expression, evaluates its potential usefulness in cancer diagnosis, and characterizes its function related to human carcinogenesis. EXPERIMENTAL DESIGN We used the differential display reverse transcription-PCR method with normal cervical, cervical cancer and metastatic tissues, and cervical cancer cell line to identify genes overexpressed in cancers. RESULTS We identified a minichromosome maintenance 3 (MCM3) gene that was overexpressed in various human cancers, including leukemia, lymphoma, and carcinomas of the uterine cervix, colon, lung, stomach, kidney and breast, and malignant melanoma. Western blot and immunohistochemical analyses also revealed that MCM3 protein was elevated in most of human cancer tissues tested. We compared the MCM3 protein expression levels in human cancers with conventional proliferation markers, Ki-67 and proliferating cell nuclear antigen. MCM3 antibody was the most specific for multiple human cancers, whereas proliferating cell nuclear antigen was relatively less effective in specificity, and Ki-67 failed to detect several human cancers. The down-regulation of MCM3 protein level was examined under serum starvation in both normal and cancer cells. Interestingly, MCM3 protein was stable in MCF-7 breast cancer cells even up to 96 hours after serum starvation, whereas it was gradually degraded in normal BJ fibroblast cells. Nude mice who received injections of HEK 293 cells stably transfected with MCM3 formed tumors in 6 weeks. CONCLUSIONS Our study indicates that determination of MCM3 expression level will facilitate the assessment of many different human malignancies in tumor diagnosis, and MCM3 is involved in multiple types of human carcino-genesis.
Collapse
Affiliation(s)
- Seon-Ah Ha
- Molecular Genetic Laboratory, Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Li A, Blow JJ. Cdt1 downregulation by proteolysis and geminin inhibition prevents DNA re-replication in Xenopus. EMBO J 2004; 24:395-404. [PMID: 15616577 PMCID: PMC545810 DOI: 10.1038/sj.emboj.7600520] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Accepted: 11/23/2004] [Indexed: 01/04/2023] Open
Abstract
In late mitosis and G1, Mcm2-7 are assembled onto replication origins to 'license' them for initiation. At other cell cycle stages, licensing is inhibited, thus ensuring that origins fire only once per cell cycle. Three additional factors--the origin recognition complex, Cdc6 and Cdt1--are required for origin licensing. We examine here how licensing is regulated in Xenopus egg extracts. We show that Cdt1 is downregulated late in the cell cycle by two different mechanisms: proteolysis, which occurs in part due to the activity of the anaphase-promoting complex (APC/C), and inhibition by a protein called geminin. If both these regulatory mechanisms are abrogated, extracts undergo uncontrolled re-licensing and re-replication. The extent of re-replication is limited by checkpoint kinases that are activated as a consequence of re-replication itself. These results allow us to build a comprehensive model of how re-replication of DNA is prevented in Xenopus, with Cdt1 regulation being the key feature. The results also explain the original experiments that led to the proposal of a replication licensing factor.
Collapse
Affiliation(s)
- Anatoliy Li
- Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - J Julian Blow
- Wellcome Trust Biocentre, University of Dundee, Dundee, UK
- Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK. Tel.: +44 1382 345797; Fax: +44 1382 348072; E-mail:
| |
Collapse
|
36
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:2886-2890. [DOI: 10.11569/wcjd.v12.i12.2886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
37
|
Ekholm-Reed S, Méndez J, Tedesco D, Zetterberg A, Stillman B, Reed SI. Deregulation of cyclin E in human cells interferes with prereplication complex assembly. ACTA ACUST UNITED AC 2004; 165:789-800. [PMID: 15197178 PMCID: PMC2172392 DOI: 10.1083/jcb.200404092] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Deregulation of cyclin E expression has been associated with a broad spectrum of human malignancies. Analysis of DNA replication in cells constitutively expressing cyclin E at levels similar to those observed in a subset of tumor-derived cell lines indicates that initiation of replication and possibly fork movement are severely impaired. Such cells show a specific defect in loading of initiator proteins Mcm4, Mcm7, and to a lesser degree, Mcm2 onto chromatin during telophase and early G1 when Mcm2-7 are normally recruited to license origins of replication. Because minichromosome maintenance complex proteins are thought to function as a heterohexamer, loading of Mcm2-, Mcm4-, and Mcm7-depleted complexes is likely to underlie the S phase defects observed in cyclin E-deregulated cells, consistent with a role for minichromosome maintenance complex proteins in initiation of replication and fork movement. Cyclin E-mediated impairment of DNA replication provides a potential mechanism for chromosome instability observed as a consequence of cyclin E deregulation.
Collapse
Affiliation(s)
- Susanna Ekholm-Reed
- Dept. of Molecular Biology, MB-7, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Kato K, Toki T, Shimizu M, Shiozawa T, Fujii S, Nikaido T, Konishi I. Expression of replication-licensing factors MCM2 and MCM3 in normal, hyperplastic, and carcinomatous endometrium: correlation with expression of Ki-67 and estrogen and progesterone receptors. Int J Gynecol Pathol 2004; 22:334-40. [PMID: 14501812 DOI: 10.1097/01.pgp.0000092129.10100.5e] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Minichromosome maintenance (MCM) proteins are essential for cell cycling due to their function as replication-licensing factors. The aim of the present study was to investigate the clinicopathologic implications of the MCM2 and MCM3 in endometrial carcinogenesis. The authors investigated the immunohistochemical expression of MCM2 and MCM3, Ki-67, estrogen receptor, and progesterone receptor in 23 normal endometria, 9 endometrial hyperplasias, and 60 endometrial carcinomas. In the normal endometrial glands, the expression of MCM2 and MCM3 was significantly higher in the proliferative phase than in the secretory phase and was strongly correlated with Ki-67 expression. Similar correlation between the expression of MCMs and Ki-67 was also found in endometrial hyperplasia. In endometrial carcinomas, however, the expression of MCM2 and MCM3 was significantly lower than that in the normal proliferative endometrium. There was only a weak correlation between MCM2 and Ki-67, and no significant correlation between MCM3 and Ki-67 expression. These findings suggest that the expression of MCM2 and MCM3 directly reflects cell proliferation in normal and hyperplastic endometria. In endometrial carcinomas, however, there is a discrepancy between the expression of MCMs and cell proliferation, suggesting that the replication-licensing system may be aberrant in endometrial carcinomas.
Collapse
Affiliation(s)
- Kiyoshi Kato
- Department of Obstetrics,Shinshu University School of Medicine, Matsumoto, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The minichromosome maintenance (or MCM) protein family is composed of six related proteins that are conserved in all eukaryotes. They were first identified by genetic screens in yeast and subsequently analyzed in other experimental systems using molecular and biochemical methods. Early data led to the identification of MCMs as central players in the initiation of DNA replication. More recent studies have shown that MCM proteins also function in replication elongation, probably as a DNA helicase. This is consistent with structural analysis showing that the proteins interact together in a heterohexameric ring. However, MCMs are strikingly abundant and far exceed the stoichiometry of replication origins; they are widely distributed on unreplicated chromatin. Analysis of mcm mutant phenotypes and interactions with other factors have now implicated the MCM proteins in other chromosome transactions including damage response, transcription, and chromatin structure. These experiments indicate that the MCMs are central players in many aspects of genome stability.
Collapse
Affiliation(s)
- Susan L Forsburg
- Molecular & Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| |
Collapse
|
40
|
Li A, Blow JJ. Non-proteolytic inactivation of geminin requires CDK-dependent ubiquitination. Nat Cell Biol 2004; 6:260-7. [PMID: 14767479 PMCID: PMC2691133 DOI: 10.1038/ncb1100] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 01/05/2003] [Indexed: 12/22/2022]
Abstract
In late mitosis and G1, a complex of the essential initiation proteins Mcm2-7 are assembled onto replication origins to 'license' them for initiation. At other times licensing is inhibited by cyclin-dependent kinases (CDKs) and geminin, thus ensuring that origins fire only once per cell cycle. Here we show that, paradoxically, CDKs are also required to inactivate geminin and activate the licensing system. On exit from metaphase in Xenopus laevis egg extracts, CDK-dependent activation of the anaphase-promoting complex (APC/C) results in the transient polyubiquitination of geminin. This ubiquitination triggers geminin inactivation without requiring ubiquitin-dependent proteolysis, and is essential for replication origins to become licensed. This reveals an unexpected role for CDKs and ubiquitination in activating chromosomal DNA replication.
Collapse
Affiliation(s)
- Anatoliy Li
- Wellcome Trust Biocentre, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | | |
Collapse
|
41
|
Cook CR, Kung G, Peterson FC, Volkman BF, Lei M. A novel zinc finger is required for Mcm10 homocomplex assembly. J Biol Chem 2003; 278:36051-8. [PMID: 12844493 DOI: 10.1074/jbc.m306049200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mcm10 is a DNA replication factor that interacts with multiple subunits of the MCM2-7 hexameric complex. We report here that Mcm10 self-interacts and assembles into large homocomplexes (approximately 800 kDa). A conserved domain of 210 amino acid residues is sufficient for mediating self-interaction and complex assembly. A novel zinc finger within the conserved domain, CX10CX11CX2H, is essential for the homocomplex formation. Mutant alleles with amino acid substitutions at conserved cysteines and histidine in the zinc finger fail to assemble homocomplexes. A defect in homocomplex assembly correlates with defects in DNA replication and cell growth in the mutants. These observations suggest that homocomplex assembly is essential for Mcm10 function. Multisubunit Mcm10 homocomplexes may provide the structural basis for Mcm10 to interact with multiple subunits of the MCM2-7 hexamer.
Collapse
Affiliation(s)
- Craig R Cook
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
42
|
Kodani I, Osaki M, Shomori K, Araki K, Goto E, Ryoke K, Ito H. Minichromosome maintenance 2 expression is correlated with mode of invasion and prognosis in oral squamous cell carcinomas. J Oral Pathol Med 2003; 32:468-74. [PMID: 12901728 DOI: 10.1034/j.1600-0714.2003.00116.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND This study examined the immunohistochemical expression of cell-cycle related molecules as well as cell proliferation and pathologic findings in oral squamous cell carcinoma (SCC) in order to clarify their pathobiologic and prognostic significance. METHODS A total of 46 oral SCC specimens were analyzed using Ki-67, minichromosome maintenance 2 (MCM2), p53, p27, p21, and TUNEL. Aspects including tumor differentiation, mode of carcinoma invasion, tumor metastasis, and patient prognosis were compared among the specimens. RESULTS A significantly higher MCM2 labeling index (LI) was observed in the moderately differentiated SCCs when compared to the well-differentiated SCCs (P<0.05). The higher MCM2 LI was correlated with mode of invasion Grade 4 (infiltrative growth) and patient prognosis. In contrast, the LIs of Ki-67, TUNEL-signal, p53, p27, and p21 were not correlated with patient prognosis. CONCLUSION Higher MCM2 LI provides useful information for patient prognosis in oral SCCs.
Collapse
Affiliation(s)
- Isamu Kodani
- First Department of Pathology, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Bruemmer D, Yin F, Liu J, Berger JP, Kiyono T, Chen J, Fleck E, Van Herle AJ, Forman BM, Law RE. Peroxisome proliferator-activated receptor gamma inhibits expression of minichromosome maintenance proteins in vascular smooth muscle cells. Mol Endocrinol 2003; 17:1005-18. [PMID: 12677008 DOI: 10.1210/me.2002-0410] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Using a cDNA array consisting only of cell cycle genes, we found that a novel nonthiazolidinedione partial peroxisome proliferator-activated receptor gamma (PPARgamma) agonist (nTZDpa) inhibited expression of minichromosome maintenance (MCM) proteins 6 and 7 in vascular smooth muscle cells. MCM proteins are required for the initiation and elongation stages of DNA replication and are regulated by the transcription factor E2F. Mitogen-induced MCM6 and MCM7 mRNA expression was potently inhibited by nTZDpa and to a lesser degree by the full PPARgamma agonist, rosiglitazone. Inhibition of MCM6 and MCM7 expression by nTZDpa and rosiglitazone paralleled their effect to inhibit phosphorylation of the retinoblastoma protein and cell proliferation. Transient transfection experiments revealed that the nTZDpa inhibited mitogen-induced MCM6 and MCM7 promoter activity, implicating a transcriptional mechanism. Adenoviral-mediated E2F overexpression reversed the suppressive effect of nTZDpa on MCM6 and MCM7 expression. Furthermore, activity of a luciferase reporter plasmid driven by multiple E2F elements was inhibited by nTZDpa, indicating that their down-regulation by nTZDpa involves an E2F-dependent mechanism. Overexpression of dominant-negative PPARgamma or addition of a PPARgamma antagonist, GW 9662, blocked nTZDpa inhibition of MCM7 transcription. Adenovirus-mediated overexpression of constitutively active PPARgamma inhibited MCM7 expression in a similar manner as the nTZDpa. These findings provide strong evidence that activation of PPARgamma attenuates MCM7 transcription and support the important role of this nuclear receptor in regulating vascular smooth muscle cell proliferation.
Collapse
Affiliation(s)
- Dennis Bruemmer
- Division of Endocrinology, Diabetes and Hypertension and The Gonda (Goldschmied) Diabetes Center, David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bukholm IRK, Bukholm G, Holm R, Nesland JM. Association between histology grade, expression of HsMCM2, and cyclin A in human invasive breast carcinomas. J Clin Pathol 2003; 56:368-73. [PMID: 12719458 PMCID: PMC1769955 DOI: 10.1136/jcp.56.5.368] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIM Increased proliferation of tumour cells has prognostic value in human invasive breast carcinomas (IBCs), and high histology grade and cyclin A expression, which may reflect high proliferation rate, are associated with poor prognosis. Expression of HsMCM2 is related to cell proliferation. This study evaluates the correlation between the expression of cyclins A, D1, D3, and E, Ki-67, proliferating cell nuclear antigen (PCNA), histology grade, and HsMCM2 expression, in addition to the independent prognostic value of HsMCM2 expression in human IBCs. METHODS Immunohistochemistry to evaluate HsMCM2, Ki-67, and PCNA expression in tumours from 147 patients with IBC. RESULTS Nuclear staining for HsMCM2 was seen in 10-30% of the tumour cells in 30 samples, in 30-70% in 40 samples, in > 70% in 44 samples, and in < 10% in 33 samples. One way ANOVA showed a significant association between expression of HsMCM2 and cyclin A, D3, E, histology grade, and Ki-67. A borderline correlation was seen between HsMCM2 and PCNA. In multivariate analysis, the only association was with cyclin A, in addition to a borderline association with histology grade. In a Cox regression hazards model, expression of HsMCM2 was associated with poor patient survival, although it lost its independent prognostic value when cyclin A expression was included. Ki-67 and PCNA expression were not associated with patient survival. CONCLUSION Cyclin A expression is independently associated with HsMCM2 expression, histology grade, and Ki-67. HsMCM2 expression is associated with poor patient survival, although it loses prognostic value when adjusted for cyclin A.
Collapse
Affiliation(s)
- I R K Bukholm
- Department of Surgery, Akershus University Hospital, 1474 Nordbyhagen, Norway.
| | | | | | | |
Collapse
|
45
|
Liu Y, Cheng J, Li K, Yang Q, Lu YY, Wang L, Wang JJ. Gene expression profile of HepG2 cell transfected with hepatitis C virus coreprotein-binding protein6 gene. Shijie Huaren Xiaohua Zazhi 2003; 11:394-398. [DOI: 10.11569/wcjd.v11.i4.394] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To screen and clone genes of hepatic protein interacting with hepatitis C virus (HCV) core protein and analyze the gene expression profiles of HepG2 cell transfected with HCV coreprotein-binding protein6 (HCBP6) gene.
METHODS Using yeast two-hybrid system3, bait plasmid of HCV coreprotein was constructed and genes encoding HCV coreprotein-binding protein were screened and identified. One gene named HCBP6 was identified. Humanfull-length encoding gene of HCBP6 and its amino acid sequences were identified by bioinformatics method, and there combined expression plasmidpc DNA3. 1(-)-HCBP6 was constructed. mRNA from HepG2 cell stransfected with pcDNA3. 1(-)-HCBP6 and the empty vector were detected with cDNA microarray, respectively.
RESULTS Human HCBP6 cDNA sequence was identified. The coding sequence for human HCBP6 consists of 456 nt and its protein consists of 152 aa. Twenty of 1152 gene sobtained from gene expression profile analysis differed from those in GenBank, in which 13 genes were up-regulated and 7 genes were down-regulated in HepG2 cells transfected with HCBP6 plasmid. These genes differentially regulated by HCBP6 protein included human genes encoding proteins involved in signal transduction, cell proliferation, differentiation, and growth regulation.
CONCLUSION The bioinformatics combined yeast two hybrid technique is a powerful method for screening and analysis of genes of hepatic protein interacting with HCV coreprotein. The findings obtained by cDNA microarray technique provided significant data for preliminary understanding of the biologica lfunction of new gene, and also provided some clues for furthe rclarifying the molecular biological processes of hepatocytes in interaction between HCV core protein and HCBP6.
Collapse
Affiliation(s)
- Yan Liu
- Gene Therapy Research Center, Institute of Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, China
| | - Jun Cheng
- Gene Therapy Research Center, Institute of Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, China
| | - Ke Li
- Gene Therapy Research Center, Institute of Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, China
| | - Qian Yang
- Gene Therapy Research Center, Institute of Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, China
| | - Yin-Ying Lu
- Gene Therapy Research Center, Institute of Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, China
| | - Lin Wang
- Gene Therapy Research Center, Institute of Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, China
| | - Jian-Jun Wang
- Gene Therapy Research Center, Institute of Infectious Diseases, The 302 Hospital of PLA, Beijing 100039, China
| |
Collapse
|
46
|
Fletcher RJ, Bishop BE, Leon RP, Sclafani RA, Ogata CM, Chen XS. The structure and function of MCM from archaeal M. Thermoautotrophicum. Nat Struct Mol Biol 2003; 10:160-7. [PMID: 12548282 DOI: 10.1038/nsb893] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Accepted: 12/17/2002] [Indexed: 01/07/2023]
Abstract
Eukaryotic chromosomal DNA is licensed for replication precisely once in each cell cycle. The mini-chromosome maintenance (MCM) complex plays a role in this replication licensing. We have determined the structure of a fragment of MCM from Methanobacterium thermoautotrophicum (mtMCM), a model system for eukaryotic MCM. The structure reveals a novel dodecameric architecture with a remarkably long central channel. The channel surface has an unusually high positive charge and binds DNA. We also show that the structure of the N-terminal fragment is conserved for all MCMs proteins despite highly divergent sequences, suggesting a common architecture for a similar task: gripping/remodeling DNA and regulating MCM activity. An mtMCM mutant protein equivalent to a yeast MCM5 (CDC46) protein with the bob1 mutation at its N terminus has only subtle structural changes, suggesting a Cdc7-bypass mechanism by Bob1 in yeast. Yeast bypass experiments using MCM5 mutant proteins support the hypothesis for the bypass mechanism.
Collapse
Affiliation(s)
- Ryan J Fletcher
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Science Center, School of Medicine, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
47
|
Ishimi Y, Okayasu I, Kato C, Kwon HJ, Kimura H, Yamada K, Song SY. Enhanced expression of Mcm proteins in cancer cells derived from uterine cervix. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1089-101. [PMID: 12631269 DOI: 10.1046/j.1432-1033.2003.03440.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Minichromosome maintenance proteins (Mcm) 2-7 play essential roles in eukaryotic DNA replication. Several reports have indicated the usefulness of Mcm proteins as markers of cancer cells in histopathological diagnosis. However, their mode of expression and pathophysiological significance in cancer cells remain to be clarified. We compared the level of expression of Mcm proteins among human HeLa uterine cervical carcinoma cells, SV40-transformed human fibroblast GM00637 cells and normal human fibroblast WI-38 cells. All the proteins examined were detected in HeLa and GM cells at 6-10 times the level found in WI-38 cells on average. This increase was observed both in total cellular proteins and in the chromatin-bound fraction. Consistently, Mcm2 mRNA was enriched in HeLa cells to approximately four times the level in WI-38 cells, and the synthesis of Mcm4, 6 and 7 proteins was accelerated in HeLa cells. Immunohistochemical studies of surgical materials from human uterine cervix showed that Mcm3 and 4 are ubiquitously expressed in cancer cells. Further, the positive rate and level of Mcm3 and 4 expression appeared to be higher in cancer cells than in normal proliferating cells of the uterine cervix and dysplastic cells, suggesting that they can be useful markers to distinguish these cells.
Collapse
Affiliation(s)
- Yukio Ishimi
- Mitsubishi Kagaku Institute of Life Sciences, Machida, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
48
|
Bruemmer D, Yin F, Liu J, Kiyono T, Fleck E, Van Herle A, Graf K, Law RE. Atorvastatin inhibits expression of minichromosome maintenance proteins in vascular smooth muscle cells. Eur J Pharmacol 2003; 462:15-23. [PMID: 12591091 DOI: 10.1016/s0014-2999(03)01317-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors have been reported to inhibit vascular smooth muscle cell growth, a key event in the pathogenesis of proliferative vascular diseases. The mechanism by which HMG-CoA reductase inhibitors exert their antiproliferative activity is not fully understood, especially their effect on DNA replication. We therefore investigated the effects of atorvastatin on minichromosome maintenance (MCM) protein 6 and 7 expression in vascular smooth muscle cells, two proteins essential for initiation of DNA replication. Stimulation of quiescent rat aortic vascular smooth muscle cells with fetal bovine serum induced MCM6 and MCM7 protein and mRNA expression, which was potently attenuated by atorvastatin in a dose-dependent fashion. Mevalonate completely abrogated the inhibitory effect on serum-induced MCM6 and MCM7 expression, demonstrating that biosynthesis of isoprenoids was likely the specific pathway blocked by atorvastatin. Transient transfection experiments revealed that atorvastatin inhibited MCM6 and MCM7 promoter activity, implicating a transcriptional mechanism. The MCM6 and MCM7 promoters contain several E2F sites critical for their transcriptional activation. Activity of a luciferase reporter plasmid containing four E2F elements was also strongly inhibited by atorvastatin. The inhibitory effect of atorvastatin on MCM6 and MCM7 was reversed by adenoviral-mediated overexpression of E2F, indicating that their downregulation by atorvastatin involves an E2F-dependent mechanism. These findings demonstrate that MCM proteins play an essential role during the proliferation of vascular smooth muscle cells and may provide a novel therapeutic target for proliferative vascular diseases. Inhibition of MCM6 and MCM7 expression by blocking E2F function may contribute importantly to the inhibition of vascular smooth muscle cell DNA synthesis by atorvastatin.
Collapse
MESH Headings
- Adenovirus E2 Proteins/genetics
- Adenovirus E2 Proteins/physiology
- Animals
- Atorvastatin
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cells, Cultured
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Gene Expression Regulation/drug effects
- Genetic Vectors/genetics
- Heptanoic Acids/pharmacology
- Immunoblotting
- Luciferases/genetics
- Luciferases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphorylation/drug effects
- Promoter Regions, Genetic/genetics
- Pyrroles/pharmacology
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Retinoblastoma Protein/metabolism
- Transcription, Genetic/drug effects
- Transfection
Collapse
Affiliation(s)
- Dennis Bruemmer
- Division of Endocrinology, Diabetes and Hypertension and The Gonda (Goldschmied) Diabetes Center, David Geffen School of Medicine, University of California, Warren Hall, Suite 24-130, 900 Veteran Avenue, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Masuda T, Mimura S, Takisawa H. CDK- and Cdc45-dependent priming of the MCM complex on chromatin during S-phase in Xenopus egg extracts: possible activation of MCM helicase by association with Cdc45. Genes Cells 2003; 8:145-61. [PMID: 12581157 DOI: 10.1046/j.1365-2443.2003.00621.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND MCM and Cdc45 are required for the initiation and elongation stages of eukaryotic DNA replication. Recent studies show that a purified Mcm4/6/7 complex has DNA helicase activity. However, the biochemical function of the MCM complex and Cdc45 bound to chromatin has not been elucidated. RESULTS We have examined the biochemical properties of MCM proteins bound to chromatin fractions using Xenopus egg extracts. Immunoprecipitation of MCM proteins extracted under denaturing conditions reveals that all six subunits of MCM and Cdc45 form a tight complex following the initiation of DNA replication, and that both CDK activity and Cdc45 are essential for the complex formation. Chromatin immunoprecipitation of MCM proteins and Cdc45 shows that a complex containing MCM and Cdc45 has a DNA helicase activity which is dependent on CDK activity and Cdc45 in the extracts. Furthermore, both the complex and the helicase activity are resistant to treatment with phosphatase and high salt. CONCLUSIONS Following the initiation of DNA replication, a tight MCM-Cdc45 complex is formed on chromatin and its formation is closely correlated with the DNA helicase activity of chromatin immunoprecipitates containing MCM and Cdc45. We propose that the tight MCM-Cdc45 complex functions as a replicative DNA helicase in vivo.
Collapse
Affiliation(s)
- Taro Masuda
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | | | |
Collapse
|
50
|
Gozuacik D, Chami M, Lagorce D, Faivre J, Murakami Y, Poch O, Biermann E, Knippers R, Bréchot C, Paterlini-Bréchot P. Identification and functional characterization of a new member of the human Mcm protein family: hMcm8. Nucleic Acids Res 2003; 31:570-9. [PMID: 12527764 PMCID: PMC140502 DOI: 10.1093/nar/gkg136] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The six minichromosome maintenance proteins (Mcm2-7) are required for both the initiation and elongation of chromosomal DNA, ensuring that DNA replication takes place once, and only once, during the S phase. Here we report on the cloning of a new human Mcm gene (hMcm8) and on characterisation of its protein product. The hMcm8 gene contains the central Mcm domain conserved in the Mcm2-7 gene family, and is expressed in a range of cell lines and human tissues. hMcm8 mRNA accumulates during G(1)/S phase, while hMcm8 protein is detectable throughout the cell cycle. Immunoprecipitation-based studies did not reveal any participation of hMcm8 in the Mcm3/5 and Mcm2/4/6/7 subcomplexes. hMcm8 localises to the nucleus, although it is devoid of a nuclear localisation signal, suggesting that it binds to a nuclear protein. In the nucleus, the hMcm8 structure-bound fraction is detectable in S, but not in G(2)/M, phase, as for hMcm3. However, unlike hMcm3, the hMcm8 structure-bound fraction is not detectable in G(1) phase. Overall, our data identify a new Mcm protein, which does not form part of the Mcm2-7 complex and which is only structure-bound during S phase, thus suggesting its specific role in DNA replication.
Collapse
Affiliation(s)
- Devrim Gozuacik
- INSERM Unit 370/Pasteur Institute, Faculté de Médecine Necker-Enfants Malades, 156 rue de Vaugirard, 75730, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|