1
|
Arias-Aragón F, Robles-Lanuza E, Sánchez-Gómez Á, Martinez-Mir A, Scholl FG. Analysis of neurexin-neuroligin complexes supports an isoform-specific role for beta-neurexin-1 dysfunction in a mouse model of autism. Mol Brain 2025; 18:20. [PMID: 40087687 PMCID: PMC11909895 DOI: 10.1186/s13041-025-01183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/05/2025] [Indexed: 03/17/2025] Open
Abstract
Neurexins are presynaptic plasma membrane proteins that regulate key aspects of synapse physiology through the formation of transcellular complexes with postsynaptic ligands, including neuroligins (Nlgns). Each neurexin gene (NRXN1-3) generates two main alternative-spliced transcripts that generate alpha and beta-Nrxn isoforms differing in their extracellular domains. Mutations in NRXN1 are associated with autism and other neurodevelopmental disorders. However, whether dysfunction of NRXN1 occurs through common or isoform-specific postsynaptic partners for alpha- and beta-Nrxn1 is not completely known. The association of Nrxn1 proteins with postsynaptic partners has been mostly analysed in experiments that test binding, but Nrxn proteins must interact with Nlgns in opposing cells, which requires transcellular oligomerization. Here, we studied the interactions of Nrxn1/Nlgn pairs across the synapse and identified the type of association affected in a mouse model of autism. We found that beta-Nrxn1 can be recruited at synaptic contacts by glutamatergic Nlgn1 and GABAergic Nlgn2, whereas alpha-Nrxn1 is a presynaptic partner of Nlgn2. Insertion of alternative spliced segment 4 (AS4) negatively modulates the presynaptic recruitment of Nrxn1 by Nlgns. These data obtained in transcellular assays help clarify previous knowledge based on the ability of Nrxn1 to bind to Nlgns. Interestingly, we found that a mutant beta-Nrxn1 shows ligand restriction for glutamatergic Nlgn1 in the brain of a mouse model of autism. These findings suggest that autism-associated mutations affecting beta-Nrxn1 can act through specific synaptic partners that may be different from those of its alpha-Nrxn1 counterparts.
Collapse
Affiliation(s)
- Francisco Arias-Aragón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Estefanía Robles-Lanuza
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain
| | - Ángela Sánchez-Gómez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Francisco G Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain.
| |
Collapse
|
2
|
Wang J, Sudhof T, Wernig M. Distinct mechanisms control the specific synaptic functions of Neuroligin 1 and Neuroligin 2. EMBO Rep 2025; 26:860-879. [PMID: 39747663 PMCID: PMC11811269 DOI: 10.1038/s44319-024-00286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 01/04/2025] Open
Abstract
Neuroligins are postsynaptic cell-adhesion molecules that regulate synaptic function with a remarkable isoform specificity. Although Nlgn1 and Nlgn2 are highly homologous and biochemically interact with the same extra- and intracellular proteins, Nlgn1 selectively functions in excitatory synapses whereas Nlgn2 functions in inhibitory synapses. How this excitatory/inhibitory (E/I) specificity arises is unknown. Using a comprehensive structure-function analysis, we here expressed wild-type and mutant neuroligins in functional rescue experiments in cultured hippocampal neurons lacking all endogenous neuroligins. Electrophysiology confirmed that Nlgn1 and Nlgn2 selectively restored excitatory and inhibitory synaptic transmission, respectively, in neuroligin-deficient neurons, aligned with their synaptic localizations. Chimeric Nlgn1-Nlgn2 constructs reveal that the extracellular neuroligin domains confer synapse specificity, whereas their intracellular sequences are exchangeable. However, the cytoplasmic sequences of Nlgn2, including its Gephyrin-binding motif that is identically present in the Nlgn1, is essential for its synaptic function whereas they are dispensable for Nlgn1. These results demonstrate that although the excitatory vs. inhibitory synapse specificity of Nlgn1 and Nlgn2 are both determined by their extracellular sequences, these neuroligins enable normal synaptic connections via distinct intracellular mechanisms.
Collapse
Affiliation(s)
- Jinzhao Wang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Thomas Sudhof
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Lv D, Liu A, Yi Z, Mu M, Wu M, Li X, Cao K, Liu R, Jia Z, Han J, Xie W. Neuroligin 1 Regulates Autistic-Like Repetitive Behavior through Modulating the Activity of Striatal D2 Receptor-Expressing Medium Spiny Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410728. [PMID: 39661696 PMCID: PMC11792054 DOI: 10.1002/advs.202410728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Restricted and repetitive behavior (RRB) is a primary symptom of autism spectrum disorder (ASD), which poses a significant risk to individuals' health and is becoming increasingly prevalent. However, the specific cellular and neural circuit mechanisms underlying the generation of RRB remain unclear. In this study, it is reported that the absence of the ASD-related protein Neuroligin 1 (NLGN1) in dopamine receptor D2-expressing medium spiny neurons (D2-MSNs) in the dorsal striatum is associated with the duration and frequency of self-grooming and digging behaviors. The Nlgn1-deficient D2-MSNs are hyperactivated, which correlates with excessive self-grooming and digging behaviors. Inhibiting the activity of D2-MSNs reduces the duration and frequency of these RRBs. Furthermore, it is demonstrated that the generation of self-grooming and digging behaviors depends on distinct patterns of D2-MSN activity. Finally, through single-nucleus RNA sequencing (sn-RNAseq) and protein detection verification, it is revealed that the overactivation of protein kinase C (PKC) in Nlgn1-deficient mice contributes to excessive repetitive behaviors and increased neuronal excitability. In this study, potential mechanisms are proposed for the generation of self-grooming and digging behaviors, as well as suggest possible treatments and interventions ASD.
Collapse
Affiliation(s)
- Dandan Lv
- The Key Laboratory of Developmental Genes and Human DiseaseThe School of Life Science and TechnologySoutheast University2 Sipailou RoadNanjing210096China
- Institute for Brain and IntelligenceSoutheast University2 Sipailou RoadNanjing210096China
| | - An Liu
- The Key Laboratory of Developmental Genes and Human DiseaseThe School of Life Science and TechnologySoutheast University2 Sipailou RoadNanjing210096China
- Institute for Brain and IntelligenceSoutheast University2 Sipailou RoadNanjing210096China
- Shenzhen Research InstituteSoutheast University19 Gaoxin South 4th RoadShenzhen518063China
| | - Ziyue Yi
- The Key Laboratory of Developmental Genes and Human DiseaseThe School of Life Science and TechnologySoutheast University2 Sipailou RoadNanjing210096China
- Institute for Brain and IntelligenceSoutheast University2 Sipailou RoadNanjing210096China
| | - Mingdao Mu
- The Key Laboratory of Developmental Genes and Human DiseaseThe School of Life Science and TechnologySoutheast University2 Sipailou RoadNanjing210096China
- School of MedicineSoutheast University87 Dingjiaqiao RoadNanjing210009China
| | - Miao Wu
- The Key Laboratory of Developmental Genes and Human DiseaseThe School of Life Science and TechnologySoutheast University2 Sipailou RoadNanjing210096China
- Institute for Brain and IntelligenceSoutheast University2 Sipailou RoadNanjing210096China
| | - Xingcan Li
- The Key Laboratory of Developmental Genes and Human DiseaseThe School of Life Science and TechnologySoutheast University2 Sipailou RoadNanjing210096China
- Institute for Brain and IntelligenceSoutheast University2 Sipailou RoadNanjing210096China
| | - Kun Cao
- The Key Laboratory of Developmental Genes and Human DiseaseThe School of Life Science and TechnologySoutheast University2 Sipailou RoadNanjing210096China
- Institute for Brain and IntelligenceSoutheast University2 Sipailou RoadNanjing210096China
| | - Ruining Liu
- The Key Laboratory of Developmental Genes and Human DiseaseThe School of Life Science and TechnologySoutheast University2 Sipailou RoadNanjing210096China
- Institute for Brain and IntelligenceSoutheast University2 Sipailou RoadNanjing210096China
| | - Zhengping Jia
- Neurosciences & Mental HealthThe Hospital for Sick Children555 University Ave.TorontoOntarioM5G 1×8Canada
- Department of PhysiologyFaculty of MedicineUniversity of Toronto1 King's College CircleTorontoOntarioM5S 1A8Canada
| | - Junhai Han
- The Key Laboratory of Developmental Genes and Human DiseaseThe School of Life Science and TechnologySoutheast University2 Sipailou RoadNanjing210096China
- Institute for Brain and IntelligenceSoutheast University2 Sipailou RoadNanjing210096China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human DiseaseThe School of Life Science and TechnologySoutheast University2 Sipailou RoadNanjing210096China
- Institute for Brain and IntelligenceSoutheast University2 Sipailou RoadNanjing210096China
- Jiangsu Co‐innovation Center of NeuroregenerationSoutheast University2 Sipailou RoadNanjing210096China
| |
Collapse
|
4
|
Golf SR, Trotter JH, Wang J, Nakahara G, Han X, Wernig M, Südhof TC. Deletion of Neuroligins from Astrocytes Does Not Detectably Alter Synapse Numbers or Astrocyte Cytoarchitecture by Maturity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.04.10.536254. [PMID: 37090508 PMCID: PMC10120619 DOI: 10.1101/2023.04.10.536254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Astrocytes perform multifarious roles in the formation, regulation, and function of synapses in the brain, but the mechanisms involved are incompletely understood. Interestingly, astrocytes abundantly express neuroligins, postsynaptic adhesion molecules that function as synaptic organizers by binding to presynaptic neurexins. Here we examined the function of neuroligins in astrocytes with a rigorous genetic approach that uses the conditional deletion of all major neuroligins (Nlgn1-3) in astrocytes in vivo and complemented this approach by a genetic deletion of neuroligins in glia cells that are co-cultured with human neurons. Our results show that early postnatal deletion of neuroligins from astrocytes in vivo has no detectable effect on cortical or hippocampal synapses and does not alter the cytoarchitecture of astrocytes when evaluated in young adult mice. Moreover, deletion of astrocytic neuroligins in co-cultures of human neurons produced no detectable consequences for the formation and function of synapses. Thus, astrocytic neuroligins are unlikely to fundamentally shape synapse formation or astrocyte morphogenesis but likely perform other important roles that remain to be discovered.
Collapse
Affiliation(s)
- Samantha R. Golf
- Dept. of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Justin H. Trotter
- Dept. of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Dept. of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
- Dept. of Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Jinzhao Wang
- Dept. of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Pathology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - George Nakahara
- Dept. of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiao Han
- Dept. of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Marius Wernig
- Department of Pathology, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Thomas C. Südhof
- Dept. of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Lehr AW, McDaniel KF, Roche KW. Analyses of Human Genetic Data to Identify Clinically Relevant Domains of Neuroligins. Genes (Basel) 2024; 15:1601. [PMID: 39766868 PMCID: PMC11675371 DOI: 10.3390/genes15121601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Background/Objectives: Neuroligins (NLGNs) are postsynaptic adhesion molecules critical for neuronal development that are highly associated with autism spectrum disorder (ASD). Here, we provide an overview of the literature on NLGN rare variants. In addition, we introduce a new approach to analyze human variation within NLGN genes to identify sensitive regions that have an increased frequency of ASD-associated variants to better understand NLGN function. Methods: To identify critical protein subdomains within the NLGN gene family, we developed an algorithm that assesses tolerance to missense mutations in human genetic variation by comparing clinical variants from ClinVar to reference variants from gnomAD. This approach provides tolerance values to subdomains within the protein. Results: Our algorithm identified several critical regions that were conserved across multiple NLGN isoforms. Importantly, this approach also identified a previously reported cluster of pathogenic variants in NLGN4X (also conserved in NLGN1 and NLGN3) as well as a region around the highly characterized NLGN3 R451C ASD-associated mutation. Additionally, we highlighted other, as of yet, uncharacterized regions enriched with mutations. Conclusions: The systematic analysis of NLGN ASD-associated variants compared to variants identified in the unaffected population (gnomAD) reveals conserved domains in NLGN isoforms that are tolerant to variation or are enriched in clinically relevant variants. Examination of databases also allows for predictions of the presumed tolerance to loss of an allele. The use of the algorithm we developed effectively allowed the evaluation of subdomains of NLGNs and can be used to examine other ASD-associated genes.
Collapse
Affiliation(s)
- Alexander W. Lehr
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Kathryn F. McDaniel
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
- Department of Neuroscience, Brown University, Providence, RI 02906, USA
| | - Katherine W. Roche
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; (A.W.L.); (K.F.M.)
| |
Collapse
|
6
|
Fukuchi M, Shibasaki Y, Akazawa Y, Suzuki-Masuyama H, Takeuchi KI, Iwazaki Y, Tabuchi A, Tsuda M. Neuron-selective and activity-dependent splicing of BDNF exon I-IX pre-mRNA. Neurochem Int 2024; 181:105889. [PMID: 39455010 DOI: 10.1016/j.neuint.2024.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) is essential for numerous neuronal functions, including learning and memory. The expression of BDNF is regulated by distinctive transcriptional and post-transcriptional mechanisms. The Bdnf gene in mice and rats comprises eight untranslated exons (exons I-VIII) and one exon (exon IX) that contains the pre-proBDNF coding sequence. Multiple splice donor sites on the untranslated exons and a single acceptor site upstream of the coding sequence result in the characteristic exon skipping patterns that generate multiple Bdnf mRNA variants, which are essential for the spatiotemporal regulation of BDNF expression, mRNA localization, mRNA stability, and translational control. However, the regulation of Bdnf pre-mRNA splicing remains unclear. Here, we focused on the splicing of Bdnf exon I-IX pre-mRNA. We first constructed a minigene to evaluate Bdnf exon I-IX pre-mRNA splicing. Compared with Bdnf exon I-IX pre-mRNA splicing in non-neuronal NIH3T3 cells, splicing was preferentially observed in primary cultures of cortical neurons. Additionally, a series of overexpression and knockdown experiments suggested that neuro-oncological ventral antigen (NOVA) 2 is involved in the neuron-selective splicing of Bdnf exon I-IX pre-mRNA. Supporting this finding, endogenous Nova2 mRNA expression was markedly higher in neurons, and a strong correlation between endogenous Bdnf exon I-IX and Nova2 mRNA was observed across several brain regions. Furthermore, Bdnf exon I-IX pre-mRNA splicing was facilitated by Ca2+ signals evoked via L-type voltage-dependent Ca2+ channels. Notably, among the Bdnf pre-mRNA splicing investigated in the current study, neuron-selective and activity-dependent splicing was observed in Bdnf exon I-IX pre-mRNA. In conclusion, Bdnf exon I-IX pre-mRNA splicing is preferentially observed in neurons and is facilitated in an activity-dependent manner. The neuron-selective and activity-dependent splicing of Bdnf exon I-IX pre-mRNA may contribute to the efficient induction of Bdnf exon I-IX expression in neurons.
Collapse
Affiliation(s)
- Mamoru Fukuchi
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan; Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Yumi Shibasaki
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Yuto Akazawa
- Laboratory of Molecular Neuroscience, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Hitoshi Suzuki-Masuyama
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ken-Ichi Takeuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yumika Iwazaki
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Masaaki Tsuda
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
7
|
Vicidomini R, Choudhury SD, Han TH, Nguyen TH, Nguyen P, Opazo F, Serpe M. Versatile nanobody-based approach to image, track and reconstitute functional Neurexin-1 in vivo. Nat Commun 2024; 15:6068. [PMID: 39025931 PMCID: PMC11258300 DOI: 10.1038/s41467-024-50462-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
Neurexins are key adhesion proteins that coordinate extracellular and intracellular synaptic components. Nonetheless, the low abundance of these multidomain proteins has complicated any localization and structure-function studies. Here we combine an ALFA tag (AT)/nanobody (NbALFA) tool with classic genetics, cell biology and electrophysiology to examine the distribution and function of the Drosophila Nrx-1 in vivo. We generate full-length and ΔPDZ ALFA-tagged Nrx-1 variants and find that the PDZ binding motif is key to Nrx-1 surface expression. A PDZ binding motif provided in trans, via genetically encoded cytosolic NbALFA-PDZ chimera, fully restores the synaptic localization and function of NrxΔPDZ-AT. Using cytosolic NbALFA-mScarlet intrabody, we achieve compartment-specific detection of endogenous Nrx-1, track live Nrx-1 transport along the motor neuron axons, and demonstrate that Nrx-1 co-migrates with Rab2-positive vesicles. Our findings illustrate the versatility of the ALFA system and pave the way towards dissecting functional domains of complex proteins in vivo.
Collapse
Affiliation(s)
- Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Saumitra Dey Choudhury
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
- Centralized Core Research Facility-Microscopy, All India Institute of Medical Sciences, New Delhi, Delhi, India
| | - Tae Hee Han
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Tho Huu Nguyen
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Peter Nguyen
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Felipe Opazo
- Department of Neuro and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Mihaela Serpe
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA.
| |
Collapse
|
8
|
Nawrocka WI, Cheng S, Hao B, Rosen MC, Cortés E, Baltrusaitis EE, Aziz Z, Kovács IA, Özkan E. Nematode Extracellular Protein Interactome Expands Connections between Signaling Pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602367. [PMID: 39026773 PMCID: PMC11257444 DOI: 10.1101/2024.07.08.602367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Multicellularity was accompanied by the emergence of new classes of cell surface and secreted proteins. The nematode C. elegans is a favorable model to study cell surface interactomes, given its well-defined and stereotyped cell types and intercellular contacts. Here we report our C. elegans extracellular interactome dataset, the largest yet for an invertebrate. Most of these interactions were unknown, despite recent datasets for flies and humans, as our collection contains a larger selection of protein families. We uncover new interactions for all four major axon guidance pathways, including ectodomain interactions between three of the pathways. We demonstrate that a protein family known to maintain axon locations are secreted receptors for insulins. We reveal novel interactions of cystine-knot proteins with putative signaling receptors, which may extend the study of neurotrophins and growth-factor-mediated functions to nematodes. Finally, our dataset provides insights into human disease mechanisms and how extracellular interactions may help establish connectomes.
Collapse
Affiliation(s)
- Wioletta I. Nawrocka
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Shouqiang Cheng
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Bingjie Hao
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
| | - Matthew C. Rosen
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Elena Cortés
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Elana E. Baltrusaitis
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Zainab Aziz
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - István A. Kovács
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Neuroscience, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Bai SY, Zeng DY, Ouyang M, Zeng Y, Tan W, Xu L. Synaptic cell adhesion molecules contribute to the pathogenesis and progression of fragile X syndrome. Front Cell Neurosci 2024; 18:1393536. [PMID: 39022311 PMCID: PMC11252757 DOI: 10.3389/fncel.2024.1393536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and a monogenic cause of autism spectrum disorders. Deficiencies in the fragile X messenger ribonucleoprotein, encoded by the FMR1 gene, lead to various anatomical and pathophysiological abnormalities and behavioral deficits, such as spine dysmorphogenesis and learning and memory impairments. Synaptic cell adhesion molecules (CAMs) play crucial roles in synapse formation and neural signal transmission by promoting the formation of new synaptic contacts, accurately organizing presynaptic and postsynaptic protein complexes, and ensuring the accuracy of signal transmission. Recent studies have implicated synaptic CAMs such as the immunoglobulin superfamily, N-cadherin, leucine-rich repeat proteins, and neuroligin-1 in the pathogenesis of FXS and found that they contribute to defects in dendritic spines and synaptic plasticity in FXS animal models. This review systematically summarizes the biological associations between nine representative synaptic CAMs and FMRP, as well as the functional consequences of the interaction, to provide new insights into the mechanisms of abnormal synaptic development in FXS.
Collapse
Affiliation(s)
- Shu-Yuan Bai
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - De-Yang Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Ming Ouyang
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Wei Tan
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| | - Lang Xu
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Brockhaus J, Kahl I, Ahmad M, Repetto D, Reissner C, Missler M. Conditional Knockout of Neurexins Alters the Contribution of Calcium Channel Subtypes to Presynaptic Ca 2+ Influx. Cells 2024; 13:981. [PMID: 38891114 PMCID: PMC11171642 DOI: 10.3390/cells13110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Presynaptic Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) is a key signal for synaptic vesicle release. Synaptic neurexins can partially determine the strength of transmission by regulating VGCCs. However, it is unknown whether neurexins modulate Ca2+ influx via all VGCC subtypes similarly. Here, we performed live cell imaging of synaptic boutons from primary hippocampal neurons with a Ca2+ indicator. We used the expression of inactive and active Cre recombinase to compare control to conditional knockout neurons lacking either all or selected neurexin variants. We found that reduced total presynaptic Ca2+ transients caused by the deletion of all neurexins were primarily due to the reduced contribution of P/Q-type VGCCs. The deletion of neurexin1α alone also reduced the total presynaptic Ca2+ influx but increased Ca2+ influx via N-type VGCCs. Moreover, we tested whether the decrease in Ca2+ influx induced by activation of cannabinoid receptor 1 (CB1-receptor) is modulated by neurexins. Unlike earlier observations emphasizing a role for β-neurexins, we found that the decrease in presynaptic Ca2+ transients induced by CB1-receptor activation depended more strongly on the presence of α-neurexins in hippocampal neurons. Together, our results suggest that neurexins have unique roles in the modulation of presynaptic Ca2+ influx through VGCC subtypes and that different neurexin variants may affect specific VGCCs.
Collapse
Affiliation(s)
- Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Iris Kahl
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Mohiuddin Ahmad
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Daniele Repetto
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University of Münster, 48149 Münster, Germany
| |
Collapse
|
11
|
Tang X, Chen C, Yan S, Yang A, Deng Y, Chen B, Gu J. Single-Nucleus RNA-Seq Reveals Spermatogonial Stem Cell Developmental Pattern in Shaziling Pigs. Biomolecules 2024; 14:607. [PMID: 38927011 PMCID: PMC11202124 DOI: 10.3390/biom14060607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Normal testicular development ensures the process of spermatogenesis, which is a complex biological process. The sustained high productivity of spermatogenesis throughout life is predominantly attributable to the constant proliferation and differentiation of spermatogonial stem cells (SSCs). The self-renewal and differentiation processes of SSCs are strictly regulated by the SSC niche. Therefore, understanding the developmental pattern of SSCs is crucial for spermatogenesis. The Shaziling pig is a medium-sized indigenous pig breed originating from central China. It is renowned for its superior meat quality and early male sexual maturity. The spermatogenic ability of the boars is of great economic importance to the pig industry. To investigate testicular development, particularly the pattern of SSC development in Shaziling pigs, we used single-cell transcriptomics to identify gene expression patterns in 82,027 individual cells from nine Shaziling pig testes at three key postnatal developmental stages. We generated an unbiased cell developmental atlas of Shaziling pig testicular tissues. We elucidated the complex processes involved in the development of SSCs within their niche in the Shaziling pig. Specifically, we identified potential marker genes and cellular signaling pathways that regulate SSC self-renewal and maintenance. Additionally, we proposed potential novel marker genes for SSCs that could be used for SSC isolation and sorting in Shaziling pigs. Furthermore, by immunofluorescence staining of testicular tissues of different developmental ages using marker proteins (UCHL1 and KIT), the developmental pattern of the spermatogonia of Shaziling pigs was intensively studied. Our research enhances the comprehension of the development of SSCs and provides a valuable reference for breeding Shaziling pigs.
Collapse
Affiliation(s)
- Xiangwei Tang
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
| | - Chujie Chen
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
| | - Saina Yan
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Anqi Yang
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
- School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yanhong Deng
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
| | - Bin Chen
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
| | - Jingjing Gu
- Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.T.); (C.C.); (A.Y.); (Y.D.)
| |
Collapse
|
12
|
Park SJ, Wang IH, Lee N, Jiang HC, Uemura T, Futai K, Kim D, Macosko E, Greer P. Combinatorial expression of neurexin genes regulates glomerular targeting by olfactory sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587570. [PMID: 38617205 PMCID: PMC11014570 DOI: 10.1101/2024.04.01.587570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Precise connectivity between specific neurons is essential for the formation of the complex neural circuitry necessary for executing intricate motor behaviors and higher cognitive functions. While trans -interactions between synaptic membrane proteins have emerged as crucial elements in orchestrating the assembly of these neural circuits, the synaptic surface proteins involved in neuronal wiring remain largely unknown. Here, using unbiased single-cell transcriptomic and mouse genetic approaches, we uncover that the neurexin family of genes enables olfactory sensory neuron (OSNs) axons to form appropriate synaptic connections with their mitral and tufted (M/T) cell synaptic partners, within the mammalian olfactory system. Neurexin isoforms are differentially expressed within distinct populations of OSNs, resulting in unique pattern of neurexin expression that is specific to each OSN type, and synergistically cooperate to regulate axonal innervation, guiding OSN axons to their designated glomeruli. This process is facilitated through the interactions of neurexins with their postsynaptic partners, including neuroligins, which have distinct expression patterns in M/T cells. Our findings suggest a novel mechanism underpinning the precise assembly of olfactory neural circuits, driven by the trans -interaction between neurexins and their ligands.
Collapse
|
13
|
Li LY, Imai A, Izumi H, Inoue R, Koshidaka Y, Takao K, Mori H, Yoshida T. Differential contribution of canonical and noncanonical NLGN3 pathways to early social development and memory performance. Mol Brain 2024; 17:16. [PMID: 38475840 PMCID: PMC10935922 DOI: 10.1186/s13041-024-01087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Neuroligin (NLGN) 3 is a postsynaptic cell adhesion protein organizing synapse formation through two different types of transsynaptic interactions, canonical interaction with neurexins (NRXNs) and a recently identified noncanonical interaction with protein tyrosine phosphatase (PTP) δ. Although, NLGN3 gene is known as a risk gene for neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID), the pathogenic contribution of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ pathways to these disorders remains elusive. In this study, we utilized Nlgn3 mutant mice selectively lacking the interaction with either NRXNs or PTPδ and investigated their social and memory performance. Neither Nlgn3 mutants showed any social cognitive deficiency in the social novelty recognition test. However, the Nlgn3 mutant mice lacking the PTPδ pathway exhibited significant decline in the social conditioned place preference (sCPP) at the juvenile stage, suggesting the involvement of the NLGN3-PTPδ pathway in the regulation of social motivation and reward. In terms of learning and memory, disrupting the canonical NRXN pathway attenuated contextual fear conditioning while disrupting the noncanonical NLGN3-PTPδ pathway enhanced it. Furthermore, disruption of the NLGN3-PTPδ pathway negatively affected the remote spatial reference memory in the Barnes maze test. These findings highlight the differential contributions of the canonical NLGN3-NRXN and noncanonical NLGN3-PTPδ synaptogenic pathways to the regulation of higher order brain functions associated with ASD and ID.
Collapse
Affiliation(s)
- Lin-Yu Li
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Ayako Imai
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Ran Inoue
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Yumie Koshidaka
- Division of Experimental Animal Resource and Development, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Keizo Takao
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
- Division of Experimental Animal Resource and Development, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan.
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
14
|
Krämer C, Kilian M, Chih YC, Kourtesakis A, Hoffmann DC, Boschert T, Koopmann P, Sanghvi K, De Roia A, Jung S, Jähne K, Day B, Shultz LD, Ratliff M, Harbottle R, Green EW, Will R, Wick W, Platten M, Bunse L. NLGN4X TCR transgenic T cells to treat gliomas. Neuro Oncol 2024; 26:266-278. [PMID: 37715782 PMCID: PMC10836769 DOI: 10.1093/neuonc/noad172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Neuroligin 4 X-linked (NLGN4X) harbors a human leukocyte antigen (HLA)-A*02-restricted tumor-associated antigen, overexpressed in human gliomas, that was found to induce specific cytotoxic T cell responses following multi-peptide vaccination in patients with newly diagnosed glioblastoma. METHODS T cell receptor (TCR) discovery was performed using droplet-based single-cell TCR sequencing of NLGN4X-tetramer-sorted T cells postvaccination. The identified TCR was delivered to Jurkat T cells and primary human T cells (NLGN4X-TCR-T). Functional profiling of NLGN4X-TCR-T was performed by flow cytometry and cytotoxicity assays. Therapeutic efficacy of intracerebroventricular NLGN4X-TCR-T was assessed in NOD scid gamma (NSG) major histocompatibility complex (MHC) I/II knockout (KO) (NSG MHC I/II KO) mice bearing NLGN4X-expressing experimental gliomas. RESULTS An HLA-A*02-restricted vaccine-induced T cell receptor specifically binding NLGN4X131-139 was applied for preclinical therapeutic use. Reactivity, cytotoxicity, and polyfunctionality of this NLGN4X-specific TCR are demonstrated in various cellular models. Intracerebroventricular administration of NLGN4X-TCR-T prolongs survival and leads to an objective response rate of 44.4% in experimental glioma-bearing NSG MHC I/II KO mice compared to 0.0% in control groups. CONCLUSION NLGN4X-TCR-T demonstrate efficacy in a preclinical glioblastoma model. On a global scale, we provide the first evidence for the therapeutic retrieval of vaccine-induced human TCRs for the off-the-shelf treatment of glioblastoma patients.Keywords cell therapy | glioblastoma | T cell receptor | tumor antigen.
Collapse
Affiliation(s)
- Christoper Krämer
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Kilian
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yu-Chan Chih
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Alexandros Kourtesakis
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
- Neurology Clinic, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Dirk C Hoffmann
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
- Neurology Clinic, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Tamara Boschert
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
- Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany
| | - Philipp Koopmann
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Khwab Sanghvi
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Alice De Roia
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
- DNA Vector Laboratory, DKFZ, Heidelberg, Germany
| | - Stefanie Jung
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristine Jähne
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bryan Day
- Faculty of Medicine, University of Queensland, Herston, Australia
- Cell and Molecular Biology Department, Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer MRI, Brisbane, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Gardens Point, Australia
| | - Lenny D Shultz
- Department of Immunology, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Miriam Ratliff
- Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | | | - Edward W Green
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Will
- Neurology Clinic, Heidelberg University Hospital, University of Heidelberg, Heidelberg, Germany
- DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany
- Core Facility Cellular tools, DKFZ, Heidelberg, Germany
| | | | - Michael Platten
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Helmholtz Institute of Translational Oncology (HI-TRON), Mainz, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), Heidelberg, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Lukas Bunse
- German Cancer Consortium (DKTK) Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurology, MCTN, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| |
Collapse
|
15
|
Mohrmann L, Seebach J, Missler M, Rohlmann A. Distinct Alterations in Dendritic Spine Morphology in the Absence of β-Neurexins. Int J Mol Sci 2024; 25:1285. [PMID: 38279285 PMCID: PMC10817056 DOI: 10.3390/ijms25021285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Dendritic spines are essential for synaptic function because they constitute the postsynaptic compartment of the neurons that receives the most excitatory input. The extracellularly shorter variant of the presynaptic cell adhesion molecules neurexins, β-neurexin, has been implicated in various aspects of synaptic function, including neurotransmitter release. However, its role in developing or stabilizing dendritic spines as fundamental computational units of excitatory synapses has remained unclear. Here, we show through morphological analysis that the deletion of β-neurexins in hippocampal neurons in vitro and in hippocampal tissue in vivo affects presynaptic dense-core vesicles, as hypothesized earlier, and, unexpectedly, alters the postsynaptic spine structure. Specifically, we observed that the absence of β-neurexins led to an increase in filopodial-like protrusions in vitro and more mature mushroom-type spines in the CA1 region of adult knockout mice. In addition, the deletion of β-neurexins caused alterations in the spine head dimension and an increase in spines with perforations of their postsynaptic density but no changes in the overall number of spines or synapses. Our results indicate that presynaptic β-neurexins play a role across the synaptic cleft, possibly by aligning with postsynaptic binding partners and glutamate receptors via transsynaptic columns.
Collapse
Affiliation(s)
| | | | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University Münster, 48149 Münster, Germany; (L.M.); (J.S.)
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, University Münster, 48149 Münster, Germany; (L.M.); (J.S.)
| |
Collapse
|
16
|
Benner O, Cast TP, Minamide LS, Lenninger Z, Bamburg JR, Chanda S. Multiple N-linked glycosylation sites critically modulate the synaptic abundance of neuroligin isoforms. J Biol Chem 2023; 299:105361. [PMID: 37865312 PMCID: PMC10679506 DOI: 10.1016/j.jbc.2023.105361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
In recent years, elegant glycomic and glycoproteomic approaches have revealed an intricate glycosylation profile of mammalian brain with enormous spatial and temporal diversities. Nevertheless, at a cellular level, it is unclear how these post-translational modifications affect various proteins to influence crucial neuronal properties. Here, we have investigated the impact of N-linked glycosylation on neuroligins (NLGNs), a class of cell-adhesion molecules that play instructive roles in synapse organization. We found that endogenous NLGN proteins are differentially glycosylated across several regions of murine brain in a sex-independent but isoform-dependent manner. In both rodent primary neurons derived from brain sections and human neurons differentiated from stem cells, all NLGN variants were highly enriched with multiple N-glycan subtypes, which cumulatively ensured their efficient trafficking to the cell surface. Removal of these N-glycosylation residues only had a moderate effect on NLGNs' stability or expression levels but particularly enhanced their retention at the endoplasmic reticulum. As a result, the glycosylation-deficient NLGNs exhibited considerable impairments in their dendritic distribution and postsynaptic accumulation, which in turn, virtually eliminated their ability to recruit presynaptic terminals and significantly reduced NLGN overexpression-induced assemblies of both glutamatergic and GABAergic synapse structures. Therefore, our results highlight an essential mechanistic contribution of N-linked glycosylations in facilitating the appropriate secretory transport of a major synaptic cell-adhesion molecule and promoting its cellular function in neurons.
Collapse
Affiliation(s)
- Orion Benner
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Thomas P Cast
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Laurie S Minamide
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA
| | - Zephyr Lenninger
- Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA
| | - James R Bamburg
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Soham Chanda
- Biochemistry & Molecular Biology, Colorado State University, Fort Collins, USA; Molecular, Cellular & Integrated Neurosciences, Colorado State University, Fort Collins, Colorado, USA; Cell & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
17
|
Jeong J, Han W, Hong E, Pandey S, Li Y, Lu W, Roche KW. Regulation of NLGN3 and the Synaptic Rho-GEF Signaling Pathway by CDK5. J Neurosci 2023; 43:7264-7275. [PMID: 37699715 PMCID: PMC10621767 DOI: 10.1523/jneurosci.2309-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Neuroligins (NLGNs) are postsynaptic cell adhesion molecules that are involved in synapse assembly and function. The NLGN gene family consists of 5 genes (NLGN1-3, 4X, and 4Y). NLGN3 forms heterodimers with other NLGNs and is expressed at both excitatory and inhibitory synapses, although the distinct role at different synapses is not fully understood. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase that targets various neuronal substrates to impact neuronal migration, neurite outgrowth, synaptic transmission, and plasticity. Both NLGNs and their presynaptic binding partners neurexins are highly associated with neurodevelopmental disorders. The NLGN3 gene is on the X chromosome and variants in NLGN3 have been linked to the pathophysiology in neurodevelopmental disorders. To better understand the endogenous modulation of NLGN3, we generated an HA-tagged knock-in mouse. We found that Cdk5 associates with NLGN3 in vivo and phosphorylates NLGN3 on serine 725 (S725) in the knock-in mouse of either sex. The phosphorylation affects the NLGN3 association with Kalirin-7, a postsynaptic guanine nucleotide exchange factors for Rho GTPase family proteins. We further observed that the phosphorylation modulates NLGN3 surface expression and NLGN3-mediated synaptic currents in cultured rat neurons. Thus, we characterized NLGN3 as a novel Cdk5 substrate and revealed the functional consequences of NLGN3 S725 phosphorylation in neurons. Our study provides a novel molecular mechanism underlying Cdk5-mediated regulation of postsynaptic cell adhesion molecules.SIGNIFICANCE STATEMENT NLGN3 is involved in synapse assembly and function at both excitatory and inhibitory synapses and has been associated with the pathophysiology of neurodevelopmental disorders. Cdk5 has brain-specific activity and is involved in neuronal transmission, synapse function, and plasticity. Here, we characterize NLGN3 as a Cdk5 substrate for the first time and show that Cdk5-mediated phosphorylation regulates NLGN3 function. We demonstrate that NLGN3 S725 is a Cdk5 phosphorylation site, and reveal that the site is important for NLGN3 association with Kalirin-7, NLGN3 surface expression, and NLGN3-mediated synaptic transmission.
Collapse
Affiliation(s)
- Jaehoon Jeong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Wenyan Han
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Eunhye Hong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Saurabh Pandey
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Yan Li
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Wei Lu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| | - Katherine W Roche
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
18
|
Zhang R, Jiang H, Liu Y, He G. Structure, function, and pathology of Neurexin-3. Genes Dis 2023; 10:1908-1919. [PMID: 37492720 PMCID: PMC10363586 DOI: 10.1016/j.gendis.2022.04.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
Neurexin-3 is primarily localized in the presynaptic membrane and forms complexes with various ligands located in the postsynaptic membrane. Neurexin-3 has important roles in synapse development and synapse functions. Neurexin-3 mediates excitatory presynaptic differentiation by interacting with leucine-rich-repeat transmembrane neuronal proteins. Meanwhile, neurexin-3 modulates the expression of presynaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors and γ-aminobutyric acid A receptors by interacting with neuroligins at excitatory and inhibitory synapses. Numerous studies have documented the potential contribution of neurexin-3 to neurodegenerative and neuropsychiatric disorders, such as Alzheimer's disease, addiction behaviors, and other diseases, which raises hopes that understanding the mechanisms of neurexin-3 may hold the key to developing new strategies for related illnesses. This review comprehensively covers the literature to provide current knowledge of the structure, function, and clinical role of neurexin-3.
Collapse
Affiliation(s)
- Rui Zhang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
| | - HanXiao Jiang
- Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, China
| | - YuanJie Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| | - GuiQiong He
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing 400016, China
- Department of Anatomy, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
19
|
Ren D, Luo B, Chen P, Yu L, Xiong M, Fu Z, Zhou T, Chen WB, Fei E. DiGeorge syndrome critical region gene 2 (DGCR2), a schizophrenia risk gene, regulates dendritic spine development through cell adhesion. Cell Biosci 2023; 13:134. [PMID: 37480133 PMCID: PMC10362570 DOI: 10.1186/s13578-023-01081-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND Dendritic spines are the sites of excitatory synapses on pyramidal neurons, and their development is crucial for neural circuits and brain functions. The spine shape, size, or number alterations are associated with neurological disorders, including schizophrenia. DiGeorge syndrome critical region gene 2 (DGCR2) is one of the deleted genes within the 22q11.2 deletion syndrome (22q11DS), which is a high risk for developing schizophrenia. DGCR2 expression was reduced in schizophrenics. However, the pathophysiological mechanism of DGCR2 in schizophrenia or 22q11DS is still unclear. RESULTS Here, we report that DGCR2 expression was increased during the neurodevelopmental period and enriched in the postsynaptic densities (PSDs). DGCR2-deficient hippocampal neurons formed fewer spines. In agreement, glutamatergic transmission and synaptic plasticity were decreased in the hippocampus of DGCR2-deficient mice. Further molecular studies showed that the extracellular domain (ECD) of DGCR2 is responsible for its transcellular interaction with cell adhesion molecule Neurexin1 (NRXN1) and spine development. Consequently, abnormal behaviors, like anxiety, were observed in DGCR2-deficient mice. CONCLUSIONS These observations indicate that DGCR2 is a novel cell adhesion molecule required for spine development and synaptic plasticity, and its deficiency induces abnormal behaviors in mice. This study provides a potential pathophysiological mechanism of DGCR2 in 22q11DS and related mental disorders.
Collapse
Affiliation(s)
- Dongyan Ren
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Bin Luo
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Peng Chen
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Lulu Yu
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Mingtao Xiong
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Zhiqiang Fu
- Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Tian Zhou
- School of Basic Medical Sciences, Nanchang University, Nanchang, 330031, China
| | - Wen-Bing Chen
- Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| | - Erkang Fei
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.
- Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
20
|
Konno K, Yamasaki M, Miyazaki T, Watanabe M. Glyoxal fixation: An approach to solve immunohistochemical problem in neuroscience research. SCIENCE ADVANCES 2023; 9:eadf7084. [PMID: 37450597 PMCID: PMC10348680 DOI: 10.1126/sciadv.adf7084] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
The gold-standard fixative for immunohistochemistry is 4% formaldehyde; however, it limits antibody access to target molecules that are buried within specialized neuronal components, such as ionotropic receptors at the postsynapse and voltage-gated ion channels at the axon initial segment, often requiring additional antigen-exposing techniques to detect their authentic signals. To solve this problem, we used glyoxal, a two-carbon atom di-aldehyde. We found that glyoxal fixation greatly improved antibody penetration and immunoreactivity, uncovering signals for buried molecules by conventional immunohistochemical procedures at light and electron microscopic levels. It also enhanced immunosignals of most other molecules, which are known to be detectable in formaldehyde-fixed sections. Furthermore, we unearthed several specific primary antibodies that were once judged to be unusable in formaldehyde-fixed tissues, allowing us to successfully localize so far controversial synaptic adhesion molecule Neuroligin 1. Thus, glyoxal is a highly effective fixative for immunostaining, and a side-by-side comparison of glyoxal and formaldehyde fixation is recommended for routine immunostaining in neuroscience research.
Collapse
Affiliation(s)
- Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Taisuke Miyazaki
- Department of Functioning and Disability, Faculty of Health Sciences, Hokkaido University, Sapporo 060-8638, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| |
Collapse
|
21
|
Ducrot C, de Carvalho G, Delignat-Lavaud B, Delmas CVL, Halder P, Giguère N, Pacelli C, Mukherjee S, Bourque MJ, Parent M, Chen LY, Trudeau LE. Conditional deletion of neurexins dysregulates neurotransmission from dopamine neurons. eLife 2023; 12:e87902. [PMID: 37409563 PMCID: PMC10409506 DOI: 10.7554/elife.87902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023] Open
Abstract
Midbrain dopamine (DA) neurons are key regulators of basal ganglia functions. The axonal domain of these neurons is highly complex, with a large subset of non-synaptic release sites and a smaller subset of synaptic terminals from which in addition to DA, glutamate or GABA are also released. The molecular mechanisms regulating the connectivity of DA neurons and their neurochemical identity are unknown. An emerging literature suggests that neuroligins, trans-synaptic cell adhesion molecules, regulate both DA neuron connectivity and neurotransmission. However, the contribution of their major interaction partners, neurexins (Nrxns), is unexplored. Here, we tested the hypothesis that Nrxns regulate DA neuron neurotransmission. Mice with conditional deletion of all Nrxns in DA neurons (DAT::NrxnsKO) exhibited normal basic motor functions. However, they showed an impaired locomotor response to the psychostimulant amphetamine. In line with an alteration in DA neurotransmission, decreased levels of the membrane DA transporter (DAT) and increased levels of the vesicular monoamine transporter (VMAT2) were detected in the striatum of DAT::NrxnsKO mice, along with reduced activity-dependent DA release. Strikingly, electrophysiological recordings revealed an increase of GABA co-release from DA neuron axons in the striatum of these mice. Together, these findings suggest that Nrxns act as regulators of the functional connectivity of DA neurons.
Collapse
Affiliation(s)
- Charles Ducrot
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Gregory de Carvalho
- Department of Anatomy and Neurobiology, School of Medicine, University of California, IrvineIrvineUnited States
| | - Benoît Delignat-Lavaud
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Constantin VL Delmas
- CERVO Brain Research Centre, Department of Psychiatry and Neurosciences, Faculty of Medicine, Université LavalQuebecCanada
| | - Priyabrata Halder
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Nicolas Giguère
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of FoggiaFoggiaItaly
| | - Sriparna Mukherjee
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Marie-Josée Bourque
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| | - Martin Parent
- CERVO Brain Research Centre, Department of Psychiatry and Neurosciences, Faculty of Medicine, Université LavalQuebecCanada
| | - Lulu Y Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, IrvineIrvineUnited States
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de MontréalMontréalCanada
- Department of Neurosciences, Faculty of Medicine, Université de MontréalMontréalCanada
- Neural Signaling and Circuitry Research Group (SNC)MontréalCanada
| |
Collapse
|
22
|
Cho W, Yoon SH, Chung TD. Streamlining the interface between electronics and neural systems for bidirectional electrochemical communication. Chem Sci 2023; 14:4463-4479. [PMID: 37152246 PMCID: PMC10155913 DOI: 10.1039/d3sc00338h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
Seamless neural interfaces conjoining neurons and electrochemical devices hold great potential for highly efficient signal transmission across neural systems and the external world. Signal transmission through chemical sensing and stimulation via electrochemistry is remarkable because communication occurs through the same chemical language of neurons. Emerging strategies based on synaptic interfaces, iontronics-based neuromodulation, and improvements in selective neurosensing techniques have been explored to achieve seamless integration and efficient neuro-electronics communication. Synaptic interfaces can directly exchange signals to and from neurons, in a similar manner to that of chemical synapses. Hydrogel-based iontronic chemical delivery devices are operationally compatible with neural systems for improved neuromodulation. In this perspective, we explore developments to improve the interface between neurons and electrodes by targeting neurons or sub-neuronal regions including synapses. Furthermore, recent progress in electrochemical neurosensing and iontronics-based chemical delivery is examined.
Collapse
Affiliation(s)
- Wonkyung Cho
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Sun-Heui Yoon
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University Seoul 08826 Republic of Korea
- Advanced Institutes of Convergence Technology Suwon-si 16229 Gyeonggi-do Republic of Korea
| |
Collapse
|
23
|
de Arce KP, Ribic A, Chowdhury D, Watters K, Thompson GJ, Sanganahalli BG, Lippard ETC, Rohlmann A, Strittmatter SM, Missler M, Hyder F, Biederer T. Concerted roles of LRRTM1 and SynCAM 1 in organizing prefrontal cortex synapses and cognitive functions. Nat Commun 2023; 14:459. [PMID: 36709330 PMCID: PMC9884278 DOI: 10.1038/s41467-023-36042-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/13/2023] [Indexed: 01/29/2023] Open
Abstract
Multiple trans-synaptic complexes organize synapse development, yet their roles in the mature brain and cooperation remain unclear. We analyzed the postsynaptic adhesion protein LRRTM1 in the prefrontal cortex (PFC), a region relevant to cognition and disorders. LRRTM1 knockout (KO) mice had fewer synapses, and we asked whether other synapse organizers counteract further loss. This determined that the immunoglobulin family member SynCAM 1 controls synapse number in PFC and was upregulated upon LRRTM1 loss. Combined LRRTM1 and SynCAM 1 deletion substantially lowered dendritic spine number in PFC, but not hippocampus, more than the sum of single KO impairments. Their cooperation extended presynaptically, and puncta of Neurexins, LRRTM1 partners, were less abundant in double KO (DKO) PFC. Electrophysiology and fMRI demonstrated aberrant neuronal activity in DKO mice. Further, DKO mice were impaired in social interactions and cognitive tasks. Our results reveal concerted roles of LRRTM1 and SynCAM 1 across synaptic, network, and behavioral domains.
Collapse
Affiliation(s)
- Karen Perez de Arce
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Neuroscience Department, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Adema Ribic
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | | | - Katherine Watters
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Garth J Thompson
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | | | - Elizabeth T C Lippard
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, University of Texas, Austin, TX, USA
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Stephen M Strittmatter
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany
| | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
24
|
Noborn F, Sterky FH. Role of neurexin heparan sulfate in the molecular assembly of synapses - expanding the neurexin code? FEBS J 2023; 290:252-265. [PMID: 34699130 DOI: 10.1111/febs.16251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/21/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023]
Abstract
Synapses are the minimal information processing units of the brain and come in many flavors across distinct circuits. The shape and properties of a synapse depend on its molecular organisation, which is thought to largely depend on interactions between cell adhesion molecules across the synaptic cleft. An established example is that of presynaptic neurexins and their interactions with structurally diverse postsynaptic ligands: the diversity of neurexin isoforms that arise from alternative promoters and alternative splicing specify synaptic properties by dictating ligand preference. The recent finding that a majority of neurexin isoforms exist as proteoglycans with a single heparan sulfate (HS) polysaccharide adds to this complexity. Sequence motifs within the HS polysaccharide may differ between neuronal cell types to contribute specificity to its interactions, thereby expanding the coding capacity of neurexin diversity. However, an expanding number of HS-binding proteins have been found capable to recruit neurexins via the HS chain, challenging the concept of a code provided by neurexin splice isoforms. Here we discuss the possible roles of the neurexin HS in light of what is known from other HS-protein interactions, and propose a model for how the neurexin HS polysaccharide may contribute to synaptic assembly. We also discuss how the neurexin HS may be regulated by co-secreted carbonic anhydrase-related and FAM19A proteins, and highlight some key issues that should be resolved to advance the field.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik H Sterky
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
25
|
Uchigashima M, Hayashi Y, Futai K. Regulation of Presynaptic Release Machinery by Cell Adhesion Molecules. ADVANCES IN NEUROBIOLOGY 2023; 33:333-356. [PMID: 37615873 DOI: 10.1007/978-3-031-34229-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
The synapse is a highly specialized asymmetric structure that transmits and stores information in the brain. The size of pre- and postsynaptic structures and function is well coordinated at the individual synapse level. For example, large postsynaptic dendritic spines have a larger postsynaptic density with higher α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) number on their surface, while juxtaposing presynaptic terminals have a larger active zone and higher release probability. This indicates that pre- and postsynaptic domains bidirectionally communicate to coordinate assembly of specific molecules on both sides of the synaptic cleft. Cell adhesion molecules (CAMs) that localize at synapses form transsynaptic protein interactions across the synaptic cleft and play important roles in synapse formation and regulation. The extracellular domain of CAMs is essential for specific synapse formation and function. In contrast, the intracellular domain is necessary for binding with synaptic molecules and signal transduction. Therefore, CAMs play an essential role on synapse function and structure. In fact, ample evidence indicates that transsynaptic CAMs instruct and modulate functions at presynaptic sites. This chapter focuses on transsynaptic protein interactions that regulate presynaptic functions emphasizing the role of neuronal CAMs and the intracellular mechanism of their regulation.
Collapse
Affiliation(s)
- Motokazu Uchigashima
- Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kensuke Futai
- Brudnick Neuropsychiatric Research Institute, Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
26
|
Boxer EE, Aoto J. Neurexins and their ligands at inhibitory synapses. Front Synaptic Neurosci 2022; 14:1087238. [PMID: 36618530 PMCID: PMC9812575 DOI: 10.3389/fnsyn.2022.1087238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Since the discovery of neurexins (Nrxns) as essential and evolutionarily conserved synaptic adhesion molecules, focus has largely centered on their functional contributions to glutamatergic synapses. Recently, significant advances to our understanding of neurexin function at GABAergic synapses have revealed that neurexins can play pleiotropic roles in regulating inhibitory synapse maintenance and function in a brain-region and synapse-specific manner. GABAergic neurons are incredibly diverse, exhibiting distinct synaptic properties, sites of innervation, neuromodulation, and plasticity. Different classes of GABAergic neurons often express distinct repertoires of Nrxn isoforms that exhibit differential alternative exon usage. Further, Nrxn ligands can be differentially expressed and can display synapse-specific localization patterns, which may contribute to the formation of a complex trans-synaptic molecular code that establishes the properties of inhibitory synapse function and properties of local circuitry. In this review, we will discuss how Nrxns and their ligands sculpt synaptic inhibition in a brain-region, cell-type and synapse-specific manner.
Collapse
Affiliation(s)
| | - Jason Aoto
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| |
Collapse
|
27
|
Qi C, Luo LD, Feng I, Ma S. Molecular mechanisms of synaptogenesis. Front Synaptic Neurosci 2022; 14:939793. [PMID: 36176941 PMCID: PMC9513053 DOI: 10.3389/fnsyn.2022.939793] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Synapses are the basic units for information processing and storage in the nervous system. It is only when the synaptic connection is established, that it becomes meaningful to discuss the structure and function of a circuit. In humans, our unparalleled cognitive abilities are correlated with an increase in the number of synapses. Additionally, genes involved in synaptogenesis are also frequently associated with neurological or psychiatric disorders, suggesting a relationship between synaptogenesis and brain physiology and pathology. Thus, understanding the molecular mechanisms of synaptogenesis is the key to the mystery of circuit assembly and neural computation. Furthermore, it would provide therapeutic insights for the treatment of neurological and psychiatric disorders. Multiple molecular events must be precisely coordinated to generate a synapse. To understand the molecular mechanisms underlying synaptogenesis, we need to know the molecular components of synapses, how these molecular components are held together, and how the molecular networks are refined in response to neural activity to generate new synapses. Thanks to the intensive investigations in this field, our understanding of the process of synaptogenesis has progressed significantly. Here, we will review the molecular mechanisms of synaptogenesis by going over the studies on the identification of molecular components in synapses and their functions in synaptogenesis, how cell adhesion molecules connect these synaptic molecules together, and how neural activity mobilizes these molecules to generate new synapses. Finally, we will summarize the human-specific regulatory mechanisms in synaptogenesis and results from human genetics studies on synaptogenesis and brain disorders.
Collapse
Affiliation(s)
- Cai Qi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- *Correspondence: Cai Qi,
| | - Li-Da Luo
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Department of Cellular and Molecular Physiology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, United States
| | - Irena Feng
- Boston University School of Medicine, Boston, MA, United States
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
28
|
Ardalan M, Chumak T, Quist A, Hermans E, Hoseinpoor Rafati A, Gravina G, Jabbari Shiadeh SM, Svedin P, Alabaf S, Hansen B, Wegener G, Westberg L, Mallard C. Reelin cells and sex-dependent synaptopathology in autism following postnatal immune activation. Br J Pharmacol 2022; 179:4400-4422. [PMID: 35474185 PMCID: PMC9545289 DOI: 10.1111/bph.15859] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Autism spectrum disorders (ASD) are heterogeneous neurodevelopmental disorders with considerably increased risk in male infants born preterm and with neonatal infection. Here, we investigated the role of postnatal immune activation on hippocampal synaptopathology by targeting Reelin+ cells in mice with ASD-like behaviours. EXPERIMENTAL APPROACH C57/Bl6 mouse pups of both sexes received lipopolysaccharide (LPS, 1 mg·kg-1 ) on postnatal day (P) 5. At P45, animal behaviour was examined by marble burying and sociability test, followed by ex vivo brain MRI diffusion kurtosis imaging (DKI). Hippocampal synaptogenesis, number and morphology of Reelin+ cells, and mRNA expression of trans-synaptic genes, including neurexin-3, neuroligin-1, and cell-adhesion molecule nectin-1, were analysed at P12 and P45. KEY RESULTS Social withdrawal and increased stereotypic activities in males were related to increased mean diffusivity on MRI-DKI and overgrowth in hippocampus together with retention of long-thin immature synapses on apical dendrites, decreased volume and number of Reelin+ cells as well as reduced expression of trans-synaptic and cell-adhesion molecules. CONCLUSION AND IMPLICATIONS The study provides new insights into sex-dependent mechanisms that may underlie ASD-like behaviour in males following postnatal immune activation. We identify GABAergic interneurons as core components of dysmaturation of excitatory synapses in the hippocampus following postnatal infection and provide cellular and molecular substrates for the MRI findings with translational value.
Collapse
Affiliation(s)
- Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Tetyana Chumak
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Alexandra Quist
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Eva Hermans
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Developmental Origins of Disease, Utrecht Brain Center and Wilhelmina Children's HospitalUtrecht UniversityUtrechtNetherlands
| | - Ali Hoseinpoor Rafati
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Giacomo Gravina
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Seyedeh Marziyeh Jabbari Shiadeh
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Pernilla Svedin
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Setareh Alabaf
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Brian Hansen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience‐SKSAarhus UniversityAarhusDenmark
| | - Gregers Wegener
- Department of Clinical Medicine, Translational Neuropsychiatry UnitAarhus UniversityAarhusDenmark
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
29
|
Natalwala A, Behbehani R, Yapom R, Kunath T. An Isogenic Collection of Pluripotent Stem Cell Lines With Elevated α-Synuclein Expression Validated for Neural Induction and Cortical Neuron Differentiation. Front Cell Dev Biol 2022; 10:898560. [PMID: 35712660 PMCID: PMC9196909 DOI: 10.3389/fcell.2022.898560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
α-Synuclein (αSyn) is a small, disordered protein that becomes aggregated in Lewy body diseases, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Human induced pluripotent stem cells (hiPSCs) potentially provide a tractable disease model to monitor early molecular changes associated with PD/DLB. We and others have previously derived hiPSC lines from patients with duplication and triplication of the SNCA gene, encoding for αSyn. It is now recognised that to perform meaningful disease modelling with these hiPSC lines, it is critical to generate isogenic control cell lines that lack the disease causing mutations. In order to complement the existing and emerging hiPSC models for PD/DLB, we have generated an allelic series of αSyn over-expressing hESC lines on the same isogenic background. An unresolved question is whether pluripotent stem cell lines, with elevated levels of αSyn, can undergo efficient differentiation into dopaminergic and cortical neurons to model PD and DLB, respectively. We took advantage of our isogenic collection of hESC lines to determine if increased expression of αSyn affects neural induction and neuronal differentiation. Clonal hESC lines with significantly different levels of αSyn expression proliferated normally and maintained expression of pluripotent markers, such as OCT4. All cell lines efficiently produced PAX6+ neuroectoderm and there was no correlation between αSyn expression and neural induction efficiency. Finally, global transcriptomic analysis of cortical differentiation of hESC lines with low or high levels of αSyn expression demonstrated robust and similar induction of cortical neuronal expression profiles. Gene expression differences observed were unrelated to neural induction and neuronal differentiation. We conclude that elevated expression of αSyn in human pluripotent stem cells does not adversely affect their neuronal differentiation potential and that collections of isogenic cell lines with differing levels of αSyn expression are valid and suitable models to investigate synucleinopathies.
Collapse
Affiliation(s)
- Ammar Natalwala
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square House, London, United Kingdom,Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, United Kingdom,Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom,*Correspondence: Ammar Natalwala, ; Tilo Kunath,
| | - Ranya Behbehani
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ratsuda Yapom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom,*Correspondence: Ammar Natalwala, ; Tilo Kunath,
| |
Collapse
|
30
|
Ferdos S, Brockhaus J, Missler M, Rohlmann A. Deletion of β-Neurexins in Mice Alters the Distribution of Dense-Core Vesicles in Presynapses of Hippocampal and Cerebellar Neurons. Front Neuroanat 2022; 15:757017. [PMID: 35173587 PMCID: PMC8841415 DOI: 10.3389/fnana.2021.757017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Communication between neurons through synapses includes the release of neurotransmitter-containing synaptic vesicles (SVs) and of neuromodulator-containing dense-core vesicles (DCVs). Neurexins (Nrxns), a polymorphic family of cell surface molecules encoded by three genes in vertebrates (Nrxn1–3), have been proposed as essential presynaptic organizers and as candidates for cell type-specific or even synapse-specific regulation of synaptic vesicle exocytosis. However, it remains unknown whether Nrxns also regulate DCVs. Here, we report that at least β-neurexins (β-Nrxns), an extracellularly smaller Nrxn variant, are involved in the distribution of presynaptic DCVs. We found that conditional deletion of all three β-Nrxn isoforms in mice by lentivirus-mediated Cre recombinase expression in primary hippocampal neurons reduces the number of ultrastructurally identified DCVs in presynaptic boutons. Consistently, colabeling against marker proteins revealed a diminished population of chromogranin A- (ChrgA-) positive DCVs in synapses and axons of β-Nrxn-deficient neurons. Moreover, we validated the impaired DCV distribution in cerebellar brain tissue from constitutive β-Nrxn knockout (β-TKO) mice, where DCVs are normally abundant and β-Nrxn isoforms are prominently expressed. Finally, we observed that the ultrastructure and marker proteins of the Golgi apparatus, responsible for packaging neuropeptides into DCVs, seem unchanged. In conclusion, based on the validation from the two deletion strategies in conditional and constitutive KO mice, two neuronal populations from the hippocampus and cerebellum, and two experimental protocols in cultured neurons and in the brain tissue, this study presented morphological evidence that the number of DCVs at synapses is altered in the absence of β-Nrxns. Our results therefore point to an unexpected contribution of β-Nrxns to the organization of neuropeptide and neuromodulator function, in addition to their more established role in synaptic vesicle release.
Collapse
|
31
|
Abstract
Drug addiction remains a key biomedical challenge facing current neuroscience research. In addition to neural mechanisms, the focus of the vast majority of studies to date, astrocytes have been increasingly recognized as an "accomplice." According to the tripartite synapse model, astrocytes critically regulate nearby pre- and postsynaptic neuronal substrates to craft experience-dependent synaptic plasticity, including synapse formation and elimination. Astrocytes within brain regions that are implicated in drug addiction exhibit dynamic changes in activity upon exposure to cocaine and subsequently undergo adaptive changes themselves during chronic drug exposure. Recent results have identified several key astrocytic signaling pathways that are involved in cocaine-induced synaptic and circuit adaptations. In this review, we provide a brief overview of the role of astrocytes in regulating synaptic transmission and neuronal function, and discuss how cocaine influences these astrocyte-mediated mechanisms to induce persistent synaptic and circuit alterations that promote cocaine seeking and relapse. We also consider the therapeutic potential of targeting astrocytic substrates to ameliorate drug-induced neuroplasticity for behavioral benefits. While primarily focusing on cocaine-induced astrocytic responses, we also include brief discussion of other drugs of abuse where data are available.
Collapse
|
32
|
Wang CY, Trotter JH, Liakath-Ali K, Lee SJ, Liu X, Südhof TC. Molecular self-avoidance in synaptic neurexin complexes. SCIENCE ADVANCES 2021; 7:eabk1924. [PMID: 34919427 PMCID: PMC8682996 DOI: 10.1126/sciadv.abk1924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/01/2021] [Indexed: 05/30/2023]
Abstract
Synapses are thought to be organized by interactions of presynaptic neurexins with postsynaptic ligands, particularly with neuroligins and cerebellins. However, when a neuron forms adjacent pre- and postsynaptic specializations, as in dendrodendritic or axo-axonic synapses, nonfunctional cis neurexin/ligand interactions would be energetically favored. Here, we reveal an organizational principle for preventing synaptic cis interactions (“self-avoidance”). Using dendrodendritic synapses between mitral and granule cells in the olfactory bulb as a paradigm, we show that, owing to its higher binding affinity, cerebellin-1 blocks the cis interaction of neurexins with neuroligins, thereby enabling trans neurexin/neuroligin interaction. In mitral cells, ablating either cerebellin-1 or neuroligins severely impaired granule cell➔mitral cell synapses, as did overexpression of wild-type neurexins but not of mutant neurexins unable to bind to neuroligins. Our data uncover a molecular interaction network that organizes the self-avoidance of nonfunctional neurexin/ligand cis interactions, thus allowing assembly of physiological trans interactions.
Collapse
Affiliation(s)
- Cosmos Yuqi Wang
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Justin H. Trotter
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kif Liakath-Ali
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sung-Jin Lee
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Xinran Liu
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
33
|
Oguro K, Shimazaki K, Yokota H, Onuki Y, Murashima Y, Kawai K, Muramatsu SI. Global brain delivery of neuroligin 2 gene ameliorates seizures in a mouse model of epilepsy. J Gene Med 2021; 24:e3402. [PMID: 34897885 DOI: 10.1002/jgm.3402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Despite the increasing availability of effective drugs, around one-third of patients with epilepsy are still resistant to pharmacotherapy. Gene therapy has been suggested as a plausible approach to achieve seizure control, in particular for patients with focal epilepsy. Because seizures develop across wide spans of the brain in many forms of epilepsy, global delivery of the vectors is necessary to tackle such generalized seizures. Neuroligin 2 (NL2) is a postsynaptic cell adhesion molecule that induces or strengthens inhibitory synaptic function by specifically combining with neurexin 1. METHODS In the present study, we applied an adeno-associated virus (AAV) type 9 vector expressing NL2 to modulate neuronal excitability in broad areas of the brain in epileptic (EL) mice, a model of polygene epilepsy. We administered the AAV vector expressing Flag-tagged NL2 under the synapsin I promoter (AAV-NL2) via cardiac injection 6 weeks after birth. RESULTS Significant reductions in the duration, strength and frequency of seizure were observed during a 14-week observation period in NL2-treated EL mice compared to untreated or AAV-green fluorescent protein-treated EL mice. No behavioral abnormality was observed in NL2-treated EL mice in an open-field test. Immunohistochemical examination at 14 weeks after AAV-NL2 injection revealed the expression of exogenous NL2 in broad areas of the brain, including the hippocampus and, in these areas, NL2 co-localized with postsynaptic inhibitory molecule gephyrin. CONCLUSIONS Global brain delivery of NL2 by systemic administration of AAV vector may provide a non-invasive therapeutic approach for generalized epilepsy.
Collapse
Affiliation(s)
- Keiji Oguro
- Department of Neurosurgery, International University of Health and Welfare, Shioya Hospital, Tochigi, Japan.,Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Kuniko Shimazaki
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Hidenori Yokota
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan.,Department of Neurosurgery, Koga Red Cross Hospital, Ibaraki, Japan
| | - Yoshiyuki Onuki
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Yoshiya Murashima
- Divison of Frontier Health Science, Tokyo Metropolitan University Graduate School of Human Health Science, Tokyo, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Jichi Medical University, Tochigi, Japan.,Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Super-resolved 3D-STED microscopy identifies a layer-specific increase in excitatory synapses in the hippocampal CA1 region of Neuroligin-3 KO mice. Biochem Biophys Res Commun 2021; 582:144-149. [PMID: 34715405 DOI: 10.1016/j.bbrc.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/02/2021] [Indexed: 12/18/2022]
Abstract
The chemical synapse is one type of cell-adhesion system that transmits information from a neuron to another neuron in the complex neuronal network in the brain. Synaptic transmission is the rate-limiting step during the information processing in the neuronal network and its plasticity is involved in cognitive functions. Thus, morphological and electrophysiological analyses of synapses are of particular importance in neuroscience research. In the current study, we applied super-resolved three-dimensional stimulated emission depletion (3D-STED) microscopy for the morphological analyses of synapses. This approach allowed us to estimate the precise number of excitatory and inhibitory synapses in the mouse hippocampal tissue. We discovered a region-specific increase in excitatory synapses in a model mouse of autism spectrum disorder, Neuroligin-3 KO, with this method. This type of analysis will open a new field in developmental neuroscience in the future.
Collapse
|
35
|
Heck J, Palmeira Do Amaral AC, Weißbach S, El Khallouqi A, Bikbaev A, Heine M. More than a pore: How voltage-gated calcium channels act on different levels of neuronal communication regulation. Channels (Austin) 2021; 15:322-338. [PMID: 34107849 PMCID: PMC8205089 DOI: 10.1080/19336950.2021.1900024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) represent key regulators of the calcium influx through the plasma membrane of excitable cells, like neurons. Activated by the depolarization of the membrane, the opening of VGCCs induces very transient and local changes in the intracellular calcium concentration, known as calcium nanodomains, that in turn trigger calcium-dependent signaling cascades and the release of chemical neurotransmitters. Based on their central importance as concierges of excitation-secretion coupling and therefore neuronal communication, VGCCs have been studied in multiple aspects of neuronal function and malfunction. However, studies on molecular interaction partners and recent progress in omics technologies have extended the actual concept of these molecules. With this review, we want to illustrate some new perspectives of VGCCs reaching beyond their function as calcium-permeable pores in the plasma membrane. Therefore, we will discuss the relevance of VGCCs as voltage sensors in functional complexes with ryanodine receptors, channel-independent actions of auxiliary VGCC subunits, and provide an insight into how VGCCs even directly participate in gene regulation. Furthermore, we will illustrate how structural changes in the intracellular C-terminus of VGCCs generated by alternative splicing events might not only affect the biophysical channel characteristics but rather determine their molecular environment and downstream signaling pathways.
Collapse
Affiliation(s)
- Jennifer Heck
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Ana Carolina Palmeira Do Amaral
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Stephan Weißbach
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
- Computational Genomics and Bioinformatics, Johannes Gutenberg-University Mainz, University Medical Center Mainz, Institute for Human Genetics, Mainz, Germany
| | - Abderazzaq El Khallouqi
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Arthur Bikbaev
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| | - Martin Heine
- Functional Neurobiology, Johannes Gutenberg-University Mainz, Institute for Developmental Biology and Neurobiology, Mainz, Germany
| |
Collapse
|
36
|
Durand N, Aguilar P, Demondion E, Bourgeois T, Bozzolan F, Debernard S. Neuroligin 1 expression is linked to plasticity of behavioral and neuronal responses to sex pheromone in the male moth Agrotis ipsilon. J Exp Biol 2021; 224:273481. [PMID: 34647597 DOI: 10.1242/jeb.243184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
In the moth Agrotis ipsilon, the behavioral response of males to the female-emitted sex pheromone increases throughout adult life and following a prior exposure to sex pheromone, whereas it is temporally inhibited after the onset of mating. This behavioral flexibility is paralleled with changes in neuronal sensitivity to pheromone signal within the primary olfactory centers, the antennal lobes. In the present study, we tested the hypothesis that neuroligins, post-synaptic transmembrane proteins known to act as mediators of neuronal remodeling, are involved in the olfactory modulation in A. ipsilon males. We cloned a full-length cDNA encoding neuroligin 1, which is expressed predominantly in brain and especially in antennal lobes. The level of neuroligin 1 expression in antennal lobes gradually raised from day-2 until day-4 of adult life, as well as at 24 h, 48 h and 72 h following pre-exposure to sex pheromone, and the temporal dynamic of these changes correlated with increased sex pheromone responsiveness. By contrast, there was no significant variation in antennal lobe neuroligin 1 expression during the post-mating refractory period. Taken together, these results highlight that age- and odor experience-related increase in sex pheromone responsiveness is linked to the overexpression of neuroligin 1 in antennal lobes, thus suggesting a potential role played by this post-synaptic cell-adhesion molecule in mediating the plasticity of the central olfactory system in A. ipsilon.
Collapse
Affiliation(s)
- Nicolas Durand
- FRE CNRS 3498, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie, Jules Verne, 80039 Amiens, France
| | - Paleo Aguilar
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| |
Collapse
|
37
|
Uchigashima M, Cheung A, Futai K. Neuroligin-3: A Circuit-Specific Synapse Organizer That Shapes Normal Function and Autism Spectrum Disorder-Associated Dysfunction. Front Mol Neurosci 2021; 14:749164. [PMID: 34690695 PMCID: PMC8526735 DOI: 10.3389/fnmol.2021.749164] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023] Open
Abstract
Chemical synapses provide a vital foundation for neuron-neuron communication and overall brain function. By tethering closely apposed molecular machinery for presynaptic neurotransmitter release and postsynaptic signal transduction, circuit- and context- specific synaptic properties can drive neuronal computations for animal behavior. Trans-synaptic signaling via synaptic cell adhesion molecules (CAMs) serves as a promising mechanism to generate the molecular diversity of chemical synapses. Neuroligins (Nlgns) were discovered as postsynaptic CAMs that can bind to presynaptic CAMs like Neurexins (Nrxns) at the synaptic cleft. Among the four (Nlgn1-4) or five (Nlgn1-3, Nlgn4X, and Nlgn4Y) isoforms in rodents or humans, respectively, Nlgn3 has a heterogeneous expression and function at particular subsets of chemical synapses and strong association with non-syndromic autism spectrum disorder (ASD). Several lines of evidence have suggested that the unique expression and function of Nlgn3 protein underlie circuit-specific dysfunction characteristic of non-syndromic ASD caused by the disruption of Nlgn3 gene. Furthermore, recent studies have uncovered the molecular mechanism underlying input cell-dependent expression of Nlgn3 protein at hippocampal inhibitory synapses, in which trans-synaptic signaling of specific alternatively spliced isoforms of Nlgn3 and Nrxn plays a critical role. In this review article, we overview the molecular, anatomical, and physiological knowledge about Nlgn3, focusing on the circuit-specific function of mammalian Nlgn3 and its underlying molecular mechanism. This will provide not only new insight into specific Nlgn3-mediated trans-synaptic interactions as molecular codes for synapse specification but also a better understanding of the pathophysiological basis for non-syndromic ASD associated with functional impairment in Nlgn3 gene.
Collapse
Affiliation(s)
- Motokazu Uchigashima
- Department of Cellular Neuropathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Amy Cheung
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, United States
| | - Kensuke Futai
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
38
|
Luo JK, Melland H, Nithianantharajah J, Gordon SL. Postsynaptic Neuroligin-1 Mediates Presynaptic Endocytosis During Neuronal Activity. Front Mol Neurosci 2021; 14:744845. [PMID: 34690694 PMCID: PMC8531268 DOI: 10.3389/fnmol.2021.744845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 01/31/2023] Open
Abstract
Fast, high-fidelity neurotransmission and synaptic efficacy requires tightly regulated coordination of pre- and postsynaptic compartments and alignment of presynaptic release sites with postsynaptic receptor nanodomains. Neuroligin-1 (Nlgn1) is a postsynaptic cell-adhesion protein exclusively localised to excitatory synapses that is crucial for coordinating the transsynaptic alignment of presynaptic release sites with postsynaptic AMPA receptors as well as postsynaptic transmission and plasticity. However, little is understood about whether the postsynaptic machinery can mediate the molecular architecture and activity of the presynaptic nerve terminal, and thus it remains unclear whether there are presynaptic contributions to Nlgn1-dependent control of signalling and plasticity. Here, we employed a presynaptic reporter of neurotransmitter release and synaptic vesicle dynamics, synaptophysin-pHluorin (sypHy), to directly assess the presynaptic impact of loss of Nlgn1. We show that lack of Nlgn1 had no effect on the size of the readily releasable or entire recycling pool of synaptic vesicles, nor did it impact exocytosis. However, we observed significant changes in the retrieval of synaptic vesicles by compensatory endocytosis, specifically during activity. Our data extends growing evidence that synaptic adhesion molecules critical for forming transsynaptic scaffolds are also important for regulating activity-induced endocytosis at the presynapse.
Collapse
Affiliation(s)
- Jiaqi Keith Luo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Holly Melland
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia.,Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
39
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
40
|
Zhao R, Zhu T, Liu Q, Tian Q, Wang M, Chen J, Tong D, Yu B, Guo H, Xia K, Qiu Z, Hu Z. The autism risk gene CNTN4 modulates dendritic spine formation. Hum Mol Genet 2021; 31:207-218. [PMID: 34415325 DOI: 10.1093/hmg/ddab233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023] Open
Abstract
Contactin 4 (CNTN4) is a crucial synaptic adhesion protein that belongs to the contactin superfamily. Evidence from both human genetics and mouse models suggests that synapse formation and structural deficits strongly correlate with neurodevelopmental disorders, including autism. In addition, several lines of evidence suggest that CNTN4 is associated with the risk of autism. However, the biological functions of CNTN4 in neural development and disease pathogenesis are poorly understood. In this study, we investigated whether and how CNTN4 is autonomously involved in the development of dendrites and dendritic spines in cortical neurons. Disruption of Cntn4 decreased the number of excitatory synapses, which led to a reduction in neural activity. Truncated proteins lacking the signal peptide, FnIII domains, or GPI domain lacked the ability to regulate dendritic spine formation, indicating that CNTN4 regulates dendritic spine density through a mechanism dependent on FnIII domains. Importantly, we revealed that autism-related variants lacked the ability to regulate spine density and neural activity. In conclusion, our study suggests that CNTN4 is essential for promoting dendrite growth and dendritic spine formation and that disruptive variants of CNTN4 interfere with abnormal synapse formation and may increase the risk of autism.
Collapse
Affiliation(s)
- Rongjuan Zhao
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tengfei Zhu
- Department of Critical Care Medicine, The Third people's hospital of Shenzhen, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China.,Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qiong Liu
- Department of Neurology & Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qi Tian
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Meng Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jingjing Chen
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dali Tong
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bin Yu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hui Guo
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
| | - Kun Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China.,Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Zilong Qiu
- Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.,Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Zhengmao Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
41
|
Klatt O, Repetto D, Brockhaus J, Reissner C, El Khallouqi A, Rohlmann A, Heine M, Missler M. Endogenous β-neurexins on axons and within synapses show regulated dynamic behavior. Cell Rep 2021; 35:109266. [PMID: 34133920 DOI: 10.1016/j.celrep.2021.109266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/21/2020] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
Abstract
Neurexins are key organizer molecules that regulate synaptic function and are implicated in autism and schizophrenia. β-neurexins interact with numerous cell adhesion and receptor molecules, but their neuronal localization remains elusive. Using single-molecule tracking and high-resolution microscopy to detect neurexin1β and neurexin3β in primary hippocampal neurons from knockin mice, we demonstrate that endogenous β-neurexins are present in fewer than half of excitatory and inhibitory synapses. Moreover, we observe a large extrasynaptic pool of β-neurexins on axons and show that axonal β-neurexins diffuse with higher surface mobility than those transiently confined within synapses. Stimulation of neuronal activity further increases the mobility of synaptic and axonal β-neurexins, whereas inhibition causes the opposite. Blocking ectodomain cleavage by metalloproteases also reduces β-neurexin mobility and enhances glutamate release. These findings suggest that the surface mobility of endogenous β-neurexins inside and outside of synapses is dynamically regulated and linked to neuronal activity.
Collapse
Affiliation(s)
- Oliver Klatt
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany; Functional Neurobiology Group, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Daniele Repetto
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Abderazzaq El Khallouqi
- Functional Neurobiology Group, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Martin Heine
- Functional Neurobiology Group, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany.
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany.
| |
Collapse
|
42
|
Cytogenetic and Array-CGH Characterization of a Simple Case of Reciprocal t(3;10) Translocation Reveals a Hidden Deletion at 5q12. Genes (Basel) 2021; 12:genes12060877. [PMID: 34200357 PMCID: PMC8226940 DOI: 10.3390/genes12060877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Chromosome deletions, including band 5q12, have rarely been reported and have been associated with a wide range of clinical manifestations, such as postnatal growth retardation, intellectual disability, hyperactivity, nonspecific ocular defects, facial dysmorphism, and epilepsy. In this study, we describe for the first time a child with growth retardation in which we identified a balanced t(3;10) translocation by conventional cytogenetic analysis in addition to an 8.6 Mb 5q12 deletion through array-CGH. Our results show that the phenotypic abnormalities of a case that had been interpreted as "balanced" by conventional cytogenetics are mainly due to a cryptic deletion, highlighting the need for molecular investigation in subjects with an abnormal phenotype before assuming the cause is an apparently simple cytogenetic rearrangement. Finally, we identify PDE4D and PIK3R1 genes as the two major candidates responsible for the clinical features expressed in our patient.
Collapse
|
43
|
Aerobic Exercise Induces Alternative Splicing of Neurexins in Frontal Cortex. J Funct Morphol Kinesiol 2021; 6:jfmk6020048. [PMID: 34072692 PMCID: PMC8261640 DOI: 10.3390/jfmk6020048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/02/2022] Open
Abstract
Aerobic exercise (AE) is known to produce beneficial effects on brain health by improving plasticity, connectivity, and cognitive functions, but the underlying molecular mechanisms are still limited. Neurexins (Nrxns) are a family of presynaptic cell adhesion molecules that are important in synapsis formation and maturation. In vertebrates, three-neurexin genes (NRXN1, NRXN2, and NRXN3) have been identified, each encoding for α and β neurexins, from two independent promoters. Moreover, each Nrxns gene (1-3) has several alternative exons and produces many splice variants that bind to a large variety of postsynaptic ligands, playing a role in trans-synaptic specification, strength, and plasticity. In this study, we investigated the impact of a continuous progressive (CP) AE program on alternative splicing (AS) of Nrxns on two brain regions: frontal cortex (FC) and hippocampus. We showed that exercise promoted Nrxns1-3 AS at splice site 4 (SS4) both in α and β isoforms, inducing a switch from exon-excluded isoforms (SS4-) to exon-included isoforms (SS4+) in FC but not in hippocampus. Additionally, we showed that the same AE program enhanced the expression level of other genes correlated with synaptic function and plasticity only in FC. Altogether, our findings demonstrated the positive effect of CP AE on FC in inducing molecular changes underlying synaptic plasticity and suggested that FC is possibly a more sensitive structure than hippocampus to show molecular changes.
Collapse
|
44
|
Feng S, Huang H, Wang N, Wei Y, Liu Y, Qin D. Sleep Disorders in Children With Autism Spectrum Disorder: Insights From Animal Models, Especially Non-human Primate Model. Front Behav Neurosci 2021; 15:673372. [PMID: 34093147 PMCID: PMC8173056 DOI: 10.3389/fnbeh.2021.673372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/16/2021] [Indexed: 02/05/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder with deficient social skills, communication deficits and repetitive behaviors. The prevalence of ASD has increased among children in recent years. Children with ASD experience more sleep problems, and sleep appears to be essential for the survival and integrity of most living organisms, especially for typical synaptic development and brain plasticity. Many methods have been used to assess sleep problems over past decades such as sleep diaries and parent-reported questionnaires, electroencephalography, actigraphy and videosomnography. A substantial number of rodent and non-human primate models of ASD have been generated. Many of these animal models exhibited sleep disorders at an early age. The aim of this review is to examine and discuss sleep disorders in children with ASD. Toward this aim, we evaluated the prevalence, clinical characteristics, phenotypic analyses, and pathophysiological brain mechanisms of ASD. We highlight the current state of animal models for ASD and explore their implications and prospects for investigating sleep disorders associated with ASD.
Collapse
Affiliation(s)
- Shufei Feng
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Haoyu Huang
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, China
| | - Na Wang
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanyuan Wei
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| | - Yun Liu
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, China
| | - Dongdong Qin
- Department of Pediatric Rehabilitation Medicine, Kunming Children’s Hospital, Kunming, China
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
- School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
45
|
Jeon J, Yoon SH, Oh MA, Cho W, Kim JY, Shin CI, Kim EJ, Chung TD. Neuroligin-1-Modified Electrodes for Specific Coupling with a Presynaptic Neuronal Membrane. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21944-21953. [PMID: 33909393 DOI: 10.1021/acsami.1c01298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Coordination of synapses onto electrodes with high specificity and maintaining a stable and long-lasting interface have importance in the field of neural interfaces. One potential approach is to present ligands on the surface of electrodes that would be bound through a protein-protein interaction to specific areas of neuronal cells. Here, we functionalize electrode surfaces with genetically engineered neuroligin-1 protein and demonstrate the formation of a nascent presynaptic bouton upon binding to neurexin-1 β on the presynaptic membrane of neurons. The resulting synaptically connected electrode shows an assembly of presynaptic proteins and comparable exocytosis kinetics to that of native synapses. Importantly, a neuroligin-1-induced synapse-electrode interface exhibits type specificity and structural robustness. We envision that the use of synaptic adhesion proteins in modified neural electrodes may lead to new approaches in the interfacing of neural circuity and electronics.
Collapse
Affiliation(s)
- Joohee Jeon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun-Heui Yoon
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ah Oh
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonkyung Cho
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Yong Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Il Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Joong Kim
- Advanced Institute of Convergence Technology, Suwon-Si 16229, Gyeonggi-do, Republic of Korea
| | - Taek Dong Chung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Suwon-Si 16229, Gyeonggi-do, Republic of Korea
| |
Collapse
|
46
|
Kamimura K, Maeda N. Glypicans and Heparan Sulfate in Synaptic Development, Neural Plasticity, and Neurological Disorders. Front Neural Circuits 2021; 15:595596. [PMID: 33679334 PMCID: PMC7928303 DOI: 10.3389/fncir.2021.595596] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are components of the cell surface and extracellular matrix, which bear long polysaccharides called heparan sulfate (HS) attached to the core proteins. HSPGs interact with a variety of ligand proteins through the HS chains, and mutations in HSPG-related genes influence many biological processes and cause various diseases. In particular, recent findings from vertebrate and invertebrate studies have raised the importance of glycosylphosphatidylinositol-anchored HSPGs, glypicans, as central players in the development and functions of synapses. Glypicans are important components of the synapse-organizing protein complexes and serve as ligands for leucine-rich repeat transmembrane neuronal proteins (LRRTMs), leukocyte common antigen-related (LAR) family receptor protein tyrosine phosphatases (RPTPs), and G-protein-coupled receptor 158 (GPR158), regulating synapse formation. Many of these interactions are mediated by the HS chains of glypicans. Neurexins (Nrxs) are also synthesized as HSPGs and bind to some ligands in common with glypicans through HS chains. Therefore, glypicans and Nrxs may act competitively at the synapses. Furthermore, glypicans regulate the postsynaptic expression levels of ionotropic glutamate receptors, controlling the electrophysiological properties and non-canonical BMP signaling of synapses. Dysfunctions of glypicans lead to failures in neuronal network formation, malfunction of synapses, and abnormal behaviors that are characteristic of neurodevelopmental disorders. Recent human genetics revealed that glypicans and HS are associated with autism spectrum disorder, neuroticism, and schizophrenia. In this review, we introduce the studies showing the roles of glypicans and HS in synapse formation, neural plasticity, and neurological disorders, especially focusing on the mouse and Drosophila as potential models for human diseases.
Collapse
Affiliation(s)
- Keisuke Kamimura
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Nobuaki Maeda
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| |
Collapse
|
47
|
Rincic M, Rados M, Kopic J, Krsnik Z, Liehr T. 7p21.3 Together With a 12p13.32 Deletion in a Patient With Microcephaly-Does 12p13.32 Locus Possibly Comprises a Candidate Gene Region for Microcephaly? Front Mol Neurosci 2021; 14:613091. [PMID: 33613193 PMCID: PMC7890232 DOI: 10.3389/fnmol.2021.613091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Martina Rincic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Milan Rados
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Janja Kopic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zeljka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| |
Collapse
|
48
|
TDP-43 Regulation of AChE Expression Can Mediate ALS-Like Phenotype in Zebrafish. Cells 2021; 10:cells10020221. [PMID: 33499374 PMCID: PMC7911940 DOI: 10.3390/cells10020221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
The "distal axonopathy" hypothesis in amyotrophic lateral sclerosis (ALS) proposes that pathological changes occur at the neuromuscular junction (NMJ) early in the disease. While acetylcholinesterase (AChE) plays an important role in the functionality of the NMJ, its potential role in ALS remains unexplored. Here, we identified AChE as a limiting factor regulating muscle/motor neuron connection in a vertebrate model of ALS. Knockdown of the TAR DNA-binding protein 43 (TDP-43) orthologue in zebrafish resulted in early defects of motor functions coupled with NMJ disassembly. We found that a partially depleted tdp-43 caused a decrease of ache expression. Importantly, human AChE overexpression reduced the phenotypic defects in the tdp-43 loss of function model, with amelioration of post- and pre-synaptic deficits at the NMJ. In conclusion, our results provide a better understanding of the role of TDP-43 in the NMJ organization and indicate AChE as a contributing factor in the pathology of ALS. In particular, it may be implicated in the early defects that characterize NMJs in this major neurodegenerative disorder.
Collapse
|
49
|
MMP-9 Signaling Pathways That Engage Rho GTPases in Brain Plasticity. Cells 2021; 10:cells10010166. [PMID: 33467671 PMCID: PMC7830260 DOI: 10.3390/cells10010166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The extracellular matrix (ECM) has been identified as a critical factor affecting synaptic function. It forms a functional scaffold that provides both the structural support and the reservoir of signaling molecules necessary for communication between cellular constituents of the central nervous system (CNS). Among numerous ECM components and modifiers that play a role in the physiological and pathological synaptic plasticity, matrix metalloproteinase 9 (MMP-9) has recently emerged as a key molecule. MMP-9 may contribute to the dynamic remodeling of structural and functional plasticity by cleaving ECM components and cell adhesion molecules. Notably, MMP-9 signaling was shown to be indispensable for long-term memory formation that requires synaptic remodeling. The core regulators of the dynamic reorganization of the actin cytoskeleton and cell adhesion are the Rho family of GTPases. These proteins have been implicated in the control of a wide range of cellular processes occurring in brain physiology and pathology. Here, we discuss the contribution of Rho GTPases to MMP-9-dependent signaling pathways in the brain. We also describe how the regulation of Rho GTPases by post-translational modifications (PTMs) can influence these processes.
Collapse
|
50
|
Sticco MJ, Peña Palomino PA, Lukacsovich D, Thompson BL, Földy C, Ressl S, Martinelli DC. C1QL3 promotes cell-cell adhesion by mediating complex formation between ADGRB3/BAI3 and neuronal pentraxins. FASEB J 2021; 35:e21194. [PMID: 33337553 PMCID: PMC11565477 DOI: 10.1096/fj.202000351rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 11/11/2022]
Abstract
Synapses are the fundamental structural unit by which neurons communicate. An orchestra of proteins regulates diverse synaptic functions, including synapse formation, maintenance, and elimination-synapse homeostasis. Some proteins of the larger C1q super-family are synaptic organizers involved in crucial neuronal processes in various brain regions. C1Q-like (C1QL) proteins bind to the adhesion G protein-coupled receptor B3 (ADGRB3) and act at synapses in a subset of circuits. To investigate the hypothesis that the secreted C1QL proteins mediate tripartite trans-synaptic adhesion complexes, we conducted an in vivo interactome study and identified new binding candidates. We demonstrate that C1QL3 mediates a novel cell-cell adhesion complex involving ADGRB3 and two neuronal pentraxins, NPTX1 and NPTXR. Analysis of single-cell RNA-Seq data from the cerebral cortex shows that C1ql3, Nptx1, and Nptxr are highly co-expressed in the same excitatory neurons. Thus, our results suggest the possibility that in vivo the three co-expressed proteins are presynaptically secreted and form a complex capable of binding to postsynaptically localized ADGRB3, thereby creating a novel trans-synaptic adhesion complex. Identifying new binding partners for C1QL proteins and deciphering their underlying molecular principles will accelerate our understanding of their role in synapse organization.
Collapse
Affiliation(s)
- Matthew J. Sticco
- Department of Neuroscience, University of Connecticut Health, Farmington CT 06030 USA
| | - Perla A. Peña Palomino
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405 USA
| | - David Lukacsovich
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Switzerland
| | - Brianna L. Thompson
- Department of Neuroscience, University of Connecticut Health, Farmington CT 06030 USA
| | - Csaba Földy
- Laboratory of Neural Connectivity, Brain Research Institute, Faculties of Medicine and Science, University of Zürich, Switzerland
| | - Susanne Ressl
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405 USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford CA 94305, USA
- Department of Neuroscience, University of Austin Texas, Austin TX 78712, USA
| | - David C. Martinelli
- Department of Neuroscience, University of Connecticut Health, Farmington CT 06030 USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford CA 94305, USA
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS)
| |
Collapse
|