1
|
Zhang J, Read JE, Mittal G, Poston RN, Reilly J, Howling G, Golland B, Sukhorukov GB, Gould D. Injectable biodegradable microchamber array films for long-term delivery of glucocorticoids. J Control Release 2025; 381:113590. [PMID: 40023228 DOI: 10.1016/j.jconrel.2025.113590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/26/2024] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Glucocorticoids (GCs) are widely recognized for their potent anti-inflammatory and analgesic effects. Although they can cause an array of side effects when delivered systemically these are generally avoided when delivered locally at disease sites such as the eyes, lungs and joints. Glucocorticoid formulations for local use range from crystals and particles through to non-biodegradable implants. In many formulations burst release means that their effectiveness does not persist for more than a few weeks. Novel delivery methods that achieve prolonged delivery of GCs along with sequential degradation of the polymer vehicle has the potential to enhance the effectiveness of these drugs and achieve better control of disease. In this study we use a soft lithography method to produce polymer microchamber array films (MCAs) containing crystals of GCs. We demonstrate that the rate of glucocorticoid release can be adjusted through the choice of polymer used in the manufacture of films with rapid release observed with PLGA 50/50 over the course of 9 weeks and the longest duration of release observed with PLA films which continued beyond a year. Importantly, these release studies do not show evidence of burst release and all films displayed a significant duration of zero order release kinetics. Observations of film degradation were made through changes in their size, microscopic appearance and liberation of lactic acid from the films during the course of experiments demonstrated the association with GC release kinetics. These flexible films can be rolled into fibers with little change in release kinetics and the rolled MCAs can also be injected in vivo through a syringe needle to a delivery site. We envisage that this study could lead to an innovative approach to achieve prolonged release of GCs from biodegradable formulations at disease sites.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Jordan E Read
- Endocrinology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Gayatri Mittal
- Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, United Kingdom
| | - Robin N Poston
- Centre for Microvascular Research, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - John Reilly
- University of Kent, Canterbury, Kent CT2 7NZ, United Kingdom
| | - Graeme Howling
- Medipex Ltd, 4100 Park Approach, Thorpe Park, Leeds LS15 8GB, United Kingdom
| | - Ben Golland
- Queen Mary Innovation Ltd, The QMB Innovation Centre, 42 New Road, Whitechapel, London E1 2AX, United Kingdom
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - David Gould
- Biochemical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom.
| |
Collapse
|
2
|
Park K. PLGA-based long-acting injectable (LAI) formulations. J Control Release 2025; 382:113758. [PMID: 40268201 DOI: 10.1016/j.jconrel.2025.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025]
Abstract
Long-acting injectable (LAI) formulations, which deliver drugs over weeks or months, have been in use for more than three decades. Most clinically approved LAI products are formulated using poly(lactide-co-glycolide) (PLGA) polymers. Historically, the development of PLGA-based LAI formulations has relied predominantly on trial-and-error methods, primarily due to a limited understanding of the complex factors involved in LAI formulations and insufficient analytical techniques available for characterizing individual PLGA polymers of the prepared formulations. This article offers a personal perspective on recent advancements in characterization methods for PLGA polymers within final formulations, i.e., products, as well as enhanced insights into the drug release mechanisms associated with LAI products. With a deeper understanding of PLGA polymer properties and drug release mechanisms, the formulation development process can transition from traditional trial-and-error practices to a more systematic Quality by Design (QbD) approach. Additionally, this article explores the emerging role of artificial intelligence (AI) in formulation science and its potential, when applied carefully, to enhance the future development of PLGA-based LAI formulations.
Collapse
Affiliation(s)
- Kinam Park
- Purdue University, Weldon School of Biomedical Engineering and Department of Industrial and Molecular Pharmaceutics, West Lafayette, IN 47907, USA; Akina, Inc., 3495 Kent Avenue, West Lafayette, IN 47906, USA.
| |
Collapse
|
3
|
He S, Xie L, Zhang D, Han S, Shi H, Yu S, Deng Y, Wang S, Wu C. A nanocatalytic membrane with sono-responsive antibacterial therapy (SRAT) for rapid sterilization and enhanced chronic wound healing. NANOSCALE 2025; 17:9552-9561. [PMID: 40130604 DOI: 10.1039/d5nr00211g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Pathogenic bacteria in infected microenvironments can severely disrupt the normal progression of wound healing. Sono-responsive nanomaterials have emerged as a promising alternative to conventional antibiotics for combating bacterial infections. Despite the advantageous sono-excited antibacterial properties of n-type barium titanate (BaTiO3, BTO), developing bioheterojunctions (bioHJs) with compatible sono-physical characteristics remains a key strategy for achieving superior sono-antibacterial efficiency. Here, we constructed a novel PN-bioHJ by integrating two-dimensional p-type black phosphorus (BP) with three-dimensional n-type cubic BTO and modifying it onto a poly(lactic-co-glycolic acid) (PLGA) spinning membrane to enhance antibacterial performance under ultrasonic (US) stimulation. The successful construction of PN-bioHJs can significantly enhance the yield of ROS production for sono-responsive antibacterial therapy (SRAT). Additionally, the biodegradable PLGA membrane provides a biocompatible and scalable platform for the acoustic activation of the PN-bioHJs while facilitating localized antibacterial therapy. The designed sono-responsive nanocatalytic membrane demonstrates excellent bactericidal performance with antibacterial rates exceeding 99% under US stimulation. In vivo tests further revealed that the proposed membrane shows excellent biocompatibility and the ability to mitigate pathogenic virulence factors, potentially aiding in the regeneration of infected tissues. This work introduces a promising strategy for leveraging acoustically activated membranes in biomedical applications, paving the way for advanced solutions to combat antibiotic resistance.
Collapse
Affiliation(s)
- Shuai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Lu Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Daiquan Zhang
- Department of Traditional Chinese Medicine, West China Second Hospital, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Shihao Han
- Sichuan Police College, Luzhou 646000, China
| | - Hongxing Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Sheng Yu
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Yi Deng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, School of Chemical Engineering, Sichuan University, 610041 Chengdu, Sichuan, China
| | - Song Wang
- Department of Orthopedics Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chao Wu
- Department of Orthopedics, Zigong Fourth People's Hospital, Zigong, China
- Institute of Digital Medicine, Zigong Academy of Big Data for Medical Science and Artificial Intelligence, Zigong, China
| |
Collapse
|
4
|
Hu Z, Xiao X, Zhang G, Li Y. Revolutionizing fixed-dose combinations with long-acting microsphere. Eur J Pharm Sci 2025; 207:107032. [PMID: 39914724 DOI: 10.1016/j.ejps.2025.107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/21/2024] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Combination therapy, involving the concurrent use of multiple medications, has become crucial for managing complex diseases with diverse pathological mechanisms. Fixed-Dose Combinations (FDCs) are formulated to leverage the synergistic effects of multiple drugs, thereby enhancing therapeutic outcomes. However, conventional FDCs typically maintain therapeutic effects for only up to 24 h and require frequent dosing, which often results in patient non-compliance and inconsistent treatment responses, especially in chronic diseases. This highlights the urgent need for long-acting FDCs that can provide sustained drug release over extended periods-weeks, months, or even years-thereby reducing dosing frequency and enhancing patient adherence. Microspheres, with their ability to encapsulate and release multiple medications in predefined patterns, are highly advantageous for developing long-acting FDC drugs. This review emphasizes the increasing demand for long-acting FDC drugs that ensure sustained drug release, reduce dosing frequency, and ultimately improve patient adherence. We also highlight the potential of microsphere technology, which enables precise encapsulation and sustained release of multiple medications, as a promising approach for revolutionizing long-acting FDCs with enhanced therapeutic outcomes.
Collapse
Affiliation(s)
- Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Xiao Xiao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Guiyun Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmacy, Guizhou Medical University, Guiyang 550025, China
| | - Yuanyuan Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; School of Pharmacy, Guizhou Medical University, Guiyang 550025, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Chen B, Costello MA, Kuehster L, Lynd NA, Qin B, Wang Y, Zhang F. Investigation of the Thermal Stability and Hydrolytic Degradation Kinetics of Poly(Lactide-co-Glycolide) Melts. AAPS PharmSciTech 2025; 26:24. [PMID: 39779655 DOI: 10.1208/s12249-024-03018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Poly(lactide-co-glycolide) (PLGA) is widely used in a variety of long-acting injectables. However, its biodegradable nature creates potential chemical stability challenges during melt extrusion, where PLGA is exposed to elevated temperature (100-140 °C) for several minutes. This study evaluated the thermal stability of three PLGA grades (Resomer® 502, 502H, and 505) with varying molecular weights and chain-ends using a differential scanning calorimeter and twin-screw extruder. DSC results revealed that both residual water content and chain-end groups significantly accelerate PLGA degradation. At 0.2% water content, all samples maintained good stability (less than 15% reduction in molecular weight). However, at 0.4% water content, Resomer 502H, which has acid end groups, experienced significant degradation (45% reduction in molecular weight) after 30 min at 140 °C due to catalyzed hydrolysis. The extruded samples remained stable across tested barrel temperatures (100 °C and 140 °C) and screw speeds (125 and 250 rpm). Further investigations of PLGA with 0.2% water content demonstrates that the hydrolysis rates of Resomer® 502 and 505 were comparable, indicating that molecular weight does not influence hydrolysis rate. In contrast, Resomer® 502H exhibited a higher hydrolysis rate and a slightly higher activation energy, suggesting a greater temperature dependency. Additionally, when subjected to 200 °C for one hour with less than 0.03% water content, Resomer® 505 showed a less than 7% reduction in molecular weight, indicating minimal thermal degradation. Conversely, Resomer® 502 and 502H experienced an increase in molecular weight, which was likely attributed to recombination reactions, particularly in Resomer® 502H, which has higher tin content (170 ppm).
Collapse
Affiliation(s)
- Beibei Chen
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Mark A Costello
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA
| | - Louise Kuehster
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Nathaniel A Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, USA
| | - Bin Qin
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yan Wang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Feng Zhang
- Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas, USA.
| |
Collapse
|
6
|
Wang H, Roof M, Burgher K, Pham C, Samuels ER, He Y, Jian H, Wang T. Measuring erosion of biodegradable polymers in brimonidine drug delivery implants by quantitative proton NMR spectroscopy (q-HNMR). J Pharm Sci 2025; 114:245-255. [PMID: 39218154 DOI: 10.1016/j.xphs.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Erosion of biodegradable polymeric excipients, such as polylactic acid (PLA) and polylactic-co-glycolic acid (PLGA), is generally characterized by microbalance for the remaining mass of PLA and/or PLGA and Gel Permeation Chromatography (GPC) for molecular weight (MW) decrease. For polymer erosion studies of intravitreal sustained release brimonidine implants, however, both microbalance and GPC present several challenges. Mass loss measurement by microbalance does not have specificity for excipient polymers and drug substances. Accuracy of the remaining mass by weighing could also be low due to sample mass loss through retrieval-drying steps, especially at later drug release (DR) time points. When measuring the decrease of polymer MW by GPC, trace amounts of polymeric degradants (oligomers and/or monomers) trapped inside the implants during DR tests may not be measurable due to sensitivity limitations of the GPC detector and column MW range. Previous efforts to measure remained PLGA weight of dexamethasone micro-implants using qNMR with external calibration have been performed, however, these measurements do not account for chemical structure changes (i.e. LA to GA ratio changes from time zero) of PLGA implants during drug release tests. Here, a qNMR method with an internal standard was developed to monitor the following changes in micro-implants during drug release tests: 1. The remaining overall PLA/PLGA mass. 2. The remaining lactic acid (LA), glycolic acid (GA) unit and PLGA's lauryl ester end group percentages. 3. The trace content of PLA/PLGA oligomers as degradants retained in the implants. Unlike microbalance analysis, qNMR has both specificity for drug substance, excipient polymer, and accuracy due to minimal implant loss during sample preparation. Compared to the overall PLA/PLGA remaining mass generally monitored in erosion studies, the percentage of remaining LA, GA, and the ester end group provide more information about the microstructure change (such as hydrophobicity) of PLA/PLGA. Additionally, the qNMR method can complement GPC methods by measuring the change of remaining PLA and PLGA oligomer concentrations in brimonidine implants, with tenfold less sample and no MW cutoff. The qNMR method can be used as a sensitive tool for both polymer excipient characterization and kinetics studies of brimonidine implant erosion.
Collapse
Affiliation(s)
- Hongpeng Wang
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA.
| | - Mike Roof
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Kyle Burgher
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Chiem Pham
- Drug Product Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Eric R Samuels
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Yan He
- Analytical Research and Development, AbbVie, 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Huahua Jian
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| | - Tao Wang
- Analytical Research and Development, AbbVie, 2525 Dupont Drive, Irvine, CA 92612, USA
| |
Collapse
|
7
|
Saha S, Lin X, Zhou L, Xue A, Gosselin E, Chothe PP, Darji M, Lu X, Yang W. Evaluation of the impact of the polymer end groups and molecular weight on in vitro and in vivo performances of PLGA based in situ forming implants for ketoprofen. J Pharm Sci 2025; 114:424-433. [PMID: 39426566 DOI: 10.1016/j.xphs.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
In situ forming implants are appealing long-acting dosage forms for both preclinical and clinical applications due to their simple manufacturing process and easy delivery. This study aims to develop extended-release in situ forming solid implants for subcutaneous administration using two types of commercially available triblock poly (lactic-co-glycolic acid)-poly (ethylene glycol)-poly (lactic-co-glycolic acid) (PLGA-PEG-PLGA) polymers, with either an acid or ester end group. Both types of polymers instantly form in situ implants when injected directly into an aqueous medium. The performance of these implants, containing a model compound ketoprofen, was evaluated by comparing the in vitro drug release profiles with the in vivo performance following subcutaneous administration in rats. Analytical characterizations of two representative in situ implants were conducted to understand their structural impact on polymer degradation and drug release. All tested in situ forming implants demonstrated prolonged drug release profiles both in vitro and in vivo. This study illustrates the successful preparation of sustained-release in situ forming implant formulations for ketoprofen using commercially available polymers, with the molecular weight and the end group of the polymers affecting their degradation and the drug release from the in situ formed implants.
Collapse
Affiliation(s)
- Sanjib Saha
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Xinhao Lin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69N. Eagleville Rd, Storrs, CT, USA
| | - Liping Zhou
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Aixiang Xue
- Animal Science & Technology, Clinical Pharmacology and Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| | - Eric Gosselin
- Drug Metabolism and Pharmacokinetics, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Paresh P Chothe
- Drug Metabolism and Pharmacokinetics, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Mittal Darji
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69N. Eagleville Rd, Storrs, CT, USA
| | - Xiuling Lu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, 69N. Eagleville Rd, Storrs, CT, USA
| | - Wenzhan Yang
- Advanced Drug Delivery, BioPharmaceuticals R&D, AstraZeneca, Boston, MA, USA
| |
Collapse
|
8
|
Liang D, Walker J, Schwendeman PS, Chandrashekar A, Ackermann R, Olsen KF, Beck-Broichsitter M, Schwendeman SP. Effect of PLGA raw materials on in vitro and in vivo performance of drug-loaded microspheres. Drug Deliv Transl Res 2025; 15:185-202. [PMID: 38643259 DOI: 10.1007/s13346-024-01577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 04/22/2024]
Abstract
Poly(lactide-co-glycolide) and poly(lactic-co-glycolic acids) (PLGAs) play a critical role in the development of commercial long-acting injectable microsphere formulations. However, very little information is available describing the impact of PLGA manufacturer and monomer distribution along the polymer chain (e.g., glycolic blockiness (Rc) and average lactic block length (LL)) on the degradation and release behavior of PLGA drug carriers in vitro and in vivo. Here, we compared the in vitro and in vivo performance of (a) four leuprolide-loaded microsphere formulations prepared from similar low-molecular-weight acid-capped PLGAs (10-14 kD, i.e., Expansorb® DLG 75-2A, Purasorb® PDLG 7502A, Resomer® RG 752H and Wako® 7515) and (b) two triamcinolone acetonide-loaded (Tr-A) microsphere formulations from similar medium-molecular-weight ester-capped PLGAs (i.e., Expansorb® DLG 75-4E and Resomer® RG 753S). Lupron Depot® and Zilretta® were used as reference commercial products. The six 75/25 PLGAs displayed block lengths that were either above or below values expected from a random copolymer. Drug release and polymer degradation were monitored simultaneously in vitro and in vivo using a cage implant system. The four leuprolide-loaded formulations showed similar release and degradation patterns with some notable differences between each other. Microspheres from the Expansorb® polymer displayed lower LL and higher Rc relative to the other 3 PLGA 75/25 microspheres, and likewise exhibited distinct peptide release and degradation behavior compared to the other 3 formulations. For each formulation, leuprolide release was erosion-controlled up to about 30% release after the initial burst followed by a faster than erosion release phase. In vitro release was similar as that in vivo over the first phase but notably different from the latter release phase, particularly for the most blocky Expansorb® formulation. The Purasorb® and Wako® formulations displayed highly similar performance in release, degradation, and erosion analysis. By contrast, the two ester-capped Expansorb® DLG 75-4E and Resomer® RG 753S used to prepare Tr-A microspheres shared essentially identical LL and higher Rc and behaved similarly although the Expansorb® degraded and released the steroid faster in vivo, suggestive of other factors responsible (e.g., residual monomer). The in vivo release performance for both drugs from the six microsphere formulations was similar to that of the commercial reference products. In summary, this work details information on comparing the similarities and differences in in vitro and in vivo performance of drug-loaded microspheres as a function of manufacturing and microstructural variables of different types of PLGA raw materials utilized and could, therefore, be meaningful in guiding the source control during development and manufacturing of PLGA microsphere-based drug products. Future work will expand the analysis to include a broader range of LL and higher Rc, and add additional important formulation metrics (e.g., thermal analysis, and residual monomer, moisture, and organic solvent levels).
Collapse
Affiliation(s)
- Desheng Liang
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Jennifer Walker
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Peter S Schwendeman
- Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Ave., Ann Arbor, MI, 48109, USA
| | - Aishwarya Chandrashekar
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Rose Ackermann
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Karl F Olsen
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA
| | - Moritz Beck-Broichsitter
- MilliporeSigma a Business of Merck Life Science KGaA, Frankfurter Strasse 250, D-64293, Darmstadt, Germany
| | - Steven P Schwendeman
- Department of Pharmaceutical Sciences, The Biointerfaces Institute, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, 2800 Plymouth Rd., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
9
|
Alshememry A, Kalam MA, Shahid M, Ali R, Alhudaithi SS, Alshumaimeri NA, BinHudhud ZA, Aldaham AA, Binkhathlan Z, Almomen AA. Delafloxacin-Loaded Poly(d,l-lactide- co-glycolide) Nanoparticles for Topical Ocular Use: In Vitro Characterization and Antimicrobial Activity. ACS OMEGA 2024; 9:50476-50490. [PMID: 39741859 PMCID: PMC11683606 DOI: 10.1021/acsomega.4c07805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/08/2024] [Accepted: 11/28/2024] [Indexed: 01/03/2025]
Abstract
Objective: We developed delafloxacin (Dela)-loaded PLGA nanoparticles (PNPs) for potential ocular application via a topical route to treat eye infections caused by Gram-positive and Gram-negative bacteria. Methodology: Dela-PNPs were formulated using the emulsification-solvent evaporation method and stabilized using poly(vinyl alcohol) (PVA). Size and morphology were characterized by using dynamic light scattering (DLS) and scanning electron microscopy (SEM). Drug loading and encapsulation efficiency were measured via HPLC. Differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR) assessed the physical state and drug-polymer interaction. The in vitro drug release was evaluated using the dialysis bag method in simulated tear fluid (STF, pH 7.4) with Tween 80 (0.5%). The antimicrobial efficacy was determined by a minimum inhibitory concentration (MIC) and zone of inhibition tests against various bacteria. Results: Optimally sized PNPs were produced (238.9 ± 10.2 nm) with a PDI of 0.258 ± 0.084 and a ζ-potential of 2.78 ± 0.34 mV. Using 40 mg of PLGA, 4 mg of Dela, and 1% PVA, drug encapsulation and loading were 84.6 ± 7.3 and 12.9 ± 1.7%, respectively. DSC indicated that Dela was entrapped in an amorphous state within the PNPs. FTIR spectra showed no drug-polymer interactions. The formulation showed 40.6 ± 4.2% drug release within 24 h and 84.4 ± 6.1% by 96 h. MIC tests showed high susceptibility of Streptococcus pneumoniae, Klebsiella pneumoniae, and Escherichia coli (∼0.31 μg/mL) compared to Staphylococcus aureus and MRSA-6538 (∼0.63 μg/mL) and Bacillus subtilis (2.5 μg/mL). Stability studies showed minimal changes in particle characteristics over 3- and 6-month storage at 25 and 37 °C. Conclusion: Dela-PNPs exhibit significant potential as a nanoformulation for ocular applications.
Collapse
Affiliation(s)
- Abdullah
K. Alshememry
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Abul Kalam
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Raisuddin Ali
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Sulaiman S. Alhudaithi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Nada A. Alshumaimeri
- Al-Ghad
International Colleges for Applied Medical Sciences, Riyadh 13629, Saudi Arabia
| | - Ziyad A. BinHudhud
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulrazzaq A. Aldaham
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Ziyad Binkhathlan
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Aliyah A. Almomen
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11491, Saudi Arabia
| |
Collapse
|
10
|
de Pinho SS, Invenção MDCV, Silva AJD, de Macêdo LS, Espinoza BCF, Leal LRS, da Gama MATM, de Moura IA, Silva MEDS, de Souza DVS, Lara ML, Alves JNSA, de Freitas AC. Pichia pastoris-Derived β-Glucan Capsules as a Delivery System for DNA Vaccines. Vaccines (Basel) 2024; 12:1428. [PMID: 39772088 PMCID: PMC11728682 DOI: 10.3390/vaccines12121428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES DNA vaccines are rapidly produced and adaptable to different pathogens, but they face considerable challenges regarding stability and delivery to the cellular target. Thus, effective delivery methods are essential for the success of these vaccines. Here, we evaluated the efficacy of capsules derived from the cell wall of the yeast Pichia pastoris as a delivery system for DNA vaccines. METHODS The capsules were extracted from the yeast Pichia pastoris strain GS115, previously grown in a YPD medium. pVAX1 expression vector was adopted to evaluate the DNA vaccine insertion and delivery. Three encapsulation protocols were tested to identify the most effective in internalizing the plasmid. The presence of plasmids inside the capsules was confirmed by fluorescence microscopy, and the encapsulation efficiency was calculated by the difference between the initial concentration of DNA used for insertion and the concentration of unencapsulated DNA contained in the supernatant. The capsules were subjected to different temperatures to evaluate their thermostability and were co-cultured with macrophages for phagocytosis analysis. HEK-293T cells were adopted to assess the cytotoxicity levels by MTT assay. RESULTS The microscopy results indicated that the macrophages successfully phagocytosed the capsules. Among the protocols tested for encapsulation, the one with 2% polyethylenimine for internalization showed the highest efficiency, with an encapsulation rate above 80%. However, the vaccine capsules obtained with the protocol that used 5% NaCl showed better thermal stability and encapsulation efficiency above 63% without induction of cell viability loss in HEK 293T. CONCLUSIONS We successfully described a vaccine delivery system using yeast capsules derived from Pichia pastoris, demonstrating its potential for DNA vaccine delivery for the first time. Additional studies will be needed to characterize and improve this delivery strategy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (S.S.d.P.); (M.d.C.V.I.); (A.J.D.S.); (L.S.d.M.); (B.C.F.E.); (L.R.S.L.); (M.A.T.M.d.G.); (I.A.d.M.); (M.E.d.S.S.); (D.V.S.d.S.); (M.L.L.); (J.N.S.A.A.)
| |
Collapse
|
11
|
Kolpek DJ, Kim J, Mohammed H, Gensel JC, Park J. Physicochemical Property Effects on Immune Modulating Polymeric Nanoparticles: Potential Applications in Spinal Cord Injury. Int J Nanomedicine 2024; 19:13357-13374. [PMID: 39691455 PMCID: PMC11649979 DOI: 10.2147/ijn.s497859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024] Open
Abstract
Nanoparticles (NPs) offer promising potential as therapeutic agents for inflammation-related diseases, owing to their capabilities in drug delivery and immune modulation. In preclinical studies focusing on spinal cord injury (SCI), polymeric NPs have demonstrated the ability to reprogram innate immune cells. This reprogramming results in redirecting immune cells away from the injury site, downregulating pro-inflammatory signaling, and promoting a regenerative environment post-injury. However, to fully understand the mechanisms driving these effects and maximize therapeutic efficacy, it is crucial to assess NP interactions with innate immune cells. This review examines how the physicochemical properties of polymeric NPs influence their modulation of the immune system. To achieve this, the review delves into the roles played by innate immune cells in SCI and investigates how various NP properties influence cellular interactions and subsequent immune modulation. Key NP properties such as size, surface charge, molecular weight, shape/morphology, surface functionalization, and polymer composition are thoroughly examined. Furthermore, the review establishes connections between these properties and their effects on the immunomodulatory functions of NPs. Ultimately, this review suggests that leveraging NPs and their physicochemical properties could serve as a promising therapeutic strategy for treating SCI and potentially other inflammatory diseases.
Collapse
Affiliation(s)
- Daniel J Kolpek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Jaechang Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Hisham Mohammed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Jonghyuck Park
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
12
|
Lokras AG, Bobak TR, Baghel SS, Sebastiani F, Foged C. Advances in the design and delivery of RNA vaccines for infectious diseases. Adv Drug Deliv Rev 2024; 213:115419. [PMID: 39111358 DOI: 10.1016/j.addr.2024.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
RNA medicines represent a paradigm shift in treatment and prevention of critical diseases of global significance, e.g., infectious diseases. The highly successful messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed at record speed during the coronavirus disease 2019 pandemic. A consequence of this is exceptionally shortened vaccine development times, which in combination with adaptability makes the RNA vaccine technology highly attractive against infectious diseases and for pandemic preparedness. Here, we review state of the art in the design and delivery of RNA vaccines for infectious diseases based on different RNA modalities, including linear mRNA, self-amplifying RNA, trans-amplifying RNA, and circular RNA. We provide an overview of the clinical pipeline of RNA vaccines for infectious diseases, and present analytical procedures, which are paramount for characterizing quality attributes and guaranteeing their quality, and we discuss future perspectives for using RNA vaccines to combat pathogens beyond SARS-CoV-2.
Collapse
Affiliation(s)
- Abhijeet Girish Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Thomas Rønnemoes Bobak
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Saahil Sandeep Baghel
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Federica Sebastiani
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark; Division of Physical Chemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
13
|
Khwarg J, Lee H, Yu KS, Seol E, Chung JY. Population Pharmacokinetic Modeling and Simulation for Dose Optimization of GB-5001, a Long-Acting Intramuscular Injection of Donepezil, in Healthy Participants. Neurol Ther 2024; 13:1453-1466. [PMID: 39126603 PMCID: PMC11393366 DOI: 10.1007/s40120-024-00643-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024] Open
Abstract
INTRODUCTION GB-5001 is an intramuscular (IM) formulation of donepezil under development for the treatment of Alzheimer's disease. The objective of this study was to develop a population pharmacokinetic (PK) model for donepezil in both IM and oral formulations, and to optimize the IM dosage of GB-5001 using bioequivalence (BE) simulation. METHODS A population PK model of donepezil was developed using NONMEM. It was based on plasma concentration data from a Phase 1 dose escalation study, which involved a single administration of donepezil IM formulation at doses of 70, 140, and 280 mg, and the oral formulation at 10 mg. The model was evaluated based on goodness-of-fit plots, conditional weighted residuals, visual predictive checks, and bootstrapping. BE simulations were conducted using a parallel design between various doses of the IM formulation and the 10-mg dose of oral formulation. RESULTS The PKs of donepezil were best described by a two-compartment model, which incorporated distinct absorption compartments for the IM (dual first-order absorption and simultaneous zero-order absorption with lag time) and oral (first-order absorption with lag time) formulations. Based on the simulation results, an IM dosage range of 210-215 mg in a sample size of over 92 was estimated to achieve a success rate of approximately 80% for BE. CONCLUSION The population PK model well explained the PKs of donepezil following administration of both the IM and oral formulations. This model could be applied for the design and dose selection of future BE trials. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT05525780.
Collapse
Affiliation(s)
- Juyoung Khwarg
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Heeyong Lee
- R&D Center, G2GBIO, Inc., Cheongju, Republic of Korea
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
| | - Eunyoung Seol
- R&D Center, G2GBIO, Inc., Cheongju, Republic of Korea.
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Seongnam, Republic of Korea.
| |
Collapse
|
14
|
Sun R, Chen Y, Pei Y, Wang W, Zhu Z, Zheng Z, Yang L, Sun L. The drug release of PLGA-based nanoparticles and their application in treatment of gastrointestinal cancers. Heliyon 2024; 10:e38165. [PMID: 39364250 PMCID: PMC11447355 DOI: 10.1016/j.heliyon.2024.e38165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
The poly (lactic-co-glycolic acid) (PLGA) based nanoparticles have been applied for drug delivery due to their simple preparation, biodegradability, and ideal biocompatibility. In this study, the factors affecting the degradation of PLGA-based nanoparticles are reviewed, encompassing the ratio of PLA to PGA, relative molecular weight, crystallinity, and preparation process of PLGA nanoparticles. The drug release behavior of PLGA-based nanoparticles, such as the degradation environment, encapsulated drug properties of polymers, and drug loading rates, are also discussed. Since gastrointestinal cancer is one of the major global threats to human health, this paper comprehensively summarizes the application of PLGA nanoparticles in gastrointestinal cancers from diagnosis, chemotherapy, radiotherapy, and novel tumor treatment methods (immunotherapy, gene therapy, and photothermal therapy). Finally, the future application of PLGA-based drug delivery systems in treating gastrointestinal cancers is discussed. The bottleneck of application status and the prospect of PLGA-nanoparticles in gastrointestinal tumor application are presented. To truly realize the great and wide application of PLGA-based nanoparticles, collaborative progress in the field of nanomaterials and life sciences is needed.
Collapse
Affiliation(s)
- Rui Sun
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Yanfei Chen
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Yanjiang Pei
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Wenbin Wang
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Zhi Zhu
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Zhaohua Zheng
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| | - Limeng Yang
- School of Textile Science & Engineering, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Li Sun
- Department of Digestive Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, PR China
| |
Collapse
|
15
|
Bai Z, Wan D, Lan T, Hong W, Dong H, Wei Y, Wei X. Nanoplatform Based Intranasal Vaccines: Current Progress and Clinical Challenges. ACS NANO 2024; 18:24650-24681. [PMID: 39185745 PMCID: PMC11394369 DOI: 10.1021/acsnano.3c10797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 08/27/2024]
Abstract
Multiple vaccine platforms have been employed to develop the nasal SARS-CoV-2 vaccines in preclinical studies, and the dominating pipelines are viral vectored as protein-based vaccines. Among them, several viral vectored-based vaccines have entered clinical development. Nevertheless, some unsatisfactory results were reported in these clinical studies. In the face of such urgent situations, it is imperative to rapidly develop the next-generation intranasal COVID-19 vaccine utilizing other technologies. Nanobased intranasal vaccines have emerged as an approach against respiratory infectious diseases. Harnessing the power of nanotechnology, these vaccines offer a noninvasive yet potent defense against pathogens, including the threat of COVID-19. The improvements made in vaccine mucosal delivery technologies based on nanoparticles, such as lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles etc., not only provide stability and controlled release but also enhance mucosal adhesion, effectively overcoming the limitations of conventional vaccines. Hence, in this review, we overview the evaluation of intranasal vaccine and highlight the current barriers. Next, the modern delivery systems based on nanoplatforms are summarized. The challenges in clinical application of nanoplatform based intranasal vaccine are finally discussed.
Collapse
Affiliation(s)
| | | | | | - Weiqi Hong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Haohao Dong
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yuquan Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xiawei Wei
- Laboratory of Aging Research
and Cancer Drug Target, State Key Laboratory of Biotherapy, National
Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
16
|
Turkmen Koc SN, Conger E, Ozturk S, Eroglu I, Ulubayram K. Production of 5-fluorouracil-loaded PLGA nanoparticles with toroidal microfluidic system and optimization of process variables by design of experiments. Int J Pharm 2024; 662:124501. [PMID: 39053677 DOI: 10.1016/j.ijpharm.2024.124501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
In recent decades, microfluidics has presented new opportunities for the production of nanoparticles (NPs). However, to achieve rapid clinical translation, the production of PLGA NPs in a single microfluidic channel for both the pharmaceutical research and industry without the need for scaling is still limited. The aim of this study was to accomplish the production of reproducible and stable 5-FU loaded Poly(lactic-co-glycolic acid) (PLGA) NPs, using an innovative toroidal microfluidic system, for cancer therapy. The toroidal microfluidic system enabled the production of spherical NPs ranging from 100 to 150 nm by adjusting both the TFR within the range of 5-15 mL/min and FRR between 1:3 and 1:7. A systematic assessment of critical process variables (total flow rate; TFR, flow rate ratio; FRR) for the production of PLGA NPs was conducted using Design of Experiment (DoE). The NPs, which exhibit a uniform size distribution, remained stable even after centrifugation and storage for 3 months at 4 °C. The encapsulation efficiency of drug and the concentration of NPs were not affected by changing process parameters. The effective 5-FU encapsulation into NPs resulted in a controlled in vitro drug release. Due to the controlled release profile of the 5-FU loaded PLGA NPs, the formulation was a promising candidate for mitigating the toxic side effects of free 5-FU and improving cancer treatment. In conclusion, toroidal microfluidic system enables high-volume production of stable PLGA NPs, both with and without 5-FU.
Collapse
Affiliation(s)
- Seyma Nur Turkmen Koc
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, Türkiye
| | - Elif Conger
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye; Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Ankara, Türkiye
| | - Sukru Ozturk
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye
| | - Ipek Eroglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye; Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Ankara, Türkiye
| | - Kezban Ulubayram
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, Türkiye; Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Türkiye; Department of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, Ankara, Türkiye.
| |
Collapse
|
17
|
Visan AI, Negut I. Development and Applications of PLGA Hydrogels for Sustained Delivery of Therapeutic Agents. Gels 2024; 10:497. [PMID: 39195026 DOI: 10.3390/gels10080497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) hydrogels are highly utilized in biomedical research due to their biocompatibility, biodegradability, and other versatile properties. This review comprehensively explores their synthesis, properties, sustained release mechanisms, and applications in drug delivery. The introduction underscores the significance of PLGA hydrogels in addressing challenges like short half-lives and systemic toxicity in conventional drug formulations. Synthesis methods, including emulsion solvent evaporation, solvent casting, electrospinning, thermal gelation, and photopolymerization, are described in detail and their role in tailoring hydrogel properties for specific applications is highlighted. Sustained release mechanisms-such as diffusion-controlled, degradation-controlled, swelling-controlled, and combined systems-are analyzed alongside key kinetic models (zero-order, first-order, Higuchi, and Peppas models) for designing controlled drug delivery systems. Applications of PLGA hydrogels in drug delivery are discussed, highlighting their effectiveness in localized and sustained chemotherapy for cancer, as well as in the delivery of antibiotics and antimicrobials to combat infections. Challenges and future prospects in PLGA hydrogel research are discussed, with a focus on improving drug loading efficiency, improving release control mechanisms, and promoting clinical translation. In summary, PLGA hydrogels provide a promising platform for the sustained delivery of therapeutic agents and meet diverse biomedical requirements. Future advancements in materials science and biomedical engineering are anticipated to further optimize their efficacy and applicability in clinical settings. This review consolidates the current understanding and outlines future research directions for PLGA hydrogels, emphasizing their potential to revolutionize therapeutic delivery and improve patient outcomes.
Collapse
Affiliation(s)
- Anita Ioana Visan
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| |
Collapse
|
18
|
Gorantla A, Hall JTVE, Troidle A, Janjic JM. Biomaterials for Protein Delivery: Opportunities and Challenges to Clinical Translation. MICROMACHINES 2024; 15:533. [PMID: 38675344 PMCID: PMC11052476 DOI: 10.3390/mi15040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The development of biomaterials for protein delivery is an emerging field that spans materials science, bioengineering, and medicine. In this review, we highlight the immense potential of protein-delivering biomaterials as therapeutic options and discuss the multifaceted challenges inherent to the field. We address current advancements and approaches in protein delivery that leverage stimuli-responsive materials, harness advanced fabrication techniques like 3D printing, and integrate nanotechnologies for greater targeting and improved stability, efficacy, and tolerability profiles. We also discuss the demand for highly complex delivery systems to maintain structural integrity and functionality of the protein payload. Finally, we discuss barriers to clinical translation, such as biocompatibility, immunogenicity, achieving reliable controlled release, efficient and targeted delivery, stability issues, scalability of production, and navigating the regulatory landscape for such materials. Overall, this review summarizes insights from a survey of the current literature and sheds light on the interplay between innovation and the practical implementation of biomaterials for protein delivery.
Collapse
Affiliation(s)
- Amogh Gorantla
- Department of Engineering, Wake Forest University, Winston-Salem, NC 27109, USA;
| | | | | | - Jelena M. Janjic
- School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA;
| |
Collapse
|
19
|
Fois M, Zengin A, Song K, Giselbrecht S, Habibović P, Truckenmüller RK, van Rijt S, Tahmasebi Birgani ZN. Nanofunctionalized Microparticles for Glucose Delivery in Three-Dimensional Cell Assemblies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17347-17360. [PMID: 38561903 PMCID: PMC11009907 DOI: 10.1021/acsami.4c02321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Three-dimensional (3D) cell assemblies, such as multicellular spheroids, can be powerful biological tools to closely mimic the complexity of cell-cell and cell-matrix interactions in a native-like microenvironment. However, potential applications of large spheroids are limited by the insufficient diffusion of oxygen and nutrients through the spheroids and, thus, result in the formation of a necrotic core. To overcome this drawback, we present a new strategy based on nanoparticle-coated microparticles. In this study, microparticles function as synthetic centers to regulate the diffusion of small molecules, such as oxygen and nutrients, within human mesenchymal stem cell (hMSC) spheroids. The nanoparticle coating on the microparticle surface acts as a nutrient reservoir to release glucose locally within the spheroids. We first coated the surface of the poly(lactic-co-glycolic acid) (PLGA) microparticles with mesoporous silica nanoparticles (MSNs) based on electrostatic interactions and then formed cell-nanofunctionalized microparticle spheroids. Next, we investigated the stability of the MSN coating on the microparticles' surface during 14 days of incubation in cell culture medium at 37 °C. Then, we evaluated the influence of MSN-coated PLGA microparticles on spheroid aggregation and cell viability. Our results showed the formation of homogeneous spheroids with good cell viability. As a proof of concept, fluorescently labeled glucose (2-NBD glucose) was loaded into the MSNs at different concentrations, and the release behavior was monitored. For cell culture studies, glucose was loaded into the MSNs coated onto the PLGA microparticles to sustain local nutrient release within the hMSC spheroids. In vitro results demonstrated that the local delivery of glucose from MSNs enhanced the cell viability in spheroids during a short-term hypoxic culture. Taken together, the newly developed nanofunctionalized microparticle-based delivery system may offer a versatile platform for local delivery of small molecules within 3D cellular assemblies and, thus, improve cell viability in spheroids.
Collapse
Affiliation(s)
| | | | - Ke Song
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Stefan Giselbrecht
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Pamela Habibović
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive
Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | |
Collapse
|
20
|
Kojic M, Milosevic M, Simic V, Milicevic B, Terracciano R, Filgueira CS. On the generality of the finite element modeling physical fields in biological systems by the multiscale smeared concept (Kojic transport model). Heliyon 2024; 10:e26354. [PMID: 38434281 PMCID: PMC10907537 DOI: 10.1016/j.heliyon.2024.e26354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
The biomechanical and biochemical processes in the biological systems of living organisms are extremely complex. Advances in understanding these processes are mainly achieved by laboratory and clinical investigations, but in recent decades they are supported by computational modeling. Besides enormous efforts and achievements in this modeling, there still is a need for new methods that can be used in everyday research and medical practice. In this report, we give a view of the generality of the finite element methodology introduced by the first author and supported by his collaborators. It is based on the multiscale smeared physical fields, termed as Kojic Transport Model (KTM), published in several journal papers and summarized in a recent book (Kojic et al., 2022) [1]. We review relevant literature to demonstrate the distinctions and advantages of our methodology and indicate possible further applications. We refer to our published results by a selection of a few examples which include modeling of partitioning, blood flow, molecular transport within the pancreas, multiscale-multiphysics model of coupling electrical field and ion concentration, and a model of convective-diffusive transport within the lung parenchyma. Two new examples include a model of convective-diffusive transport within a growing tumor, and drug release from nanofibers with fiber degradation.
Collapse
Affiliation(s)
- Milos Kojic
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7 117, Houston, TX, 77030, USA
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000, Belgrade, Serbia
| | - Miljan Milosevic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia
- Institute of Information Technologies, University of Kragujevac, Department of Technical- Technological Sciences, Jovana Cvijica bb, 34000, Kragujevac, Serbia
- Belgrade Metropolitan University, Tadeusa Koscuska 63, 11000, Belgrade, Serbia
| | - Vladimir Simic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia
- Institute of Information Technologies, University of Kragujevac, Department of Technical- Technological Sciences, Jovana Cvijica bb, 34000, Kragujevac, Serbia
| | - Bogdan Milicevic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia
- Faculty of Engineering, University of Kragujevac, Kragujevac, 34000, Serbia
| | - Rossana Terracciano
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7 117, Houston, TX, 77030, USA
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - Carly S. Filgueira
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7 117, Houston, TX, 77030, USA
- Department of Cardiovascular Surgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| |
Collapse
|
21
|
Kawelah MR, Han S, Dincer CA, Jeon J, Brisola J, Hussain AF, Soundaram AJ, Bouchard R, Marras AE, Truskett TM, Sokolov KV, Johnston KP. Antibody-Conjugated Polymersomes with Encapsulated Indocyanine Green J-Aggregates and High Near-Infrared Absorption for Molecular Photoacoustic Cancer Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5598-5612. [PMID: 38270979 PMCID: PMC11246536 DOI: 10.1021/acsami.3c16584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Imaging plays a critical role in all stages of cancer care from early detection to diagnosis, prognosis, and therapy monitoring. Recently, photoacoustic imaging (PAI) has started to emerge into the clinical realm due to its high sensitivity and ability to penetrate tissues up to several centimeters deep. Herein, we encapsulated indocyanine green J (ICGJ) aggregate, one of the only FDA-approved organic exogenous contrast agents that absorbs in the near-infrared range, at high loadings up to ∼40% w/w within biodegradable polymersomes (ICGJ-Ps) composed of poly(lactide-co-glycolide-b-polyethylene glycol) (PLGA-b-PEG). The small Ps hydrodynamic diameter of 80 nm is advantageous for in vivo applications, while directional conjugation with epidermal growth factor receptor (EGFR) targeting cetuximab antibodies renders molecular specificity. Even when exposed to serum, the ∼11 nm-thick membrane of the Ps prevents dissociation of the encapsulated ICGJ for at least 48 h with a high ratio of ICGJ to monomeric ICG absorbances (i.e., I895/I780 ratio) of approximately 5.0 that enables generation of a strong NIR photoacoustic (PA) signal. The PA signal of polymersome-labeled breast cancer cells is proportional to the level of cellular EGFR expression, indicating the feasibility of molecular PAI with antibody-conjugated ICGJ-Ps. Furthermore, the labeled cells were successfully detected with PAI in highly turbid tissue-mimicking phantoms up to a depth of 5 mm with the PA signal proportional to the amount of cells. These data show the potential of molecular PAI with ICGJ-Ps for clinical applications such as tumor margin detection, evaluation of lymph nodes for the presence of micrometastasis, and laparoscopic imaging procedures.
Collapse
Affiliation(s)
- Mohammed R. Kawelah
- McKetta Department of Chemical Engineering, Austin, Texas 78712, United States
| | - Sangheon Han
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Ceren Atila Dincer
- McKetta Department of Chemical Engineering, Austin, Texas 78712, United States
- Department of Chemical Engineering, Faculty of Engineering, Ankara University, 06100 Ankara, Turkey
| | - Jongyeong Jeon
- McKetta Department of Chemical Engineering, Austin, Texas 78712, United States
| | - Joel Brisola
- McKetta Department of Chemical Engineering, Austin, Texas 78712, United States
| | - Aasim F Hussain
- Department of Biomedical Engineering, Austin, Texas 78712, United States
| | | | - Richard Bouchard
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Alexander E. Marras
- Walker Department of Mechanical Engineering, Austin, Texas 78712, United States
- Texas Materials Institute, Austin, Texas 78712, United States
| | - Thomas M. Truskett
- McKetta Department of Chemical Engineering, Austin, Texas 78712, United States
- Texas Materials Institute, Austin, Texas 78712, United States
| | - Konstantin V. Sokolov
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, Texas 77030, United States
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Keith P Johnston
- McKetta Department of Chemical Engineering, Austin, Texas 78712, United States
- Texas Materials Institute, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Grillo A, Rusconi Y, D’Alterio MC, De Rosa C, Talarico G, Poater A. Ring Opening Polymerization of Six- and Eight-Membered Racemic Cyclic Esters for Biodegradable Materials. Int J Mol Sci 2024; 25:1647. [PMID: 38338928 PMCID: PMC10855523 DOI: 10.3390/ijms25031647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
The low percentage of recyclability of the polymeric materials obtained by olefin transition metal (TM) polymerization catalysis has increased the interest in their substitution with more eco-friendly materials with reliable physical and mechanical properties. Among the variety of known biodegradable polymers, linear aliphatic polyesters produced by ring-opening polymerization (ROP) of cyclic esters occupy a prominent position. The polymer properties are highly dependent on the macromolecule microstructure, and the control of stereoselectivity is necessary for providing materials with precise and finely tuned properties. In this review, we aim to outline the main synthetic routes, the physical properties and also the applications of three commercially available biodegradable materials: Polylactic acid (PLA), Poly(Lactic-co-Glycolic Acid) (PLGA), and Poly(3-hydroxybutyrate) (P3HB), all of three easily accessible via ROP. In this framework, understanding the origin of enantioselectivity and the factors that determine it is then crucial for the development of materials with suitable thermal and mechanical properties.
Collapse
Affiliation(s)
- Andrea Grillo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy; (A.G.); (Y.R.); (M.C.D.); (C.D.R.); (G.T.)
| | - Yolanda Rusconi
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy; (A.G.); (Y.R.); (M.C.D.); (C.D.R.); (G.T.)
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Massimo Christian D’Alterio
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy; (A.G.); (Y.R.); (M.C.D.); (C.D.R.); (G.T.)
| | - Claudio De Rosa
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy; (A.G.); (Y.R.); (M.C.D.); (C.D.R.); (G.T.)
| | - Giovanni Talarico
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Via Cintia, 80126 Napoli, Italy; (A.G.); (Y.R.); (M.C.D.); (C.D.R.); (G.T.)
- Scuola Superiore Meridionale, Largo San Marcellino 10, 80138 Napoli, Italy
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/ Maria Aurèlia Capmany 69, 17003 Girona, Spain
| |
Collapse
|
23
|
Bakhrushina EO, Sakharova PS, Konogorova PD, Pyzhov VS, Kosenkova SI, Bardakov AI, Zubareva IM, Krasnyuk II, Krasnyuk II. Burst Release from In Situ Forming PLGA-Based Implants: 12 Effectors and Ways of Correction. Pharmaceutics 2024; 16:115. [PMID: 38258125 PMCID: PMC10819773 DOI: 10.3390/pharmaceutics16010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
In modern pharmaceutical technology, modified-release dosage forms, such as in situ formed implants, are gaining rapidly in popularity. These dosage forms are created based on a configurable matrix consisting of phase-sensitive polymers capable of biodegradation, a hydrophilic solvent, and the active substance suspended or dissolved in it. The most used phase-sensitive implants are based on a biocompatible and biodegradable polymer, poly(DL-lactide-co-glycolide) (PLGA). OBJECTIVE This systematic review examines the reasons for the phenomenon of active ingredient "burst" release, which is a major drawback of PLGA-based in situ formed implants, and the likely ways to correct this phenomenon to improve the quality of in situ formed implants with a poly(DL-lactide-co-glycolide) matrix. DATA SOURCES Actual and relevant publications in PubMed and Google Scholar databases were studied. STUDY SELECTION The concept of the review was based on the theory developed during literature analysis of 12 effectors on burst release from in situ forming implants based on PLGA. Only those studies that sufficiently fully disclosed one or another component of the theory were included. RESULTS The analysis resulted in development of a systematic approach called the "12 Factor System", which considers various constant and variable, endogenous and exogenous factors that can influence the nature of 'burst release' of active ingredients from PLGA polymer-based in situ formed implants. These factors include matrix porosity, polymer swelling, LA:GA ratio, PLGA end groups, polymer molecular weight, active ingredient structure, polymer concentration, polymer loading with active ingredients, polymer combination, use of co-solvents, addition of excipients, and change of dissolution conditions. This review also considered different types of kinetics of active ingredient release from in situ formed implants and the possibility of using the "burst release" phenomenon to modify the active ingredient release profile at the site of application of this dosage form.
Collapse
Affiliation(s)
| | | | | | - Victor S. Pyzhov
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (P.S.S.); (P.D.K.); (S.I.K.); (A.I.B.); (I.M.Z.); (I.I.K.); (I.I.K.J.)
| | | | | | | | | | | |
Collapse
|
24
|
Lackner M, Mukherjee A, Koller M. What Are "Bioplastics"? Defining Renewability, Biosynthesis, Biodegradability, and Biocompatibility. Polymers (Basel) 2023; 15:4695. [PMID: 38139947 PMCID: PMC10747977 DOI: 10.3390/polym15244695] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Today, plastic materials are mostly made from fossil resources, and they are characterized by their long lifetime and pronounced persistence in the open environment. These attributes of plastics are one cause of the ubiquitous pollution we see in our environment. When plastics end up in the environment, most of this pollution can be attributed to a lack of infrastructure for appropriately collecting and recycling plastic waste, mainly due to mismanagement. Because of the huge production volumes of plastics, their merits of being cheap to produce and process and their recalcitrance have turned into a huge disadvantage, since plastic waste has become the end point of our linear economic usage model, and massive amounts have started to accumulate in the environment, leading to microplastics pollution and other detrimental effects. A possible solution to this is offered by "bioplastics", which are materials that are either (partly) biobased and/or degradable under defined conditions. With the rise of bioplastics in the marketplace, several standards and test protocols have been developed to assess, certify, and advertise their properties in this respect. This article summarizes and critically discusses different views on bioplastics, mainly related to the properties of biodegradability and biobased carbon content; this shall allow us to find a common ground for clearly addressing and categorizing bioplastic materials, which could become an essential building block in a circular economy. Today, bioplastics account for only 1-2% of all plastics, while technically, they could replace up to 90% of all fossil-based plastics, particularly in short-lived goods and packaging, the single most important area of use for conventional plastics. Their replacement potential not only applies to thermoplastics but also to thermosets and elastomers. Bioplastics can be recycled through different means, and they can be made from renewable sources, with (bio)degradability being an option for the mismanaged fraction and special applications with an intended end of life in nature (such as in seed coatings and bite protection for trees). Bioplastics can be used in composites and differ in their properties, similarly to conventional plastics. Clear definitions for "biobased" and "biodegradable" are needed to allow stakeholders of (bio)plastics to make fact-based decisions regarding material selection, application, and end-of-life options; the same level of clarity is needed for terms like "renewable carbon" and "bio-attributed" carbon, definitions of which are summarized and discussed in this paper.
Collapse
Affiliation(s)
- Maximilian Lackner
- Go!PHA, Oudebrugsteeg 9, 1012 JN Amsterdam, The Netherlands;
- Go!PHA, 12324 Hampton Way, Wake Forest, NC 27587, USA
- CIRCE Biotechnologie GmbH, Kerpengasse 125, 1210 Vienna, Austria
| | - Anindya Mukherjee
- Go!PHA, Oudebrugsteeg 9, 1012 JN Amsterdam, The Netherlands;
- Go!PHA, 12324 Hampton Way, Wake Forest, NC 27587, USA
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria;
| |
Collapse
|
25
|
Lu Y, Coates GW. Pairing-Enhanced Regioselectivity: Synthesis of Alternating Poly(lactic- co-glycolic acid) from Racemic Methyl-Glycolide. J Am Chem Soc 2023; 145:22425-22432. [PMID: 37793193 DOI: 10.1021/jacs.3c05941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is used in vivo for various biomedical applications. Due to its biodegradability and biocompatibility, PLGA is uniquely suited for controlled drug delivery with parenteral administration. Previously, we established the synthesis of isotactic, alternating PLGA from enantiopure starting materials. Here, to fill in the gap of the current field, we have developed the synthesis of syndioenriched, alternating PLGA from racemic methyl-glycolide (rac-MeG). The synthesis of alternating PLGA is accomplished by a highly regioselective ring-opening polymerization of rac-MeG with an optimized racemic aluminum catalyst. Mechanistic studies are carried out to elucidate the pairing-enhanced catalyst regio- and stereocontrol. Polymer sequence fidelity has been established by NMR investigations, confirming a high degree of alternation of the comonomer sequence and moderate syndiotacticity within the backbone stereoconfiguration. The resulting syndioenriched material is amorphous, which will facilitate the drug complexation behavior.
Collapse
Affiliation(s)
- Yiye Lu
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, U.S.A
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, U.S.A
| |
Collapse
|
26
|
Wang Y, Kim M, Buckley C, Maynard HD, Langley RJ, Perry JK. Growth hormone receptor agonists and antagonists: From protein expression and purification to long-acting formulations. Protein Sci 2023; 32:e4727. [PMID: 37428391 PMCID: PMC10443362 DOI: 10.1002/pro.4727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Recombinant human growth hormone (rhGH) and GH receptor antagonists (GHAs) are used clinically to treat a range of disorders associated with GH deficiency or hypersecretion, respectively. However, these biotherapeutics can be difficult and expensive to manufacture with multiple challenges from recombinant protein generation through to the development of long-acting formulations required to improve the circulating half-life of the drug. In this review, we summarize methodologies and approaches used for making and purifying recombinant GH and GHA proteins, and strategies to improve pharmacokinetic and pharmacodynamic properties, including PEGylation and fusion proteins. Therapeutics that are in clinical use or are currently under development are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- Liggins Institute, University of AucklandAucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
| | - Minah Kim
- Liggins Institute, University of AucklandAucklandNew Zealand
| | - Chantal Buckley
- Liggins Institute, University of AucklandAucklandNew Zealand
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry and the California NanoSystems InstituteUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Ries J. Langley
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
- Department of Molecular Medicine and PathologyUniversity of AucklandAucklandNew Zealand
| | - Jo K. Perry
- Liggins Institute, University of AucklandAucklandNew Zealand
- Maurice Wilkins Centre for Molecular BiodiscoveryAucklandNew Zealand
| |
Collapse
|
27
|
Ayoub AM, Atya MS, Abdelsalam AM, Schulze J, Amin MU, Engelhardt K, Wojcik M, Librizzi D, Yousefi BH, Nasrullah U, Pfeilschifter J, Bakowsky U, Preis E. Photoactive Parietin-loaded nanocarriers as an efficient therapeutic platform against triple-negative breast cancer. Int J Pharm 2023; 643:123217. [PMID: 37429562 DOI: 10.1016/j.ijpharm.2023.123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
The application of photodynamic therapy has become more and more important in combating cancer. However, the high lipophilic nature of most photosensitizers limits their parenteral administration and leads to aggregation in the biological environment. To resolve this problem and deliver a photoactive form, the natural photosensitizer parietin (PTN) was encapsulated in poly(lactic-co-glycolic acid) nanoparticles (PTN NPs) by emulsification diffusion method. PTN NPs displayed a size of 193.70 nm and 157.31 nm, characterized by dynamic light scattering and atomic force microscopy, respectively. As the photoactivity of parietin is essential for therapy, the quantum yield of PTN NPs and the in vitro release were assessed. The antiproliferative activity, the intracellular generation of reactive oxygen species, mitochondrial potential depolarization, and lysosomal membrane permeabilization were evaluated in triple-negative breast cancer cells (MDA-MB-231 cells). At the same time, confocal laser scanning microscopy (CLSM) and flow cytometry were used to investigate the cellular uptake profile. In addition, the chorioallantoic membrane (CAM) was employed to evaluate the antiangiogenic effect microscopically. The spherical monomodal PTN NPs show a quantum yield of 0.4. The biological assessment on MDA-MB-231 cells revealed that free PTN and PTN NPs inhibited cell proliferation with IC50 of 0.95 µM and 1.9 µM at 6 J/cm2, respectively, and this can be attributed to the intracellular uptake profile as proved by flow cytometry. Eventually, the CAM study illustrated that PTN NPs could reduce the number of angiogenic blood vessels and disrupt the vitality of xenografted tumors. In conclusion, PTN NPs are a promising anticancer strategy in vitro and might be a tool for fighting cancer in vivo.
Collapse
Affiliation(s)
- Abdallah M Ayoub
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Muhammed S Atya
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Ahmed M Abdelsalam
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Muhammad U Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Matthias Wojcik
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany
| | - Damiano Librizzi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Germany
| | - Behrooz H Yousefi
- Center for Tumor Biology and Immunology (ZTI), Core Facility Molecular Imaging, Department of Nuclear Medicine, University of Marburg, Germany
| | - Usman Nasrullah
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany.
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Germany.
| |
Collapse
|
28
|
del Moral M, Loeck M, Muntimadugu E, Vives G, Pham V, Pfeifer P, Battaglia G, Muro S. Role of the Lactide:Glycolide Ratio in PLGA Nanoparticle Stability and Release under Lysosomal Conditions for Enzyme Replacement Therapy of Lysosomal Storage Disorders. J Funct Biomater 2023; 14:440. [PMID: 37754854 PMCID: PMC10531859 DOI: 10.3390/jfb14090440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Prior studies demonstrated that encapsulation in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) enhanced the delivery of enzymes used for replacement therapy (ERT) of lysosomal storage disorders (LSDs). This study examined how the copolymer lactide:glycolide ratio impacts encapsulation, physicochemical characteristics, stability, and release under lysosomal conditions. Hyaluronidase, deficient in mucopolysaccharidosis IX, was encapsulated in NPs synthesized using 50:50, 60:40, or 75:25 lactide:glycolide copolymers. All NPs had diameters compatible with cellular transport (≤168 nm) and polydispersity indexes (≤0.16) and ζ-potentials (≤-35 mV) compatible with colloidal stability. Yet, their encapsulation efficiency varied, with 75:25 NPs and 60:40 NPs having the lowest and highest EE, respectively (15% vs. 28%). Under lysosomal conditions, the 50:50 copolymer degraded fastest (41% in 1 week), as expected, and the presence of a targeting antibody coat did not alter this result. Additionally, 60:40 NPs destabilized fastest (<1 week) because of their smaller diameter, and 75:25 NPs did not destabilize in 4 weeks. All formulations presented burst release under lysosomal conditions (56-78% of the original load within 30 min), with 50:50 and 60:40 NPs releasing an additional small fraction after week 1. This provided 4 weeks of sustained catalytic activity, sufficient to fully degrade a substrate. Altogether, the 60:40 NP formulation is preferred given its higher EE, and 50:50 NPs represent a valid alternative, while the highest stability of 75:25 NPs may impair lysosomes. These results can guide future studies aiming to translate PLGA NP-based ERT for this and other LSDs.
Collapse
Affiliation(s)
- Maria del Moral
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Applied Materials Chemistry Master Program (M.d.M) and Biomedicine Doctorate Program, University of Barcelona, 08007 Barcelona, Spain
| | - Maximilian Loeck
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Applied Materials Chemistry Master Program (M.d.M) and Biomedicine Doctorate Program, University of Barcelona, 08007 Barcelona, Spain
| | - Eameema Muntimadugu
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA
| | - Guillem Vives
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Nanoscience and Nanotechnology Degree Program, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Vy Pham
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Peter Pfeifer
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Institution of Catalonia for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Institute for Bioscience and Biotechnology Research (IBBR), University of Maryland, College Park, MD 20742, USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
- Institution of Catalonia for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
29
|
Liu H, Zhang Y, Li H, Gao X, Wang J, Cong X, Xin Y, Zhu Q, Chen B, Yang YG, Sun T. Co-delivery of vitamin D3 and Lkb1 siRNA by cationic lipid-assisted PEG-PLGA nanoparticles to effectively remodel the immune system in vivo. Biomater Sci 2023; 11:5931-5941. [PMID: 37470222 DOI: 10.1039/d3bm00767g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The imbalance of the immune system can lead to the occurrence of autoimmune diseases. Controlling and regulating the proliferation and function of effector T (Teff) cells and regulatory T (Treg) cells becomes the key to treating these diseases. Dendritic cells (DCs), as dedicated antigen-presenting cells, play a key role in inducing the differentiation of naive CD4+ T cells. In this study, we designed a cationic lipid-assisted PEG-PLGA nanoparticle (NPs/VD3/siLkb1) to deliver 1,25-dihydroxyvitamin D3 (VD3) and small interfering RNA (siRNA) to DC cells in the draining lymph nodes. By modulating the phenotypic changes of DC cells, this approach expands Treg cells and reduces the occurrence of autoimmune diseases. Thus, this study provides a novel approach to alleviating the occurrence and development of autoimmune diseases while also minimizing the risk of unwanted complications.
Collapse
Affiliation(s)
- Haochuan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Xue Gao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Qingsan Zhu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Bing Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
30
|
Mahr K, Anzengruber M, Hellerschmid A, Slezacek J, Hoi H, Subbiahdoss G, Gabor F, Lendvai ÁZ. Biocompatible polymeric microparticles serve as novel and reliable vehicles for exogenous hormone manipulations in passerines. Gen Comp Endocrinol 2023; 336:114234. [PMID: 36791824 DOI: 10.1016/j.ygcen.2023.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The administration of exogenous hormones emerged as an essential tool for field studies in endocrinology. However, working with wild animals remains challenging, because under field conditions not every available method meets the necessary requirements. Achieving a sustained elevation in hormone levels, while simultaneously minimising handling time and invasiveness of the procedure is a difficult task in field endocrinology. Facing this challenge, we have investigated the suitability of biocompatible polymeric microparticles, a novel method for drug-administration, as a tool to manipulate hormones in small songbirds. We chose the insulin-like growth factor-1 (IGF-1) as target hormone, because it receives great interest from the research community due to its important role in shaping life-history traits. Moreover, its short half-life and hydrophilic properties imply a major challenge in finding a suitable method to achieve a sustained, systemic long-term release. To study the release kinetics, we injected either IGF-1 loaded polylactic-co-glycolic acid (PLGA) microparticles or dispersion medium (control group) in the skin pocket of the interscapular region of captive bearded reedlings (Panurus biarmicus). We collected blood samples for 7 consecutive days plus an additional sampling period after two weeks and complemented these with an in vitro experiment. Our results show that in vitro, PLGA microparticles allowed a stable IGF-1 release for more than 15 days, following a burst release at the beginning of the measurement. In vivo, the initial burst was followed by a drop to still elevated levels in circulating IGF-1 until the effect vanished by 16 days post-treatment. This study is the first to describe the use of PLGA-microparticles as a novel tool for exogenous hormone administration in a small passerine. We suggest that this method is highly suitable to achieve the systemic long-term release of hydrophilic hormones with short half-life and reduces overall handling time, as it requires only one subcutaneous injection.
Collapse
Affiliation(s)
- Katharina Mahr
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria.
| | - Maria Anzengruber
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | - Anna Hellerschmid
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Julia Slezacek
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Herbert Hoi
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Guruprakash Subbiahdoss
- Institute of Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | - Ádám Z Lendvai
- Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
31
|
Costello MA, Liu J, Chen B, Wang Y, Qin B, Xu X, Li Q, Lynd NA, Zhang F. Drug release mechanisms of high-drug-load, melt-extruded dexamethasone intravitreal implants. Eur J Pharm Biopharm 2023; 187:46-56. [PMID: 37037387 DOI: 10.1016/j.ejpb.2023.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Ozurdex is an FDA-approved sustained-release, biodegradable implant formulated to deliver the corticosteroid dexamethasone to the posterior segment of the eye for up to 6 months. Hot-melt extrusion is used to prepare the 0.46 mm × 6 mm, rod-shaped implant by embedding the drug in a matrix of poly(lactic-co-glycolic acid) (PLGA) in a 60:40 drug:polymer ratio by weight. In our previous work, the Ozurdex implant was carefully studied and reverse engineered to produce a compositionally and structurally equivalent implant for further analysis. In this work, the reverse-engineered implant is thoroughly characterized throughout the in vitro dissolution process to elucidate the mechanisms of controlled drug release. The implant exhibits a triphasic release profile in 37 °C normal saline with a small burst release (1-2 %), a one-week lag phase with limited release (less than10 %), and a final phase where the remainder of the dose is released over 3-4 weeks. The limited intermolecular interaction between dexamethasone and PLGA renders the breakdown of the polymer the dominating mechanism of controlled release. A close relationship between drug release and total implant mass loss was observed. Unique chemical and structural differences were seen between the core of the implant and the implant surface driven by diffusional limitations, autocatalytic hydrolysis, and osmotic effects.
Collapse
Affiliation(s)
- Mark A Costello
- University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Joseph Liu
- University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Beibei Chen
- University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Yan Wang
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD, USA
| | - Bin Qin
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD, USA
| | - Xiaoming Xu
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, Silver Spring, MD, USA
| | - Qi Li
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD, USA
| | - Nathaniel A Lynd
- University of Texas at Austin, McKetta Department of Chemical Engineering and Texas Materials Institute, Austin, TX, USA
| | - Feng Zhang
- University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA.
| |
Collapse
|
32
|
Moore JV, Wylie MP, Andrews GP, McCoy CP. Photosensitiser-incorporated microparticles for photodynamic inactivation of bacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112671. [PMID: 36870247 DOI: 10.1016/j.jphotobiol.2023.112671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023]
Abstract
Antimicrobial resistance is an ever-growing global concern, making the development of alternative antimicrobial agents and techniques an urgent priority to protect public health. Antimicrobial photodynamic therapy (aPDT) is one such promising alternative, which harnesses the cytotoxic action of reactive oxygen species (ROS) generated upon irradiation of photosensitisers (PSs) with visible light to destroy microorganisms. In this study we report a convenient and facile method to produce highly photoactive antimicrobial microparticles, exhibiting minimal PS leaching, and examine the effect of particle size on antimicrobial activity. A ball milling technique produced a range of sizes of anionic p(HEMA-co-MAA) microparticles, providing large surface areas available for electrostatic attachment of the cationic PS, Toluidine Blue O (TBO). The TBO-incorporated microparticles showed a size-dependent effect on antimicrobial activity, with a decrease in microparticle size resulting in an increase in the bacterial reductions achieved when irradiated with red light. The >6 log10Pseudomonas aeruginosa and Staphylococcus aureus reductions (>99.9999%) achieved within 30 and 60 min, respectively, by TBO-incorporated >90 μm microparticles were attributed to the cytotoxic action of the ROS generated by TBO molecules bound to the microparticles, with no PS leaching from these particles detected over this timeframe. TBO-incorporated microparticles capable of significantly reducing the bioburden of solutions with short durations of low intensity red light irradiation and minimal leaching present an attractive platform for various antimicrobial applications.
Collapse
Affiliation(s)
- Jessica V Moore
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Gavin P Andrews
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Colin P McCoy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
33
|
Lu Y, Cheng D, Niu B, Wang X, Wu X, Wang A. Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals (Basel) 2023; 16:ph16030454. [PMID: 36986553 PMCID: PMC10058621 DOI: 10.3390/ph16030454] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
In recent years, biodegradable polymers have gained the attention of many researchers for their promising applications, especially in drug delivery, due to their good biocompatibility and designable degradation time. Poly (lactic-co-glycolic acid) (PLGA) is a biodegradable functional polymer made from the polymerization of lactic acid (LA) and glycolic acid (GA) and is widely used in pharmaceuticals and medical engineering materials because of its biocompatibility, non-toxicity, and good plasticity. The aim of this review is to illustrate the progress of research on PLGA in biomedical applications, as well as its shortcomings, to provide some assistance for its future research development.
Collapse
Affiliation(s)
- Yue Lu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Dongfang Cheng
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Baohua Niu
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Xiuzhi Wang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xiaxia Wu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Aiping Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
- Correspondence:
| |
Collapse
|
34
|
Horvath D, Basler M. PLGA Particles in Immunotherapy. Pharmaceutics 2023; 15:pharmaceutics15020615. [PMID: 36839937 PMCID: PMC9965784 DOI: 10.3390/pharmaceutics15020615] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) particles are a widely used and extensively studied drug delivery system. The favorable properties of PLGA such as good bioavailability, controlled release, and an excellent safety profile due to the biodegradable polymer backbone qualified PLGA particles for approval by the authorities for the application as a drug delivery platform in humas. In recent years, immunotherapy has been established as a potent treatment option for a variety of diseases. However, immunomodulating drugs rely on targeted delivery to specific immune cell subsets and are often rapidly eliminated from the system. Loading of PLGA particles with drugs for immunotherapy can protect the therapeutic compounds from premature degradation, direct the drug delivery to specific tissues or cells, and ensure sustained and controlled drug release. These properties present PLGA particles as an ideal platform for immunotherapy. Here, we review recent advances of particulate PLGA delivery systems in the application for immunotherapy in the fields of allergy, autoimmunity, infectious diseases, and cancer.
Collapse
Affiliation(s)
- Dennis Horvath
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, D-78457 Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280 Kreuzlingen, Switzerland
- Correspondence:
| |
Collapse
|
35
|
Rohde F, Walther M, Baur F, Windbergs M. A Dual‐Function Electrospun Matrix for the Prevention of Herpes Simplex Virus‐1 Infections after Corneal Transplantation. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Affiliation(s)
- Felix Rohde
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Marcel Walther
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Florentin Baur
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| | - Maike Windbergs
- Institute of Pharmaceutical Technology and Buchmann Institute for Molecular Life Sciences Goethe University Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt am Main Germany
| |
Collapse
|
36
|
Wongrakpanich A, Khunkitchai N, Achayawat Y, Suksiriworapong J. Ketorolac-Loaded PLGA-/PLA-Based Microparticles Stabilized by Hyaluronic Acid: Effects of Formulation Composition and Emulsification Technique on Particle Characteristics and Drug Release Behaviors. Polymers (Basel) 2023; 15:polym15020266. [PMID: 36679147 PMCID: PMC9863719 DOI: 10.3390/polym15020266] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
This study aimed to develop ketorolac microparticles stabilized by hyaluronic acid based on poly(lactide-co-glycolide) (PLGA), poly(lactide) (PLA), and their blend for further application in osteoarthritis. The polymer blend may provide tailored drug release and improved physicochemical characteristics. The microparticles were prepared by water-in-oil-in-water (w/o/w) double emulsion solvent evaporation using two emulsification techniques, probe sonication (PS) and high-speed stirring (HSS), to obtain the microparticles in different size ranges. The results revealed that the polymer composition and emulsification technique influenced the ketorolac microparticle characteristics. The PS technique provided significantly at least 20 times smaller average size (1.3-2.2 µm) and broader size distribution (1.5-8.5) than HSS (45.5-67.4 µm and 1.0-1.4, respectively). The encapsulation efficiency was influenced by the polymer composition and the emulsification technique, especially in the PLA microparticles. The DSC and XRD results suggested that the drug was compatible with and molecularly dissolved in the polymer matrix. Furthermore, most of the drug molecules existed in an amorphous form, and some in any crystalline form. All of the microparticles had biphasic drug release composed of the burst release within the first 2 h and the sustained release over 35 days. The obtained microparticles showed promise for further use in the treatment of osteoarthritis.
Collapse
Affiliation(s)
| | - Nichakan Khunkitchai
- Doctor of Pharmacy Program, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Yanisa Achayawat
- Doctor of Pharmacy Program, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Jiraphong Suksiriworapong
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
37
|
LogP of N-acyl-gemcitabine and lectin-corona emerge as key parameters in nanoparticulate intravesical cancer therapy. Eur J Pharm Sci 2023; 180:106330. [PMID: 36379358 DOI: 10.1016/j.ejps.2022.106330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/15/2022]
Abstract
After surgical removal of the tumour tissue, bladder cancer is treated by intravesical instillation of cytotoxic drugs such as gemcitabine. Gemcitabine, however, is highly hydrophilic and possesses a short half-life due to fast enzymatic deamination. Additionally, continuous dilution by urine, a hardly permeable urothelial barrier and rapid excretion by urination make therapy difficult. To modify lipophilicity of the drug, N-acyl-gemcitabine derivatives with quite different solubility and logP were synthesized, purified and characterized. The loading of PLGA nanoparticles with the N-acyl-gemcitabine derivatives followed by release in artificial urine, revealed that the drug content increases but the subsequent release decreases with lipophilicity. Additionally, acylation increased cytotoxicity and opened passive diffusion as an additional pathway into cancer cells. To address physiological constraints, the surface of the monodisperse nanoparticles was grafted with bioadhesive wheat germ agglutinin. Cytoadhesion to artificial bladder cancer tissue and even uptake into the cells as indicated by microscopic imaging are expected to prolong the retention time in the bladder cavity as well as to promote uptake into the cells. By using N-caprylic-gemcitabine as most appropriate gemcitabine-derivative for drug loading and making use of the bioadhesive characteristics of wheat germ agglutinin for grafting the corona of PLGA-nanoparticles, an innovative strategy towards smart drug delivery for instillative therapy of bladder cancer is proposed.
Collapse
|
38
|
Zaszczyńska A, Niemczyk-Soczynska B, Sajkiewicz P. A Comprehensive Review of Electrospun Fibers, 3D-Printed Scaffolds, and Hydrogels for Cancer Therapies. Polymers (Basel) 2022; 14:5278. [PMID: 36501672 PMCID: PMC9736375 DOI: 10.3390/polym14235278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
Anticancer therapies and regenerative medicine are being developed to destroy tumor cells, as well as remodel, replace, and support injured organs and tissues. Nowadays, a suitable three-dimensional structure of the scaffold and the type of cells used are crucial for creating bio-inspired organs and tissues. The materials used in medicine are made of non-degradable and degradable biomaterials and can serve as drug carriers. Developing flexible and properly targeted drug carrier systems is crucial for tissue engineering, regenerative medicine, and novel cancer treatment strategies. This review is focused on presenting innovative biomaterials, i.e., electrospun nanofibers, 3D-printed scaffolds, and hydrogels as a novel approach for anticancer treatments which are still under development and awaiting thorough optimization.
Collapse
Affiliation(s)
| | | | - Paweł Sajkiewicz
- Laboratory of Polymers & Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
39
|
Yenying A, Tangamatakul K, Supanchart C, Jenvoraphot T, Manokruang K, Worajittiphon P, Punyodom W, Daranarong D. Preparation and Characterization of PLG Microparticles by the Multiple Emulsion Method for the Sustained Release of Proteins. MICROMACHINES 2022; 13:1761. [PMID: 36296114 PMCID: PMC9607503 DOI: 10.3390/mi13101761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Rapid release and diminished stability are two of the limitations associated with the growth factors that are essentially used in dental applications. These growth factors are employed to enhance the quality and quantity of tissue or bone matter during regeneration. Therefore, drug delivery devices and systems have been developed to address these limitations. In this study, bovine serum albumin (BSA), as a representative growth factor, was successfully sustained by encapsulation with the medium-absorbable copolymer, poly(L-lactide-co-glycolide) (PLG) 70:30% mol, via the multiple emulsion method. Different PLG, PVA, and BSA concentrations were used to investigate their effects on the BSA encapsulation efficiency. The suitable ratios leading to a better characterization of microparticles and a higher encapsulation efficiency in producing encapsulated PLG microparticles were 8% (w/v) of PLG, 0.25% (w/v) of PVA, and 8% (w/v) of BSA. Furthermore, an in vitro release study revealed a bursting release of BSA from the encapsulated PLG microsphere in the early phase of development. Subsequently, a gradual release was observed over a period of eight weeks. Furthermore, to encapsulate LL-37, different proteins were used in conjunction with PLG under identical conditions with regard to the loading efficiency and morphology, thereby indicating high variations and poor reproducibility. In conclusion, the encapsulated PLG microparticles could effectively protect the protein during encapsulation and could facilitate sustainable protein release over a period of 60 days. Importantly, an optimal method must be employed in order to achieve a high degree of encapsulation efficiency for all of the protein or growth factors. Accordingly, the outcomes of this study will be useful in the manufacture of drug delivery devices that require medium-sustained release growth factors, particularly in dental treatments.
Collapse
Affiliation(s)
- Arphaphat Yenying
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krissana Tangamatakul
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chayarop Supanchart
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thannaphat Jenvoraphot
- Bioplastic Production Laboratory for Medical Application, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kiattikhun Manokruang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Patnarin Worajittiphon
- Bioplastic Production Laboratory for Medical Application, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Bioplastic Production Laboratory for Medical Application, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Donraporn Daranarong
- Bioplastic Production Laboratory for Medical Application, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
40
|
Marshall SK, Saelim B, Taweesap M, Pachana V, Panrak Y, Makchuchit N, Jaroenpakdee P. Anti-EGFR Targeted Multifunctional I-131 Radio-Nanotherapeutic for Treating Osteosarcoma: In Vitro 3D Tumor Spheroid Model. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3517. [PMID: 36234645 PMCID: PMC9565722 DOI: 10.3390/nano12193517] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The systemic delivery of doxorubicin (DOX) to treat osteosarcoma requires an adequate drug concentration to be effective, but in doing so, it raises the risk of increasing organ off-target toxicity and developing drug resistance. Herein, this study reveals a multiple therapeutic nanocarrier delivery platform that overcomes off-target toxicity by providing good specificity and imparting enhanced tumor penetration in a three-dimensional (3D) human MG-63 spheroid model. By synthesizing PEG-PLGA nanoparticles by the double emulsion method, encapsulating DOX and Na131I in the inner core, and conjugating with an epidermal growth factor receptor (EGFR) antibody, it is intended to specifically target human MG-63 cells. The nanocarrier is biocompatible with blood and has good stability characteristics. Na131I encapsulation efficiency was >96%, and radiochemical purity was >96% over 96 h. A DOX encapsulation efficacy of ~80% was achieved, with a drug loading efficiency of ~3%, and a sustained DOX release over 5 days. The nanocarrier EGFR antibody achieved a ~80-fold greater targeting efficacy to MG-63 cells (EGFR+) than fibroblast cells (EGFR−). The targeted multiple therapeutic DIE-NPs have a higher penetration and uptake of Na131I to the 3D model and a ~3-fold higher cytotoxicity than the DOX monotherapy (D-NPs). The co-administration of DOX and Na131I (DIE-NPs) disrupts DNA repair and generates free radicals resulting in DNA damage, triggering the activation of apoptosis pathways. This leads to inhibition of MG-63 cell proliferation and promotes cell cycle arrest in the G0/G1 phase. Furthermore, the PEGylated anti-EGFR functionalized DIE-NPs were found to be biocompatible with red blood cells and to have no adverse effects. This anti-EGFR targeted multifunctional I-131 radio-nanotherapeutic signifies a customizable specific targeted treatment for osteosarcoma.
Collapse
Affiliation(s)
- Suphalak Khamruang Marshall
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
- Molecular Imaging and Cyclotron Center, Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Boonyisa Saelim
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Maneerat Taweesap
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Verachai Pachana
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Yada Panrak
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Naritsara Makchuchit
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Passara Jaroenpakdee
- Department of Radiology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
41
|
Antifungal Encapsulated into Ligand-Functionalized Nanoparticles with High Specificity for Macrophages. Pharmaceutics 2022; 14:pharmaceutics14091932. [PMID: 36145686 PMCID: PMC9501281 DOI: 10.3390/pharmaceutics14091932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/28/2022] Open
Abstract
Infectious diseases caused by intracellular microorganisms such as Histoplasma capsulatum represent a significant challenge worldwide. Drug encapsulation into functionalized nanoparticles (NPs) is a valuable alternative to improving drug solubility and bioavailability, preventing undesirable interactions and drug degradation, and reaching the specific therapeutic target with lower doses. This work reports on Itraconazole (ITZ) encapsulated into core-shell-like polymeric NPs and functionalized with anti-F4/80 antibodies for their targeted and controlled release into macrophages. Uptake assay on co-culture showed significant differences between the uptake of functionalized and bare NPs, higher with functionalized NPs. In vitro assays showed that F4/80-NPs with 0.007 µg/mL of encapsulated ITZ eliminated the H. capsulatum fungus in co-culture with macrophages effectively compared to the bare NPs, without any cytotoxic effect on macrophages after 24 h interaction. Furthermore, encapsulated ITZ modulated the gene expression of anti and pro-inflammatory cytokines (IL-1, INF-Y, IL-6 and IL-10) on macrophages. Additionally, the anti-F4/80 antibody-coating enhanced natural and adequate antifungal response in the cells, exerting a synergistic effect that prevented the growth of the fungus at the intracellular level. Functionalized NPs can potentially improve macrophage-targeted therapy, increasing NPs endocytosis and intracellular drug concentration.
Collapse
|
42
|
Qin C, Dong J, Xie B, Wang H, Zhang N, Zhao C, Qiao C, Liu M, Yang X, Li T. Synthesis, Characterization and Application of Poly(lactic-co-glycolic acid) with a Mass Ratio of Lactic to Glycolic Segments of 52/48. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2226-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Tran PL, Kim JH, Jung YH, Lee DC, Choi JU, Le DN, Nam JW, Shrestha M, Kim JY, Pham TT, Jeong J. Prolongation of graft survival via layer-by-layer assembly of collagen and immunosuppressive particles on pancreatic islets. Biomaterials 2022; 290:121804. [DOI: 10.1016/j.biomaterials.2022.121804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/18/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022]
|
44
|
Li JX, Niu DY, Liu B, Xu PW, Yang WJ, Lemstra PJ, Ma PM. Improvement on the Mechanical Performance and Resistance Towards Hydrolysis of Poly(glycolic acid) via Solid-state Drawing. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
VanBenschoten H, Yao S, Jensen JT, Woodrow KA. Drug Eluting Embolization Particles for Permanent Contraception. ACS Biomater Sci Eng 2022; 8:2995-3009. [PMID: 35749682 PMCID: PMC9277594 DOI: 10.1021/acsbiomaterials.2c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Medical technology
that blocks the fallopian tubes nonsurgically
could increase access to permanent contraception and address current
unmet needs in family planning. To achieve total occlusion of the
fallopian tube via scar tissue formation, acute trauma to the tubal
epithelium must first occur followed by a sustained and ultimately
fibrotic inflammatory response. Here, we developed drug-eluting fiber-based
microparticles that provide tunable dose and release of potent sclerosing
agents. This fabrication strategy demonstrates high encapsulation
of physicochemically diverse agents and the potential for scalable
manufacturing by utilizing free-surface electrospinning to generate
material for fiber micronization. Manipulation of nanofiber formulation
such as drug loading, drug hydrophobicity, polymer hydrophobicity,
and crystallinity allowed for modulation of the sustained release
properties of our fiber microparticles. We assessed various fibrous
microparticle formulations in vivo using a newly
developed and validated guinea pig model for contraception. We found
that fiber microparticles with bolus release doxycycline effectively
elicited acute trauma and those formulated with highly loaded phenyl
benzoate caused sustained inflammation in the target organs. The demonstrated
potency of these electrospun microparticles, as well as their embolic
size and shape, suggests potential for proximal agglomeration and
inflammatory activity in the fallopian tubes following transcervical
delivery.
Collapse
Affiliation(s)
- Hannah VanBenschoten
- Department of Bioengineering, University of Washington, 3720 15th Avenue Northeast, Seattle, Washington 98105, United States
| | - Shan Yao
- Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, United States
| | - Jeffrey T Jensen
- Oregon National Primate Research Center, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, Oregon 97006, United States
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Avenue Northeast, Seattle, Washington 98105, United States
| |
Collapse
|
46
|
Ivanova TA, Golubeva EN. Aliphatic Polyesters for Biomedical Purposes: Design and Kinetic Regularities of Degradation in vitro. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122030162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Wang Z, Chen T, Wu Z, Jiang X, Hou Q, Miao S, Xia R, Wang L. The dual-effects of PLGA@MT electrospun nanofiber coatings on promoting osteogenesis at the titanium-bone interface under diabetic conditions. J Mater Chem B 2022; 10:4020-4030. [PMID: 35506736 DOI: 10.1039/d2tb00120a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The high failure risk of endosseous titanium implants under diabetes conditions appeals to strengthen the osteointegration on the titanium-bone (Ti-B) interface. Melatonin (MT) is a neurohormone involved in bone homeostasis, which can promote osteogenesis and inhibit ROS overproduction through multiple pathways, but its effects on the Ti-B interface in diabetes remain elusive. The biodegradable poly(lactic-co-glycolic acid) (PLGA) has excellent controlled and sustained release properties, low cytotoxicity, and biocompatibility. Our study fabricated a nanofiber in which MT was encapsulated in PLGA to generate a nanofiber coating on a polydopamine (PDA)-modified titanium surface using electrospinning technology. The surface characteristic showed that MT was fully encapsulated in the PLGA carrier, and PLGA@MT was strongly coupled to the titanium matrix. Furthermore, the PLGA@MT-Ti nanofiber could release MT for at least 30 days. In vitro cellular tests demonstrated that PLGA@MT-Ti directly stimulates osteogenesis on the Ti-B interface by activating the BMP-4/WNT pathway in a dose-dependent manner. The effect of suppressing diabetes-induced ROS overproduction and promoting cell proliferation was not proportional to the content of MT. In vivo experiments revealed that PLGA@MT-Ti screws promoted the bone formation and osteointegration in type 1 diabetes mellitus (T1DM) mice with tibial bone defects. Our findings demonstrate that PLGA@MT-Ti exerted dual effects through activating the BMP-4/WNT pathway and attenuating ROS overproduction to promote osteogenesis and osteointegration at the Ti-B interface, providing a novel strategy to fabricate biomaterial modification and biofunctionalization under diabetic conditions.
Collapse
Affiliation(s)
- Zijie Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Tingting Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zimei Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xingzhu Jiang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Qiaodan Hou
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Sikai Miao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Ruihao Xia
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Lin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China. .,Southern University of Science and Technology Hospital, Shenzhen, 518055, China
| |
Collapse
|
48
|
Novel adapter method for in vitro release testing of in situ forming implants. Int J Pharm 2022; 621:121777. [PMID: 35489601 DOI: 10.1016/j.ijpharm.2022.121777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 01/05/2023]
Abstract
In situ forming implants are injectable liquid formulations which form solid or semisolid depots following injection. This allows for minimally invasive administration, localized drug delivery, and extended drug release. Unfortunately, this drug delivery strategy lacks standardized in vitro dissolution methods due to the difficulties in recreating implant formation in vitro that is biomimicry and with reproducible and controllable shape and dimensions. In the present study, an innovative, adapter-based in vitro release testing method was developed to solve this problem. Two distinctively different in situ forming implants (a risperidone formulation (suspension) consisting of PLGA dissolved in N-methyl pyrrolidone (NMP), where risperidone powder was suspended to form a drug suspension, and a naproxen formulation (solution) consisting of PLGA dissolved in NMP, where naproxen was completely dissolved to form a solution), were used as model in situ-forming implants. The results revealed that the implants formed in the custom-designed adapter with a water-dissolvable polyvinyl alcohol (PVA) film were bio-mimicking and reproducible in both shape and burst release of drug according to rabbit data. For both the suspension and solution formulations, this adapter-based in vitro release testing method resulted in consistent release data. Compared with a direct injection in vitro release testing method, the release profiles generated using the adapter-based method were capable of distinguishing the different release phases (initial release within 24 h, diffusion-facilitated release, and degradation-controlled release). In addition, the adapter-based method could discriminate formulation and dissolution apparatus changes and could be utilized to develop accelerated release testing methods. This adapter-based method has the promise of wide use in release testing of in situ forming implant formulations and has the potential to be used in the development of in vivo-predictive in vitro release methods.
Collapse
|
49
|
Lim YW, Tan WS, Ho KL, Mariatulqabtiah AR, Abu Kasim NH, Abd. Rahman N, Wong TW, Chee CF. Challenges and Complications of Poly(lactic- co-glycolic acid)-Based Long-Acting Drug Product Development. Pharmaceutics 2022; 14:614. [PMID: 35335988 PMCID: PMC8955085 DOI: 10.3390/pharmaceutics14030614] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/19/2022] [Indexed: 12/13/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is one of the preferred polymeric inactive ingredients for long-acting parenteral drug products that are constituted of complex formulations. Despite over 30 years of use, there are still many challenges faced by researchers in formulation-related aspects pertaining to drug loading and release. Until now, PLGA-based complex generic drug products have not been successfully developed. The complexity in developing these generic drug products is not just due to their complex formulation, but also to the manufacturing process of the listed reference drugs that involve PLGA. The composition and product attributes of commercial PLGA formulations vary with the drugs and their intended applications. The lack of standard compendial methods for in vitro release studies hinders generic pharmaceutical companies in their efforts to develop PLGA-based complex generic drug products. In this review, we discuss the challenges faced in developing PLGA-based long-acting injectable/implantable (LAI) drug products; hurdles that are associated with drug loading and release that are dictated by the physicochemical properties of PLGA and product manufacturing processes. Approaches to overcome these challenges and hurdles are highlighted specifically with respect to drug encapsulation and release.
Collapse
Affiliation(s)
- Yi Wen Lim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (Y.W.L.); (W.S.T.)
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (Y.W.L.); (W.S.T.)
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Abdul Razak Mariatulqabtiah
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Noor Hayaty Abu Kasim
- Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | | | - Tin Wui Wong
- Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA, Puncak Alam 42300, Malaysia
| | - Chin Fei Chee
- Nanotechnology and Catalysis Research Centre, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
50
|
Sun J, Walker J, Beck-Broichsitter M, Schwendeman SP. Characterization of commercial PLGAs by NMR spectroscopy. Drug Deliv Transl Res 2022; 12:720-729. [PMID: 34415565 DOI: 10.1007/s13346-021-01023-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2021] [Indexed: 12/01/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is among the most common of biodegradable polymers studied in various biomedical applications such as drug delivery and tissue engineering. To facilitate the understanding of the often overlooked impact of PLGA microstructure on important factors affecting PLGA performance, we measured four key parameters of 17 commonly used commercial PLGA polymers (Expansorb®, Resomer®, Purasorb®, Lactel®, and Wako®) by NMR spectroscopy. 1HNMR and 13CNMR spectra were used to determine lactic to glycolic ratio (L/G ratio), polymer end-capping, glycolic blockiness (Rc), and average glycolic and lactic block lengths (LG and LL). In PLGAs with a labeled L/G ratio of 50/50 and acid end-capping, the actual lactic content slightly decreased as molecular weight increased in both Expansorb® and Resomer®. Whether or not acid- or ester-, termination of these PLGAs was confirmed to be consistent with their brand labels. Moreover, in the ester end-capped 75/25 L/G ratio group, the blockiness value (Rc) of Resomer® RG 756S (Rc: 1.7) was highest in its group; whereas for the 50/50 acid end-capped group, Expansorb® DLG 50-2A (Rc: 1.9) displayed notably higher values than their counterparts. Expansorb® 50-2E (LL: 2.5, LG: 2.6) and Resomer® RG 502 (LL: 2.6, LG: 2.5) showed the lowest block lengths, suggesting they may undergo a steadier hydrolytic process compared to random, heterogeneously distributed PLGA.
Collapse
Affiliation(s)
- Jing Sun
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | - Jennifer Walker
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA
| | | | - Steven P Schwendeman
- Department of Pharmaceutical Sciences and the Biointerfaces Institute, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI, 48109, USA.
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Ave, Ann Arbor, MI, 48109, USA.
| |
Collapse
|