1
|
Fernandes E Mendonça LM, Joshi AB, Bhandarkar A, Shaikh S, Fernandes S, Joshi H, Joshi S. Potential anxiolytic therapeutics from Hybanthus enneaspermus (L.) F. Muell. - mitigate anxiety by plausibly modulating the GABA A-Cl - channel. Neurochem Int 2024; 178:105804. [PMID: 39002759 DOI: 10.1016/j.neuint.2024.105804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/13/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Anxiety is a commonly prevailing psychological disorder that requires effective treatment, wherein phytopharmaceuticals and nutraceuticals could offer a desirable therapeutic profile. Hybanthus enneaspermus (L.) F. Muell. is a powerful medicinal herb, reportedly effective against several ailments, including psychological disorders. The current research envisaged evaluating the anxiolytic potential of the ethanolic extract of Hybanthus enneaspermus (EEHE) and its toluene insoluble biofraction (ITHE) employing experimental and computational approaches. Elevated Plus Maze, Light and Dark Transition, Mirror Chamber, Hole board and Open field tests were used as screening models to assess the antianxiety potential of 100, 200 and 400 mg/kg body weight of EEHE and ITHE in rats subjected to social isolation, using Diazepam as standard. The brains of rats exhibiting significant anxiolytic activity were dissected for histopathological and biochemical studies. Antioxidant enzymes like catalase, superoxide dismutase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase; and neurotransmitters viz. monoamines (serotonin, noradrenaline, dopamine), Gamma-aminobutyric acid (GABA), and glutamate were quantified in the different regions of rats' brain (cortex, hippocampus, pons, medulla oblongata, cerebellum). Chromatographic techniques were used to isolate phytoconstituents from the fraction exhibiting significant activity that were characterized by spectroscopic methods and subjected to in silico molecular docking. ITHE at 400 mg/kg body weight significantly mitigated anxiety in all the screening models (p < 0.05), reduced the inflammatory vacuoles and necrosis (p < 0.05) and potentiated the antioxidant enzymes (p < 0.05). It enhanced the monoamines and GABA levels while attenuating glutamate levels (p < 0.01) in the brain. Three significant flavonoids viz. Quercitrin, Rutin and Hesperidin were isolated from ITHE. In silico docking studies of these flavonoids revealed that the compounds exhibited substantial binding to the GABAA receptor. ITHE displayed a promising pharmacological profile in combating anxiety and modulating oxidative stress, attributing its therapeutic virtues to the flavonoids present.
Collapse
Affiliation(s)
| | - Arun Bhimrao Joshi
- Department of Pharmacognosy and Phytochemistry, Goa College of Pharmacy, 18th June Road, Panaji, Goa, 403001, India.
| | - Anant Bhandarkar
- Department of Pharmacognosy and Phytochemistry, Goa College of Pharmacy, 18th June Road, Panaji, Goa, 403001, India.
| | - Shamshad Shaikh
- School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Taleigao, Goa, 403206, India.
| | - Samantha Fernandes
- School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Taleigao, Goa, 403206, India.
| | - Himanshu Joshi
- Department of Pharmacology, College of Pharmacy, Graphic Era Hill University, Bhimtal Campus, Uttarakhand, 263156, India.
| | - Shrinivas Joshi
- Department of Pharmaceutical Chemistry, S.E.T.'s College of Pharmacy, Sangolli Rayanna Nagar, Dharwad, Karnataka, 580002, India.
| |
Collapse
|
2
|
de Lange S, Muller D, Dafkin C. The relationship between balance and urinary cortisol and neopterin in autistic children. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 16:100216. [PMID: 38023738 PMCID: PMC10651439 DOI: 10.1016/j.cpnec.2023.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by stereotyped behavior, restricted interests and social/communicative deficits. The physiological etiology of ASD is not currently understood, however recent research has implicated dysregulation of the immune system as a central feature. The interplay between the stress systems, the immune system and the brain has been well-documented and implicated in other psychiatric and neurological disorders. This interplay suggests a role for the hypothalamic-pituitary-adrenal (HPA) axis in the etiology of ASD. We assessed levels of urinary cortisol and neopterin as markers of immune function and HPA activation in a cohort of 50 children from the central Johannesburg region. Additionally, we used the Autism Treatment Evaluation Checklist to assess autistic symptomatology and the Bruininks-Oseretsky Motor Proficiency Test (Second Edition) (BOT-2) to assess motor skills. No relationships were found between cortisol and autistic symptomatology. No relationships were found between neopterin and any of the other measures. However, a relationship was observed between urinary cortisol and performance on balance-related tasks from the BOT-2 (P < 0.05). Our findings support a theory of neurological interconnectedness between postural modulation and activation of the stress system, which has not previously been documented in children with ASD.
Collapse
Affiliation(s)
- Siobhan de Lange
- Movement Physiology Research Laboratory, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Dee Muller
- Stress Laboratory, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Chloe Dafkin
- Movement Physiology Research Laboratory, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Ding CY, Ding YT, Ji H, Wang YY, Zhang X, Yin DM. Genetic labeling reveals spatial and cellular expression pattern of neuregulin 1 in mouse brain. Cell Biosci 2023; 13:79. [PMID: 37147705 PMCID: PMC10161477 DOI: 10.1186/s13578-023-01032-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Where the gene is expressed determines the function of the gene. Neuregulin 1 (Nrg1) encodes a tropic factor and is genetically linked with several neuropsychiatry diseases such as schizophrenia, bipolar disorder and depression. Nrg1 has broad functions ranging from regulating neurodevelopment to neurotransmission in the nervous system. However, the expression pattern of Nrg1 at the cellular and circuit levels in rodent brain is not full addressed. METHODS Here we used CRISPR/Cas9 techniques to generate a knockin mouse line (Nrg1Cre/+) that expresses a P2A-Cre cassette right before the stop codon of Nrg1 gene. Since Cre recombinase and Nrg1 are expressed in the same types of cells in Nrg1Cre/+ mice, the Nrg1 expression pattern can be revealed through the Cre-reporting mice or adeno-associated virus (AAV) that express fluorescent proteins in a Cre-dependent way. Using unbiased stereology and fluorescence imaging, the cellular expression pattern of Nrg1 and axon projections of Nrg1-positive neurons were investigated. RESULTS In the olfactory bulb (OB), Nrg1 is expressed in GABAergic interneurons including periglomerular (PG) and granule cells. In the cerebral cortex, Nrg1 is mainly expressed in the pyramidal neurons of superficial layers that mediate intercortical communications. In the striatum, Nrg1 is highly expressed in the Drd1-positive medium spiny neurons (MSNs) in the shell of nucleus accumbens (NAc) that project to substantia nigra pars reticulata (SNr). In the hippocampus, Nrg1 is mainly expressed in granule neurons in the dentate gyrus and pyramidal neurons in the subiculum. The Nrg1-expressing neurons in the subiculum project to retrosplenial granular cortex (RSG) and mammillary nucleus (MM). Nrg1 is highly expressed in the median eminence (ME) of hypothalamus and Purkinje cells in the cerebellum. CONCLUSIONS Nrg1 is broadly expressed in mouse brain, mainly in neurons, but has unique expression patterns in different brain regions.
Collapse
Affiliation(s)
- Chen-Yun Ding
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
- Center of Implant Dentistry, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110002, China
| | - Yan-Ting Ding
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Haifeng Ji
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
- Shanghai Changning Mental Health Center, Affiliated to East China Normal University, Shanghai, 200335, China
| | - Yao-Yi Wang
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, 110002, China.
- Laboratory Animal Centre, China Medical University, Shenyang, 110001, China.
| | - Dong-Min Yin
- Key Laboratory of Brain Functional Genomics, Ministry of Education and Shanghai, School of Life Science, East China Normal University, Shanghai, 200062, China.
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, 200062, China.
| |
Collapse
|
4
|
Basal Forebrain Cholinergic Innervation Induces Depression-Like Behaviors Through Ventral Subiculum Hyperactivation. Neurosci Bull 2022; 39:617-630. [PMID: 36342657 PMCID: PMC10073402 DOI: 10.1007/s12264-022-00962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractMalfunction of the ventral subiculum (vSub), the main subregion controlling the output connections from the hippocampus, is associated with major depressive disorder (MDD). Although the vSub receives cholinergic innervation from the medial septum and diagonal band of Broca (MSDB), whether and how the MSDB-to-vSub cholinergic circuit is involved in MDD is elusive. Here, we found that chronic unpredictable mild stress (CUMS) induced depression-like behaviors with hyperactivation of vSub neurons, measured by c-fos staining and whole-cell patch-clamp recording. By retrograde and anterograde tracing, we confirmed the dense MSDB cholinergic innervation of the vSub. In addition, transient restraint stress in CUMS increased the level of ACh in the vSub. Furthermore, chemogenetic stimulation of this MSDB-vSub innervation in ChAT-Cre mice induced hyperactivation of vSub pyramidal neurons along with depression-like behaviors; and local infusion of atropine, a muscarinic receptor antagonist, into the vSub attenuated the depression-like behaviors induced by chemogenetic stimulation of this pathway and CUMS. Together, these findings suggest that activating the MSDB-vSub cholinergic pathway induces hyperactivation of vSub pyramidal neurons and depression-like behaviors, revealing a novel circuit underlying vSub pyramidal neuronal hyperactivation and its associated depression.
Collapse
|
5
|
Liu H, Wolters A, Temel Y, Alosaimi F, Jahanshahi A, Hescham S. Deep brain stimulation of the nucleus basalis of Meynert in an experimental rat model of dementia: Stimulation parameters and mechanisms. Neurobiol Dis 2022; 171:105797. [PMID: 35738477 DOI: 10.1016/j.nbd.2022.105797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND/OBJECTIVE Deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) has gained interest as a potential therapy for treatment-resistant dementia. However, optimal stimulation parameters and mechanisms of action are yet to be elucidated. METHODS First, we assessed NBM DBS at different stimulation parameters in a scopolamine-induced rat model of dementia. Rats were tested in the object location task with the following conditions: (i) low and high frequency (20 Hz or 120 Hz), (ii) monophasic or biphasic pulse shape (iii) continuous or intermittent DBS (20s on, 40s off) and 100 μA amplitude. Thereafter, rats were stimulated with the most effective parameter followed by 5-bromo-2'-deoxyuridine (BrdU) administration and perfused 4 weeks later. We then evaluated the effects of NBM DBS on hippocampal neurogenesis, synaptic plasticity, and on cholinergic fibres in the perirhinal and cingulate cortex using immunohistochemistry. We also performed in-vivo microdialysis to assess circuit-wide effects of NBM DBS on hippocampal acetylcholine levels during on and off stimulation. RESULTS Biphasic, low frequency and intermittent NBM DBS reversed the memory impairing effects of scopolamine when compared to sham rats. We found that acute stimulation promoted proliferation in the dentate gyrus, increased synaptic plasticity in the CA1 and CA3 subregion of the hippocampus, and increased length of cholinergic fibres in the cingulate gyrus. There was no difference regarding hippocampal acetylcholine levels between the groups. CONCLUSION These findings suggest that the potential mechanism of action of the induced memory enhancement through NBM DBS might be due to selective neuroplastic and neurochemical changes.
Collapse
Affiliation(s)
- Huajie Liu
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, the Netherlands
| | - Anouk Wolters
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, the Netherlands
| | - Faisal Alosaimi
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, the Netherlands
| | - Ali Jahanshahi
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, the Netherlands
| | - Sarah Hescham
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands; European Graduate School of Neuroscience (EURON), Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
6
|
Vickstrom CR, Liu X, Liu S, Hu MM, Mu L, Hu Y, Yu H, Love SL, Hillard CJ, Liu QS. Role of endocannabinoid signaling in a septohabenular pathway in the regulation of anxiety- and depressive-like behavior. Mol Psychiatry 2021; 26:3178-3191. [PMID: 33093652 PMCID: PMC8060365 DOI: 10.1038/s41380-020-00905-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/17/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
Enhancing endocannabinoid signaling produces anxiolytic- and antidepressant-like effects, but the neural circuits involved remain poorly understood. The medial habenula (MHb) is a phylogenetically-conserved epithalamic structure that is a powerful modulator of anxiety- and depressive-like behavior. Here, we show that a robust endocannabinoid signaling system modulates synaptic transmission between the MHb and its sole identified GABA input, the medial septum and nucleus of the diagonal band (MSDB). With RNAscope in situ hybridization, we demonstrate that key enzymes that synthesize or degrade the endocannabinoids 2-arachidonylglycerol (2-AG) or anandamide are expressed in the MHb and MSDB, and that cannabinoid receptor 1 (CB1) is expressed in the MSDB. Electrophysiological recordings in MHb neurons revealed that endogenously-released 2-AG retrogradely depresses GABA input from the MSDB. This endocannabinoid-mediated depolarization-induced suppression of inhibition (DSI) was limited by monoacylglycerol lipase (MAGL) but not by fatty acid amide hydrolase. Anatomic and optogenetic circuit mapping indicated that MSDB GABA neurons monosynaptically project to cholinergic neurons of the ventral MHb. To test the behavioral significance of this MSDB-MHb endocannabinoid signaling, we induced MSDB-specific knockout of CB1 or MAGL via injection of virally-delivered Cre recombinase into the MSDB of Cnr1loxP/loxP or MgllloxP/loxP mice. Relative to control mice, MSDB-specific knockout of CB1 or MAGL bidirectionally modulated 2-AG signaling in the ventral MHb and led to opposing effects on anxiety- and depressive-like behavior. Thus, depression of synaptic GABA release in the MSDB-ventral MHb pathway may represent a potential mechanism whereby endocannabinoids exert anxiolytic and antidepressant-like effects.
Collapse
Affiliation(s)
- Casey R Vickstrom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Shuai Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Meng-Ming Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Hu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hao Yu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Santidra L Love
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Qing-Song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
7
|
Klein PM, Parihar VK, Szabo GG, Zöldi M, Angulo MC, Allen BD, Amin AN, Nguyen QA, Katona I, Baulch JE, Limoli CL, Soltesz I. Detrimental impacts of mixed-ion radiation on nervous system function. Neurobiol Dis 2021; 151:105252. [PMID: 33418069 DOI: 10.1016/j.nbd.2021.105252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/02/2020] [Accepted: 01/02/2021] [Indexed: 12/11/2022] Open
Abstract
Galactic cosmic radiation (GCR), composed of highly energetic and fully ionized atomic nuclei, produces diverse deleterious effects on the body. In researching the neurological risks of GCR exposures, including during human spaceflight, various ground-based single-ion GCR irradiation paradigms induce differential disruptions of cellular activity and overall behavior. However, it remains less clear how irradiation comprising a mix of multiple ions, more accurately recapitulating the space GCR environment, impacts the central nervous system. We therefore examined how mixed-ion GCR irradiation (two similar 5-6 beam combinations of protons, helium, oxygen, silicon and iron ions) influenced neuronal connectivity, functional generation of activity within neural circuits and cognitive behavior in mice. In electrophysiological recordings we find that space-relevant doses of mixed-ion GCR preferentially alter hippocampal inhibitory neurotransmission and produce related disruptions in the local field potentials of hippocampal oscillations. Such underlying perturbation in hippocampal network activity correspond with perturbed learning, memory and anxiety behavior.
Collapse
Affiliation(s)
- Peter M Klein
- Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America.
| | - Vipan K Parihar
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Gergely G Szabo
- Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America
| | - Miklós Zöldi
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary
| | - Maria C Angulo
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Amal N Amin
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Quynh-Anh Nguyen
- Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States of America
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697, United States of America
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Palo Alto, CA 94305, United States of America; Department of Neurology & Neurological Sciences, Stanford University, Palo Alto, CA 94305, United States of America
| |
Collapse
|
8
|
Serotonin-related, anxiety/aggression-driven, stressor-precipitated depression. A psycho-biological hypothesis. Eur Psychiatry 2020; 11:57-67. [DOI: 10.1016/0924-9338(96)84782-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
SummaryThe concept of a 5-HT related, anxiety and/or aggression-driven, stressor-precipitated depression is formulated and discussed. It comprises the following elements. The 5-HT ergic disturbances found in some depressed individuals - and of them particularly lowered CSF 5-HIAA - are linked to the anxiety- and the aggression-components of the depressive sydrome. In this type of depression - called 5-HT related depression - dysregulation of anxiety and/or aggression are primordial and mood lowering is a derivative phenomenon. In other words this is a group of anxiety/aggression-driven depressions. The 5-HT ergic impairment in certain types of depression is a trait-phenomenon, ie, persists during remission. This disturbance makes the individual susceptable for perturbation of anxiety- and aggression-regulation. Anxiety and (overt or suppressed) anger, are core constituents of the stress-syndrome. Thus, the 5-HT ergic disturbance will induce a heightened sensitivity for stressful events, ie, the latter will induce more readily than normal, stress phenomena , among which anxiety and anger. The latter psychological features induce lowering of mood and thus “drive” the patient into a fullblown depression. Furthermore it is predicted that anxiolytics and serenics (ie, anti-aggressive drugs) that act via normalisation of 5-HT ergic circuits, will exert a antidepressant effect in 5-HT related depression, in addition to their therapeutic actions in anxiety disorders and states of increased aggressiveness, respectively. The exact nature of the 5-HT ergic impairment in 5-HT related depression has yet to be elucidated.
Collapse
|
9
|
Kosaka Y, Yafuso T, Shimizu-Okabe C, Kim J, Kobayashi S, Okura N, Ando H, Okabe A, Takayama C. Development and persistence of neuropathic pain through microglial activation and KCC2 decreasing after mouse tibial nerve injury. Brain Res 2020; 1733:146718. [PMID: 32045595 DOI: 10.1016/j.brainres.2020.146718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/27/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
Abstract
Gamma-amino butyric acid (GABA) is an inhibitory neurotransmitter in the mature brain, but is excitatory during development and after motor nerve injury. This difference in GABAergic action depends on the intracellular chloride ion concentration ([Cl-]i), primarily regulated by potassium chloride co-transporter 2 (KCC2). To reveal precise processes of the neuropathic pain through changes in GABAergic action, we prepared tibial nerve ligation and severance models using male mice, and examined temporal relationships amongst changes in (1) the mechanical withdrawal threshold in the sural nerve area, (2) localization of the molecules involved in GABAergic transmission and its upstream signaling in the dorsal horn, and (3) histology of the tibial nerve. In the ligation model, tibial nerve degeneration disappeared by day 56, but mechanical allodynia, reduced KCC2 localization, and increased microglia density remained until day 90. Microglia density was higher in the tibial zone than the sural zone before day 21, but this result was inverted after day 28. In contrast, in the severance model, all above changes were detected until day 28, but were simultaneously and significantly recovered by day 90. These results suggested that in male mice, allodynia may be caused by reduced GABAergic synaptic inhibition, resulting from elevated [Cl-]i after the reduction of KCC2 by activated microglia. Furthermore, our results suggested that factors from degenerating nerve terminals may diffuse into the sural zone, whereby they induced the development of allodynia in the sural nerve area, while other factors in the sural zone may mediate persistent allodynia through the same pathway.
Collapse
Affiliation(s)
- Yoshinori Kosaka
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Tsukasa Yafuso
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Chigusa Shimizu-Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Jeongtae Kim
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Shiori Kobayashi
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Hironobu Ando
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan
| | - Akihito Okabe
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan; Department of Nutritional Science, Faculty of Health and Welfare, Seinan Jo Gakuin University, Fukuoka 803-0835, Japan
| | - Chitoshi Takayama
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, 207 Uehara 207, Nishihara, Okinawa 9030215, Japan.
| |
Collapse
|
10
|
Morrison TR, Ricci LA, Puckett AS, Joyce J, Curran R, Davis C, Melloni RH. Serotonin type-3 receptors differentially modulate anxiety and aggression during withdrawal from adolescent anabolic steroid exposure. Horm Behav 2020; 119:104650. [PMID: 31805280 DOI: 10.1016/j.yhbeh.2019.104650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/16/2019] [Accepted: 11/26/2019] [Indexed: 12/17/2022]
Abstract
Male Syrian hamsters (Mesocricetus auratus) administered anabolic/androgenic steroids during adolescent development display increased aggression and decreased anxious behavior during the adolescent exposure period. Upon withdrawal from anabolic/androgenic steroids, this neurobehavioral relationship shifts and hamsters exhibit decreased aggression and increased anxious behavior. This study investigated the hypothesis that alterations in anterior hypothalamic signaling through serotonin type-3 receptors modulate the behavioral shift between adolescent anabolic/androgenic steroid-induced aggressive and anxious behaviors during the withdrawal period. To test this, hamsters were administered anabolic/androgenic steroids during adolescence then withdrawn from drug exposure for 21 days and tested for aggressive and anxious behaviors following direct pharmacological manipulation of serotonin type-3 receptor signaling within the latero-anterior hypothalamus. Blockade of latero-anterior hypothalamic serotonin type-3 receptors both increased aggression and decreased anxious behavior in steroid-treated hamsters, effectively reversing the pattern of behavioral responding normally observed during anabolic/androgenic steroid withdrawal. These findings suggest that the state of serotonin neural signaling within the latero-anterior hypothalamus plays an important role in behavioral shifting between aggressive and anxious behaviors following adolescent exposure to anabolic/androgenic steroids.
Collapse
Affiliation(s)
- Thomas R Morrison
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Lesley A Ricci
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Amanda S Puckett
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Jillian Joyce
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Riley Curran
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Courtney Davis
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America
| | - Richard H Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States of America.
| |
Collapse
|
11
|
Purvis EM, Klein AK, Ettenberg A. Lateral habenular norepinephrine contributes to states of arousal and anxiety in male rats. Behav Brain Res 2018; 347:108-115. [PMID: 29526789 PMCID: PMC5988948 DOI: 10.1016/j.bbr.2018.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 01/16/2023]
Abstract
Recent research has identified the lateral habenula (LHb) as a brain region playing an important role in the production of stressful and anxiogenic states. Additionally, norepinephrine (NE) has long been known to be involved in arousal, stress and anxiety, and NE projections to the LHb have been identified emanating from the locus coeruleus (LC). The current research was devised to test the hypothesis that NE release within the LHb contributes to the occurrence of anxiogenic behaviors. Male rats were implanted with bilateral guide cannula aimed at the LHb and subsequently treated with intracranial (IC) infusions of the selective α2 adrenergic autoreceptor agonist, dexmedetomidine (DEX) (0, 0.5, 1.0 μg/side), prior to assessment of ambulatory and anxiogenic behavior in tests of spontaneous locomotion, open field behavior, and acoustic startle-response. Results demonstrated that DEX administration significantly reduced the overall locomotor behavior of subjects at both doses indicating that infusion of even small doses of this α2 agonist into the LHb can have profound effects on the subjects' general levels of alertness and activity. DEX was also found to attenuate anxiety as evidenced by a reduction in the magnitude of a startle-response to an acoustic 110 dB stimulus. Taken together, these results identify a role for NE release within the LHb in both arousal and anxiety.
Collapse
Affiliation(s)
- Erin M Purvis
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106-9660, USA
| | - Adam K Klein
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106-9660, USA
| | - Aaron Ettenberg
- Behavioral Pharmacology Laboratory, Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, 93106-9660, USA.
| |
Collapse
|
12
|
Lima FB, Leite CM, Bethea CL, Anselmo-Franci JA. Progesterone increased β-endorphin innervation of the locus coeruleus, but ovarian steroids had no effect on noradrenergic neurodegeneration. Brain Res 2017; 1663:1-8. [PMID: 28284896 PMCID: PMC5425244 DOI: 10.1016/j.brainres.2017.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
Abstract
With the decline of ovarian steroids levels at menopause, many women experience an increase in anxiety and stress sensitivity. The locus coeruleus (LC), a central source of noradrenaline (NE), is activated by stress and is inhibited by β-endorphin. Moreover, increased NE has been implicated in pathological anxiety syndromes. Hormone replacement therapy (HRT) in menopause appears to decrease anxiety and vulnerability to stress. Therefore, we questioned the effect of HRT on the inhibitory β-endorphin innervation of the LC. In addition, we found that progesterone protects serotoninergic neurons in monkeys, leading us to question whether ovarian steroids are also neuroprotective in LC neurons in monkeys. Adult Rhesus monkeys (Macaca mulatta) were ovariectomized, and either treated with Silastic capsules that contained estradiol, estradiol+progesterone, progesterone alone or that were empty (ovariectomized; control). After 1month, the LC was obtained and processed for immunohistochemistry for β-endorphin and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling (TUNEL). The density of β-endorphin axons was determined with image analysis using ImageJ. The TUNEL-positive neurons were counted in the entire LC. Progesterone-alone significantly increased the density of the β-endorphin axons in the LC (p<0.01). No significant differences between groups in the number of TUNEL-positive cells in the LC were found. In conclusion, we found that HRT increases the inhibitory influence of β-endorphin in the LC, which could, in turn, contribute to reduce anxiety and increase stress resilience. In addition, we did not find compelling evidence of neurodegeneration or neuroprotection by HRT in the LC of Rhesus monkeys.
Collapse
Affiliation(s)
- Fernanda B Lima
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - Cristiane M Leite
- Departamento de Morfologia, Fisiologia, e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, SP, Brazil.
| | - Cynthia L Bethea
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA.
| | - Janete A Anselmo-Franci
- Departamento de Morfologia, Fisiologia, e Patologia Básica, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, SP, Brazil.
| |
Collapse
|
13
|
Morrison TR, Ricci LA, Melloni RH. Vasopressin differentially modulates aggression and anxiety in adolescent hamsters administered anabolic steroids. Horm Behav 2016; 86:55-63. [PMID: 27149949 PMCID: PMC5094902 DOI: 10.1016/j.yhbeh.2016.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/24/2016] [Accepted: 04/15/2016] [Indexed: 12/19/2022]
Abstract
Adolescent Syrian hamsters (Mesocricetus auratus) treated with anabolic/androgenic steroids display increased offensive aggression and decreased anxiety correlated with an increase in vasopressin afferent development, synthesis, and neural signaling within the anterior hypothalamus. Upon withdrawal from anabolic/androgenic steroids, this neurobehavioral relationship shifts as hamsters display decreased offensive aggression and increased anxiety correlated with a decrease in anterior hypothalamic vasopressin. This study investigated the hypothesis that alterations in anterior hypothalamic vasopressin neural signaling modulate behavioral shifting between adolescent anabolic/androgenic steroid-induced offensive aggression and anxiety. To test this, adolescent male hamsters were administered anabolic/androgenic steroids and tested for offensive aggression or anxiety following direct pharmacological manipulation of vasopressin V1A receptor signaling within the anterior hypothalamus. Blockade of anterior hypothalamic vasopressin V1A receptor signaling suppressed offensive aggression and enhanced general and social anxiety in hamsters administered anabolic/androgenic steroids during adolescence, effectively reversing the pattern of behavioral response pattern normally observed during the adolescent exposure period. Conversely, activation of anterior hypothalamic vasopressin V1A receptor signaling enhanced offensive aggression in hamsters exposed to anabolic/androgenic steroids during adolescence. Together, these findings suggest that the state of vasopressin neural development and signaling in the anterior hypothalamus plays an important role in behavioral shifting between aggression and anxiety following adolescent exposure to anabolic/androgenic steroids.
Collapse
Affiliation(s)
- Thomas R Morrison
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, United States
| | - Lesley A Ricci
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, United States
| | - Richard H Melloni
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, United States.
| |
Collapse
|
14
|
Hescham S, Jahanshahi A, Meriaux C, Lim LW, Blokland A, Temel Y. Behavioral effects of deep brain stimulation of different areas of the Papez circuit on memory- and anxiety-related functions. Behav Brain Res 2015; 292:353-60. [DOI: 10.1016/j.bbr.2015.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/17/2015] [Accepted: 06/21/2015] [Indexed: 11/17/2022]
|
15
|
Effects of intra-infralimbic prefrontal cortex injections of cannabidiol in the modulation of emotional behaviors in rats: Contribution of 5HT1A receptors and stressful experiences. Behav Brain Res 2015; 286:49-56. [DOI: 10.1016/j.bbr.2015.02.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 01/27/2023]
|
16
|
Aggression and anxiety in adolescent AAS-treated hamsters: A role for 5HT3 receptors. Pharmacol Biochem Behav 2015; 134:85-91. [PMID: 25959831 DOI: 10.1016/j.pbb.2015.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/22/2015] [Accepted: 05/02/2015] [Indexed: 01/17/2023]
Abstract
Previously, we have shown that anabolic androgenic steroid (AAS) exposure throughout adolescence stimulates offensive aggression while also reducing anxious behaviors during the exposure period. Interestingly, AAS exposure through development correlates with alterations to the serotonin system in regions known to contain 5HT3 receptors that influence the control of both aggression and anxiety. Despite these effects, little is known about whether these separate developmental AAS-induced behavioral alterations occur as a function of a common neuroanatomical locus. To begin to address this question, we localized 5HT3 receptors in regions that have been implicated in aggression and anxiety. To examine the impact these receptors may have on AAS alterations to behavior, we microinjected the 5HT3 agonist mCPBG directly into a region know for its influence over aggressive behavior, the lateral division of the anterior hypothalamus, and recorded alterations to anxious behaviors using the elevated plus maze. AAS exposure primarily reduced the presence of 5HT3 receptors in aggression/anxiety regions. Accordingly, mCPBG blocked the anxiolytic effects of adolescent AAS exposure. These data suggest that the 5HT3 receptor plays a critical role in the circuit modulating developmental AAS-induced changes to both aggressive and anxious behaviors, and further implicates the lateral division of the anterior hypothalamus as an important center for the negative behavioral effects of developmental AAS-exposure.
Collapse
|
17
|
Coelho CM, Balaban CD. Visuo-vestibular contributions to anxiety and fear. Neurosci Biobehav Rev 2014; 48:148-59. [PMID: 25451199 DOI: 10.1016/j.neubiorev.2014.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/25/2014] [Accepted: 10/28/2014] [Indexed: 12/30/2022]
Abstract
The interactive roles of the visual and vestibular systems allow for postural control within boundaries of perceived safety. In specific circumstances, visual vestibular and postural interactions act as a cue that trigger fear, similarly to what occurs in motion sickness. Unusual patterns of visuo-vestibular interaction that emerge without warning can elicit fear, which can then become associated to a certain stimuli or situation, creating a CS-US association, (i.e., phobia), or can emerge without warning but also without becoming associated to a particular concomitant event (i.e., panic). Depending on the individual sensitivity to visuo-vestibular unusual patterns and its impact in postural control, individuals will be more or less vulnerable to develop these disorders. As such, the mechanism we here propose is also sufficient to explain the lack of certain fears albeit exposure. Following this rationale, a new subcategory of anxiety disorders, named visuo-vestibular fears can be considered. This model brings important implications for developmental and evolutionary psychological science, and invites to place visuo-vestibular fears in a particular subtype or specification within the DSM-5 diagnostic criteria.
Collapse
Affiliation(s)
- Carlos M Coelho
- University of Minho, School of Engineering, Centro Algoritmi, Guimarães, Portugal; University of Queensland, Queensland Brain Institute, Brisbane, Australia.
| | - Carey D Balaban
- University of Pittsburgh, School of Med, Department of Otolaryngology, Eye & Ear Inst., Pittsburgh, PA, USA; University of Pittsburgh, Department of Neurobiology, Pittsburgh, PA, USA; University of Pittsburgh, Department of Communication Sciences & Disorders, Pittsburgh, PA, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Ricci LA, Morrison TR, Melloni RH. Adolescent anabolic/androgenic steroids: Aggression and anxiety during exposure predict behavioral responding during withdrawal in Syrian hamsters (Mesocricetus auratus). Horm Behav 2013; 64:770-80. [PMID: 24126136 PMCID: PMC3957330 DOI: 10.1016/j.yhbeh.2013.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/10/2013] [Accepted: 10/03/2013] [Indexed: 11/22/2022]
Abstract
In the U.S. and worldwide anabolic/androgenic steroid use remains high in the adolescent population. This is concerning given that anabolic/androgenic steroid use is associated with a higher incidence of aggressive behavior during exposure and anxiety during withdrawal. This study uses pubertal Syrian hamsters (Mesocricetus auratus) to investigate the hypothesis that an inverse behavioral relationship exists between anabolic/androgenic steroid-induced aggression and anxiety across adolescent exposure and withdrawal. In the first experiment, we examined aggression and anxiety during adolescent anabolic/androgenic steroid exposure and withdrawal. Adolescent anabolic/androgenic steroid administration produced significant increases in aggression and decreases in anxiety during the exposure period followed by significant decreases in aggression and increases in anxiety during anabolic/androgenic steroid withdrawal. In a second experiment, anabolic/androgenic steroid exposed animals were separated into groups based on their aggressive response during the exposure period and then tested for anxiety during exposure and then for both aggression and anxiety during withdrawal. Data were analyzed using a within-subjects repeated measures predictive analysis. Linear regression analysis revealed that the difference in aggressive responding between the anabolic/androgenic steroid exposure and withdrawal periods was a significant predictor of differences in anxiety for both days of testing. Moreover, the combined data suggest that the decrease in aggressive behavior from exposure to withdrawal predicts an increase in anxiety-like responding within these same animals during this time span. Together these findings indicate that early anabolic/androgenic steroid exposure has potent aggression- and anxiety-eliciting effects and that these behavioral changes occur alongside a predictive relationship that exists between these two behaviors over time.
Collapse
Affiliation(s)
- Lesley A Ricci
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, USA
| | | | | |
Collapse
|
19
|
Ricci LA, Morrison TR, Melloni RH. Serotonin modulates anxiety-like behaviors during withdrawal from adolescent anabolic-androgenic steroid exposure in Syrian hamsters. Horm Behav 2012; 62:569-78. [PMID: 23026540 PMCID: PMC3612524 DOI: 10.1016/j.yhbeh.2012.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 09/20/2012] [Accepted: 09/21/2012] [Indexed: 12/27/2022]
Abstract
From the U.S. to Europe and Australia anabolic steroid abuse remains high in the adolescent population. This is concerning given that anabolic steroid use is associated with a higher incidence of pathological anxiety that often appears during withdrawal from use. This study uses pubertal Syrian hamsters (Mesocricetus auratus) to investigate the hypothesis that adolescent anabolic/androgenic steroid (AAS) exposure predisposes hamsters to heightened levels of anxiety during AAS withdrawal that is modulated by serotonin (5HT) neural signaling. In the first two sets of experiments, adolescent AAS-treated hamsters were tested for anxiety 21 days after the cessation of AAS administration (i.e., during AAS withdrawal) using the elevated plus maze (EPM), dark/light (DL), and seed finding (SF) tests and then examined for differences in 5HT afferent innervation to select areas of the brain important for anxiety. In the EPM and DL tests, adolescent AAS exposure leads to significant increases in anxiety-like response during AAS withdrawal. AAS-treated hamsters showed long-term reductions in 5HT innervation within several areas of the hamster brain implicated in anxiety, most notably the anterior hypothalamus and the central and medial amygdala. However, no differences in 5HT were found in other anxiety areas, e.g., frontal cortex and lateral septum. In the last experiment, adolescent AAS-treated hamsters were scored for anxiety on the 21st day of AAS withdrawal following the systemic administration of saline or one of three doses of fluoxetine, a selective serotonin reuptake inhibitor. Saline-treated hamsters showed high levels of AAS withdrawal-induced anxiety, while treatment with fluoxetine reduced AAS withdrawal-induced anxiety. These findings indicate that early AAS exposure has potent anxiogenic effects during AAS withdrawal that are modulated, in part, by 5HT signaling.
Collapse
|
20
|
Hascup ER, Hascup KN, Pomerleau F, Huettl P, Hajos-Korcsok E, Kehr J, Gerhardt GA. An allosteric modulator of metabotropic glutamate receptors (mGluR₂), (+)-TFMPIP, inhibits restraint stress-induced phasic glutamate release in rat prefrontal cortex. J Neurochem 2012; 122:619-27. [PMID: 22578190 PMCID: PMC3970435 DOI: 10.1111/j.1471-4159.2012.07784.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential anxiolytic effects of a novel positive allosteric modulator (PAM) of the metabotropic glutamate receptor subgroup 2 (mGluR₂) were investigated using a self-referencing recording technique with enzyme-based microelectrode arrays (MEAs) that reliably measures tonic and phasic changes in extracellular glutamate levels in awake rats. Studies involved glutamate measures in the rat prefrontal cortex during subcutaneous injections of the following: vehicle, a mGluR₂/₃ agonist, LY354740 (10 mg/kg), or a mGluR₂ PAM, 1-Methyl-2-((cis-(R,R)-3-methyl-4-(4-trifluoromethoxy-2-fluoro)phenyl)piperidin-1-yl)methyl)-1H-imidazo[4,5-b]pyridine ((+)-TFMPIP; 1.0 or 17.8 mg/kg). Studies assessed changes in tonic glutamate levels and the glutamatergic responses to a 5-min restraint stress. Subcutaneous injection of (+)-TFMPIP at a dose of 1.0 mg/kg (day 3: -7.1 ± 15.1 net AUC; day 5: -24.8 ± 24.9 net AUC) and 17.8 mg/kg (day 3: -46.5 ± 33.0 net AUC; day 5: 34.6 ± 36.8 net AUC) significantly attenuated the stress-evoked glutamate release compared to vehicle controls (day 3: 134.7 ± 50.6 net AUC; day 5: 286.6 ± 104.5 net AUC), whereas the mGluR₂/₃ agonist LY354740 had no effect. None of the compounds significantly affected resting glutamate levels, which we have recently shown to be extensively derived from neurons. Taken together, these data support that systemic administration of (+)-TFMPIP produces phasic rather than tonic release of glutamate that may play a major role in the effects of stress on glutamate neuronal systems in the prefrontal cortex.
Collapse
Affiliation(s)
- Erin R Hascup
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
An animal model of panic vulnerability with chronic disinhibition of the dorsomedial/perifornical hypothalamus. Physiol Behav 2012; 107:686-98. [PMID: 22484112 DOI: 10.1016/j.physbeh.2012.03.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 03/15/2012] [Accepted: 03/15/2012] [Indexed: 01/12/2023]
Abstract
Panic disorder (PD) is a severe anxiety disorder characterized by susceptibility to induction of panic attacks by subthreshold interoceptive stimuli such as sodium lactate infusions or hypercapnia induction. Here we review a model of panic vulnerability in rats involving chronic inhibition of GABAergic tone in the dorsomedial/perifornical hypothalamic (DMH/PeF) region that produces enhanced anxiety and freezing responses in fearful situations, as well as a vulnerability to displaying acute panic-like increases in cardioexcitation, respiration activity and "flight" associated behavior following subthreshold interoceptive stimuli that do not elicit panic responses in control rats. This model of panic vulnerability was developed over 15 years ago and has provided an excellent preclinical model with robust face, predictive and construct validity. The model recapitulates many of the phenotypic features of panic attacks associated with human panic disorder (face validity) including greater sensitivity to panicogenic stimuli demonstrated by sudden onset of anxiety and autonomic activation following an administration of a sub-threshold (i.e., do not usually induce panic in healthy subjects) stimulus such as sodium lactate, CO(2), or yohimbine. The construct validity is supported by several key findings; DMH/PeF neurons regulate behavioral and autonomic components of a normal adaptive panic response, as well as being implicated in eliciting panic-like responses in humans. Additionally, patients with PD have deficits in central GABA activity and pharmacological restoration of central GABA activity prevents panic attacks, consistent with this model. The model's predictive validity is demonstrated by not only showing panic responses to several panic-inducing agents that elicit panic in patients with PD, but also by the positive therapeutic responses to clinically used agents such as alprazolam and antidepressants that attenuate panic attacks in patients. More importantly, this model has been utilized to discover novel drugs such as group II metabotropic glutamate agonists and a new class of translocator protein enhancers of GABA, both of which subsequently showed anti-panic properties in clinical trials. All of these data suggest that this preparation provides a strong preclinical model of some forms of human panic disorders.
Collapse
|
22
|
Rinaman L, Banihashemi L, Koehnle TJ. Early life experience shapes the functional organization of stress-responsive visceral circuits. Physiol Behav 2011; 104:632-40. [PMID: 21497616 PMCID: PMC3139736 DOI: 10.1016/j.physbeh.2011.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 01/07/2023]
Abstract
Emotions are closely tied to changes in autonomic (i.e., visceral motor) function, and interoceptive sensory feedback from body to brain exerts powerful modulatory control over motivation, affect, and stress responsiveness. This manuscript reviews evidence that early life experience can shape the structure and function of central visceral circuits that underlie behavioral and physiological responses to emotive and stressful events. The review begins with a general discussion of descending autonomic and ascending visceral sensory pathways within the brain, and then summarizes what is known about the postnatal development of these central visceral circuits in rats. Evidence is then presented to support the view that early life experience, particularly maternal care, can modify the developmental assembly and structure of these circuits in a way that impacts later stress responsiveness and emotional behavior. The review concludes by presenting a working hypothesis that endogenous cholecystokinin signaling and subsequent recruitment of gastric vagal sensory inputs to the caudal brainstem may be an important mechanism by which maternal care influences visceral circuit development in rat pups. Early life experience may contribute to meaningful individual differences in emotionality and stress responsiveness by shaping the postnatal developmental trajectory of central visceral circuits.
Collapse
Affiliation(s)
- Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
23
|
Verleye M, Dumas S, Heulard I, Krafft N, Gillardin JM. Differential effects of etifoxine on anxiety-like behaviour and convulsions in BALB/cByJ and C57BL/6J mice: any relation to overexpression of central GABAA receptor beta2 subunits? Eur Neuropsychopharmacol 2011; 21:457-70. [PMID: 20943351 DOI: 10.1016/j.euroneuro.2010.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 08/23/2010] [Accepted: 09/14/2010] [Indexed: 01/23/2023]
Abstract
Dysfunction of GABAergic transmission related to abnormal expression of GABA(A) receptor subunits in specific brain regions underlies some pathological anxiety states. Besides involvement of the benzodiazepine recognition site of GABA(A) receptor in the expression of anxiety-like behaviour, the roles of the β(2)/β(3) subunits are not well characterized. To address this issue, the experimental design of this study utilized the GABAergic compound etifoxine (with a preferential effectiveness after binding to a specific site at β(2)/β(3) subunits) tested in two inbred mouse strains: BALB/cByJ and C57BL/6J mice using three behavioural paradigms (light/dark box, elevated plus maze and restraint stress-induced small intestinal transit inhibition) and the t-butylbicyclophosphorothionate-induced convulsions model. Etifoxine plasma and brain levels and β(2)/β(3) mRNAs and protein expression levels in various brain regions were compared between the two strains. The two mouse strains differed markedly in basal anxiety level. Etifoxine exhibited more pronounced anxiolytic and anticonvulsant effects in the BALB/cByJ mice compared to the C57BL/6J mice. The etifoxine brain/plasma ratios of the two strains were not different. Beta2 subunit mRNA and protein expression levels were around 25 and 10% higher respectively in the anterodorsal nucleus of the thalamus and the CA3 field of hippocampus of BALB/cByJ mice compared to C57BL/6J mice. Beta3 subunit mRNA and protein expression levels did not differ between the two strains. Based on these results, it is suggested that overexpression of GABA(A) receptor β(2) subunit in BALB/cByJ mice relative to C57BL/6j mice contributes to the dysfunction in GABA(A) transmission in regions of brain known to regulate responses to stress. The dysregulated GABA(A) function in BALB/cByJ mice may be corrected by the administration of etifoxine.
Collapse
Affiliation(s)
- Marc Verleye
- Département de Pharmacologie, Biocodex, Zac de Mercières, Compiègne, France.
| | | | | | | | | |
Collapse
|
24
|
Balaban CD, Jacob RG, Furman JM. Neurologic bases for comorbidity of balance disorders, anxiety disorders and migraine: neurotherapeutic implications. Expert Rev Neurother 2011; 11:379-94. [PMID: 21375443 PMCID: PMC3107725 DOI: 10.1586/ern.11.19] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The comorbidity among balance disorders, anxiety disorders and migraine has been studied extensively from clinical and basic research perspectives. From a neurological perspective, the comorbid symptoms are viewed as the product of sensorimotor, interoceptive and cognitive adaptations that are produced by afferent interoceptive information processing, a vestibulo-parabrachial nucleus network, a cerebral cortical network (including the insula, orbitofrontal cortex, prefrontal cortex and anterior cingulate cortex), a raphe nuclear-vestibular network, a coeruleo-vestibular network and a raphe-locus coeruleus loop. As these pathways overlap extensively with pathways implicated in the generation, perception and regulation of emotions and affective states, the comorbid disorders and effective treatment modalities can be viewed within the contexts of neurological and psychopharmacological sites of action of current therapies.
Collapse
|
25
|
Jamal H, Ansari WH, Rizvi SJ. Evaluation of chalcones - a flavonoid subclass, for, their anxiolytic effects in rats using elevated plus maze and open field behaviour tests. Fundam Clin Pharmacol 2008; 22:673-81. [DOI: 10.1111/j.1472-8206.2008.00639.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Itoi K. Ablation of the central noradrenergic neurons for unraveling their roles in stress and anxiety. Ann N Y Acad Sci 2008; 1129:47-54. [PMID: 18591468 DOI: 10.1196/annals.1417.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite considerable evidence suggesting the relationship between the central noradrenergic (NA) system and fear/anxiety states, previous animal studies have not demonstrated sheer involvement of the locus coeruleus (LC) in mediating fear or anxiety. Following the negative results of 6-hydroexydopamine (6-OHDA)-induced LC ablation in fear-conditioning studies, most researchers dared not approach this problem using the ablation strategy. The results obtained by a limited number of endeavors, conducted later, were not consistent with the idea of LC being related to anxiety, either, with the exception of the study by Lapiz and colleagues. Since methodological problems were recognized in the neurotoxin-induced NA ablation, employed in previous studies, a novel mouse model was developed in which the LC-NA neurons were ablated selectively and thoroughly by the immunotoxin-mediated cellular targeting. The use of this model clearly demonstrated that the LC was part of the anxiety circuitry. The reason for the discrepancy between the latest study and previous ones is not clear, but it may be due either to the difference in the experimental paradigms or to the different methods for LC ablation. In any case, our findings have shed light on the LC as a locus pertaining to anxiety behavior, and may help link the apparently inconsistent results in previous studies. In addition, the novel method for the LC cell targeting, presented here may provide a potential means for studying the physiological roles of the LC including sleep/wakefulness, as well as its possible involvement in the pathogenesis of psychiatric disorders, including depression, anxiety disorders, and attention deficit/hyperactivity disorder.
Collapse
Affiliation(s)
- Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan.
| |
Collapse
|
27
|
Dunayevich E, Erickson J, Levine L, Landbloom R, Schoepp DD, Tollefson GD. Efficacy and tolerability of an mGlu2/3 agonist in the treatment of generalized anxiety disorder. Neuropsychopharmacology 2008; 33:1603-10. [PMID: 17712352 DOI: 10.1038/sj.npp.1301531] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
LY354740, a potent and selective mGlu (metabotropic glutamate receptor)2/3 agonist, has shown efficacy in the treatment of generalized anxiety disorder (GAD). LY544344 is a LY354740 prodrug that increases LY354740 bioavailability. This 8-week study was designed to evaluate the efficacy, safety, and tolerability of LY544344 in the treatment of GAD. Participants had a diagnoses of GAD, baseline Hospital Anxiety and Depression Scale anxiety subscale scores > or = 10, and moderate illness severity. Patients were randomized to double-blind treatment with LY544344 16 mg b.i.d. (n = 28), LY544344 8 mg b.i.d. (n = 36), or placebo (n = 44). LY544344 16 mg b.i.d.-treated patients showed significantly greater improvement from baseline in Hamilton Anxiety and Clinical Global Impression-Improvement scores, as well as response and remission rates compared with placebo-treated patients. LY544344 was well tolerated and there were no significant differences in the incidence of treatment-emergent adverse events among the three treatment groups. However, the trial was discontinued early based on findings of convulsions in preclinical studies. In conclusion, the findings of this study support the potential efficacy of mGlu2/3 receptor agonist agents in the treatment of GAD. Additional studies will be needed to further assess the toxicological and clinical profile of LY354740/LY544344.
Collapse
|
28
|
Jordan AD, Kordik CP, Reitz AB, Sanfilippo PJ. Section Review Central & Peripheral Nervous Systems: Novel anxiolytic agents - 1994 to present. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.6.10.1047] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Gu G, Lorrain DS, Wei H, Cole RL, Zhang X, Daggett LP, Schaffhauser HJ, Bristow LJ, Lechner SM. Distribution of metabotropic glutamate 2 and 3 receptors in the rat forebrain: Implication in emotional responses and central disinhibition. Brain Res 2008; 1197:47-62. [PMID: 18242587 DOI: 10.1016/j.brainres.2007.12.057] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 12/07/2007] [Accepted: 12/15/2007] [Indexed: 11/17/2022]
Abstract
The receptor localization of metabotropic glutamate receptors (mGlu) 2 and 3 was examined by using in situ hybridization and a well-characterized mGlu2-selective antibody in the rat forebrain. mGlu2 was highly and discretely expressed in cell bodies in almost all of the key regions of the limbic system in the forebrain, including the midline and intralaminar structures of the thalamus, the association cortices, the dentate gyrus of the hippocampus, the medial mammillary nucleus, and the lateral and basolateral nuclei of the amygdala. Moreover, presynaptic mGlu2 terminals were found in most of the forebrain structures, especially in the lateral part of the central nucleus of the amygdala, and the CA1 region of the hippocampus. Although some overlaps exist, such as in the hippocampus and the amygdala, the expression of mGlu3 mRNA, however, appeared to be more disperse, compared with that of mGlu2 mRNA. These distribution results support previous behavioral studies that the mGlu2 and 3 receptors may play important roles in emotional responses. In addition to its expression in glia, mGlu3 was distinctively expressed in cells in the GABAergic reticular nucleus of the thalamus. Local infusion of a non-selective mGlu2/3 agonist, LY379268, in the reticular nucleus of the thalamus, significantly reduced GABA release, suggesting that mGlu3 may also play a role in central disinhibition.
Collapse
Affiliation(s)
- Guibao Gu
- Department of Neuropharmacology, Merck Research Laboratories, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Hughes RN. Neotic preferences in laboratory rodents: Issues, assessment and substrates. Neurosci Biobehav Rev 2007; 31:441-64. [PMID: 17198729 DOI: 10.1016/j.neubiorev.2006.11.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/18/2006] [Accepted: 11/09/2006] [Indexed: 11/18/2022]
Abstract
Neotic preference refers to the extent to which animals prefer stimuli of differing novelty value. Degree of novelty is determined by within- and between-trials habituation and amount of temporal (novelty) and spatial change (complexity) in stimulation which in turn will determine the amount of curiosity-based approach (neophilia) or fear-based avoidance (neophobia) of novel stimuli. Tests of genuine neotic preferences enable direct assessments of responsiveness to temporal and spatial changes and include measurements of novel versus familiar locations (such as novelty-related location preferences), responsiveness to stimulus complexity (such as object exploration) and learning for exploratory rewards (such as light-contingent bar-pressing). Effects of brain lesions and peripherally administered drugs have implicated several brain areas and neurotransmitters that subserve memory, fear and reward in neotic preferences namely the hippocampus and ACh (memory), the amygdala, GABA and 5-HT (fear), and the mesolimbic DA reward system. However, more attention should be paid to the complexity of interactions between different brain and neurotransmitter systems and improvements in methodology before conclusions should be drawn about the neurobiological basis of neotic preferences.
Collapse
Affiliation(s)
- Robert N Hughes
- Department of Psychology, University of Canterbury, Ilam Road, Private Bag 4800, Christchurch 8020, New Zealand.
| |
Collapse
|
32
|
Singewald N. Altered brain activity processing in high-anxiety rodents revealed by challenge paradigms and functional mapping. Neurosci Biobehav Rev 2007; 31:18-40. [PMID: 16620984 DOI: 10.1016/j.neubiorev.2006.02.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/10/2006] [Accepted: 02/15/2006] [Indexed: 12/21/2022]
Abstract
Pathological anxiety involves aberrant processing of emotional information that is hypothesized to reflect perturbations in fear/anxiety pathways. The affected neurobiological substrates in patients with different anxiety disorders are just beginning to be revealed. Important leads for this research can be derived from findings obtained in psychopathologically relevant rodent models of enhanced anxiety, by revealing where in the brain neuronal processing in response to diverse challenges is different to that in animals with lower anxiety levels. Different functional mapping methods in various rodent models, including psychogenetically selected lines or genetically modified animals, have been used for this purpose. These studies show that the divergent anxiety-related behavioral response of high-anxiety- vs. normal and/or low-anxiety rodents to emotional challenges is associated with differential neuronal activation in restricted parts of proposed fear/anxiety circuitries including brain areas thought to be important in stress, emotion and memory. The identification of neuronal populations showing differential activation depends in part on the applied emotional challenge, indicating that specific facets of elicited fear or anxiety preferentially engage particular parts of the fear/anxiety circuitry. Hence, only the use of an array of different challenges will reveal most affected brain areas. A number of the neuronal substrates identified are suggested as candidate mediators of dysfunctional brain activation in pathological anxiety. Indeed, key findings revealed in these rodent models show parallels to observations in human symptom provocation studies comparing anxiety disorder patients with healthy volunteers. Work to investigate exactly which of the changed neuronal activation patterns in high-anxiety rodents has to be modulated by therapeutic drugs to achieve effective anxiolysis and via which neurochemical pathways this can be accomplished is at its early stages but has identified a small number of promising candidates. Extending these approaches should help to provide further insight into these mechanisms, revealing new leads for therapeutic targets and strategies.
Collapse
Affiliation(s)
- Nicolas Singewald
- Department of Pharmacology & Toxicology, Institute of Pharmacy and Center of Molecular Biosciences, University of Innsbruck, A-6020 Innsbruck, Austria.
| |
Collapse
|
33
|
González-Pardo H, Conejo NM, Arias JL. Oxidative metabolism of limbic structures after acute administration of diazepam, alprazolam and zolpidem. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:1020-6. [PMID: 16647177 DOI: 10.1016/j.pnpbp.2006.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of acute administration of two benzodiazepines and a non-benzodiazepine hypnotic on behavior and brain metabolism were evaluated in rats. After testing the behavioral action of the benzodiazepines on the open field and the elevated plus-maze, the effects of the three drugs on neuronal metabolism of particular limbic regions were measured using cytochrome c oxidase (CO) histochemistry. Diazepam (5 mg/kg i.p.) and alprazolam (0.5 mg/kg i.p.) induced clear anxiolytic effects and a decrease in locomotion, whereas zolpidem (2 mg/kg i.p.) caused an intense hypnotic effect. The anxiolytic effects of alprazolam were distinguishable from diazepam due to the pharmacological and clinical profile of this triazolobenzodiazepine. CO activity decreased significantly in almost all the limbic regions evaluated after zolpidem administration. However, significant prominent decreases in CO activity were found after diazepam treatment in the medial mammillary nucleus, anteroventral thalamus, cingulate cortex, dentate gyrus and basolateral amygdala. Alprazolam caused similar decreases in CO activity, with the exception of the prelimbic and cingulate cortices, where significant increases were detected. In agreement with previous studies using other functional mapping techniques, our results indicate that particular benzodiazepines and non-benzodiazepine hypnotics induce selective changes in brain oxidative metabolism.
Collapse
Affiliation(s)
- Héctor González-Pardo
- Laboratorio de Neurociencias, Facultad de Psicología, Universidad de Oviedo, Plaza Feijoo s/n, E-33003 Oviedo, Spain.
| | | | | |
Collapse
|
34
|
Bruening S, Oh E, Hetzenauer A, Escobar-Alvarez S, Westphalen RI, Hemmings HC, Singewald N, Shippenberg T, Toth M. The anxiety-like phenotype of 5-HT receptor null mice is associated with genetic background-specific perturbations in the prefrontal cortex GABA-glutamate system. J Neurochem 2006; 99:892-9. [PMID: 16925594 DOI: 10.1111/j.1471-4159.2006.04129.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A deficit in the serotonin 5-HT(1A) receptor has been found in panic and post-traumatic stress disorders, and genetic inactivation of the receptor results in an anxiety-like phenotype in mice on both the C57Bl6 and Swiss-Webster genetic backgrounds. Anxiety is associated with increased neuronal activity in the prefrontal cortex and here we describe changes in glutamate and GABA uptake of C57Bl6 receptor null mice. Although these alterations were not present in Swiss-Webster null mice, we have previously reported reductions in GABA(A) receptor expression in these but not in C57Bl6 null mice. This demonstrates that inactivation of the 5-HT(1A) receptor elicits different and genetic background-dependent perturbations in the prefrontal cortex GABA/glutamate system. These perturbations can result in a change in the balance between excitation and inhibition, and indeed both C57Bl6 and Swiss-Webster null mice show signs of increased neuronal excitability. Because neuronal activity in the prefrontal cortex controls the extent of response to anxiogenic stimuli, the genetic background-specific perturbations in glutamate and GABA neurotransmission in C57Bl6 and Swiss-Webster 5-HT(1A) receptor null mice may contribute to their shared anxiety phenotype. Our study shows that multiple strains of genetically altered mice could help us to understand the common and individual features of anxiety.
Collapse
MESH Headings
- Animals
- Anxiety/genetics
- Anxiety/psychology
- Behavior, Animal/physiology
- Blotting, Western
- Chromatography, High Pressure Liquid
- Excitatory Amino Acid Transporter 3/metabolism
- Genes, fos/genetics
- Glutamic Acid/physiology
- Immunohistochemistry
- In Vitro Techniques
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microdialysis
- Phenotype
- Potassium Chloride/pharmacology
- Prefrontal Cortex/metabolism
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/physiology
- Sodium/physiology
- Stress, Psychological/metabolism
- Stress, Psychological/psychology
- Synaptosomes/drug effects
- Synaptosomes/metabolism
- gamma-Aminobutyric Acid/metabolism
- gamma-Aminobutyric Acid/physiology
Collapse
Affiliation(s)
- S Bruening
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Millan MJ. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol Ther 2006; 110:135-370. [PMID: 16522330 DOI: 10.1016/j.pharmthera.2005.11.006] [Citation(s) in RCA: 389] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 12/20/2022]
Abstract
Major depression is a debilitating and recurrent disorder with a substantial lifetime risk and a high social cost. Depressed patients generally display co-morbid symptoms, and depression frequently accompanies other serious disorders. Currently available drugs display limited efficacy and a pronounced delay to onset of action, and all provoke distressing side effects. Cloning of the human genome has fuelled expectations that symptomatic treatment may soon become more rapid and effective, and that depressive states may ultimately be "prevented" or "cured". In pursuing these objectives, in particular for genome-derived, non-monoaminergic targets, "specificity" of drug actions is often emphasized. That is, priority is afforded to agents that interact exclusively with a single site hypothesized as critically involved in the pathogenesis and/or control of depression. Certain highly selective drugs may prove effective, and they remain indispensable in the experimental (and clinical) evaluation of the significance of novel mechanisms. However, by analogy to other multifactorial disorders, "multi-target" agents may be better adapted to the improved treatment of depressive states. Support for this contention is garnered from a broad palette of observations, ranging from mechanisms of action of adjunctive drug combinations and electroconvulsive therapy to "network theory" analysis of the etiology and management of depressive states. The review also outlines opportunities to be exploited, and challenges to be addressed, in the discovery and characterization of drugs recognizing multiple targets. Finally, a diversity of multi-target strategies is proposed for the more efficacious and rapid control of core and co-morbid symptoms of depression, together with improved tolerance relative to currently available agents.
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, 125, Chemin de Ronde, 78290-Croissy/Seine, France.
| |
Collapse
|
36
|
Salchner P, Sartori SB, Sinner C, Wigger A, Frank E, Landgraf R, Singewald N. Airjet and FG-7142-induced Fos expression differs in rats selectively bred for high and low anxiety-related behavior. Neuropharmacology 2006; 50:1048-58. [PMID: 16620881 DOI: 10.1016/j.neuropharm.2006.02.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 02/07/2006] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
We reported recently that two rat lines bred for either high (HAB) or low (LAB) anxiety-related behavior display differential Fos expression in restricted parts of the fear/anxiety circuitry when exposed to mild anxiety evoked in exploratory anxiety tests. Since different forms of anxiety are thought to activate different parts of the anxiety circuitry, we investigated now whether (1) an aversive stimulus which elicits escape behavior (airjet) and (2) the anxiogenic/panicogenic drug FG-7142 would reveal further differences in Fos expression as a marker of neuronal activation between HAB and LAB rats. Both airjet exposure and FG-7142 induced Fos expression in both lines in various anxiety-related brain areas. HAB rats, which displayed exaggerated escape responses during airjet exposure, exhibited increased Fos expression in brain areas including the hypothalamus, periaqueductal gray and locus coeruleus, as well as blunted Fos activation in the cingulate cortex in response to airjet and/or FG-7142. The results corroborate previous findings showing that trait anxiety affects neuronal excitability in hypothalamic and medial prefrontal areas. Furthermore, by using airjet as well as FG-7142, we now reveal that enhanced trait anxiety is also associated with neuronal hyperexcitability in the locus coeruleus and the periaqueductal gray, suggesting that investigation of an array of different anxiogenic stimuli is important for the detection of altered neuronal processing in trait anxiety.
Collapse
Affiliation(s)
- Peter Salchner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Peter-Mayr-Strasse 1, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
37
|
Allison C, Pratt JA. Differential effects of two chronic diazepam treatment regimes on withdrawal anxiety and AMPA receptor characteristics. Neuropsychopharmacology 2006; 31:602-19. [PMID: 15970947 DOI: 10.1038/sj.npp.1300800] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Withdrawal from chronic benzodiazepines is associated with increased anxiety and seizure susceptibility. Neuroadaptive changes in neural activity occur in limbo-cortical structures although changes at the level of the GABA(A) receptor do not provide an adequate explanation for these functional changes. We have employed two diazepam treatment regimes known to produce differing effects on withdrawal aversion in the rat and examined whether withdrawal-induced anxiety was accompanied by changes in AMPA receptor characteristics. Rats were given 28 days treatment with diazepam by the intraperitoneal (i.p.) route (5 mg/kg) and the subcutaneous (s.c.) route (15 mg/kg). Withdrawal anxiety in the elevated plus maze was evident in the group withdrawn from chronic s.c. diazepam (relatively more stable plasma levels) but not from the chronic i.p. group (fluctuating daily plasma levels). In the brains of these rats, withdrawal anxiety was accompanied by increased [3H]Ro48 8587 binding in the hippocampus and thalamus, and decreased GluR1 and GluR2 subunit mRNA expression in the amygdala (GluR1 and GluR2) and cortex (GluR1). The pattern of changes was different in the chronic i.p. group where in contrast to the chronic s.c. group, there was reduced [3H]Ro48 8587 binding in the hippocampus and no alterations in GluR1 and GluR2 subunit expression in the amygdala. While both groups showed reduced GluR1 mRNA subunit expression in the cortex overall, only the agranular insular cortex exhibited marked reductions following chronic i.p. diazepam. Striatal GluR2 mRNA expression was increased in the i.p. group but not the s.c. group. Taken together, these data are consistent with differential neuroadaptive processes in AMPA receptor plasticity being important in withdrawal from chronic benzodiazepines. Moreover, these processes may differ both at a regional and receptor function level according to the behavioral manifestations of withdrawal.
Collapse
Affiliation(s)
- Claire Allison
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | |
Collapse
|
38
|
Sieghart W. Structure, pharmacology, and function of GABAA receptor subtypes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2006; 54:231-63. [PMID: 17175817 DOI: 10.1016/s1054-3589(06)54010-4] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Werner Sieghart
- Division of Biochemistry and Molecular Biology, Center for Brain Research, and Section of Biochemical Psychiatry, University Clinic for Psychiatry, Medical University Vienna, Austria
| |
Collapse
|
39
|
Card JP, Levitt P, Gluhovsky M, Rinaman L. Early experience modifies the postnatal assembly of autonomic emotional motor circuits in rats. J Neurosci 2005; 25:9102-11. [PMID: 16207869 PMCID: PMC6725770 DOI: 10.1523/jneurosci.2345-05.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rat pups that are repeatedly handled and separated from their dam exhibit altered adult behavioral, endocrine, and autonomic responses to stress, but the extent to which early handling and/or maternal separation (H/S) alters the development of circuits that underlie these responses is unknown. The present study tested the hypothesis that early H/S alters the postnatal assembly of synapses within preautonomic emotional motor circuits. Circuit development was traced by synapse-dependent retrograde transneuronal transport of pseudorabies virus (PRV) from the stomach wall. Control and H/S rats were analyzed between postnatal day 6 (P6) and P10, a period of rapid synaptic assembly among preautonomic circuit components. Pups in H/S groups were removed from their dam daily for either 15 min or 3 h beginning on P1, and were injected with virus on P8 and perfused on P10. Quantitative analyses of primary and transsynaptic PRV immunolabeling confirmed an age-dependent assembly of hypothalamic, limbic, and cortical inputs to autonomic nuclei. Circuit assembly was significantly altered in H/S pups, in which fewer neurons in the central amygdala, the bed nucleus of the stria terminalis, and visceral cortices were infected compared with age-matched controls. In contrast, H/S did not alter the assembly of paraventricular hypothalamic inputs to gastric autonomic neurons. H/S-related reductions in limbic and cortical transneuronal infection were similar in pups exposed daily to 15 min or 3 h maternal separation. These findings support the view that environmental events during early postnatal life can influence the formation of neural circuits that provide limbic and cortical control over autonomic emotional motor output.
Collapse
Affiliation(s)
- J Patrick Card
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
40
|
Allison C, Pratt JA, Ripley TL, Stephens DN. alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionate receptor autoradiography in mouse brain after single and repeated withdrawal from diazepam. Eur J Neurosci 2005; 21:1045-56. [PMID: 15787709 DOI: 10.1111/j.1460-9568.2005.03902.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Withdrawal from chronic treatment with benzodiazepines is associated with increased neuronal excitability leading to anxiety, aversive effects and increased seizure sensitivity. After repeated withdrawal experiences, seizure sensitivity increases while withdrawal-induced anxiety and aversion decrease. We used autoradiographical methods employing [(3)H]Ro48 8587, a selective ligand for glutamatergic alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors, to study withdrawal-induced changes in AMPA receptor binding in areas of the mouse brain postulated to be involved in these responses. Mice were given 21 days treatment with diazepam (15 mg/kg, s.c. in sesame oil) followed by withdrawal (single withdrawal) or three blocks of 7 days treatment interspersed with 3-day periods to allow washout of drug (repeated withdrawal). In keeping with heightened excitability in withdrawal from chronic diazepam treatment, the single withdrawal group showed, 72 h after their final dose of diazepam, increased [(3)H]Ro48 8587 binding in several brain areas associated with emotional responses or seizure activity, including hippocampal subfields, amygdalar and thalamic nuclei and motor cortex. In contrast, the repeated withdrawal group showed no changes in [(3)H]Ro48 8587 binding in any brain area studied. These observations are consistent with up-regulation of AMPA receptor-mediated transmission being important in withdrawal-induced anxiety and aversion but not in increased seizure sensitivity associated with repeated withdrawal. As changes in AMPA receptor subunit expression alter the functionality of the receptor, future studies will address this possibility.
Collapse
Affiliation(s)
- C Allison
- Department of Pharmacology and Physiology, University of Strathclyde, 27 Taylor Street, Glasgow G4 ONR, UK
| | | | | | | |
Collapse
|
41
|
Abstract
In the adult central nervous system (CNS), GABA is a predominant inhibitory neurotransmitter that regulates glutamatergic activity. Recent studies have revealed that GABA serves as an excitatory transmitter in the immature CNS and acts as a trophic factor for brain development. Furthermore, synaptic transmission by GABA is also involved in the expression of higher brain functions, such as memory, learning and anxiety. These results indicate that GABA plays various roles in the expression of brain functions and GABAergic roles change developmentally in accordance with alterations in GABAergic transmission and signaling. We have investigated morphologically the developmental changes in the GABAergic transmission system and the key factors important for the formation of GABAergic synapses and networks using the mouse cerebellum, which provides an ideal system for the investigation of brain development. Here, we focus on GABA and GABA(A) receptors in the developing cerebellum and address the processes of how GABA exerts its effect on developing neurons and the mechanisms underlying the formation of functional GABAergic synapses.
Collapse
Affiliation(s)
- Chitoshi Takayama
- Department of Molecular Neuroanatomy, Hokkaido University School of Medicine, Sapporo, Japan.
| | | |
Collapse
|
42
|
Dazzi L, Seu E, Cherchi G, Biggio G. Chronic administration of the SSRI fluvoxamine markedly and selectively reduces the sensitivity of cortical serotonergic neurons to footshock stress. Eur Neuropsychopharmacol 2005; 15:283-90. [PMID: 15820417 DOI: 10.1016/j.euroneuro.2004.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 10/02/2004] [Accepted: 11/25/2004] [Indexed: 01/26/2023]
Abstract
We have evaluated, with the use of vertical microdialysis, the effects of fluvoxamine, a selective serotonin reuptake inhibitor (SSRI) on the increase in serotonin and norepinephrine output elicited in rats prefrontal cortex by exposure to footshock stress. Exposure to footshock stress induced a marked increase in the cortical extracellular concentration of both serotonin and norepinephrine (+70% and +100%, respectively) in control rats. Long term, but not acute administration of fluvoxamine (10 mg/kg, i.p. once a days for 21 days) completely antagonized the stress induced increase in cortical serotonin extracellular concentration, while failed to modify the sensitivity of cortical noradrenergic neurons to the same stressful stimulus. Our results have shown that it is possible to independently modulate the sensitivity of cortical serotonergic neurons to stressful stimuli without altering the responsiveness of noradrenergic neurons to the same stress. Given the different role played by serotonin and norepinephrine in the modulation of the stress response, the availability of drugs able to selectively modulate the plastic response of serotonergic neurons to stress in specific brain areas might be important for the pharmacotherapy of anxiety disorders.
Collapse
Affiliation(s)
- Laura Dazzi
- Department of Experimental Biology B. Loddo, Chair of Pharmacology, Center of Excellence for Neurobiology of Drug Dependence, University of Cagliari, Cagliari, Italy.
| | | | | | | |
Collapse
|
43
|
Ambrósio AM, Kennedy JL, Macciardi F, King N, Azevedo MH, Oliveira CR, Pato CN. A linkage study between the GABAA beta2 and GABAA gamma2 subunit genes and major psychoses. CNS Spectr 2005; 10:57-61. [PMID: 15618948 DOI: 10.1017/s1092852900009913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Alterations of the gamma-aminobutyric acid (GABA) system have been implicated in the pathophysiology of major psychoses. OBJECTIVE Restriction fragment length polymorphisms associated with the human gamma-aminobutyric acid type A (GABAA) beta2 and GABAA gamma2 subunit genes on chromosome 5q32-q35 were tested to determine whether they confer susceptibility to major psychoses. METHODS Thirty-two schizophrenic families and 25 bipolar families were tested for linkage. RESULTS Nonparametric linkage (NPL) analysis performed by GENEHUNTER showed no significant NPL scores for both genes in schizophrenia (GABAA beta2: NPL narrow= -0.450; NPL broad= -0.808; GABAA gamma2: NPL narrow=0.177; NPL broad= -0.051) or bipolar disorder (GABAA beta2: NPL narrow=0.834; NPL broad=0.783; GABAA gamma2: NPL narrow= -0.159; NPL broad=0.070). CONCLUSION Linkage analysis does not support the hypothesis that variants within the GABAA beta2 and GABAA gamma2 genes are significantly linked to major psychoses in a Portuguese population.
Collapse
Affiliation(s)
- Alda M Ambrósio
- Unit of Clinical and Molecular Genetics, National Institute of Legal Medicine, Faculty of Medicine, University of Coimbra, Largo da Se Nova, 3000-213 Coimbra, Portugal.
| | | | | | | | | | | | | |
Collapse
|
44
|
Takayama C. GABAergic signaling in the developing cerebellum. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 71:63-94. [PMID: 16512346 DOI: 10.1016/s0074-7742(05)71003-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Chitoshi Takayama
- Department of Molecular Neuroanatomy, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|
45
|
Takayama C, Inoue Y. Normal formation of the postsynaptic elements of GABAergic synapses in the reeler cerebellum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 145:197-211. [PMID: 14604760 DOI: 10.1016/j.devbrainres.2003.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Synaptic transmission mediated by gamma-amino butyric acid (GABA) plays an important role in inhibition of glutamatergic excitatory transmission and expression of higher brain functions, such as memory, learning and anxiety. To elucidate mechanisms underlying formation of the postsynaptic elements for GABAergic transmission, we employed the reeler mutant mice in this study. In the reeler cerebellum, abnormal cytoarchitecture and an aberrant environment affect the formation of neural networks and maturation of neurons. We examined the expression and localization of GABA(A) receptor alpha subunits in the reeler cerebellum and determined whether various abnormalities in the reeler mice affected formation of the postsynaptic elements. In situ hybridization analysis revealed that the specific expression of alpha subunit mRNAs in each neuronal type was preserved. Abnormal expression of alpha subunits was not detected, although GABAergic networks were altered and neuronal maturation was severely disturbed. Immunohistochemistry for the alpha1 and alpha6 subunits, which were expressed abundantly in the reeler cerebellum, revealed that both subunit proteins accumulated at positions adjacent to GABAergic terminals. These results, taken together, suggested that expression of the GABA(A) receptor subunits in postsynaptic neurons might be genetically determined, but trafficking and accumulation of the subunit proteins at the GABAergic synapse may be induced by GABAergic innervation.
Collapse
Affiliation(s)
- Chitoshi Takayama
- Department of Molecular Neuroanatomy, Hokkaido University School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo 060-8638, Japan.
| | | |
Collapse
|
46
|
Abstract
Fear is an adaptive component of the acute "stress" response to potentially-dangerous (external and internal) stimuli which threaten to perturb homeostasis. However, when disproportional in intensity, chronic and/or irreversible, or not associated with any genuine risk, it may be symptomatic of a debilitating anxious state: for example, social phobia, panic attacks or generalized anxiety disorder. In view of the importance of guaranteeing an appropriate emotional response to aversive events, it is not surprising that a diversity of mechanisms are involved in the induction and inhibition of anxious states. Apart from conventional neurotransmitters, such as monoamines, gamma-amino-butyric acid (GABA) and glutamate, many other modulators have been implicated, including: adenosine, cannabinoids, numerous neuropeptides, hormones, neurotrophins, cytokines and several cellular mediators. Accordingly, though benzodiazepines (which reinforce transmission at GABA(A) receptors), serotonin (5-HT)(1A) receptor agonists and 5-HT reuptake inhibitors are currently the principle drugs employed in the management of anxiety disorders, there is considerable scope for the development of alternative therapies. In addition to cellular, anatomical and neurochemical strategies, behavioral models are indispensable for the characterization of anxious states and their modulation. Amongst diverse paradigms, conflict procedures--in which subjects experience opposing impulses of desire and fear--are of especial conceptual and therapeutic pertinence. For example, in the Vogel Conflict Test (VCT), the ability of drugs to release punishment-suppressed drinking behavior is evaluated. In reviewing the neurobiology of anxious states, the present article focuses in particular upon: the multifarious and complex roles of individual modulators, often as a function of the specific receptor type and neuronal substrate involved in their actions; novel targets for the management of anxiety disorders; the influence of neurotransmitters and other agents upon performance in the VCT; data acquired from complementary pharmacological and genetic strategies and, finally, several open questions likely to orientate future experimental- and clinical-research. In view of the recent proliferation of mechanisms implicated in the pathogenesis, modulation and, potentially, treatment of anxiety disorders, this is an opportune moment to survey their functional and pathophysiological significance, and to assess their influence upon performance in the VCT and other models of potential anxiolytic properties.
Collapse
Affiliation(s)
- Mark J Millan
- Psychopharmacology Department, Centre de Rescherches de Croissy, Institut de Recherches (IDR) Servier, 125 Chemin de Ronde, 78290 Croissy-sur-Seine, Paris, France.
| |
Collapse
|
47
|
Finn DA, Rutledge-Gorman MT, Crabbe JC. Genetic animal models of anxiety. Neurogenetics 2003; 4:109-35. [PMID: 12687420 DOI: 10.1007/s10048-003-0143-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Accepted: 12/30/2002] [Indexed: 11/29/2022]
Abstract
The focus of this review is on progress achieved in identifying specific genes conferring risk for anxiety disorders through the use of genetic animal models. We discuss gene-finding studies as well as those manipulating a candidate gene. Both human and animal studies thus far support the genetic complexity of anxiety. Clinical manifestations of these diseases are likely related to multiple genes. While different anxiety disorders and anxiety-related traits all appear to be genetically influenced, it has been difficult to ascertain genetic influences in common. Mouse studies have provisionally mapped several loci harboring genes that affect anxiety-related behavior. The growing array of mutant mice is providing valuable information about how genes and environment interact to affect anxious behavior via multiple neuropharmacological pathways. Classical genetic methods such as artificial selection of rodents for high or low anxiety are being employed. Expression array technologies have as yet not been employed, but can be expected to implicate novel candidates and neurobiological pathways.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Veterans Affairs Medical Center, Oregon Health & Science University, Portland, OR 97239 USA.
| | | | | |
Collapse
|
48
|
Singewald N, Salchner P, Sharp T. Induction of c-Fos expression in specific areas of the fear circuitry in rat forebrain by anxiogenic drugs. Biol Psychiatry 2003; 53:275-83. [PMID: 12586446 DOI: 10.1016/s0006-3223(02)01574-3] [Citation(s) in RCA: 275] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND The fact that induction of anxiety- and panic-related symptoms is a property common to a range of drugs suggests that common neural substrates underlie their behavioral effects. METHODS We used Fos immunocytochemistry to test the effects of four anxiogenic drugs (FG-7142, yohimbine, m-chlorophenylpiperazine [mCPP], and caffeine) on anxiety-related circuitry in rat forebrain. RESULTS All four drugs commonly increased Fos-like immunoreactivity in 7 of 41 brain areas investigated, namely, central nucleus of the amygdala, bed nucleus of the stria terminalis, lateral septum, paraventricular nucleus of the hypothalamus, lateral hypothalamus, infralimbic and prelimbic cortex. All drugs but one (mCPP) also increased Fos expression in the basolateral and medial amygdala, the dorsomedial hypothalamus, cingulate cortex, and parts of the motor cortex. CONCLUSIONS The results suggest that the anxiogenic drugs selected activate a restricted set of forebrain areas. Most of these areas have previously been shown to be activated by environmentally evoked anxiety and to have anatomic connections with hindbrain regions that are activated by the same drugs and by environmentally evoked anxiety. Together, these data are consistent with the theory of an integrated forebrain and hindbrain neuronal system that is important for anxiety states evoked by both drug and environmental manipulations.
Collapse
Affiliation(s)
- Nicolas Singewald
- Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
49
|
Takahashi LK, Ho SP, Livanov V, Graciani N, Arneric SP. Antagonism of CRF(2) receptors produces anxiolytic behavior in animal models of anxiety. Brain Res 2001; 902:135-42. [PMID: 11384606 DOI: 10.1016/s0006-8993(01)02405-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two pharmacologically distinct CRF receptors are distributed in different brain regions and peripheral tissues. Studies suggest that CRF(1) receptors play an important role in mediating the anxiety provoking effects of CRF. In contrast, far less functional information is available on CRF(2) receptors. Therefore, we conducted dose response studies using antisauvagine-30 (anti-SVG-30, 0-20 microg, 20-min pretreatment, i.c.v.), a potent CRF(2) peptide antagonist, and tested rats in three models of anxiety - the conditioned freezing, the elevated plus maze, and the defensive-withdrawal test. Anti-SVG-30 produced a significant dose-dependent reduction in conditioned freezing. In the elevated plus maze test, administration of anti-SVG-30 effectively increased the number of entries and time spent in the open arms. In the defensive-withdrawal test, anti-SVG-30 treatment facilitated exploratory activity in a large illuminated open field. Thus, in all three animal models, administration of anti-SVG-30 was consistent in producing an anxiolytic-like behavioral effect. In addition, a dose of anti-SVG-30 (10 microg) that produced anxiolytic-like behavior had no significant effects on locomotor activity measured in an automated activity box. This latter finding suggests that antagonism of CRF(2) receptors is not associated with a non-specific increase in behavioral movements. These results provide evidence that, in addition to CRF(1) receptors, CRF(2) receptors may play an important role in the mediation of anxiety behavior.
Collapse
MESH Headings
- Animals
- Anxiety/drug therapy
- Anxiety/metabolism
- Anxiety/physiopathology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Conditioning, Psychological/drug effects
- Conditioning, Psychological/physiology
- Corticotropin-Releasing Hormone/antagonists & inhibitors
- Corticotropin-Releasing Hormone/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Fear/drug effects
- Fear/physiology
- Male
- Maze Learning/drug effects
- Maze Learning/physiology
- Motor Activity/drug effects
- Motor Activity/physiology
- Neurons/drug effects
- Neurons/metabolism
- Peptide Fragments/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Corticotropin-Releasing Hormone/antagonists & inhibitors
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Stress, Physiological/metabolism
- Stress, Physiological/physiopathology
- Stress, Physiological/psychology
Collapse
Affiliation(s)
- L K Takahashi
- Department of Psychology, University of Hawaii, 96822, Honolulu, HI, USA.
| | | | | | | | | |
Collapse
|
50
|
Abstract
Anxiety is a normal reaction to threatening situations, and serves a physiological protective function. Pathological anxiety is characterized by a bias to interpret ambiguous situations as threatening, by avoidance of situations that are perceived to be harmful, and/or by exaggerated reactions to threat. Although much evidence indicates the involvement of the gamma-aminobutyric acid, serotonin, norepinephrine, dopamine, and neuropeptide transmitter systems in the pathophysiology of anxiety, little is known about how anxiety develops and what genetic/environmental factors underlie susceptibility to anxiety. Recently, inactivation of several genes, associated with either chemical communication between neurons or signaling within neurons, has been shown to give rise to anxiety-related behavior in knockout mice. Apart from confirming the involvement of serotonin, gamma-aminobutyric acid, and corticotrophin-releasing hormone as major mediators of anxiety and stress related behaviors, two novel groups of anxiety-relevant molecules have been revealed. The first group consists of neurotrophic-type molecules, such as interferon gamma, neural cell adhesion molecule, and midkine, which play important roles in neuronal development and cell-to-cell communication. The second group comprises regulators of intracellular signaling and gene expression, which emphasizes the importance of gene regulation in anxiety-related behaviors. Defects in these molecules are likely to contribute to the abnormal development and/or function of neuronal networks, which leads to the manifestation of anxiety disorders.
Collapse
Affiliation(s)
- S J Wood
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|