1
|
Hernández-Pérez OR, Hernández VS, Nava-Kopp AT, Barrio RA, Seifi M, Swinny JD, Eiden LE, Zhang L. A Synaptically Connected Hypothalamic Magnocellular Vasopressin-Locus Coeruleus Neuronal Circuit and Its Plasticity in Response to Emotional and Physiological Stress. Front Neurosci 2019; 13:196. [PMID: 30949017 PMCID: PMC6435582 DOI: 10.3389/fnins.2019.00196] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/19/2019] [Indexed: 01/01/2023] Open
Abstract
The locus coeruleus (LC)-norepinephrine (NE) system modulates a range of salient brain functions, including memory and response to stress. The LC-NE system is regulated by neurochemically diverse inputs, including a range of neuropeptides such as arginine-vasopressin (AVP). Whilst the origins of many of these LC inputs, their synaptic connectivity with LC neurons, and their contribution to LC-mediated brain functions, have been well characterized, this is not the case for the AVP-LC system. Therefore, our aims were to define the types of synapses formed by AVP+ fibers with LC neurons using immunohistochemistry together with confocal and transmission electron microscopy (TEM), the origins of such inputs, using retrograde tracers, and the plasticity of the LC AVP system in response to stress and spatial learning, using the maternal separation (MS) and Morris water maze (MWM) paradigms, respectively, in rat. Confocal microscopy revealed that AVP+ fibers contacting tyrosine hydroxylase (TH)+ LC neurons were also immunopositive for vesicular glutamate transporter 2, a marker of presynaptic glutamatergic axons. TEM confirmed that AVP+ axons formed Gray type I (asymmetric) synapses with TH+ dendrites thus confirming excitatory synaptic connections between these systems. Retrograde tracing revealed that these LC AVP+ fibers originate from hypothalamic vasopressinergic magnocellular neurosecretory neurons (AVPMNNs). MS induced a significant increase in the density of LC AVP+ fibers. Finally, AVPMNN circuit upregulation by water-deprivation improved MWM performance while increased Fos expression was found in LC and efferent regions such as hippocampus and prefrontal cortex, suggesting that AVPMMN projections to LC could integrate homeostatic responses modifying neuroplasticity.
Collapse
Affiliation(s)
- Oscar R Hernández-Pérez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vito S Hernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alicia T Nava-Kopp
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rafael A Barrio
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mohsen Seifi
- School of Pharmacy and Biomedical Sciences, Institute for Biomedical and Biomolecular Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Jerome D Swinny
- School of Pharmacy and Biomedical Sciences, Institute for Biomedical and Biomolecular Science, University of Portsmouth, Portsmouth, United Kingdom
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health-IRP, Bethesda, MD, United States
| | - Limei Zhang
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Abstract
Historically, standard enzyme immunohistochemistry has been accomplished with brown (DAB, diaminobenzidine) substrate. This can become problematic in pigmented tissues, such as the retina, where brown pigment of retinal pigmented epithelial (RPE) cells can be easily confounded with brown substrate. Although immunofluorescence detection methods can overcome this challenge, fluorescence may fade over a period of weeks, while enzyme substrates allow for more long-lasting, archival results. In this report, we will describe a high-contrast enzyme immunohistochemistry method ideal for pigmented tissues that utilizes purple (VIP) substrate. We compared brown (DAB) and purple (VIP) substrates in enzyme immunohistochemistry experiments using human retina (paraffin sections) and monkey retinal pigmented epithelial cells (frozen sections), both containing brown pigmented cells. We compared substrates using several primary antibodies against markers that can be detected in the retina, including GFAP, VEGF, CD147 (EMMPRIN), RHO (rhodopsin) and PAX6. Methyl green was used as a counterstain for paraffin sections. A side-by-side comparison between DAB and VIP immunohistochemistry showed excellent contrast between pigmented cells and the purple VIP substrate in both human retinal tissue and monkey pigmented epithelial cells for all of the markers tested. This was a marked improvement over DAB staining in pigmented cells and tissues. For both paraffin sections and frozen sections of pigmented tissues, purple VIP substrate is an excellent alternative to brown DAB substrate and non-permanent immunofluorescence methods.
Collapse
Affiliation(s)
- Sara M Duncan
- University at Buffalo, Center for Hearing & Deafness and SUNY Eye Institute, Buffalo, NY, USA
| | - Gail M Seigel
- University at Buffalo, Center for Hearing & Deafness and SUNY Eye Institute, Buffalo, NY, USA
| |
Collapse
|
3
|
Miyazaki S, Yoshikawa T, Hashiramoto A, Yamada R, Tsubouchi Y, Kohno M, Kawahito Y, Kondo M, Sano H. ACTH expression in synovium of patients with rheumatoid arthritis and Lewis rats with adjuvant arthritis. Mod Rheumatol 2014; 12:206-12. [PMID: 24387059 DOI: 10.3109/s101650200036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Adrenocorticotropic hormone (ACTH) and another pro-opiomelanocortin-derived neuropeptide, β-endorphin (β-End), are stimulated by corticotropin-releasing hormone (CRH) at the anterior pituitary. CRH and β-End have predominantly proinflammatory effects in peripheral inflammatory sites. We have supposed that inflammatory stimuli develop ACTH as well as β-End. In this study, we investigated the expression of ACTH in inflamed synovial tissue from patients with rheumatoid arthritis (RA) and osteoarthritis (OA), and at inflammatory joints with adjuvant-induced arthritis (AA) in female Lewis (LEW/N) rats. The expression of ACTH immunostaining was significantly greater in synovium of RA patients than in that of OA patients (P < 0.0001), and correlated with the extent of inflammatory mononuclear cell infiltration. Extensive and intense intracellular ACTH immunostaining, which correlated with the advance in arthritis score, was observed in the synovial lining layer, inflammatory mononuclear cells, and fibroblast-like cells of synovium and chondrocytes in LEW/N rats with AA. In addition, we performed double immunostaining of the same sections from arthritic joints in rats with anti-ACTH and anti-CRH antibodies. ACTH and CRH colocalized in inflammatory mononuclear cells and fibroblast-like cells. ACTH may play a role in the pathogenesis of RA as well as CRH.
Collapse
Affiliation(s)
- S Miyazaki
- First Department of Internal Medicine, Kyoto Prefectural University of Medicine , 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566 , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Bagnall MW, Hull C, Bushong EA, Ellisman MH, Scanziani M. Multiple clusters of release sites formed by individual thalamic afferents onto cortical interneurons ensure reliable transmission. Neuron 2011; 71:180-94. [PMID: 21745647 DOI: 10.1016/j.neuron.2011.05.032] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2011] [Indexed: 01/13/2023]
Abstract
Thalamic afferents supply the cortex with sensory information by contacting both excitatory neurons and inhibitory interneurons. Interestingly, thalamic contacts with interneurons constitute such a powerful synapse that even one afferent can fire interneurons, thereby driving feedforward inhibition. However, the spatial representation of this potent synapse on interneuron dendrites is poorly understood. Using Ca imaging and electron microscopy we show that an individual thalamic afferent forms multiple contacts with the interneuronal proximal dendritic arbor, preferentially near branch points. More contacts are correlated with larger amplitude synaptic responses. Each contact, consisting of a single bouton, can release up to seven vesicles simultaneously, resulting in graded and reliable Ca transients. Computational modeling indicates that the release of multiple vesicles at each contact minimally reduces the efficiency of the thalamic afferent in exciting the interneuron. This strategy preserves the spatial representation of thalamocortical inputs across the dendritic arbor over a wide range of release conditions.
Collapse
Affiliation(s)
- Martha W Bagnall
- Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
5
|
Lin X, Song JX, Shaw PC, Ng TB, Wong RNS, Sze SCW, Tong Y, Lee KF, Zhang KY. An autoimmunized mouse model recapitulates key features in the pathogenesis of Sjögren's syndrome. Int Immunol 2011; 23:613-24. [PMID: 21846814 DOI: 10.1093/intimm/dxr066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The pathogenesis of Sjögren's syndrome (SS) is poorly understood. To evaluate an autoimmunization-induced experimental SS model, we firstly observed the phenotype of lymphocyte infiltration in the enlarged submandibular gland (SG). Furthermore, significant activation of caspase-3 and a high ratio of Bax-to-Bcl-2 were detected, indicating the inflammatory apoptosis associated with developmental foci. Meanwhile, the dysregulated cytokines, such as tumor necrosis factor α, IL-1β and IL-6 mRNA expression, were found to be over-expressed. A progressive decrease of aquaporin 5 and its subcellular translocation from apical to basal membrane in SG was found to be associated with the abnormally expressed M3 muscarinic acetylcholine receptor. This pattern was found to be similar to that seen in human SS and possibly contributed to the saliva secretion deficiency. Thus, this autoimmunization-induced model recapitulates the key features of human SS and may have potential for studying the pathogenesis of human SS.
Collapse
Affiliation(s)
- Xiang Lin
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, 10 Sassoon Road, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
A half century of experimental neuroanatomical tracing. J Chem Neuroanat 2011; 42:157-83. [PMID: 21782932 DOI: 10.1016/j.jchemneu.2011.07.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 07/04/2011] [Accepted: 07/04/2011] [Indexed: 01/05/2023]
Abstract
Most of our current understanding of brain function and dysfunction has its firm base in what is so elegantly called the 'anatomical substrate', i.e. the anatomical, histological, and histochemical domains within the large knowledge envelope called 'neuroscience' that further includes physiological, pharmacological, neurochemical, behavioral, genetical and clinical domains. This review focuses mainly on the anatomical domain in neuroscience. To a large degree neuroanatomical tract-tracing methods have paved the way in this domain. Over the past few decades, a great number of neuroanatomical tracers have been added to the technical arsenal to fulfill almost any experimental demand. Despite this sophisticated arsenal, the decision which tracer is best suited for a given tracing experiment still represents a difficult choice. Although this review is obviously not intended to provide the last word in the tract-tracing field, we provide a survey of the available tracing methods including some of their roots. We further summarize our experience with neuroanatomical tracers, in an attempt to provide the novice user with some advice to help this person to select the most appropriate criteria to choose a tracer that best applies to a given experimental design.
Collapse
|
7
|
Modla S, Czymmek KJ. Correlative microscopy: a powerful tool for exploring neurological cells and tissues. Micron 2011; 42:773-92. [PMID: 21782457 DOI: 10.1016/j.micron.2011.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 11/24/2022]
Abstract
Imaging tools for exploring the neurological samples have seen a rapid transformation over the last decade. Approaches that allow clear and specific delineation of targeted tissues, individual neurons, and their cell-cell connections as well as subcellular constituents have been especially valuable. Considering the significant complexity and extent to which the nervous system interacts with every organ system in the body, one non-trivial challenge has been how to identify and target specific structures and pathologies by microscopy. To this end, correlative methods enable one to view the same exact structure of interest utilizing the capabilities of typically separate, but powerful, microscopy platforms. As such, correlative microscopy is well-positioned to address the three critical problems of identification, scale, and resolution inherent to neurological systems. Furthermore, the application of multiple imaging platforms to the study of singular biological events enables more detailed investigations of structure-function relationships to be conducted, greatly facilitating our understanding of relevant phenomenon. This comprehensive review provides an overview of methods for correlative microscopy, including histochemistry, transgenic markers, immunocytochemistry, photo-oxidation as well as various probes and tracers. An emphasis is placed on correlative light and electron microscopic strategies used to facilitate relocation of neurological structures. Correlative microscopy is an invaluable tool for neurological research, and we fully anticipate developments in automation of the process, and the increasing availability of genomic and transgenic tools will facilitate the adoption of correlative microscopy as the method of choice for many imaging experiments.
Collapse
Affiliation(s)
- Shannon Modla
- Delaware Biotechnology Institute, Bio-Imaging Center, 15 Innovation Way, Suite 117, Newark, DE 19711, USA.
| | | |
Collapse
|
8
|
Detection of endogenous and immuno-bound peroxidase — The status Quo in histochemistry. ACTA ACUST UNITED AC 2010; 45:81-139. [DOI: 10.1016/j.proghi.2009.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2009] [Indexed: 11/22/2022]
|
9
|
Commons KG. Alpha4 containing nicotinic receptors are positioned to mediate postsynaptic effects on 5-HT neurons in the rat dorsal raphe nucleus. Neuroscience 2008; 153:851-9. [PMID: 18403129 DOI: 10.1016/j.neuroscience.2008.02.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 02/12/2008] [Accepted: 02/14/2008] [Indexed: 11/25/2022]
Abstract
Nicotinic acetylcholine receptors containing the alpha4 and beta2 subunits constitute the most abundant high-affinity binding site of nicotine in the brain and are critical for the addictive qualities of nicotine. 5-HT neurotransmission is thought to be an important contributor to nicotine addiction. Therefore in this study it was examined how alpha4-containing receptors are positioned to modulate the function of 5-HT neurons using ultrastructural analysis of immunolabeling for the alpha4 receptor subunit in the dorsal raphe nucleus (DR), a primary source of forebrain 5-HT in the rat. Of 150 profiles labeled for the alpha4 subunit, 140 or 93% consisted of either soma or dendrites, these were often small-caliber (distal) dendrites <1.5 microm in diameter (63/150 or 42%). The majority (107/150 or 71%) of profiles containing labeling for alpha4 were dually labeled for the synthetic enzyme for 5-HT, tryptophan hydroxylase (TPH). Within dendrites immunogold labeling for alpha4 was present on the plasma membrane or near postsynaptic densities. However, labeling for alpha4 was commonly localized to the cytoplasmic compartment often associated with smooth endoplasmic reticulum, plausibly representing receptors in transit to or from the plasma membrane. Previous studies have suggested that nicotine presynaptically regulates activity onto 5-HT neurons, however alpha4 immunolabeling was detected in only 10 axons in the DR or 7% of profiles sampled. This finding suggest that alpha4 containing receptors are minor contributors to presynaptic regulation of synaptic activity onto 5-HT neurons, but rather alpha4 containing receptors are positioned to influence 5-HT neurons directly at postsynaptic sites.
Collapse
Affiliation(s)
- K G Commons
- Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Loopuijt LD, Zahm DS. Synaptologic and fine structural features distinguishing a subset of basal forebrain cholinergic neurons embedded in the dense intrinsic fiber network of the caudal extended amygdala. J Comp Neurol 2006; 498:93-111. [PMID: 16933208 DOI: 10.1002/cne.21044] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cholinergic basal forebrain neurons confined within the intrinsic connections of the extended amygdala in the caudal sublenticular region and anterior amygdaloid area (cSLR/AAA) differ from other basal forebrain cholinergic neurons in several morphological and neurochemical respects. These cSLR/AAA cholinergic neurons have been subjected to additional investigations described in this report. First, fibers traced anterogradely following injections of Phaseolus vulgaris-leucoagglutinin in the central amygdaloid nucleus were shown to contact cSLR/AAA cholinergic neurons and dendrites. Second, these neurons were shown to be contacted by numerous GABAergic boutons with symmetric synaptic specializations. Third, the numbers of synaptic densities of morphologically characterized symmetric contacts on the somata and proximal dendrites of cSLR/AAA cholinergic neurons were shown to significantly exceed those of extra-cSLR/AAA cholinergic neurons. Fourth, fine structural features distinguishing cSLR/AAA cholinergic neurons from other basal forebrain cholinergic neurons were revealed. Specifically, cSLR/AAA cholinergic neurons have less abundant cytoplasm and a less well-organized system of rough endoplasmic reticulum than their counterparts in other parts of the basal forebrain. Thus, morphologically and neurochemically distinct cSLR/AAA cholinergic neurons exhibit robust proximal inhibitory inputs, of which a significant number originate in the extended amygdala, while cholinergic neurons outside this region lack a substrate for strong proximal inhibitory input. The implications of these findings for interaction of fear, anxiety, and attention are considered.
Collapse
Affiliation(s)
- Louise D Loopuijt
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | |
Collapse
|
11
|
Thomas MA, Lemmer B. HistoGreen: a new alternative to 3,3′-diaminobenzidine-tetrahydrochloride-dihydrate (DAB) as a peroxidase substrate in immunohistochemistry? ACTA ACUST UNITED AC 2005; 14:107-18. [PMID: 15721816 DOI: 10.1016/j.brainresprot.2004.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2004] [Indexed: 10/25/2022]
Abstract
Abide its toxicity, 3,3'-diaminobenzidine-tetrahydrochloride-dihydrate (DAB) was the most potent marker for immunochemistry at the light and electron microscopic level in the last decades. Recently, a sensitive substrate for immunohistochemical staining methods and in-situ hybridization, HistoGreen, was developed for the use with peroxidase. In peroxidase reactions, HistoGreen delivers a green staining product which is suitable for permanent embedding without water. In contrast to DAB, HistoGreen is not toxic. To evaluate its usefulness, we performed comparative immunohistochemistry on angiotensin II (AT1)-receptors with DAB- and HistoGreen-staining on paraffin embedded slices of the rat brain at the light microscopic level. This also included counterstaining with Mayer's Hemalum and Nuclear Fast Red, respectively. We could demonstrate that HistoGreen delivers a coarsely grained label which is fast detectable in light microscopy. HistoGreen equals DAB in the exact localization of the immunoreaction to a large degree but its reaction product is considerably less stable in alcohol and water than DAB. In combination with Nuclear Fast Red, HistoGreen provides excellent imaging properties for the visualization and documentation of immunoreactive structures paired with an adequate demonstration of cellular details. Its tendency towards rapid over-staining as well as its low stability will restrict the use of HistoGreen in some areas of immunohistochemical research, yet the new chromogen represents an interesting alternative to DAB at the light microscopic level.
Collapse
Affiliation(s)
- Martin Alexander Thomas
- Institute of Pharmacology and Toxicology, Ruprecht-Karls University of Heidelberg, Maybachstr. 14, 68169 Mannheim, Germany.
| | | |
Collapse
|
12
|
Tjoumakaris SI, Rudoy C, Peoples J, Valentino RJ, Van Bockstaele EJ. Cellular interactions between axon terminals containing endogenous opioid peptides or corticotropin-releasing factor in the rat locus coeruleus and surrounding dorsal pontine tegmentum. J Comp Neurol 2003; 466:445-56. [PMID: 14566941 DOI: 10.1002/cne.10893] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent evidence suggests that certain stressors release both endogenous opioids and corticotropin-releasing factor (CRF) to modulate activity of the locus coeruleus (LC)-norepinephrine (NE) system. In ultrastructural studies, axon terminals containing methionine(5)-enkephalin (ENK) or CRF have been shown to target LC dendrites. These findings suggested the hypothesis that both neuropeptides may coexist in common axon terminals that are positioned to have an impact on the LC. This possibility was examined by using immunofluorescence and immunoelectron microscopic analysis of the rat LC and neighboring dorsal pontine tegmentum. Ultrastructural analysis indicated that CRF- and ENK-containing axon terminals were abundant in similar portions of the neuropil and that approximately 16% of the axon terminals containing ENK were also immunoreactive for CRF. Dually labeled terminals were more frequently encountered in the "core" of the LC vs. its extranuclear dendritic zone, which included the medial parabrachial nucleus (mPB). Triple labeling for ENK, CRF, and tyrosine hydroxylase (TH) showed convergence of opioid and CRF axon terminals with noradrenergic dendrites as well as evidence for inputs to TH-labeled dendrites from dually labeled opioid/CRF axon terminals. One potential source of ENK and CRF in the dorsal pons is the central nucleus of the amygdala (CNA). To determine the relative contribution of ENK and CRF terminals from the CNA, the CNA was electrolytically lesioned. Light-level densitometry revealed robust decreases in CRF immunoreactivity in the LC and mPB on the side ipsilateral to the lesion but little or no change in ENK immunoreactivity, confirming previous studies of the mPB. Degenerating terminals from the CNA in lesioned rats were found to be in direct contact with TH-labeled dendrites. Together, these data indicate that ENK and CRF may be colocalized to a subset of individual axon terminals in the LC "core." The finding that the CNA provides, to dendrites in the area examined, a robust CRF innervation, but little or no opioid innervation, suggests that ENK and CRF axon terminals impacting LC neurons originate from distinct sources and that terminals that colocalize ENK and CRF are not from the CNA.
Collapse
Affiliation(s)
- S I Tjoumakaris
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
13
|
Kim JC, Whitaker-Menezes D, Deguchi M, Adair BS, Korngold R, Murphy GF. Novel expression of vascular cell adhesion molecule-1 (CD106) by squamous epithelium in experimental acute graft-versus-host disease. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:763-70. [PMID: 12213703 PMCID: PMC1867240 DOI: 10.1016/s0002-9440(10)64235-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular cell adhesion molecule-1 (VCAM-1; CD106), the receptor for VLA-4, is an important mediator of adhesive and co-stimulatory interactions that govern cutaneous immune responses. Initial studies designed to elucidate temporal aspects of endothelial adhesion molecule induction in murine acute graft-versus-host disease (aGVHD) revealed unexpected and novel VCAM-1 expression by cutaneous and mucosal epithelial cells. Immunohistochemical techniques confirmed VCAM-1 staining as early as 7 days after transplantation in a distinctive subpopulation of squamous epithelial cells that normally occupy focal domains within the epidermal basal cell layer, the follicular infundibulum, and the dorsal lingual epithelium. Specifically, VCAM-1 expression was intimately associated with rete ridge-like prominences in footpad epidermis and in dorsal lingual epithelium. VCAM-1, as evaluated by serial section-labeling techniques, was preferentially expressed at sites of early epithelial infiltration by CD4(+) T cells. Western blot analysis confirmed expression of the 110-kd isoform of VCAM-1 in epithelium isolated from aGVHD animals, and immunoelectron microscopy demonstrated VCAM-1 reactivity restricted exclusively to epithelial cell plasma membranes. It is concluded that VCAM-1 is selectively expressed by discrete squamous epithelial subpopulations in murine aGVHD. As such, VCAM-1 may play a previously unrecognized role in mediating interactions between donor effector T lymphocytes and host epithelial cell targets.
Collapse
Affiliation(s)
- Judith C Kim
- Department of Pathology, The Jefferson Center for Dermatopathology Laboratories for Cutaneous Research, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107-6799, USA
| | | | | | | | | | | |
Collapse
|
14
|
Staiger JF, Schubert D, Zuschratter W, Kötter R, Luhmann HJ, Zilles K. Innervation of interneurons immunoreactive for VIP by intrinsically bursting pyramidal cells and fast-spiking interneurons in infragranular layers of juvenile rat neocortex. Eur J Neurosci 2002; 16:11-20. [PMID: 12153527 DOI: 10.1046/j.1460-9568.2002.02048.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cortical columns contain specific neuronal populations with characteristic sets of connections. This wiring forms the structural basis of dynamic information processing. However, at the single-cell level little is known about specific connectivity patterns. We performed experiments in infragranular layers (V and VI) of rat somatosensory cortex, to clarify further the input patterns of inhibitory interneurons immunoreactive (ir) for vasoactive intestinal polypeptide (VIP). Neurons in acute slices were electrophysiologically characterized using whole-cell recordings and filled with biocytin. This allowed us to determine their firing pattern as regular-spiking, intrinsically bursting and fast-spiking, respectively. Biocytin was revealed histochemically and VIP immunohistochemically. Sections were examined for contacts between the axons of the filled neurons and the VIP-ir targets. Twenty pyramidal cells and five nonpyramidal (inter)neurons were recovered and sufficiently stained for further analysis. Regular-spiking pyramidal cells displayed no axonal boutons in contact with VIP-ir targets. In contrast, intrinsically bursting layer V pyramidal cells showed four putative single contacts with a proximal dendrite of VIP neurons. Fast-spiking interneurons formed contacts with two to six VIP neurons, preferentially at their somata. Single as well as multiple contacts on individual target cells were found. Electron microscopic examinations showed that light-microscopically determined contacts represent sites of synaptic interactions. Our results suggest that, within infragranular local cortical circuits, (i) fast-spiking interneurons are more likely to influence VIP cells than are pyramidal cells and (ii) pyramidal cell input probably needs to be highly convergent to fire VIP target cells.
Collapse
Affiliation(s)
- Jochen F Staiger
- C. and O. Vogt-Institute for Brain Research, University Düsseldorf, POB 101007, D-40001 Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
15
|
Llewellyn-Smith IJ, Schreihofer AM, Guyenet PG. Distribution and amino acid content of enkephalin-immunoreactive inputs onto juxtacellularly labelled bulbospinal barosensitive neurons in rat rostral ventrolateral medulla. Neuroscience 2002; 108:307-22. [PMID: 11734363 DOI: 10.1016/s0306-4522(01)00415-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The activity of bulbospinal (presympathetic) vasomotor neurons of the rostral ventrolateral medulla is modulated pre- and postsynaptically by exogenously applied opioid agonists. To determine whether these neurons receive direct opioid inputs, we examined the relationship between bulbospinal barosensitive neurons and nerve terminals immunoreactive for enkephalin in the rostral ventrolateral medulla of rats. By light microscopy, we mapped the distribution of close appositions by enkephalin-immunoreactive varicosities on 10 bulbospinal barosensitive neurons labelled in vivo with biotinamide. We also examined four labelled neurons ultrastructurally for synapses by enkephalin-immunoreactive terminals and determined with post-embedding immunogold labelling whether these enkephalin-positive terminals contained amino acids. Enkephalin-immunoreactive varicosities closely apposed all bulbospinal barosensitive neurons. Maps of the dendritic distribution of appositions indicated that fast-conducting bulbospinal barosensitive neurons with myelinated axons (conduction velocity >3 m/s; n=3) received many appositions (up to 470/neuron); and slowly conducting neurons with unmyelinated axons (conduction velocity <0.90 m/s; n=3), substantially fewer. Ultrastructural analysis of three fast- and one slowly conducting bulbospinal barosensitive neurons revealed numerous synapses from enkephalin-immunoreactive terminals on cell bodies and dendrites. Enkephalin-positive terminals synapsing on bulbospinal barosensitive neurons contained one or more amino acid: GABA+glycine, glutamate alone or GABA+glutamate. Enkephalin-immunoreactive terminals located near biotinamide-labelled cells contained a similar variety of amino acids. In summary, enkephalin-immunoreactive terminals in the rostral ventrolateral medulla densely innervate lightly myelinated presympathetic neurons and more sparsely those with unmyelinated axons. Enkephalin is present in both excitatory (glutamate-immunoreactive) and inhibitory (GABA- and/or glycine-immunoreactive) terminals. The data suggest that endogenous enkephalin inhibits amino acid release from terminals that innervate bulbospinal barosensitive neurons of the rostral ventrolateral medulla.
Collapse
|
16
|
Barry MA, Haglund S, Savoy LD. Association of extracellular acetylcholinesterase with gustatory nerve terminal fibers in the nucleus of the solitary tract. Brain Res 2001; 921:12-20. [PMID: 11720707 DOI: 10.1016/s0006-8993(01)03066-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetylcholinesterase (AChE) staining is associated with terminal fields of the glossopharyngeal and chorda tympani nerves in the nucleus of the solitary tract (NST). To address AChE function at these sites, the location of the staining was examined at the fine structural level in combination with the labeling of chorda tympani nerve fibers with biotinylated dextran in golden Syrian hamsters. AChE staining was located in the endoplasmic reticulum of geniculate ganglion neuronal somata, and extracellularly, surrounding labeled chorda tympani terminal fibers and boutons in the NST. Neuronal profiles adjacent to these labeled fibers were stained less intensely, whereas most non-adjacent profiles were unstained. The location of staining is consistent with the secretion of AChE into the extracellular space by primary afferent chorda tympani fibers. AChE staining was reduced in the dextran-labeled chorda tympani fibers and terminals as well as adjacent non-labeled profiles 2 weeks following nerve transection and dextran application. The distribution of staining outside synapses and the loss of staining following denervation is suggestive of a non-cholinergic role for AChE in the intact gustatory system.
Collapse
Affiliation(s)
- M A Barry
- Department of BioStructure and Function, University of Connecticut Health Center, Farmington, CT 06030-3705, USA.
| | | | | |
Collapse
|
17
|
Gonzalo N, Moreno A, Erdozain MA, García P, Vázquez A, Castle M, Lanciego JL. A sequential protocol combining dual neuroanatomical tract-tracing with the visualization of local circuit neurons within the striatum. J Neurosci Methods 2001; 111:59-66. [PMID: 11574120 DOI: 10.1016/s0165-0270(01)00440-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe here an experimental approach designed to aid in the identification of complex brain circuits within the rat corpus striatum. Our aim was to characterize in a single section (i) striatal thalamic afferents, (ii) striatopallidal projection neurons and (iii) striatal local circuit interneurons. To this end, we have combined anterograde tracing using biotinylated dextran amine and retrograde neuroanatomical tracing with Fluoro-Gold. This dual tracing protocol was further implemented with the visualization of different subpopulations of striatal interneurons. The subsequent use of three different peroxidase substrates enabled us to unequivocally detect structures that were labeled within a three-color paradigm.
Collapse
Affiliation(s)
- N Gonzalo
- Departamento de Anatomía, Facultad de Medicina, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
18
|
Guillery RW, Feig SL, Van Lieshout DP. Connections of higher order visual relays in the thalamus: a study of corticothalamic pathways in cats. J Comp Neurol 2001; 438:66-85. [PMID: 11503153 DOI: 10.1002/cne.1302] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Axonal markers injected into layers 5 and 6 of cortical areas 17, 18, or 19 labeled axons going to the lateral geniculate nucleus (LGN), the lateral part of the lateralis posterior nucleus (LPl), and pulvinar (P). Area 19 sends fine axons (type 1, Guillery [1966] J Comp Neurol 128:21-50) to LGN, LPl, and P, and thicker, type 2 axons to LPl and P. Areas 17 and 18 send type 1 axons to LGN, and a few type 1, but mainly type 2 axons to LPl and P. Type 1 and 2 axons from a single small cortical locus distribute to distinct, generally nonoverlapping parts of LP and P; type 1 axons have a broader distribution than type 2 axons. Type 2 axons, putative drivers of thalamic relay cells (Sherman and Guillery [1998] Proc Natl Acad Sci USA 95:7121-7126; Sherman and Guillery [2001] Exploring the thalamus. San Diego: Academic Press), supply small terminal arbors (100- to 200-microm diameter) in LPl and P, and then continue into the midbrain. Each thalamic type 2 arbor contains two terminal types. One, at the center of the arbor, is complex and multilobulated; the other, with a more peripheral distribution, is simpler and may contribute to adjacent arbors. Type 2 arbors from a single injection are scattered around and along "isocortical columns" in LPl, (i.e., columns that represent cells having connections to a common cortical locus). Evidence is presented that the connections and consequently the functional properties of cells in LP change along these isocortical columns. Type 2 driver afferents from a single cortical locus can, thus, be seen as representing functionally distinct, parallel pathways from cortex to thalamus.
Collapse
Affiliation(s)
- R W Guillery
- Department of Anatomy and Neuroscience Program, School of Medicine, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
19
|
Luo P, Haines A, Dessem D. Elucidation of neuronal circuitry: protocol(s) combining intracellular labeling, neuroanatomical tracing and immunocytochemical methodologies. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2001; 7:222-34. [PMID: 11431123 DOI: 10.1016/s1385-299x(01)00065-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We describe a protocol combining either intracellular biotinamide staining or anterograde biotinylated dextran amine (BDA) tracing with retrograde horseradish peroxidase (HRP) labeling and immunocytochemistry in order to map physiologically identified neuronal pathways. Presynaptic neurons including their boutons are labeled by either intracellular injection of biotinamide or extracellular injection of BDA while postsynaptic neurons are labeled with HRP via retrograde transport. Tissues are first processed to detect HRP using a tetramethylbenzidine and sodium-tungstate method. Biotinamide or BDA staining is then visualized using an ABC-diaminobenzidine-Ni method and finally the tissue is immunocytochemically stained using choline acetyltransferase (ChAT) or parvalbumin antibodies and a peroxidase-anti-peroxidase method. After processing, biotinamide, BDA, HRP and immunocytochemical staining can readily be distinguished by differences in the size, color and texture of their reaction products. We have utilized this methodology to explore synaptic relationships between trigeminal primary afferent neurons and brainstem projection and motoneurons at both the light and electron microscopic levels. This multiple labeling methodology could be readily adapted to characterize the physiological, morphological and neurochemical properties of other neuronal pathways.
Collapse
Affiliation(s)
- P Luo
- Department of Oral and Craniofacial Biological Sciences, University of Maryland, 666 West Baltimore Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
20
|
Ichinohe N, Iwatsuki H, Shoumura K. Intrastriatal targets of projection fibers from the central lateral nucleus of the rat thalamus. Neurosci Lett 2001; 302:105-8. [PMID: 11290398 DOI: 10.1016/s0304-3940(01)01666-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined light and electron microscopically intrastriatal targets of projection fibers from the central lateral thalamic nucleus (CL), which is a major relay of cerebello-striatal projections. The study was done in the rat by combining the anterograde tract-tracing with immunohistochemistry for parvalbumin (PV); an anterograde tracer (biotin dextran amine: BDA) was injected into the CL. In the striatum, 91% of BDA-labeled axon terminals made asymmetrical synapses on PV immunonegative dendritic spines (assumed to be those of striatal projection neurons); only 0.5% of BDA-labeled axon terminals made synapses on PV immunopositive dendritic shafts. The remaining BDA-labeled axon terminals were in synaptic contact with PV immunonegative dendritic shafts. The results suggest that the cerebello-striatal projections through the CL predominantly access to striatal projection neurons, with only minor access to PV immunopositive (assumed to be GABAergic) interneurons in the striatum.
Collapse
Affiliation(s)
- N Ichinohe
- Department of Anatomy, Hirosaki University, School of Medicine, 5 Zaifucho, 036-8562, Hirosaki, Japan.
| | | | | |
Collapse
|
21
|
Lanciego JL, Wouterlood FG, Erro E, Arribas J, Gonzalo N, Urra X, Cervantes S, Giménez-Amaya JM. Complex brain circuits studied via simultaneous and permanent detection of three transported neuroanatomical tracers in the same histological section. J Neurosci Methods 2000; 103:127-35. [PMID: 11074102 DOI: 10.1016/s0165-0270(00)00302-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Experimental neuroanatomical tracing methods lie at the basis of the study of the nervous system. When the scientific question is relatively straightforward, it may be sufficient to derive satisfactory answers from experiments in which a single neuroanatomical tracing method is applied. In various scientific paradigms however, for instance when the degree of convergence of two different projections on a particular cortical area or subcortical nucleus is the subject of study, the application of single tracing methods can be either insufficient or uneconomical to solve the questions asked. In cases where chains of projections are the subjects of study, the simultaneous application of two tracing methods or even more may be compulsory. The present contribution focuses on combinations of several neuroanatomical tract-tracing strategies, enabling in the end the simultaneous, unambiguous and permanent detection of three transported markers according to a three-color paradigm. A number of combinations of three tracers or of two tracers plus the immunocytochemical detection of a neuroactive substance can be conceived; we describe several of these combinations implemented by us using the present multitracer protocol.
Collapse
Affiliation(s)
- J L Lanciego
- Departamento de Anatomía, Facultad de Medicina, Universidad de Navarra, Irunlarrea No 1, 31080, Pamplona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
McInvale AC, Harlan RE, Garcia MM. Immunocytochemical detection of two nuclear proteins within the same neuron using light microscopy. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2000; 5:39-48. [PMID: 10719264 DOI: 10.1016/s1385-299x(99)00050-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We developed a method of double immunocytochemistry (ICC) that can be used with conventional light microscopy for localizing two different nuclear proteins. The procedure involves two sequential rounds of ICC that both employ the avidin and biotin conjugated enzyme (ABC) amplification method, separated by an Avidin D and biotin blocking step to reduce non-specific avidin-biotin reactions. Round one of ICC employs the use of avidin and biotin conjugated alkaline phosphatase (ABC-AP) and the Vector Red (VR) substrate, which produces a red colorimetric reaction product. The second round of ICC makes use of avidin and biotin conjugated peroxidase (ABC-HRP) and the Vector(R) SG substrate, which produces a gray colorimetric reaction product. Neuronal nuclei that are double-labeled for both proteins appear red with a gray core. This protocol allows the simultaneous detection of two proteins within the same subcellular compartment of a single neuron, without the need for epifluorescence or scanning confocal laser microscopy.
Collapse
Affiliation(s)
- A C McInvale
- Neuroscience Program, Tulane University School of Medicine, 1430 Tulane Ave. SL-2, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
23
|
Smiley JF, Mesulam MM. Cholinergic neurons of the nucleus basalis of Meynert receive cholinergic, catecholaminergic and GABAergic synapses: an electron microscopic investigation in the monkey. Neuroscience 1999; 88:241-55. [PMID: 10051204 DOI: 10.1016/s0306-4522(98)00202-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An electron microscopic analysis of the nucleus basalis in the macaque monkey was carried out following the immunohistochemical labeling of choline acetyltransferase, either by itself or in conjunction with glutamate decarboxylase or tyrosine hydroxylase. Cholinergic axon varicosities were frequently encountered, and formed large, usually asymmetric, synapses on both choline acetyltransferase-immunopositive and -immunonegative dendrites of nucleus basalis neurons. Catecholaminergic (tyrosine hydroxylase-immunoreactive) axon varicosities formed synapses which in most cases were classified as asymmetric, and glutamate decarboxylase-immunoreactive (GABAergic) axons formed clearly symmetric synapses, each on to choline acetyltransferase-immunopositive or -immunonegative dendrites. These findings indicate that cholinergic cells in the nucleus basalis of the monkey, also known as Ch4 neurons, receive numerous synaptic inputs from cholinergic, catecholaminergic and GABAergic axons.
Collapse
Affiliation(s)
- J F Smiley
- The Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Medical School, Chicago, IL 60611, USA
| | | |
Collapse
|
24
|
El Messari S, Leloup C, Quignon M, Brisorgueil MJ, Penicaud L, Arluison M. Immunocytochemical localization of the insulin-responsive glucose transporter 4 (Glut4) in the rat central nervous system. J Comp Neurol 1998; 399:492-512. [PMID: 9741479 DOI: 10.1002/(sici)1096-9861(19981005)399:4<492::aid-cne4>3.0.co;2-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have previously reported that the insulin-responsive glucose transporter GLUT4 is strongly expressed by discrete areas of the rat brain (Leloup et al. [1996] Molec. Brain Res. 38:45-53). In the present study, a sensitive immunocytochemical technique has been used to analyze extensively the anatomical and ultrastructural localizations of GLUT4 in the rat central nervous system in order to gain insight into the physiological role of this transporter. We confirm that GLUT4 is expressed by numerous neurons of the brain and spinal cord, whereas glial cells are more scarcely labeled. In both light and electron microscopy, we observe that the immunoreactivity for GLUT4 is localized mainly in the somatodendritic portion of neurons, where some cisterns of rough endoplasmic reticulum, ribosomal rosettes, certain Golgi saccules, and some intracytoplasmic vesicles are labeled. In contrast, axons and nerve terminals are only occasionally immunostained in certain brain regions such as the neocortex and the ventricular surfaces for example. The GLUT4-immunoreactive structures appear concentrated and most prominently immunostained in motor areas, such as the sensorimotor cortex, most basal ganglia and related nuclei, the cerebellum and deep cerebellar nuclei, a number of reticular fields, motor nuclei of cranial nerves, and motor neurons of the ventral horn of the spinal cord. The labeled regions, which also include some sensory nuclei, are often those in which Vissing et al. ([1996] J. Cerebral Blood Flow Metab. 16:729-736) have shown that exercise stimulates local cerebral glucose utilization, so that GLUT4 might be involved in this effect. On the other hand, the fact that the anatomical localizations of GLUT4 reported here generally agree with the distribution of insulin- or insulin-receptor- related receptors is important since it indicates that the translocation of GLUT4 might also be regulated by insulin in the central nervous system.
Collapse
Affiliation(s)
- S El Messari
- Université Pierre et Marie Curie (Paris 6), Institut des Neurosciences CNRS URA 1488, Department Neurobiologie des Signaux Intercellulaires, France
| | | | | | | | | | | |
Collapse
|
25
|
Hontanilla B, Parent A, de las Heras S, Giménez-Amaya JM. Distribution of calbindin D-28k and parvalbumin neurons and fibers in the rat basal ganglia. Brain Res Bull 1998; 47:107-16. [PMID: 9820727 DOI: 10.1016/s0361-9230(98)00035-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
This review deals with the distribution of immunoreactivity for calbindin D-28k (CB) and parvalbumin (PV) in the different nuclei of the rodent basal ganglia analyzed with the data available after the use of single and double antigen procedures applied to single sections. These findings reveal that CB and PV are distributed according to a highly heterogeneous pattern in the caudate putamen complex (CPu), globus pallidus (GP), entopeduncular nucleus (EP), subthalamic nucleus (STh) and substantia nigra (SN) of the rat. In each basal ganglia structure, the two calcium-binding proteins label different neuronal subsets. Therefore, the use of CB and PV immunohistochemistry may be considered as an excellent tool to define distinct chemoarchitectonic and functional domains within the complex organization of the basal ganglia. Double immunohistochemical methods are also useful to illustrate the relationships between the different chemical subdivisions of the CPu, GP, EP, STh and SN and the chemically characterized connections with each other and with other forebrain and brainstem structures. However, specific rules should be followed when combining single and double immunostaining procedures, and the results of such studies must be evaluated with caution. When they are used properly, these methods can reveal hitherto unknown principles of organization of the basal ganglia and thus shed new light on the anatomical and functional organization of this set of subcortical structures involved in the control of motor behavior.
Collapse
Affiliation(s)
- B Hontanilla
- Departamento de Cirugía Plástica y Reparadora, Clínica Universitaria, Universidad de Navarra, Pamplona, Spain
| | | | | | | |
Collapse
|
26
|
Grofova I, Zhou M. Nigral innervation of cholinergic and glutamatergic cells in the rat mesopontine tegmentum: Light and electron microscopic anterograde tracing and immunohistochemical studies. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980808)395:3<359::aid-cne7>3.0.co;2-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Zin-Ka-Ieu S, Roger M, Arnault P. Neonatal lesion of the rat's frontal cortex and subsequent transplantation of embryonic frontal cortex: evidence of appropriate synaptic integration of the graft neurons within the host thalamo-fronto-striate circuit. Neurosci Res 1998; 31:325-36. [PMID: 9809591 DOI: 10.1016/s0168-0102(98)00063-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous observations in intact rats have indicated that axons from the ventrolateral thalamic nucleus (VL) establish direct axo-somatic or axo-dendritic contacts onto frontal cortical neurons projecting to the striatum. The embryonic frontal cortex was grafted into the damaged frontal cortex of newborn rats to study the capacity of homotopic transplants to restore the thalamo-fronto-striate pathway. Several months later, grafted neurons projecting to the striatum were identified by injecting a retrograde neurotracer (subunit b of the cholera toxin) into the ipsilateral caudate putamen. In the same animal, axons and terminations from the VL were labeled within the transplant with an anterograde neurotracer (Phaseolus vulgaris leuco-agglutinin) injected into the ipsilateral VL. The findings show that VL axons establish direct synaptic contacts onto grafted neurons projecting to the striatum. Although the synaptic contacts were scarce in the transplants, their organization was similar to that observed in intact rats. The contacts were axo-somatic or axo-dendritic. Our observations for the first time indicate that synaptic contacts are formed in cortical grafts and that fetal frontal cortex is susceptible to develop appropriate synaptic integration within the host thalamo-fronto-striate system.
Collapse
Affiliation(s)
- S Zin-Ka-Ieu
- CNRS UMR 6558, Département des Neurosciences, Université de Poitiers, France
| | | | | |
Collapse
|
28
|
Lanciego JL, Luquin MR, Guillén J, Giménez-Amaya JM. Multiple neuroanatomical tracing in primates. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1998; 2:323-32. [PMID: 9630705 DOI: 10.1016/s1385-299x(98)00007-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present report deals with a multiple tract-tracing procedure in non-human primates enabling the simultaneous visualization of retrogradely transported Fluoro-Gold (FG) and cholera toxin B subunit (CTB) in combination with anterogradely transported biotinylated dextran amine (BDA). Two issues have played key roles on the achievement of this reliable procedure: first, the recent development of a commercial antiserum against FG that allows us to convert the original fluorescent signal of this dye in a permanent precipitate via standard peroxidase-anti-peroxidase methods; second, the introduction of the novel peroxidase substrate Vector(R) VIP (V-VIP), resulting in a purple precipitate. The combination of these neuroanatomical tracers in one and the same histological section opens a possibility for the permanent visualization of the convergence of inputs from a particular brain area onto identified, two different subsets of projection cells of another area. Furthermore, this combination of three tracers emerges as a powerful technical tool for obtaining broad amounts of complementary data regarding the monkey brain connectivity, thus significantly reducing the number of animals needed to complete a particular study.
Collapse
Affiliation(s)
- J L Lanciego
- Departamento de Anatomía, Facultad de Medicina, Universidad de Navarra, Pamplona, Spain.
| | | | | | | |
Collapse
|
29
|
Hanley JJ, Bolam JP. Synaptology of the nigrostriatal projection in relation to the compartmental organization of the neostriatum in the rat. Neuroscience 1997; 81:353-70. [PMID: 9300427 DOI: 10.1016/s0306-4522(97)00212-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The patch-matrix organization of the striatal complex, which is fundamental to the structural and functional organization of the basal ganglia, is characterized on the basis of both connections and neurochemistry. In order to determine whether differences in the connections and neurochemistry are reflected in differences in synaptic organization, we examined the synaptology of the dopaminergic nigrostriatal projection in the patch-matrix complex of the rat. Three approaches were used. First, deposits of the anterograde tracer, biotinylated dextran amine, were placed in the substantia nigra. Sections of perfuse-fixed neostriatum were then processed to reveal anterogradely-labelled nigrostriatal axons and calbindin-D28k immunoreactivity, a marker for the patch-matrix complex. Secondly, sections of perfuse-fixed neostriatum were immunolabelled to reveal both tyrosine hydroxylase, a marker for dopaminergic structures and calbindin-D28k. Labelled axons in the patches and the matrix were examined at both the light and the electron microscopic levels. Finally, in order to test for the presence of fixed GABA in sub-type of anterogradely-labelled terminals in the neostriatum, ultrathin sections were immunolabelled by the post-embedding immunogold method. Based on morphological analysis, anterogradely-labelled nigrostriatal axons were divided into two types (Type I and Type II). The density of tyrosine hydroxylase labelling in the neostriatum prevented the classification of immunolabelled nigrostriatal axons. The Type I anterogradely-labelled axons and tyrosine hydroxylase-positive axons were found both in the patches and in the matrix. They both formed symmetrical synapses with spines, dendrites and occasionally somata. The morphology, dimensions, type of synaptic specialization and the distribution of postsynaptic targets of axons labelled by both methods were similar in the patches and the matrix. The Type I anterogradely-labelled axons were immunonegative for GABA. The Type II anterogradely-labelled axons were GABA-immunopositive, were found only in the matrix and were only present in those animals in which retrograde labelling was observed in the globus pallidus, they are thus not part of the dopaminergic nigrostriatal projection. It is concluded that although the patch-directed and matrix-directed dopaminergic projections from the ventral mesencephalon arise from different populations of dopaminergic neurons, their innervation of neurons in the patches and matrix is similar. The anatomical substrate, and therefore probably also the mechanism, for dopaminergic modulation of the flow of cortical information through the striatal complex in essentially the same in the patch and in the matrix sub-divisions of the striatal complex.
Collapse
Affiliation(s)
- J J Hanley
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford, U.K
| | | |
Collapse
|
30
|
Lanciego JL, Goede PH, Witter MP, Wouterlood FG. Use of peroxidase substrate Vector VIP for multiple staining in light microscopy. J Neurosci Methods 1997; 74:1-7. [PMID: 9210569 DOI: 10.1016/s0165-0270(97)02226-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The study of the distribution of a fiber input to a particular brain area and the visualization of the anatomical relationships of that input with both projection- and interneurons, requires a triple-staining that allows the unequivocal distinction of each of the three components in one and the same histological section. In this regard, we investigated the properties of a recently introduced peroxidase chromogen, VIP (V-VIP; Vector Labs) in combination with two traditional substrates, standard diaminobenzidine (DAB, brown precipitate) and nickel-enhanced DAB (DAB-Ni, black). In rats, the anterograde tracer biotinylated dextran amine (BDA) and the retrograde tracer fluorogold (FG) were injected in the perirhinal cortex and hippocampus, respectively. Transported BDA was detected with an avidin-biotin-peroxidase complex, whereas the transported FG was detected via a PAP method. Tracing with BDA and FG was combined with parvalbumin- or calbindin-immunocytochemistry. We compared various combinations and staining sequences. The best results were obtained with a staining sequence comprising first the BDA stain with DAB-Ni as chromogen, second the FG protocol with the chromogen DAB and finally, parvalbumin- or calbinding-immunocytochemistry using the chromogen V-VIP. The order with which the chromogens were applied appeared to be critical. Partial or even total loss of V-VIP reaction product has been observed after standard dehydration in ethanol. As an alternative, a quick dehydration procedure in toluene yields much better staining. Colour separation is excellent and the sensitivity is high. This procedure may also be used for detection of any other combination of three different labels, taking the usual care to avoid cross-reactivity between antibodies.
Collapse
Affiliation(s)
- J L Lanciego
- Departamento de Anatomía e Histología Humanas, Facultad de Medicina, Universidad de Salamanca, Spain
| | | | | | | |
Collapse
|