1
|
Bhattacharjee P, Sarkar P, Bhadra K. Evaluation of therapeutic role of harmaline: in vitro cytotoxicity targeting nucleic acids. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:519-533. [PMID: 37656039 DOI: 10.1080/10286020.2023.2251116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
Use of small molecules as valuable drugs against diseases is still an indefinable purpose due to the lack of in-detail knowledge regarding proper bio-target identification, specificity aspects, mode-mechanism of binding and proper in vitro study. Harmaline, an important beta-carboline alkaloid, shows effective anti-proliferative action against different types of human cancers and is also found to be a nucleic acid targeting natural molecule. This review sought to address the different signal pathways of apoptosis by harmaline in different cancer cell lines and simultaneously to characterize the structure activity aspects of the alkaloid with different motifs of nucleic acid to show its preference, biological efficacy and genotoxicity. The results open up new insights for the design and development of small molecule-based nucleic acid therapeutic agents.
Collapse
Affiliation(s)
| | - Paromita Sarkar
- Department of Zoology, University of Kalyani, Nadia, W. Bengal 741235, India
| | - Kakali Bhadra
- Department of Zoology, University of Kalyani, Nadia, W. Bengal 741235, India
| |
Collapse
|
2
|
Aoudeh E, Oz E, Oz F. Understanding the heterocyclic aromatic amines: An overview and recent findings. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:1-66. [PMID: 38906585 DOI: 10.1016/bs.afnr.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Heterocyclic aromatic amines (HAAs) constitute a group of highly toxic organic compounds strongly associated with the onset of various types of cancer. This paper aims to serve as a valuable resource for food scientists working towards a better understanding of these compounds including formation, minimizing strategies, analysis, and toxicity as well as addressing existing gaps in the literature. Despite extensive research conducted on these compounds since their discovery, several aspects remain inadequately understood, necessitating further investigation. These include their formation pathways, toxic mechanisms, effective mitigation strategies, and specific health effects on humans. Nonetheless, recent research has yielded promising results, contributing significantly to our understanding of HAAs by proposing new potential formation pathways and innovative strategies for their reduction.
Collapse
Affiliation(s)
- Eyad Aoudeh
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Türkiye
| | - Emel Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Türkiye
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Ataturk University, Erzurum, Türkiye.
| |
Collapse
|
3
|
Jin J, Shen T, Shu L, Huang Y, Deng Y, Li B, Jin Z, Li X, Wu J. Recent Achievements in Antiviral Agent Development for Plant Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1291-1309. [PMID: 36625507 DOI: 10.1021/acs.jafc.2c07315] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plant virus disease is the second most prevalent plant diseases and can cause extensive loss in global agricultural economy. Extensive work has been carried out on the development of novel antiplant virus agents for preventing and treating plant virus diseases. In this review, we summarize the achievements of the research and development of new antiviral agents in the recent five years and provide our own perspective on the future development in this highly active research field.
Collapse
Affiliation(s)
- Jiamiao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Tingwei Shen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yixian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Youlin Deng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Benpeng Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Zhang L, Hu Y, Liu Q, Chen Q, Xia X, Kong B. Cyanidin and rutin inhibit the formation of heterocyclic aromatic amines in chemical modeling systems and smoked chicken drumsticks. Food Chem 2023; 398:133869. [DOI: 10.1016/j.foodchem.2022.133869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 11/28/2022]
|
5
|
Bhattacharya P, De S. Simple naturally occurring β-carboline alkaloids – role in sustainable theranostics. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
This review is a brief treatise on some simple β-carboline alkaloids that are abundantly available in plants, animals and foodstuff. These alkaloids are well known for their pharmacological action as well as their allelopathic behaviour. The focus of this review is on sustainable use of naturally occurring compounds in safeguarding human health and protecting our environment at large i.e. the prospective applications of these molecules for Sustainable Theranostics. The review commences with an initial introduction to the β-carboline alkaloids, followed by an outlay of their geographical distribution and natural abundance, then the basic structure and building units of the simplest β-carboline alkaloids have been mentioned. This is followed by a discussion on the important methods of extraction from natural sources both plants and animals. Then the foundation for the use of these alkaloids in Sustainable Theranostics has been built by discussing their interesting photophysics, interactions with important biological molecules and an extensive survey of their therapeutic potential and allelopathic behaviour. Finally the review ends with a silver lining mentioning the future prospective applications of these alkaloids with special relevance to sustainability issues.
Collapse
Affiliation(s)
| | - Swati De
- Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| |
Collapse
|
6
|
Luikham S, Mavani A, Bhattacharyya J. Deciphering binding affinity, energetics, and base specificity of plant alkaloid Harmane with AT & GC hairpin duplex DNA. LUMINESCENCE 2022; 37:691-701. [DOI: 10.1002/bio.4210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Soching Luikham
- Department of Chemistry National Institute of Technology Nagaland Chumukedima Dimapur Nagaland India
| | - A. Mavani
- Department of Chemistry National Institute of Technology Nagaland Chumukedima Dimapur Nagaland India
| | - Jhimli Bhattacharyya
- Department of Chemistry National Institute of Technology Nagaland Chumukedima Dimapur Nagaland India
| |
Collapse
|
7
|
Shao Q, Zhao M, Pei W, Pu Y, Liu M, Liu W, Yu Z, Chen K, Liu H, Deng B, Cao L. Pinocembrin Promotes OPC Differentiation and Remyelination via the mTOR Signaling Pathway. Neurosci Bull 2021; 37:1314-1324. [PMID: 34091810 PMCID: PMC8423946 DOI: 10.1007/s12264-021-00696-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/13/2021] [Indexed: 10/21/2022] Open
Abstract
The exacerbation of progressive multiple sclerosis (MS) is closely associated with obstruction of the differentiation of oligodendrocyte progenitor cells (OPCs). To discover novel therapeutic compounds for enhancing remyelination by endogenous OPCs, we screened for myelin basic protein expression using cultured rat OPCs and a library of small-molecule compounds. One of the most effective drugs was pinocembrin, which remarkably promoted OPC differentiation and maturation without affecting cell proliferation and survival. Based on these in vitro effects, we further assessed the therapeutic effects of pinocembrin in animal models of demyelinating diseases. We demonstrated that pinocembrin significantly ameliorated the progression of experimental autoimmune encephalomyelitis (EAE) and enhanced the repair of demyelination in lysolectin-induced lesions. Further studies indicated that pinocembrin increased the phosphorylation level of mammalian target of rapamycin (mTOR). Taken together, our results demonstrated that pinocembrin promotes OPC differentiation and remyelination through the phosphorylated mTOR pathway, and suggest a novel therapeutic prospect for this natural flavonoid product in treating demyelinating diseases.
Collapse
Affiliation(s)
- Qi Shao
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Ming Zhao
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- Changhai Stroke Center, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- The 983rd Hospital of Joint Logistics Support Forces of the PLA, Tianjin, 300142, China
| | - Wenwen Pei
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Yingyan Pu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Mingdong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Weili Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Zhongwang Yu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Kefu Chen
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
- The 988th Hospital of Joint Logistics Support Forces of the PLA, Zhengzhou, 450000, China
| | - Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China
| | - Benqiang Deng
- Changhai Stroke Center, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Li Cao
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of the Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Yan C, Dong J, Liu Y, Li Y, Wang Q. Target-Directed Design, Synthesis, Antiviral Activity, and SARs of 9-Substituted Phenanthroindolizidine Alkaloid Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7565-7571. [PMID: 34210137 DOI: 10.1021/acs.jafc.1c02276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
On the basis of our previous studies on the antiviral mechanism against tobacco mosaic virus (TMV) and structure-activity relationship of phenanthroindolizidine alkaloids, a series of 9-substituted tylophorine derivatives targeting TMV RNA were designed, synthesized, and assessed for their anti-TMV activities. The bioassay results indicated that most of these compounds showed good in vivo anti-TMV activities, and some of them displayed higher activity than that of commercial ribavirin. Especially, the anti-TMV activities of compound 3b, 4, and 6 are 2-3 times higher than that of commercial ribavirin, according to EC50 values. In this work, we have demonstrated an effective way to design new inhibitors against plant virus and developed 9-ethoxy methyl tylophorine (4) with excellent anti-TMV activity (in vitro activity, 70.2%/500 μg/mL and 27.1%/100 μg/mL; inactivation activity, 67.7%/500 μg/mL and 30.5%/100 μg/mL; curative activity, 65.3%/500 μg/mL and 30.8%/100 μg/mL; and protection activity, 65.9%/500 μg/mL and 36.0%/100 μg/mL) as a potential plant viral inhibitor.
Collapse
Affiliation(s)
- Changcun Yan
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Yongqiang Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
9
|
Pseudonocardia cytotoxica sp. nov., a novel actinomycete isolated from an Arctic fjord with potential to produce cytotoxic compound. Antonie van Leeuwenhoek 2020; 114:23-35. [PMID: 33230720 DOI: 10.1007/s10482-020-01490-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/21/2020] [Indexed: 01/20/2023]
Abstract
Herein we report the isolation of a novel actinomycete, strain MCCB 268T, from the sediment sample collected from a high Arctic fjord Kongsfjorden. MCCB 268T showed greater than 97% 16S rRNA gene sequence similarity with those of Pseudonocardia konjuensis LM 157T (98.06%), Pseudonocardia soli NW8-21 (97.22%) Pseudonocardia endophytica YIM 56035 (97.08%) and Pseudonocardia nantongensis KLBMP 1282 (97.34%) showing that the strain should be assigned to the genus Pseudonocardia. DNA-DNA hybridization with Pseudonocardia konjuensis LM 157T showed only 41.5% relatedness to strain MCCB 268T. The whole genome of the strain MCCB 268T was sequenced. Whole-genome average nucleotide identity, dDDH (%) and genome tree analysis demonstrated that strain significantly differed from other Pseudonocardia species. The G + C content was 70.5 mol%. MCCB 268T exhibited in vitro cytotoxicity and through bioassay guided fractionation followed by HPLC separation a cytotoxic compound (I) was isolated. The compound (I) was identified as 1-acetyl-β-carboline through NMR spectra and high-resolution mass spectrometry. Compound (I) showed cytotoxicity against lung cancer cell line and mode of anticancer activity was found to be through the induction of apoptosis. Based on the genotypic and phenotypic features, MCCB 268T ought to be classified as a novel species under the genus Pseudonocardia for which the name Pseudonocardia cytotoxica sp. nov. is proposed (= CCUG72333T = JCM32718T).
Collapse
|
10
|
Non-precursors amino acids can inhibit β-carbolines through free radical scavenging pathways and competitive inhibition in roast beef patties and model food systems. Meat Sci 2020; 169:108203. [DOI: 10.1016/j.meatsci.2020.108203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/27/2020] [Accepted: 05/22/2020] [Indexed: 11/19/2022]
|
11
|
Zhang CX, Xi J, Zhao TP, Ma YX, Wang XD. β-carbolines norharman and harman in vegetable oils in China. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2020; 13:193-199. [PMID: 32364007 DOI: 10.1080/19393210.2020.1759701] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The beta-carbolines norharman and harman, two heterocyclic aromatic amines with potential mutagenicity, have been determined in vegetable oils. Identification and analysis were carried out by ultra-performance liquid chromatography-triple quadrupole tandem mass spectrometry (UPLC-MS/MS). In 88 samples analysed, the concentrations of norharman and harman were < LOD to 336.22 ng/g and < LOD to 505.14 ng/g, respectively. A high variability of norharman and harman levels among different oil types was observed. Sesame-, flaxseed-, sunflower seed-, peanut- and rapeseed oils were most contaminated. Both β-carbolines were most likely formed during roasting of the oilseeds. Oil consumption, especially of oils obtained after roasting of the seeds, was a major dietary source of the β-carbolines norharman and harman. Under existing oil risk factors, this investigation contributes to the unprecedented and essential information for dietary assessments associated with oil consumption.
Collapse
Affiliation(s)
- Chen-Xia Zhang
- College of Food Science and Technology, Henan University of Technology , Zhengzhou, China
| | - Jun Xi
- College of Food Science and Technology, Henan University of Technology , Zhengzhou, China
| | - Tian-Pei Zhao
- College of Food Science and Technology, Henan University of Technology , Zhengzhou, China
| | - Yu-Xiang Ma
- College of Food Science and Technology, Henan University of Technology , Zhengzhou, China
| | - Xue-De Wang
- College of Food Science and Technology, Henan University of Technology , Zhengzhou, China
| |
Collapse
|
12
|
Roy S, Mohammad T, Gupta P, Dahiya R, Parveen S, Luqman S, Hasan GM, Hassan MI. Discovery of Harmaline as a Potent Inhibitor of Sphingosine Kinase-1: A Chemopreventive Role in Lung Cancer. ACS OMEGA 2020; 5:21550-21560. [PMID: 32905276 PMCID: PMC7469376 DOI: 10.1021/acsomega.0c02165] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The sphingosine kinase-1/sphingosine-1-phosphate pathway is linked with the cancer progression and survival of the chemotherapy-challenged cells. Sphingosine kinase-1 (SphK1) has emerged as an attractive drug target, but their inhibitors from natural sources are limited. In this study, we have chosen harmaline, one of the β-carboline alkaloids, and report its mechanism of binding to SphK1 and subsequent inhibition. Molecular docking combined with fluorescence binding studies revealed that harmaline binds to the substrate-binding pocket of SphK1 with an appreciable binding affinity and significantly inhibits the kinase activity of SphK1 with an IC50 value in the micromolar range. The cytotoxic effect of harmaline on non-small-cell lung cancer cells by MTT assay was found to be higher for H1299 compared to A549. Harmaline induces apoptosis in non-small-cell lung carcinoma cells (H1299 and A549), possibly via the intrinsic pathway. Our findings suggest that harmaline could be implicated as a scaffold for designing potent anticancer molecules with SphK1 inhibitory potential.
Collapse
Affiliation(s)
- Sonam Roy
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Preeti Gupta
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Rashmi Dahiya
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Shahnaz Parveen
- Molecular
Bioprospection Department, CSIR-Central
Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular
Bioprospection Department, CSIR-Central
Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Gulam Mustafa Hasan
- Department
of Biochemistry, College of Medicine, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Kingdom of Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
13
|
Ganguly A, Das S. Expulsion of a potent cancer-cell photosensitizer from its micelle-bound state using β-cyclodextrin: A tenable model for efficient drug release. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117411. [PMID: 31362187 DOI: 10.1016/j.saa.2019.117411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/20/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
The present study delves into the interaction of a potent cancer-cell photosensitizer Norharmane (NHM) with non-ionic triblock copolymer P123, followed by the assessment of the stability of the formed complex in the presence of β-cyclodextrin (β-CD). Spectroscopic results unveil the modulation of the prototropic equilibrium of NHM within the constrained microheterogeneous medium of the copolymer micelle to be favoured towards the neutral species of NHM over the cationic counterpart; which has been aptly rationalized invoking the key role of hydrophobic interaction in the association process and is further reinforced from steady-state and time-resolved spectroscopic measurements. The micropolarity of the probe-binding site has been evaluated by the archetypal ET(30) analysis revealing that the cationic probe remains in the corona region of the micelle instead of penetrating deeper into the micellar core. Moreover, the effect of β-CD on the stability of the NHM-bound P123 aggregates has also been investigated, revealing that β-CD can be used as a potential host for the release of the micelle-encapsulated drug through an inclusion complex formation with the P123 monomers. The result is expected to be of potential interest from medical perspective owing to the context of efficient drug release at their potential sites.
Collapse
Affiliation(s)
- Aniruddha Ganguly
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188 Raja S. C. Mallick Road, Kolkata 700032, India.
| | - Suman Das
- Biophysical Chemistry Laboratory, Physical Chemistry Section, Department of Chemistry, Jadavpur University, 188 Raja S. C. Mallick Road, Kolkata 700032, India.
| |
Collapse
|
14
|
Heterocyclic aromatic amine concentrations and quality characteristics of traditional smoked and roasted poultry products on the northern Chinese market. Food Chem Toxicol 2020; 135:110931. [DOI: 10.1016/j.fct.2019.110931] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 11/19/2022]
|
15
|
Jadala C, Sathish M, Reddy TS, Reddy VG, Tokala R, Bhargava SK, Shankaraiah N, Nagesh N, Kamal A. Synthesis and in vitro cytotoxicity evaluation of β-carboline-combretastatin carboxamides as apoptosis inducing agents: DNA intercalation and topoisomerase-II inhibition. Bioorg Med Chem 2019; 27:3285-3298. [DOI: 10.1016/j.bmc.2019.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/03/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022]
|
16
|
Zhang H, Li R, Ba S, Lu Z, Pitsinos EN, Li T, Nicolaou KC. DNA Binding and Cleavage Modes of Shishijimicin A. J Am Chem Soc 2019; 141:7842-7852. [DOI: 10.1021/jacs.9b01800] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hao Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Ruofan Li
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Sai Ba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Zhaoyong Lu
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Emmanuel N. Pitsinos
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory of Natural Products Synthesis & Bioorganic Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, 153 10 Agia Paraskevi, Greece
| | - Tianhu Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - K. C. Nicolaou
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
17
|
Piechowska P, Zawirska-Wojtasiak R, Mildner-Szkudlarz S. Bioactive β-Carbolines in Food: A Review. Nutrients 2019; 11:E814. [PMID: 30978920 PMCID: PMC6520841 DOI: 10.3390/nu11040814] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/09/2019] [Indexed: 12/02/2022] Open
Abstract
Harman and norharman, two neuroactive β-carbolines, are present in several plants and in thermally processed foods. They exhibited a wide spectrum of biological and pharmacological effects, including antioxidant, neuroprotective, and anti-inflammatory effects. In this article, we review the progress of recent research on the presence of these compounds in food, as well as their various biological and neuroactive properties. Our findings strongly suggest that some foods, especially coffee, can act as a rich source of β-carbolines, which may possibly be associated with a reduced risk for serious neurodegenerative diseases, such as Parkinson's and Alzheimer's.
Collapse
Affiliation(s)
- Paulina Piechowska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - Renata Zawirska-Wojtasiak
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| | - Sylwia Mildner-Szkudlarz
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland.
| |
Collapse
|
18
|
Kummrow F, Maselli BS, Lanaro R, Costa JL, Umbuzeiro GA, Linardi A. Mutagenicity of Ayahuasca and Their Constituents to the Salmonella/Microsome Assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:269-276. [PMID: 30488498 DOI: 10.1002/em.22263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 06/09/2023]
Abstract
Ayahuasca is a beverage used in religious rituals of indigenous and nonindigenous groups, and its therapeutic potential has been investigated. Ayahuasca is obtained by decoction of the Banisteriopsis caapi that contains β-carbolines (harmine, harmaline, and tetrahydroharmine) plus Psychotria viridis that contains N,N-dimethyltryptamine. Although plants used in folk medicine are recognized as safe, many of them have genotoxic potential. The Salmonella/microsome assay is usually the first line of the mutagenicity evaluation of products intended for therapeutic use. Our objective was to evaluate the mutagenicity of ayahuasca beverage and their constituents using the Salmonella/microsome assay with TA98 and TA100. We analyzed two ayahuasca samples, and also beverage samples prepared each individual plant P. viridis and B. caapi. Harmine and harmaline were also tested. All beverage samples were chemically characterized and both ayahuasca samples could be considered representative of the beverages consumed in religious rituals. Both ayahuasca samples were mutagenic for TA98 and TA100 with and without S9, with similar potencies. The beverage obtained from P. viridis was not mutagenic, and beverage obtained from B. caapi was mutagenic for TA98 with and without S9. Harmine was nonmutagenic and harmaline was mutagenic only for TA98 without S9. Harmaline fully explain the mutagenicity observed with TA98 without S9 of both ayahuasca samples and the B. caapi beverage samples. We conclude that the ayahuasca samples are mutagenic and this effect is partially explained by harmaline, one of the β-carbolines present in the beverage. Other mutagenic compounds seem to be present and need to be further investigated. Environ. Mol. Mutagen. 60:269-276, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fábio Kummrow
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), Diadema, São Paulo, Brazil
| | - Bianca S Maselli
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, Brazil
| | - Rafael Lanaro
- Poison Control Center, Faculty of Medical Sciences, State University of Campinas, Campinas (Unicamp), São Paulo, Brazil
| | - José Luis Costa
- Poison Control Center, Faculty of Medical Sciences, State University of Campinas, Campinas (Unicamp), São Paulo, Brazil
| | - Gisela A Umbuzeiro
- School of Technology, State University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| | - Alessandra Linardi
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| |
Collapse
|
19
|
Selvaraj K, Swamy KCK. Transition-Metal-Free, Brønsted Acid-Mediated Cascade Sequence in the Reaction of Propargyl Alcohols with Sulfonamido-indoles/-indolines: Highly Substituted δ- and α-Carbolines. J Org Chem 2018; 83:15043-15056. [DOI: 10.1021/acs.joc.8b02293] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Karuppu Selvaraj
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - K. C. Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
20
|
Huo XY, Guo L, Chen XF, Zhou YT, Zhang J, Han XQ, Dai B. Design, Synthesis, and Antifungal Activity of Novel Aryl-1,2,3-Triazole-β-Carboline Hybrids. Molecules 2018; 23:E1344. [PMID: 29866988 PMCID: PMC6100246 DOI: 10.3390/molecules23061344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/05/2022] Open
Abstract
The copper catalytic azide and terminal alkyne cycloaddition reaction, namely "click chemistry", gives a new and convenient way to create l,4-disubstitutd-l,2,3-triazoles. In this work, 2-pyrrolecarbaldiminato⁻Cu(II) complexes were established as efficient catalysts for the three-component 1,3-dipolar cycloaddition reaction of arylboronic acid and sodium azide (NaN₃) with terminal alkynes in ethanol at room temperature to 50 °C, 1,4-disubstituted 1,2,3-triazoles were synthesized. Following the optimized protocol, two series of new aryl-1,2,3-triazole-β-carboline hybrids have been designed and synthesized, and the chemical structures were characterized by ¹H NMR, 13C NMR, and high-resolution mass spectrometry (HRMS). All of the target compounds were evaluated in vitro for their antifungal activity against Rhizoctorzia solani, Fusarium oxysporum, Botrytis cinerea Pers., sunflower sclerotinia rot, and rape sclerotinia rot by mycelia growth inhibition assay at 50 μg/mL. The antifungal evaluation of the novel hybrids showed that, among the tested compounds, 5a, 5b, 5c, and 9b showed good antifungal activity against sunflower sclerotinia rot. Specifically, compound 9b also exhibited high broad-spectrum fungicidal against all the tested fungi with inhibition rates of 58.3%, 18.52%, 63.07%, 84.47%, and 81.23%. However, for F. oxysporum, all the target compounds showed no in vitro antifungal activities with an inhibition rate lower than 20%. These results provide an encouraging framework that could lead to the development of potent novel antifungal agents.
Collapse
Affiliation(s)
- Xin-Yu Huo
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China.
| | - Liang Guo
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China.
| | - Xiao-Fei Chen
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China.
| | - Yue-Ting Zhou
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, College of Agricultural, Shihezi University, Shihezi 832003, China.
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China.
| | - Xiao-Qiang Han
- Key Laboratory at Universities of Xinjiang Uygur Autonomous Region for Oasis Agricultural Pest Management and Plant Protection Resource Utilization, College of Agricultural, Shihezi University, Shihezi 832003, China.
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China.
| |
Collapse
|
21
|
Geng X, Ren Y, Wang F, Tian D, Yao X, Zhang Y, Tang J. Harmines inhibit cancer cell growth through coordinated activation of apoptosis and inhibition of autophagy. Biochem Biophys Res Commun 2018; 498:99-104. [PMID: 29501493 DOI: 10.1016/j.bbrc.2018.02.205] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 12/27/2022]
Abstract
Harmine and its analogs have long been considered as anticancer agents. In vitro analyses suggested that intercalating DNA or inhibiting topoisomerase might contribute to the cytotoxic effect of this class of compound. However, this idea has not been rigorously tested in intact cells. By synthesizing novel derivatives, here we demonstrate that harmines did not activate the DNA damage response, a cellular signaling commonly induced by agents that intercalate DNA or inhibit topoisomerase. These findings suggest that mechanisms other than DNA intercalating or topoisomerase inhibiting contribute to the toxicity of harmines in vivo. Using a novel N2-benzyl and N9-arylated alkyl compound 10f that has good solubility and stability as the model, we show that harmines strongly inhibited the growth of cancer cells originated from breast, lung, bone and pancreas, but not that of normal fibroblasts. We further show that 10f induced apoptosis and inhibited autophagy in a dose and time-dependent manner. An apoptosis inhibitor suppressed 10f-induced cell death. Together, our results reveal previously unidentified insights into the anticancer mechanism of harmines, supporting future development of this compound class in the treatment of human cancers.
Collapse
Affiliation(s)
- Xinran Geng
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Yichang Ren
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Fangfang Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Danmei Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Youwei Zhang
- Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Jinshan Tang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drug Research, Jinan University, Guangzhou 510632, People's Republic of China.
| |
Collapse
|
22
|
Miao JF, Peng YF, Chen S, Gao WJ, Yang QX, Zhu P, Guo J, Tao J, Luo L, Zhang Y, Ling Y. A novel harmine derivative, N-(4-(hydroxycarbamoyl)benzyl)-1-(4- methoxyphenyl)-9H-pyrido[3,4-b]indole-3-carboxamide (HBC), as histone deacetylase inhibitor: in vitro antiproliferation, apoptosis induction, cell cycle arrest, and antimetastatic effects. Eur J Pharmacol 2018; 824:78-88. [PMID: 29428472 DOI: 10.1016/j.ejphar.2018.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/29/2018] [Accepted: 02/07/2018] [Indexed: 11/18/2022]
Abstract
This study aims to design and synthesize a novel harmine derivative N-(4-(hydroxycarbamoyl) benzyl)-1-(4-methoxyphenyl)-9H-pyrido [3,4-b]indole-3-carboxamide (HBC) as histone deacetylase (HDAC) inhibitor, and evaluate its antitumor activities and anti-metastasis mechanism. HBC not only exerted significant ant-proliferation activity against five human cancer cell lines, especially for HepG2 cell with an IC50 value of 2.21 μM, which is nearly three-fold lower than SAHA (IC50 = 6.26 µM), but also showed selective HDAC1/6 inhibitory effects in vitro. However, HBC had little effect on normal hepatic cells LO2. Furthermore, HBC simultaneously increased the acetylation of histone H3, H4, and α-tubulin, induced hypochromism by electrostatical interaction with CT-DNA, triggered more significant cancer cell apoptosis and cell cycle arrest at G2/M than SAHA by inhibition of both CDK1 and cyclin B in a concentration dependent manner. In addition, scratch and invasion assay showed that HBC also dose-dependently suppressed migration and invasion capacities of highly metastatic HCC HepG2 cells through down-regulated the expression of tumor metastasis related proteins MMP-2 and MMP-9, significantly better than SAHA. Finally, HBC showed low acute toxicity to mice and significant growth inhibition of the hepatoma tumor in vivo. These results demonstrate that novel harmine-based HDAC inhibitor HBC not only exhibited selective HDAC1/6 inhibitory activity and significant in vitro and in vivo antitumor activity, but also possessed DNA binding effect, apoptosis induction, cell cycle arrest effects, and potent anti-metastasis mechanisms, which may hold great promise as therapeutic agent targeting HDAC1/6 for the intervention of human cancers.
Collapse
Affiliation(s)
- Jie-Fei Miao
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, PR China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Yan-Fu Peng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Shi Chen
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Wei-Jie Gao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Qiu-Xing Yang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Peng Zhu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Jing Guo
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Jinhua Tao
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Lin Luo
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, PR China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Yanan Zhang
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, PR China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China
| | - Yong Ling
- The Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, PR China; School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
23
|
Limbach D, Geffe M, Detert H. Synthesis of Carbolines via Microwave-Assisted Cadogan Reactions of Aryl-Nitropyridines. ChemistrySelect 2018. [DOI: 10.1002/slct.201702964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Daniel Limbach
- Institute for Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14, D- 55099 Mainz Germany
| | - Mario Geffe
- Institute for Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14, D- 55099 Mainz Germany
| | - Heiner Detert
- Institute for Organic Chemistry; Johannes Gutenberg-University Mainz; Duesbergweg 10-14, D- 55099 Mainz Germany
| |
Collapse
|
24
|
Bertelli PR, Biegelmeyer R, Rico EP, Klein-Junior LC, Toson NSB, Minetto L, Bordignon SAL, Gasper AL, Moura S, de Oliveira DL, Henriques AT. Toxicological profile and acetylcholinesterase inhibitory potential of Palicourea deflexa, a source of β-carboline alkaloids. Comp Biochem Physiol C Toxicol Pharmacol 2017; 201:44-50. [PMID: 28939507 DOI: 10.1016/j.cbpc.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/30/2017] [Accepted: 09/16/2017] [Indexed: 01/21/2023]
Abstract
Palicourea genus is chemically and taxonomically close to Psychotria genus, a well-known source of neuroactive alkaloids. It has been previously reported the pharmacological potential of these alkaloids in some targets related to the neurodegenerative process. In this context, this study was carried out in order to evaluate the toxic effects and acetylcholinesterase (AChE) inhibitory potential of Palicourea deflexa fraction of total alkaloids (FTA). P. deflexa FTA was analyzed by means of HPLC-DAD and HRMS-ESI. We performed toxicological screening through Fish Embryo Toxicity (FET) test using zebrafish embryo and abnormal developmental phenotypes were recorded daily. For AChE inhibition, zebrafish brains were used as enzymatic source and formation of thiolate dianion of 5,5'-Dithiobis(2-nitrobenzoic acid) (DTNB) was used to monitor acetylthiocholine hydrolysis. Lineaweaver-Burk double reciprocal plots were used to indicate mode of inhibition. Chemical analysis of the P. deflexa FTA allowed the identification of the main compound as harman-3-carboxylic acid. This fraction was evaluated in vivo for its toxicological effect. The zebrafish embryo test indicated that the FTA has a lethal concentration of 50% (LC50)=72.18μg/mL. Further, the FTA was evaluated for its AChE inhibitory profile, demonstrating an inhibitory concentration of 50% (IC50) of 50.65μg/mL. Lineaweaver-Burk double reciprocal plots indicated a mixed mode of inhibition. It is reported for the first time the toxicological and pharmacological profile of the alkaloid fraction of Palicourea deflexa in zebrafish models.
Collapse
Affiliation(s)
- Pablo Ricardo Bertelli
- Laboratory of Pharmacognosy, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Renata Biegelmeyer
- Laboratory of Pharmacognosy, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| | - Eduardo Pacheco Rico
- Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, SC, Brazil
| | - Luiz Carlos Klein-Junior
- Laboratory of Pharmacognosy, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Natally S B Toson
- Laboratory of Pharmacognosy, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Luciane Minetto
- Laboratory of Synthetic and Natural Products Biotechnology, Institute of Biotechnology, Universidade de Caxias do Sul - UCS, Caxias do Sul, RS, Brazil
| | - Sergio A L Bordignon
- Laboratory of Conservation and Biodiversity Management, Universidade Lasalle - UNILASALLE, Canoas, RS, Brazil
| | - André L Gasper
- Herbarium Dr. Roberto Miguel Klein, Department of Natural Sciences, Universidade Regional de Blumenau - FURB, Blumenau, SC, Brazil
| | - Sidnei Moura
- Laboratory of Synthetic and Natural Products Biotechnology, Institute of Biotechnology, Universidade de Caxias do Sul - UCS, Caxias do Sul, RS, Brazil
| | - Diogo L de Oliveira
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - Amélia T Henriques
- Laboratory of Pharmacognosy, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
25
|
Ayoob I, Hazari YM, Lone SH, Shakeel-u-Rehman, Khuroo MA, Fazili KM, Bhat KA. Phytochemical and Cytotoxic Evaluation of Peganum Harmala: Structure Activity Relationship Studies of Harmine. ChemistrySelect 2017. [DOI: 10.1002/slct.201700232] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Iram Ayoob
- Department of Chemistry; University of Kashmir; Srinagar 190006, Jammu and Kashmir India
| | - Younis M. Hazari
- Department of Biotechnology; University of Kashmir; Srinagar 190006, Jammu and Kashmir India
| | - Shabir H. Lone
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine (CSIR); Srinagar 190005, Jammu and Kashmir India
| | - Shakeel-u-Rehman
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine (CSIR); Srinagar 190005, Jammu and Kashmir India
| | - Mohammad A. Khuroo
- Department of Chemistry; University of Kashmir; Srinagar 190006, Jammu and Kashmir India
| | - Khalid M. Fazili
- Department of Biotechnology; University of Kashmir; Srinagar 190006, Jammu and Kashmir India
| | - Khursheed A. Bhat
- Bioorganic Chemistry Division Indian Institute of Integrative Medicine (CSIR); Srinagar 190005, Jammu and Kashmir India
| |
Collapse
|
26
|
Ahmadinejad N, Tari MT. Nuclear magnetic and nuclear quadrupole resonance parameters of β-carboline derivatives calculated using density functional theory. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2017. [DOI: 10.1134/s0036024417040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Yang TH, Kuo CW, Kavala V, Konala A, Huang CY, Yao CF. Regioselective switching approach for the synthesis of α and δ carboline derivatives. Chem Commun (Camb) 2017; 53:1676-1679. [DOI: 10.1039/c6cc09468f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A metal-free protocol for accessing both α and δ-carboline derivatives, starting from a common indolylchalcone oxime ester precursor is reported.
Collapse
Affiliation(s)
- Tang-Hao Yang
- Department of Chemistry
- National Taiwan Normal University
- Taipei
- Taiwan
| | - Chun-Wei Kuo
- Department of Chemistry
- National Taiwan Normal University
- Taipei
- Taiwan
| | | | - Ashok Konala
- Department of Chemistry
- National Taiwan Normal University
- Taipei
- Taiwan
| | - Chia-Yu Huang
- Department of Chemistry
- National Taiwan Normal University
- Taipei
- Taiwan
| | - Ching-Fa Yao
- Department of Chemistry
- National Taiwan Normal University
- Taipei
- Taiwan
| |
Collapse
|
28
|
Kejela T, Thakkar VR, Thakor P. Bacillus species (BT42) isolated from Coffea arabica L. rhizosphere antagonizes Colletotrichum gloeosporioides and Fusarium oxysporum and also exhibits multiple plant growth promoting activity. BMC Microbiol 2016; 16:277. [PMID: 27863465 PMCID: PMC5116145 DOI: 10.1186/s12866-016-0897-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 11/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colletotrichum and Fusarium species are among pathogenic fungi widely affecting Coffea arabica L., resulting in major yield loss. In the present study, we aimed to isolate bacteria from root rhizosphere of the same plant that is capable of antagonizing Colletotrichum gloeosporioides and Fusarium oxysporum as well as promotes plant growth. RESULTS A total of 42 Bacillus species were isolated, one of the isolates named BT42 showed maximum radial mycelial growth inhibition against Colletotrichum gloeosporioides (78%) and Fusarium oxysporum (86%). BT42 increased germination of Coffee arabica L. seeds by 38.89%, decreased disease incidence due to infection of Colletotrichum gloeosporioides to 2.77% and due to infection of Fusarium oxysporum to 0 (p < 0.001). The isolate BT42 showed multiple growth-promoting traits. The isolate showed maximum similarity with Bacillus amyloliquefaciens. CONCLUSION Bacillus species (BT42), isolated in the present work was found to be capable of antagonizing the pathogenic effects of Colletotrichum gloeosporioides and Fusarium oxysporum. The mechanism of action of inhibition of the pathogenic fungi found to be synergistic effects of secondary metabolites, lytic enzymes, and siderophores. The major inhibitory secondary metabolite identified as harmine (β-carboline alkaloids).
Collapse
Affiliation(s)
- Tekalign Kejela
- Department of Biology, Faculty of Natural and Computational Sciences, Mettu University, Mettu, Ethiopia. .,Present Address: BRD school of Biosciences, Sardar Patel University, Vallabh Vidyanagar, 388120, India.
| | - Vasudev R Thakkar
- BRD School of Biosciences, Sardar Patel University, Vadtal Road, Satellite Campus, Post Box No.39, Vallabh Vidyanagar, 388120, Gujarat, India
| | - Parth Thakor
- BRD School of Biosciences, Sardar Patel University, Vadtal Road, Satellite Campus, Post Box No.39, Vallabh Vidyanagar, 388120, Gujarat, India
| |
Collapse
|
29
|
Synthesis and mechanisms of action of novel harmine derivatives as potential antitumor agents. Sci Rep 2016; 6:33204. [PMID: 27625151 PMCID: PMC5021947 DOI: 10.1038/srep33204] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
A series of novel harmine derivatives bearing a benzylindine substituent in position-1 of β-carboline ring were synthesized and evaluated as antitumor agents. The N2-benzylated β-carboline derivatives 3a–g represented the most interesting anticancer activities and compound 3c was found to be the most active agent to diverse cancer cell lines such as gastric carcinoma, melanoma and colorectal cancer. Notably, compound 3c showed low toxicity to normal cells. The treatment significantly induced cell apoptosis. Mechanistically, PI3K/AKT signaling pathway mediated compound 3c-induced apoptosis. Compound 3c inhibited phosphorylation of AKT and promoted the production of reactive oxygen species (ROS). The ROS scavenger, LNAC and GSH, could disturb the effect of compound 3c induced apoptosis and PI3K activity inhibitor LY294002 synergistically enhanced compound 3c efficacy. Moreover, the results from nude mice xenograft model showed that compound 3c treatment effectively inhibited tumor growth and decreased tumor weight. Collectively, our results demonstrated that compound 3c exerts apoptotic effect in cancer cells via suppression of phosphorylated AKT and evocation of ROS generation, which suggested that compound 3c might be served as a promising therapeutic agent for cancer treatment.
Collapse
|
30
|
Chen L, Liu Y, Song H, Liu Y, Wang L, Wang Q. Expanding indole diversity: direct 1-step synthesis of 1,2-fused indoles and spiroindolines from 2-halo anilines for fast SAR antiviral elucidation against tobacco mosaic virus (TMV). Mol Divers 2016; 21:61-68. [DOI: 10.1007/s11030-016-9697-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/22/2016] [Indexed: 11/24/2022]
|
31
|
Giulietti JM, Tate PM, Cai A, Cho B, Mulcahy SP. DNA-binding studies of the natural β-carboline eudistomin U. Bioorg Med Chem Lett 2016; 26:4705-4708. [PMID: 27567367 DOI: 10.1016/j.bmcl.2016.08.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 12/01/2022]
Abstract
Eudistomin U is a member of the β-carboline class of heterocyclic amine-containing molecules that are capable of binding to DNA. The structure of eudistomin U is unique since it contains an indole ring at the 1-position of the pyridine ring. While simple β-carbolines are reported to intercalate DNA, an examination of the mode of binding of eudistomin U has been lacking. We report preliminary spectroscopic (UV-Vis, thermal denaturation, CD) and calorimetric (DSC) data on the binding of eudistomin U to DNA, which suggest that eudistomin U binds weakly according to a mechanism that is more complicated than other members of its class.
Collapse
Affiliation(s)
- Jennifer M Giulietti
- Providence College, Department of Chemistry and Biochemistry, 1 Cunningham Square, Providence, RI 02918, USA
| | - Patrick M Tate
- Providence College, Department of Chemistry and Biochemistry, 1 Cunningham Square, Providence, RI 02918, USA
| | - Ang Cai
- University of Rhode Island, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Bongsup Cho
- University of Rhode Island, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Seann P Mulcahy
- Providence College, Department of Chemistry and Biochemistry, 1 Cunningham Square, Providence, RI 02918, USA.
| |
Collapse
|
32
|
Khan RA, de Almeida A, Al-Farhan K, Alsalme A, Casini A, Ghazzali M, Reedijk J. Transition-metal norharmane compounds as possible cytotoxic agents: New insights based on a coordination chemistry perspective. J Inorg Biochem 2016; 165:128-135. [PMID: 27453532 DOI: 10.1016/j.jinorgbio.2016.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/25/2016] [Accepted: 07/07/2016] [Indexed: 11/16/2022]
Abstract
New first-row transition-metal compounds with the ligand norharmane (9H-Pyrido[3,4-b]indole; Hnor) are reported. The compounds have the general formula [M(LL)(Hnor)(NO3)2](MeOH)0-1 (M=Co, Ni, Cu, Zn; LL=2,2'-bipyridyl (bpy), 1,10-phenanthroline (phen)) and have been characterized by physical and analytical methods. X-ray structural analysis revealed that the compound of formula [Cu(phen)(Hnor)(NO3)2], (1) has a distorted 6-coordinated octahedrally-based geometry, with a planar-based [CuN3O] core, where Cu-L varies between 1.99 and 2.04Å and two weak axial CuO contacts (2.209 and 2.644Å) from two different nitrates. Based on spectroscopic similarities, the other compounds appear to have the same or very similar coordination geometries. The compounds showed clear cell growth inhibitory effects in two different cancer cell lines in vitro, with the copper and zinc complexes being the most toxic and in fact almost comparable to cisplatin. Flow-cytometry analysis confirmed induction of apoptosis in cancer cells treated with the compounds. Interestingly, co-incubation of the cells with metal complexes and CuCl2 induced an increase in the cytotoxic effects, most likely due to the conversion of the metal compounds in the corresponding, and most active, copper analogues.
Collapse
Affiliation(s)
- Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Andreia de Almeida
- Department of Pharmacokinetics, Toxicology and Targeting, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Khalid Al-Farhan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Angela Casini
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Cardiff School of Chemistry, Cardiff University, Main Building, Park place, Cardiff CF10 3A, United Kingdom.
| | - Mohamed Ghazzali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jan Reedijk
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
33
|
Khan RA, Dielmann F, Liu X, Hahn FE, Al-Farhan K, Alsalme A, Reedijk J. Tetrahedrally coordinated luminescent copper(I) compounds containing halide, phosphane and norharmane ligands. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.03.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Skeletal modifications of β-carboline alkaloids and their antiviral activity profile. Mol Divers 2016; 20:829-835. [PMID: 27090519 DOI: 10.1007/s11030-016-9669-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/04/2016] [Indexed: 10/21/2022]
Abstract
To study the effect of the variation of fused ring size and substitution on the antiviral activity of [Formula: see text]-carboline alkaloids, four types of structurally novel [Formula: see text]-carboline alkaloids analogues, with indole-fused six- to nine-membered-rings motifs, were designed, synthesized, and evaluated for the inhibition of tobacco mosaic virus (TMV). Bioassay results indicated that most of these analogues had significant anti-TMV activity; especially I-14 (54 [Formula: see text] 3 % at 500 [Formula: see text]g/mL in vitro; 51 [Formula: see text] 2, 45 [Formula: see text] 2, and 42 [Formula: see text] 1 % at 500 [Formula: see text]g/mL in vivo), II-4 (53 [Formula: see text] 1 % at 500 [Formula: see text]g/mL in vitro; 49 [Formula: see text] 2, 57 [Formula: see text] 2, and 48 [Formula: see text] 1 % at 500 [Formula: see text]g/mL in vivo), and II-8 (48 [Formula: see text] 1 % at 500 [Formula: see text]g/mL in vitro; 53 [Formula: see text] 2 %, 56 [Formula: see text] 2 %, and 46 [Formula: see text] 1 % at 500 [Formula: see text]g/mL in vivo), which were more potent vs. TMV than was ribavirin (36 [Formula: see text] 1 % at 500 [Formula: see text]g/mL in vitro; 37 [Formula: see text] 2, 41 [Formula: see text] 2, and 38 [Formula: see text] 1 % at 500 [Formula: see text]g/mL in vivo). The size of the fused ring has important effects on anti-TMV potency, which may be ascribed to conformational differences. The X-ray structures of I-1, I-6, II-8, and III show differing conformational preferences. The most potent compounds can be used as leads for further optimization as antiphytoviral agents.
Collapse
|
35
|
Su B, Cai C, Deng M, Wang Q. Spatial Configuration and Three-Dimensional Conformation Directed Design, Synthesis, Antiviral Activity, and Structure-Activity Relationships of Phenanthroindolizidine Analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:2039-45. [PMID: 26923726 DOI: 10.1021/acs.jafc.5b06112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Our recent investigation on the antiviral activities against tobacco mosaic virus (TMV) of phenanthroindolizidine alkaloid analogues preliminarily revealed that the basic skeleton and substitution pattern at the C13a position of the molecule, which are closely related to the spatial arrangement of the molecule, have great effects on the biological activity. To further study the in-depth influence of spatial configuration and three-dimensional (3D) conformation of the molecules on their anti-TMV activities and related structure-activity relationship (SAR), a series of D-ring opened derivatives 3, 4, 5a-5j, 6, and 7, chiral 13a- and/or 14-substituted phenanthroindolizidine analogues 10-12 and 18-20, and their enantiomers ent-10-ent-12 and ent-18-ent-20 were synthesized and evaluated for their anti-TMV activities. Bioassay results showed that most of the chiral phenanthroindolizidines displayed good to excellent in vivo anti-TMV activity. Among these compounds, ent-11 showed more potent activity than Ningnanmycin (one of the most successful commercial antiviral agents), thus emerging as a potential inhibitor of the plant virus. Further SARs were also discussed for the first time under the chiral scenario, demonstrating that both spatial configuration and 3D conformation of the molecules are crucial for keeping high anti-TMV activity.
Collapse
Affiliation(s)
- Bo Su
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, People's Republic of China
| | - Chunlong Cai
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, People's Republic of China
| | - Meng Deng
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University , Tianjin 300071, People's Republic of China
| |
Collapse
|
36
|
Rasse-Suriani FAO, Paula Denofrio M, Yañuk JG, Micaela Gonzalez M, Wolcan E, Seifermann M, Erra-Balsells R, Cabrerizo FM. Chemical and photochemical properties of chloroharmine derivatives in aqueous solutions. Phys Chem Chem Phys 2016; 18:886-900. [DOI: 10.1039/c5cp05866j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In water, chloroharmines follow very distinctive thermal and photochemical pH- and O2-dependent-reaction pathways.
Collapse
Affiliation(s)
- Federico A. O. Rasse-Suriani
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomús (IIB-INTECH)
- Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Chascomús
- Argentina
| | - M. Paula Denofrio
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomús (IIB-INTECH)
- Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Chascomús
- Argentina
| | - Juan G. Yañuk
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomús (IIB-INTECH)
- Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Chascomús
- Argentina
| | - M. Micaela Gonzalez
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomús (IIB-INTECH)
- Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Chascomús
- Argentina
| | - Ezequiel Wolcan
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP, CCT La Plata-CONICET)
- (B1906ZAA) La Plata
- Argentina
| | - Marco Seifermann
- Institute of Pharmacy and Biochemistry
- University of Mainz
- Mainz
- Germany
| | - Rosa Erra-Balsells
- CIHIDECAR – CONICET
- Departamento de Química Orgánica
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
- (1428) Buenos Aires
| | - Franco M. Cabrerizo
- Instituto de Investigaciones Biotecnológicas – Instituto Tecnológico de Chascomús (IIB-INTECH)
- Universidad Nacional de San Martín (UNSAM) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
- Chascomús
- Argentina
| |
Collapse
|
37
|
Varelas JG, Khanal S, O’Donnell MA, Mulcahy SP. Concise Synthesis of Annulated Pyrido[3,4-b]indoles via Rh(I)-Catalyzed Cyclization. Org Lett 2015; 17:5512-4. [DOI: 10.1021/acs.orglett.5b02807] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jonathan G. Varelas
- Department
of Chemistry and
Biochemistry, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, United States
| | - Satyam Khanal
- Department
of Chemistry and
Biochemistry, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, United States
| | - Michael A. O’Donnell
- Department
of Chemistry and
Biochemistry, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, United States
| | - Seann P. Mulcahy
- Department
of Chemistry and
Biochemistry, Providence College, 1 Cunningham Square, Providence, Rhode Island 02918, United States
| |
Collapse
|
38
|
Li Z, Chen S, Zhu S, Luo J, Zhang Y, Weng Q. Synthesis and Fungicidal Activity of β-Carboline Alkaloids and Their Derivatives. Molecules 2015; 20:13941-57. [PMID: 26263966 PMCID: PMC6332272 DOI: 10.3390/molecules200813941] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 11/16/2022] Open
Abstract
A series of β-Carboline derivatives were designed, synthesized, and evaluated for their fungicidal activities in this study. Several derivatives electively exhibited fungicidal activities against some fungi. Especially, compound F5 exhibited higher fungicidal activity against Rhizoctonia solani (53.35%) than commercial antiviral agent validamycin (36.4%); compound F16 exhibited high fungicidal activity against Oospora citriaurantii ex Persoon (43.28%). Some of the alkaloids and their derivatives (compounds F4 and F25) exhibited broad-spectrum fungicidal activity. Specifically, compound F4 exhibited excellent high broad-spectrum fungicidal activity in vitro, and the curative and protection activities against P. litchi in vivo reached 92.59% and 59.26%, respectively. The new derivative, F4, with optimized physicochemical properties, obviously exhibited higher activities both in vitro and in vivo; therefore, F4 may be used as a new lead structure for the development of fungicidal drugs.
Collapse
Affiliation(s)
- Zhibin Li
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Shaohua Chen
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Shaowen Zhu
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Jianjun Luo
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Yaomou Zhang
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Qunfang Weng
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
39
|
Wojtowicz E, Zawirska-Wojtasiak R, Przygoński K, Mildner-Szkudlarz S. Bioactive β-carbolines norharman and harman in traditional and novel raw materials for chicory coffee. Food Chem 2015; 175:280-3. [PMID: 25577081 DOI: 10.1016/j.foodchem.2014.11.143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/28/2014] [Accepted: 11/25/2014] [Indexed: 11/20/2022]
Abstract
The β-carboline compounds norharman and harman exhibit neuroactive activity in the human body. Chicory coffee has proved to be a source of β-carboline compounds. This study assessed the norharman and harman contents of traditional and novel raw materials for the production of chicory coffee, as well as in samples of chicory coffee with novel additives. The highest content of the β-carbolines among the traditional raw materials was recorded in roasted sugar beet (2.26 μg/g), while roasting the chicory caused a 25-fold increase in the content of norharman in this raw material (from 0.05 to 1.25 μg/g). In novel raw materials not subjected to the action of high temperature, β-carboline was not detected. Among the roasted novel raw materials, the highest contents of harman and norharman were found in artichokes. High harman levels were also recorded in roasted chokeberry.
Collapse
Affiliation(s)
- Elżbieta Wojtowicz
- Department of Food Concentrates and Starch Products, Institute of Agricultural and Food Biotechnology, Starołęcka 48, 61-361 Poznań, Poland
| | - Renata Zawirska-Wojtasiak
- Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Krzysztof Przygoński
- Department of Food Concentrates and Starch Products, Institute of Agricultural and Food Biotechnology, Starołęcka 48, 61-361 Poznań, Poland
| | - Sylwia Mildner-Szkudlarz
- Faculty of Food Science and Nutrition, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
| |
Collapse
|
40
|
Shankaraiah N, Siraj K, Nekkanti S, Srinivasulu V, Sharma P, Senwar KR, Sathish M, Vishnuvardhan M, Ramakrishna S, Jadala C, Nagesh N, Kamal A. DNA-binding affinity and anticancer activity of β-carboline–chalcone conjugates as potential DNA intercalators: Molecular modelling and synthesis. Bioorg Chem 2015; 59:130-9. [DOI: 10.1016/j.bioorg.2015.02.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/13/2022]
|
41
|
Qi Z, Achazi K, Haag R, Dong S, Schalley CA. Supramolecular hydrophobic guest transport system based on pillar[5]arene. Chem Commun (Camb) 2015; 51:10326-9. [DOI: 10.1039/c5cc03955j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A pillar[5]arene-based bioactive guest loading system was developed, which increased the solubility of norharmane in aqueous medium.
Collapse
Affiliation(s)
- Zhenhui Qi
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Katharina Achazi
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Shengyi Dong
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | | |
Collapse
|
42
|
Sarkar S, Pandya P, Bhadra K. Sequence specific binding of beta carboline alkaloid harmalol with deoxyribonucleotides: binding heterogeneity, conformational, thermodynamic and cytotoxic aspects. PLoS One 2014; 9:e108022. [PMID: 25247695 PMCID: PMC4172587 DOI: 10.1371/journal.pone.0108022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 08/25/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Base dependent binding of the cytotoxic alkaloid harmalol to four synthetic polynucleotides, poly(dA).poly(dT), poly(dA-dT).poly(dA-dT), poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC) was examined by various photophysical and calorimetric studies, and molecular docking. METHODOLOGY/PRINCIPAL FINDINGS Binding data obtained from absorbance according to neighbor exclusion model indicated that the binding constant decreased in the order poly(dG-dC).poly(dG-dC)>poly(dA-dT).poly(dA-dT)>poly(dA).poly(dT)>poly(dG).poly(dC). The same trend was shown by the competition dialysis, change in fluorescence steady state intensity, stabilization against thermal denaturation, increase in the specific viscosity and perturbations in circular dichroism spectra. Among the polynucleotides, poly(dA).poly(dT) and poly(dG).poly(dC) showed positive cooperativity where as poly(dG-dC).poly(dG-dC) and poly(dA-dT).poly(dA-dT) showed non cooperative binding. Isothermal calorimetric data on the other hand showed enthalpy driven exothermic binding with a hydrophobic contribution to the binding Gibbs energy with poly(dG-dC).poly(dG-dC), and poly(dA-dT).poly(dA-dT) where as harmalol with poly(dA).poly(dT) showed entropy driven endothermic binding and with poly(dG).poly(dC) it was reported to be entropy driven exothermic binding. The study also tested the in vitro chemotherapeutic potential of harmalol in HeLa, MDA-MB-231, A549, and HepG2 cell line by MTT assay. CONCLUSIONS/SIGNIFICANCE Studies unequivocally established that harmalol binds strongly with hetero GC polymer by mechanism of intercalation where the alkaloid resists complete overlap to the DNA base pairs inside the intercalation cavity and showed maximum cytotoxicity on HepG2 with IC50 value of 14 µM. The results contribute to the understanding of binding, specificity, energetic, cytotoxicity and docking of harmalol-DNA complexation that will guide synthetic efforts of medicinal chemists for developing better therapeutic agents.
Collapse
Affiliation(s)
- Sarita Sarkar
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India
| | - Prateek Pandya
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India
| | - Kakali Bhadra
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India
- * E-mail:
| |
Collapse
|
43
|
Ahmad Khan R, Al-Farhan K, de Almeida A, Alsalme A, Casini A, Ghazzali M, Reedijk J. Light-stable bis(norharmane)silver(I) compounds: synthesis, characterization and antiproliferative effects in cancer cells. J Inorg Biochem 2014; 140:1-5. [PMID: 25042730 DOI: 10.1016/j.jinorgbio.2014.06.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/28/2014] [Accepted: 06/28/2014] [Indexed: 01/21/2023]
Abstract
Four different-anion Ag(I) compounds with the ligand norharmane (9H-Pyrido[3,4-b]indole; Hnor) and having the general formula [Ag(Hnor)2](anion) (anion=ClO4(-), NO3(-) and BF4(-)) [Ag(Hnor)2(MeCN)](PF6) are reported, and studied in detail regarding their coordination mode and in vitro antiproliferative effects. X-ray structural analysis revealed that the complex with the PF6(-) anion has a MeCN solvent molecule weakly coordinated to Ag(I), making the metal coordination T-shaped, while the other compounds present the classical linear Ag(I) coordination. The compounds showed certain cell growth inhibitory effects in two different cancer cell lines, with the perchlorate containing complex being the most toxic and in fact comparable to cisplatin. Notably, the compounds are stable in visible light; and the luminescence in the solid state was found to be extremely weak, whereas in MeOH solution all compounds show a moderate to weak emission band at 375 nm, when excited at 290 nm.
Collapse
Affiliation(s)
- Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Khalid Al-Farhan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Andreia de Almeida
- Department of Pharmacokinetics, Toxicology and Targeting, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Angela Casini
- Department of Pharmacokinetics, Toxicology and Targeting, Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Mohamed Ghazzali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jan Reedijk
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
44
|
Su B, Cai C, Deng M, Liang D, Wang L, Wang Q. Design, synthesis, antiviral activity, and SARs of 13a-substituted phenanthroindolizidine alkaloid derivatives. Bioorg Med Chem Lett 2014; 24:2881-4. [PMID: 24835986 DOI: 10.1016/j.bmcl.2014.04.101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/11/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
Abstract
On the basis of our previous structure-activity relationship (SAR) and antiviral mechanism studies, a series of 13a-substituted phenanthroindolizidine alkaloid analogues (3a-16a, 3b, 4b, 6b, 7b, 10b, and 14b) were designed targeting tobacco mosaic virus (TMV) RNA, synthesized, and evaluated for their antiviral activity against TMV for the first time. The bioassay results showed that most of the synthesized compounds (such as 4a, 6a, 7a, 11a, 14a, 6b, and 14b) exhibited good to excellent antiviral activity against TMV both in vitro and in vivo. Especially, for inactivation effect and curative effect, compounds 4a, 6a, 7a, 11a, 14a, and 14b showed higher activity at both concentrations (500 μg mL(-1) and 100 μg mL(-1)) than commercial Ningnanmycin. Preliminary SARs showed that the substituted groups with hydrogen donor at 13a position were found to be favorable for keeping high antiviral activity. The present work demonstrates that 13a-substituted phenanthroindolizidines can be used as possible lead compounds for developing anti-TMV agents.
Collapse
Affiliation(s)
- Bo Su
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Chunlong Cai
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Meng Deng
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Demin Liang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Lizhong Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China.
| |
Collapse
|
45
|
Raza A, Shabbir M, Khan M, Suleria H, Sultan S. Effect of Thermal Treatments on the Formation of Heterocyclic Aromatic Amines in Various Meats. J FOOD PROCESS PRES 2014. [DOI: 10.1111/jfpp.12242] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- A. Raza
- National Institute of Food Science and Technology; University of Agriculture Faisalabad; Faisalabad Pakistan
| | - M.A. Shabbir
- National Institute of Food Science and Technology; University of Agriculture Faisalabad; Faisalabad Pakistan
| | - M.I. Khan
- National Institute of Food Science and Technology; University of Agriculture Faisalabad; Faisalabad Pakistan
| | - H.A.R. Suleria
- School of Agriculture and Food Sciences; The University of Queensland; Hartley Teakle Building, Room C505 Brisbane Qld 4072 Australia
| | - S. Sultan
- National Institute of Food Science and Technology; University of Agriculture Faisalabad; Faisalabad Pakistan
| |
Collapse
|
46
|
Su B, Chen F, Wang L, Wang Q. Design, synthesis, antiviral activity, and structure-activity relationships (SARs) of two types of structurally novel phenanthroindo/quinolizidine analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1233-1239. [PMID: 24467600 DOI: 10.1021/jf405562r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To investigate the influence of the variation of the original skeletons of natural phenanthroindo/quinolizidine alkaloids on antiviral activities, two types of structurally totally novel analogues 7a, 7b, 16a, and 16b were designed, synthesized, and evaluated against tobacco mosaic virus (TMV) for the first time. Bioassay results indicated that all four of the newly designed analogues showed good to excellent antiviral activities, among which analogue 16a dispalyed comparable activity with that of ningnanmycin, perhaps one of the most successful commercial antiviral agents, thus emerging as a potential inhibitor of plant virus and serving as a new lead for further optimization. Further structure-activity relationships are also discussed, demonstrating for the first time that the same changes of the original skeletons of phenanthroindolizidine and phenanthroquinolizidine exihibted totally different antiviral activities results, providing some original and useful information about the preferential conformation for maintaining high activities.
Collapse
Affiliation(s)
- Bo Su
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | | | | | | |
Collapse
|
47
|
Song H, Liu Y, Liu Y, Wang L, Wang Q. Synthesis and antiviral and fungicidal activity evaluation of β-carboline, dihydro-β-carboline, tetrahydro-β-carboline alkaloids, and their derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1010-8. [PMID: 24460429 DOI: 10.1021/jf404840x] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Six known β-carboline, dihydro-β-carboline, and tetrahydro-β-carboline alkaloids and a series of their derivatives were designed, synthesized, and evaluated for their anti-tobacco mosaic virus (TMV) and fungicidal activities for the first time. All of the alkaloids and some of their derivatives (compounds 3, 4, 14, and 19) exhibited higher anti-TMV activity than the commercial antiviral agent Ribavirin both in vitro and in vivo. Especially, the inactivation, curative, and protection activities of alkaloids Harmalan (62.3, 55.1, and 60.3% at 500 μg/mL) and tetrahydroharmane (64.2, 57.2, and 59.5% at 500 μg/mL) in vivo were much higher than those of Ribavirin (37.4, 36.2, and 38.5% at 500 μg/mL). A new derivative, 14, with optimized physicochemical properties, obviously exhibited higher activities in vivo (50.4, 43.9, and 47.9% at 500 μg/mL) than Ribavirin and other derivatives; therefore, 14 can be used as a new lead structure for the development of anti-TMV drugs. Moreover, most of these compounds exhibited good fungicidal activity against 14 kinds of fungi, especially compounds 4, 7, and 11.
Collapse
Affiliation(s)
- Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071, People's Republic of China
| | | | | | | | | |
Collapse
|
48
|
de Oliveira Figueiredo P, Perdomo RT, Garcez FR, de Fatima Cepa Matos M, de Carvalho JE, Garcez WS. Further constituents of Galianthe thalictroides (Rubiaceae) and inhibition of DNA topoisomerases I and IIα by its cytotoxic β-carboline alkaloids. Bioorg Med Chem Lett 2014; 24:1358-61. [PMID: 24507920 DOI: 10.1016/j.bmcl.2014.01.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 01/15/2014] [Indexed: 11/28/2022]
Abstract
A new cytotoxic β-carboline alkaloid, 1-methyl-3-(2-hydroxypropan-2-yl)-2-(5-methoxy-9H-β-carbolin-1-yl)-cyclopentanol (1), was isolated from roots of Galianthe thalictroides, together with the alkaloid 1-(hydroxymethyl)-3-(2-hydroxypropan-2-yl)-2-(5-methoxy-9H-β-carbolin-1-yl)-cyclopentanol (2), the anthraquinones 1-methyl-alizarin and morindaparvin-A, the coumarin scopoletin, homovanillic alcohol, (-)-epicatechin, and the steroids stigmast-4-en-3-one, 4,22-stigmastadien-3-one, campest-4-en-3-one, stigmast-4-en-3,6-dione, 6-β-hydroxy-stigmast-4-en-3-one, stigmasterol, campesterol, β-sitosterol, and β-sitosterol-3-O-β-D-glucopyranoside. Among the previously known compounds, homovanillic alcohol is a novel finding in Rubiaceae, while 1-methyl-alizarin, morindaparvin-A, scopoletin, stigmast-4-en-3-one, 4,22-stigmastadien-3-one, campest-4-en-3-one, stigmast-4-en-3,6-dione, and 6-β-hydroxy-stigmast-4-en-3-one is reported for the first time in the genus Galianthe. The cytotoxic β-carboline alkaloids 1 and 2 exhibited potent antitopoisomerase I and IIα activities and strong evidence is provided for their action as topoisomerase IIα poisons and redox-independent inhibitors.
Collapse
Affiliation(s)
| | - Renata Trentin Perdomo
- Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil.
| | - Fernanda Rodrigues Garcez
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79074-460, Brazil.
| | - Maria de Fatima Cepa Matos
- Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil.
| | - João Ernesto de Carvalho
- Centro Pluridisciplinar de Pesquisas Químicas Biológicas e Agrícolas, Universidade Estadual de Campinas, Campinas, SP 13081-970, Brazil.
| | - Walmir Silva Garcez
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS 79074-460, Brazil.
| |
Collapse
|
49
|
Abstract
OBJECTIVES Comprehensively review the evidence regarding the use of ayahuasca, an Amerindian medicine traditionally used to treat many different illnesses and diseases, to treat some types of cancer. METHODS An in-depth review of the literature was conducted using PubMed, books, institutional magazines, conferences and online texts in nonprofessional sources regarding the biomedical knowledge about ayahuasca in general with a specific focus in its possible relations to the treatment of cancer. RESULTS At least nine case reports regarding the use of ayahuasca in the treatment of prostate, brain, ovarian, uterine, stomach, breast, and colon cancers were found. Several of these were considered improvements, one case was considered worse, and one case was rated as difficult to evaluate. A theoretical model is presented which explains these effects at the cellular, molecular, and psychosocial levels. Particular attention is given to ayahuasca's pharmacological effects through the activity of N,N-dimethyltryptamine at intracellular sigma-1 receptors. The effects of other components of ayahuasca, such as harmine, tetrahydroharmine, and harmaline, are also considered. CONCLUSION The proposed model, based on the molecular and cellular biology of ayahuasca's known active components and the available clinical reports, suggests that these accounts may have consistent biological underpinnings. Further study of ayahuasca's possible antitumor effects is important because cancer patients continue to seek out this traditional medicine. Consequently, based on the social and anthropological observations of the use of this brew, suggestions are provided for further research into the safety and efficacy of ayahuasca as a possible medicinal aid in the treatment of cancer.
Collapse
Affiliation(s)
- Eduardo E Schenberg
- Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil; Instituto Plantando Consciencia, São Paulo, Brazil
| |
Collapse
|
50
|
Elevated brain harmane (1-methyl-9H-pyrido[3,4-b]indole) in essential tremor cases vs. controls. Neurotoxicology 2013; 38:131-5. [PMID: 23911942 DOI: 10.1016/j.neuro.2013.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 11/23/2022]
Abstract
BACKGROUND Harmane (1-methyl-9H-pyrido[3,4-β]indole), a potent neurotoxin that has tremor-producing properties in animal models, is present in many foods; although we have demonstrated a difference in tissue harmane concentrations in ET cases vs. controls, all work to date has involved blood samples. OBJECTIVES We quantified harmane concentrations in human cerebellum, a brain region of particular pathogenic interest in essential tremor (ET), comparing ET to control brains. METHODS Cerebellar cortex was snap frozen and stored at -80°C in aliquots for biochemical analyses. Harmane concentration was assessed using high performance liquid chromatography. RESULTS Geometric mean brain harmane concentrations (adjusted for postmortem interval [PMI] and freezer time) were higher in ET cases than controls: 1.0824 (95% confidence interval=0.9405-1.2457) vs. 0.8037 (0.6967-0.9272), p=0.004. Geometric mean of brain harmane concentrations (adjusting for PMI and freezer time) was highest in ET cases who reported other relatives with tremor (1.2005 [0.8712-1.6541]), intermediate in ET cases without family history (1.0312 ([0.8879-1.1976]), and both were significantly higher than controls (p=0.02). CONCLUSIONS This study provides additional evidence of a possible etiological importance of this toxin in some cases of the human disease ET.
Collapse
|