1
|
Jha BK, Varikuti S, Verma C, Shivahare R, Bishop N, Dos Santos GP, McDonald J, Sur A, Myler PJ, Schenkman S, Satoskar AR, McGwire BS. Immunization with a Trypanosoma cruzi cyclophilin-19 deletion mutant protects against acute Chagas disease in mice. NPJ Vaccines 2023; 8:63. [PMID: 37185599 PMCID: PMC10130101 DOI: 10.1038/s41541-023-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/23/2023] [Indexed: 05/17/2023] Open
Abstract
Human infection with the protozoan parasite Trypanosoma cruzi causes Chagas disease for which there are no prophylactic vaccines. Cyclophilin 19 is a secreted cis-trans peptidyl isomerase expressed in all life stages of Trypanosoma cruzi. This protein in the insect stage leads to the inactivation of insect anti-parasitic peptides and parasite transformation whereas in the intracellular amastigotes it participates in generating ROS promoting the growth of parasites. We have generated a parasite mutant with depleted expression of Cyp19 by removal of 2 of 3 genes encoding this protein using double allelic homologous recombination. The mutant parasite line failed to replicate when inoculated into host cells in vitro or in mice indicating that Cyp19 is critical for infectivity. The mutant parasite line also fails to replicate in or cause clinical disease in immuno-deficient mice further validating their lack of virulence. Repeated inoculation of mutant parasites into immuno-competent mice elicits parasite-specific trypanolytic antibodies and a Th-1 biased immune response and challenge of mutant immunized mice with virulent wild-type parasites is 100% effective at preventing death from acute disease. These results suggest that parasite Cyp19 may be candidate for small molecule drug targeting and that the mutant parasite line may warrant further immunization studies for prevention of Chagas disease.
Collapse
Affiliation(s)
- Bijay Kumar Jha
- Division of Infectious Diseases, Department of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Sanjay Varikuti
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Chaitenya Verma
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Rahul Shivahare
- Division of Infectious Diseases, Department of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Nicholas Bishop
- Division of Infectious Diseases, Department of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Gregory P Dos Santos
- Department of Microbiology, Immunology and Parasitology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Jacquelyn McDonald
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Aakash Sur
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
| | - Peter J Myler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Sergio Schenkman
- Department of Microbiology, Immunology and Parasitology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Abhay R Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| | - Bradford S McGwire
- Division of Infectious Diseases, Department of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Francisco AF, Saade U, Jayawardhana S, Pottel H, Scandale I, Chatelain E, Liehl P, Kelly JM, Zrein M. Comparing in vivo bioluminescence imaging and the Multi-Cruzi immunoassay platform to develop improved Chagas disease diagnostic procedures and biomarkers for monitoring parasitological cure. PLoS Negl Trop Dis 2022; 16:e0010827. [PMID: 36190992 PMCID: PMC9560623 DOI: 10.1371/journal.pntd.0010827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/13/2022] [Accepted: 09/16/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and is a serious public health problem throughout Latin America. With 6 million people infected, there is a major international effort to develop new drugs. In the chronic phase of the disease, the parasite burden is extremely low, infections are highly focal at a tissue/organ level, and bloodstream parasites are only intermittently detectable. As a result, clinical trials are constrained by difficulties associated with determining parasitological cure. Even highly sensitive PCR methodologies can be unreliable, with a tendency to produce "false-cure" readouts. Improved diagnostic techniques and biomarkers for cure are therefore an important medical need. METHODOLOGY/PRINCIPAL FINDINGS Using an experimental mouse model, we have combined a multiplex assay system and highly sensitive bioluminescence imaging to evaluate serological procedures for diagnosis of T. cruzi infections and confirmation of parasitological cure. We identified a set of three antigens that in the context of the multiplex serology system, provide a rapid, reactive and highly accurate read-out of both acute and chronic T. cruzi infection. In addition, we describe specific antibody responses where down-regulation can be correlated with benznidazole-mediated parasite reduction and others where upregulation is associated with persistent infection. One specific antibody (IBAG39) highly correlated with the bioluminescence flux and represents a promising therapy monitoring biomarker in mice. CONCLUSIONS/SIGNIFICANCE Robust, high-throughput methodologies for monitoring the efficacy of anti-T. cruzi drug treatment are urgently required. Using our experimental systems, we have identified markers of infection or parasite reduction that merit assessing in a clinical setting for the longitudinal monitoring of drug-treated patients.
Collapse
Affiliation(s)
- Amanda Fortes Francisco
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | | | - Shiromani Jayawardhana
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Hans Pottel
- Department of Public Health and Primary Care, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Ivan Scandale
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland
| | | | - John M. Kelly
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
- * E-mail:
| | | |
Collapse
|
3
|
Jones KM, Poveda C, Versteeg L, Bottazzi ME, Hotez PJ. Preclinical advances and the immunophysiology of a new therapeutic chagas disease vaccine. Expert Rev Vaccines 2022; 21:1185-1203. [PMID: 35735065 DOI: 10.1080/14760584.2022.2093721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Chronic infection with the protozoal parasite Trypanosoma cruzi leads to a progressive cardiac disease, known as chronic Chagasic cardiomyopathy (CCC). A new therapeutic Chagas disease vaccine is in development to augment existing antiparasitic chemotherapy drugs. AREAS COVERED We report on our current understanding of the underlying immunologic and physiologic mechanisms that lead to CCC, including parasite immune escape mechanisms that allow persistence and the subsequent inflammatory and fibrotic processes that lead to clinical disease. We report on vaccine design and the observed immunotherapeutic effects including induction of a balanced TH1/TH2/TH17 immune response that leads to reduced parasite burdens and tissue pathology. Further, we report vaccine-linked chemotherapy, a dose sparing strategy to further reduce parasite burdens and tissue pathology. EXPERT OPINION Our vaccine-linked chemotherapeutic approach is a multimodal treatment strategy, addressing both the parasite persistence and the underlying deleterious host inflammatory and fibrotic responses that lead to cardiac dysfunction. In targeting treatment towards patients with chronic indeterminate or early determinate Chagas disease, this vaccine-linked chemotherapeutic approach will be highly economical and will reduce the global disease burden and deaths due to CCC.
Collapse
Affiliation(s)
- Kathryn M Jones
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Cristina Poveda
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Leroy Versteeg
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Cell Biology and Immunology Group, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Biology, Baylor University, Waco, Texas, United States of America
| | - Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics, Division of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America.,Department of Biology, Baylor University, Waco, Texas, United States of America.,James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America.,Hagler Institute for Advanced Study at Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
4
|
Choudhury SD. Nano-Medicines a Hope for Chagas Disease! Front Mol Biosci 2021; 8:655435. [PMID: 34141721 PMCID: PMC8204082 DOI: 10.3389/fmolb.2021.655435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Chagas disease, is a vector-mediated tropical disease whose causative agent is a parasitic protozoan named Trypanosoma cruzi. It is a very severe health issue in South America and Mexico infecting millions of people every year. Protozoan T. cruzi gets transmitted to human through Triatominae, a subfamily of the Reduviidae, and do not have any effective treatment or preventative available. The lack of economic gains from this tropical parasitic infection, has always been the reason behind its negligence by researchers and drug manufacturers for many decades. Hence there is an enormous requirement for more efficient and novel strategies to reduce the fatality associated with these diseases. Even, available diagnosis protocols are outdated and inefficient and there is an urgent need for rapid high throughput diagnostics as well as management protocol. The current advancement of nanotechnology in the field of healthcare has generated hope for better management of many tropical diseases including Chagas disease. Nanoparticulate systems for drug delivery like poloxamer coated nanosuspension of benzimidazole have shown promising results in reducing toxicity, elevating efficacy and bioavailability of the active compound against the pathogen, by prolonging release, thereby increasing the therapeutic index. Moreover, nanoparticle-based drug delivery has shown promising results in inducing the host’s immune response against the pathogen with very few side effects. Besides, advances in diagnostic assays, such as nanosensors, aided in the accurate detection of the parasite. In this review, we provide an insight into the life cycle stages of the pathogen in both vertebrate host and the insect vector, along with an overview of the current therapy for Chagas disease and its limitations; nano carrier-based delivery systems for antichagasic agents, we also address the advancement of nano vaccines and nano-diagnostic techniques, for treatment of Chagas disease, majorly focusing on the novel perspectives in combating the disease.
Collapse
|
5
|
Quijia Quezada C, Azevedo CS, Charneau S, Santana JM, Chorilli M, Carneiro MB, Bastos IMD. Advances in nanocarriers as drug delivery systems in Chagas disease. Int J Nanomedicine 2019; 14:6407-6424. [PMID: 31496694 PMCID: PMC6691952 DOI: 10.2147/ijn.s206109] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Chagas disease is one of the most important public health problems in Latin America due to its high mortality and morbidity levels. There is no effective treatment for this disease since drugs are usually toxic with low bioavailability. Serious efforts to achieve disease control and eventual eradication have been unsuccessful to date, emphasizing the need for rapid diagnosis, drug development, and a reliable vaccine. Novel systems for drug and vaccine administration based on nanocarriers represent a promising avenue for Chagas disease treatment. Nanoparticulate systems can reduce toxicity, and increase the efficacy and bioavailability of active compounds by prolonging release, and therefore improve the therapeutic index. Moreover, nanoparticles are able to interact with the host's immune system, modulating the immune response to favour the elimination of pathogenic microorganisms. In addition, new advances in diagnostic assays, such as nanobiosensors, are beneficial in that they enable precise identification of the pathogen. In this review, we provide an overview of the strategies and nanocarrier-based delivery systems for antichagasic agents, such as liposomes, micelles, nanoemulsions, polymeric and non-polymeric nanoparticles. We address recent progress, with a particular focus on the advances of nanovaccines and nanodiagnostics, exploring new perspectives on Chagas disease treatment.
Collapse
Affiliation(s)
- Christian Quijia Quezada
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
- Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Clênia S Azevedo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Jaime M Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Marcella B Carneiro
- Electron Microscopy Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| | - Izabela Marques Dourado Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil
| |
Collapse
|
6
|
Seid CA, Jones KM, Pollet J, Keegan B, Hudspeth E, Hammond M, Wei J, McAtee CP, Versteeg L, Gutierrez A, Liu Z, Zhan B, Respress JL, Strych U, Bottazzi ME, Hotez PJ. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease. Hum Vaccin Immunother 2016; 13:621-633. [PMID: 27737611 DOI: 10.1080/21645515.2016.1242540] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
A therapeutic vaccine for human Chagas disease is under development by the Sabin Vaccine Institute Product Development Partnership. The aim of the vaccine is to significantly reduce the parasite burden of Trypanosoma cruzi in humans, either as a standalone product or in combination with conventional chemotherapy. Vaccination of mice with Tc24 formulated with monophosphoryl-lipid A (MPLA) adjuvant results in a Th1 skewed immune response with elevated IgG2a and IFNγ levels and a statistically significant decrease in parasitemia following T. cruzi challenge. Tc24 was therefore selected for scale-up and further evaluation. During scale up and downstream process development, significant protein aggregation was observed due to intermolecular disulfide bond formation. To prevent protein aggregation, cysteine codons were replaced with serine codons which resulted in the production of a non-aggregated and soluble recombinant protein, Tc24-C4. No changes to the secondary structure of the modified molecule were detected by circular dichroism. Immunization of mice with wild-type Tc24 or Tc24-C4, formulated with E6020 (TLR4 agonist analog to MPLA) emulsified in a squalene-oil-in-water emulsion, resulted in IgG2a and antigen specific IFNγ production levels from splenocytes that were not significantly different, indicating that eliminating putative intermolecular disulfide bonds had no significant impact on the immunogenicity of the molecule. In addition, vaccination with either formulated wild type Tc24 or Tc24-C4 antigen also significantly increased survival and reduced cardiac parasite burden in mice. Investigations are now underway to examine the efficacy of Tc24-C4 formulated with other adjuvants to reduce parasite burden and increase survival in pre-clinical studies.
Collapse
Affiliation(s)
- Christopher A Seid
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Kathryn M Jones
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Jeroen Pollet
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Brian Keegan
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Elissa Hudspeth
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Molly Hammond
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Junfei Wei
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - C Patrick McAtee
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Leroy Versteeg
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Amanda Gutierrez
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Zhuyun Liu
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA
| | - Bin Zhan
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Jonathan L Respress
- d Southwest Electronic Energy Medical Research Institute (SWEMRI) , Missouri City , TX , USA
| | - Ulrich Strych
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Maria Elena Bottazzi
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Peter J Hotez
- a Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development , Houston , TX , USA.,b Departments of Pediatrics and Molecular Virology and Microbiology , National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA.,c James A. Baker III Institute for Public Policy , Rice University , Houston , TX , USA
| |
Collapse
|
7
|
Barry MA, Wang Q, Jones KM, Heffernan MJ, Buhaya MH, Beaumier CM, Keegan BP, Zhan B, Dumonteil E, Bottazzi ME, Hotez PJ. A therapeutic nanoparticle vaccine against Trypanosoma cruzi in a BALB/c mouse model of Chagas disease. Hum Vaccin Immunother 2016; 12:976-87. [PMID: 26890466 DOI: 10.1080/21645515.2015.1119346] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, results in an acute febrile illness that progresses to chronic chagasic cardiomyopathy in 30% of patients. Current treatments have significant side effects and poor efficacy during the chronic phase; therefore, there is an urgent need for new treatment modalities. A robust TH1-mediated immune response correlates with favorable clinical outcomes. A therapeutic vaccine administered to infected individuals could bolster the immune response, thereby slowing or stopping the progression of chagasic cardiomyopathy. Prior work in mice has identified an efficacious T. cruzi DNA vaccine encoding Tc24. To elicit a similar protective cell-mediated immune response to a Tc24 recombinant protein, we utilized a poly(lactic-co-glycolic acid) nanoparticle delivery system in conjunction with CpG motif-containing oligodeoxynucleotides as an immunomodulatory adjuvant. In a BALB/c mouse model, the vaccine produced a TH1-biased immune response, as demonstrated by a significant increase in antigen-specific IFNγ-producing splenocytes, IgG2a titers, and proliferative capacity of CD8(+) T cells. When tested for therapeutic efficacy, significantly reduced systemic parasitemia was seen during peak parasitemia. Additionally, there was a significant reduction in cardiac parasite burden and inflammatory cell infiltrate. This is the first study demonstrating immunogenicity and efficacy of a therapeutic Chagas vaccine using a nanoparticle delivery system.
Collapse
Affiliation(s)
- Meagan A Barry
- a Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , TX , USA.,b Medical Scientist Training Program, Baylor College of Medicine , Houston , TX , USA.,c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA
| | - Qian Wang
- c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA
| | - Kathryn M Jones
- c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA.,d National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA
| | - Michael J Heffernan
- a Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , TX , USA.,c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA.,d National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA.,h Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA
| | - Munir H Buhaya
- e Summer Medical and Research Training Program, Baylor College of Medicine , Houston , TX , USA
| | - Coreen M Beaumier
- c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA
| | - Brian P Keegan
- c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA
| | - Bin Zhan
- c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA
| | - Eric Dumonteil
- f Laboratorio de Parasitología, Centro de Investigaciones Regionales Dr Hideyo Noguchi, Universidad Autónoma de Yucatán , Mérida , Mexico.,g Department of Tropical Medicine , School of Public Health and Tropical Medicine, Tulane University , New Orleans , LA , USA
| | - Maria Elena Bottazzi
- a Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , TX , USA.,c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA.,d National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA.,h Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA
| | - Peter J Hotez
- a Interdepartmental Program in Translational Biology and Molecular Medicine , Baylor College of Medicine , Houston , TX , USA.,c Department of Pediatrics , Section of Pediatric Tropical Medicine, Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine , Houston , TX , USA.,d National School of Tropical Medicine, Baylor College of Medicine , Houston , TX , USA.,h Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
8
|
Basso B, Moretti E, Fretes R. Vaccination with Trypanosoma rangeli induces resistance of guinea pigs to virulent Trypanosoma cruzi. Vet Immunol Immunopathol 2014; 157:119-23. [DOI: 10.1016/j.vetimm.2013.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/01/2013] [Accepted: 10/21/2013] [Indexed: 11/27/2022]
|
9
|
Garcia CA, Oliveira EC, Sakurada JK, Santos LM. Protective immunity induced by aTrypanosoma cruzisoluble extract antigen in Experimental Chagas' Disease. Role of Interferon γ. Immunol Invest 2009. [DOI: 10.3109/08820130009060873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Basso B, Moretti E, Fretes R. Vaccination with epimastigotes of different strains of Trypanosoma rangeli protects mice against Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 2008; 103:370-4. [DOI: 10.1590/s0074-02762008000400010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 06/12/2008] [Indexed: 11/22/2022] Open
|
11
|
Basso B, Castro I, Introini V, Gil P, Truyens C, Moretti E. Vaccination with Trypanosoma rangeli reduces the infectiousness of dogs experimentally infected with Trypanosoma cruzi. Vaccine 2007; 25:3855-8. [PMID: 17349724 PMCID: PMC7127752 DOI: 10.1016/j.vaccine.2007.01.114] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 12/27/2006] [Accepted: 01/29/2007] [Indexed: 11/18/2022]
Abstract
The goal of this work was to test the efficacy of the vaccination with Trypanosoma rangeli in dogs. Mongrel dogs received three subcutaneous injections of fixed T. rangeli epimastigotes at 6-week intervals. Such immunisation induced antibodies against Trypanosoma cruzi. While both control and immunised dogs developed detectable parasitemia, this was lower and shorter in vaccinated animals. Interestingly, feeding of Triatoma infestans nymphs on vaccinated and chronically infected dogs led to a sharp reduction in the rate of bug infection. These results suggest that it might be possible to reduce the vectorial parasitemia through vaccination of dogs. As dogs are known to play a major role in the domestic cycle of T. cruzi, this might represent a strategy to reduce parasite transmission to humans.
Collapse
Affiliation(s)
- Beatriz Basso
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba & Servicio Nacional de Chagas, Córdoba, Argentina.
| | | | | | | | | | | |
Collapse
|
12
|
Pereira VRA, Lorena VMB, Nakazawa M, Luna CF, Silva ED, Ferreira AGP, Krieger MA, Goldenberg S, Soares MBP, Coutinho EM, Correa-Oliveira R, Gomes YM. Humoral and cellular immune responses in BALB/c and C57BL/6 mice immunized with cytoplasmic (CRA) and flagellar (FRA) recombinant repetitive antigens, in acute experimental Trypanosoma cruzi infection. Parasitol Res 2005; 96:154-61. [PMID: 15856302 DOI: 10.1007/s00436-005-1336-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Accepted: 02/24/2005] [Indexed: 01/23/2023]
Abstract
In previous studies, cytoplasmic repetitive antigen (CRA) and flagellar repetitive antigen (FRA) proteins induced specific humoral and cellular immune responses in susceptible and resistant mice in the absence of Trypanosoma cruzi infection with a significant induction of the Interferon-gamma (IFN-gamma) production in those animals. In this follow-up paper, the immunostimulatory and protective effects of these proteins were evaluated by immunizing with CRA or FRA antigens, BALB/c and C57BL/6 mice and challenging with a T. cruzi (Y strain). Both proteins induced humoral response with high levels of IgG isotypes as well as cellular immunity with high levels of IFN-gamma when compared to controls. However, the lymphocyte proliferative response was minimal. The survival rate at 30 days post-infection was significant in CRA (60%) or FRA (50%)--immunized BALB/c mice and CRA (83.3%)--immunized C57BL/6 mice. Taken as a whole these findings indicate that CRA and FRA are immunogenic and potentially important for protective immunity.
Collapse
|
13
|
Garzon E, Genna F, Bosseno MF, Simony-La Fontaine J, Radal M, Sereno D, Mathieu-Daude F, Ouaissi A, Brenière SF. Differential infectivity and immunopathology in murine experimental infections by two natural clones belonging to theTrypanosoma cruziI lineage. Parasitology 2005; 131:109-19. [PMID: 16038402 DOI: 10.1017/s003118200400722x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Immunopathology of Chagas' disease in Balb/c mice infected with 2Trypanosoma cruziclones, belonging to theT. cruziI lineage and presenting differentin vitrovirulence (P/209 cl1>SO34 cl4) was compared. In the acute phase, evading mechanisms such as parasite-induced lymphocyte polyclonal activation and T cell immunosuppression were higher in mice infected with the clone giving a higher parasitaemia (P/209 cl1). A similar increase of non-specific isotypes was observed in both infections with IgG2a prevalence. Interestingly, CD8+ cell hypercellularity and lymphocyte immunosuppression were observed during the chronic phase (245 days post-infection) in mice infected by the most virulent clone. In the same way, the parasite-specific antibody response was more intense in P/209 cl1-infected mice over the acute phase. During the chronic phase this response remarkably dropped down in SO34 cl4-infected mice exclusively. Finally, P/209 cl1-infected mice presented a more severe inflammation and tissue damage in heart and quadriceps than SO34 cl4-infected mice. This comparative study showed differences between the two clones: a higher virulencein vivobeing clearly associated with a greater ability to induce evasion mechanisms and severe tissue damage.
Collapse
Affiliation(s)
- E Garzon
- Institut de Recherche pour le Développement, IRD, UR 008 Pathogénie et Epidémiologie des Trypanosomatidés, 911 Av. Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Basso B, Cervetta L, Moretti E, Carlier Y, Truyens C. Acute Trypanosoma cruzi infection: IL-12, IL-18, TNF, sTNFR and NO in T. rangeli-vaccinated mice. Vaccine 2004; 22:1868-72. [PMID: 15121297 DOI: 10.1016/j.vaccine.2003.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2003] [Revised: 10/17/2003] [Accepted: 11/12/2003] [Indexed: 01/12/2023]
Abstract
We have developed an experimental model of vaccination against the infection with the protozoa Trypanosoma cruzi, the agent of Chagas disease in Latin America. Vaccination was performed with Trypanosoma rangeli, a non-pathogenic protozoa sharing many antigens with T. cruzi. It strongly protected BALB/c mice, sharply reducing parasitaemia and mortality rate of the acute T. cruzi infection. The aim of the present work was to complete our previous study on the production of IFN-gamma and IL-10 in this vaccination model by investigating the production of IL-12p35 and p40, IL-18, TNF, TNF soluble receptors (sTNFR), and nitric oxide (NO), factors known to play a key role in the outcome of T. cruzi infection. We show that the protection obtained against the acute T. cruzi infection was surprisingly associated with reduced circulating levels of IL-18 and NO, whereas the release of IL-12p40 was enhanced in comparison to non-vaccinated infected animals. IL-12p35 remained undetectable in infected animals, vaccinated or not. The balance between sTNFR and TNF suggested a decrease of TNF bioactivity in vaccinated mice. These results show that the protection induced by the vaccination with T. rangeli against a challenging infection with T. cruzi is not associated with the strong type 1 immune response usually involved in the control of intracellular pathogens, particularly questioning the protective role of NO during the acute phase of T. cruzi infection.
Collapse
Affiliation(s)
- B Basso
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba y Servicio Nacional de Chagas, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
15
|
Fralish BH, Tarleton RL. Genetic immunization with LYT1 or a pool of trans-sialidase genes protects mice from lethal Trypanosoma cruzi infection. Vaccine 2003; 21:3070-80. [PMID: 12798651 DOI: 10.1016/s0264-410x(03)00121-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Genetic immunization with a limited set of genes has been demonstrated to be an effective means of protecting mice from a normally lethal challenge of Trypanosoma cruzi. The goal of this study was to expand the diversity of genes assessed as genetic vaccine candidates. Screening a T. cruzi amastigote cDNA expression library with anti-amastigote monoclonal antibodies resulted in the identification of two genes, the previously identified flagellar Ca(2+) binding protein, FCaBP, and a novel homologue of the adaptin AP-3 complex beta3 subunit, Tcbeta3. A third gene, LYT1, recently identified as a secreted T. cruzi protein involved in cell lysis and infectivity, and was selected. Although peptides from all three genes were found to be targets of cytotoxic T cell responses in chronically infected mice, only immunization with LYT1 protected mice from a normally lethal challenge of T. cruzi. As an alternative to testing individual T. cruzi genes as vaccines, pools of genes from the trans-sialidase (TS) and mucin families were assessed in vaccination studies. Immunization with pools of TS but not mucin genes provided protection against a normally lethal challenge of T. cruzi. This study demonstrates that the ability of T. cruzi proteins to elicit immune responses in infected hosts does not necessarily associate with the ability to induce protection and that both the products of single genes and multi-gene families may serve as effective vaccines.
Collapse
Affiliation(s)
- Bolyn H Fralish
- Department of Cellular Biology, Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
16
|
Vera-Cruz JM, Magallón-Gastelum E, Grijalva G, Rincón AR, Ramos-García C, Armendáriz-Borunda J. Molecular diagnosis of Chagas' disease and use of an animal model to study parasite tropism. Parasitol Res 2003; 89:480-6. [PMID: 12658460 DOI: 10.1007/s00436-002-0787-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chagas' disease, which is an important health problem in humans, is caused by the protozoan Trypanosoma cruzi. The cellular and molecular mechanisms, involved in the selective tropism of T. cruzi to different organs remain largely unknown. In this study we designed a PCR-based molecular diagnosis method in order to study the tropism and growth kinetics of T. cruzi in a murine model infected with parasites isolated from an endemic area of Mexico. The growth kinetics and parasite tropism of T. cruzi were also evaluated in the blood and other tissues. We observed that T. cruzi isolates from the Western Mexico showed a major tropism to mouse heart and skeletal muscles in this murine model.
Collapse
Affiliation(s)
- J M Vera-Cruz
- Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Apdo. Postal 2-123, 44281, Guadalajara, Jalisco, Mexico
| | | | | | | | | | | |
Collapse
|
17
|
Sepulveda P, Liegeard P, Wallukat G, Levin MJ, Hontebeyrie M. Modulation of cardiocyte functional activity by antibodies against trypanosoma cruzi ribosomal P2 protein C terminus. Infect Immun 2000; 68:5114-9. [PMID: 10948133 PMCID: PMC101752 DOI: 10.1128/iai.68.9.5114-5119.2000] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibodies against the Trypanosoma cruzi ribosomal P2beta protein (TcP2beta) have been associated with the chronic cardiac pathology of Chagas' disease in humans. Using synthetic peptides spanning the entire TcP2beta molecule, we investigated their epitope recognition by antibodies from mice chronically infected with T. cruzi and from mice immunized with two recombinant TcP2betas. We found clear differences in epitope recognition between antibodies from T. cruzi-infected mice and mice immunized with two different recombinant TcP2betas associated with different schedules of immunization. Major epitopes recognized by antibodies from mice immunized with recombinant glutathione S-transferase (GST) or histidine (Hist) fusion TcP2beta (GST-TcP2beta or Hist-TcP2beta) are located in the central and hinge regions of the molecule. Nevertheless, mice immunized with Hist-TcP2beta were also able to elicit antibodies against the TcP2beta C terminus, a region which is highly conserved in both T. cruzi and mammal ribosomal P proteins. Strikingly, antibodies from infected animals recognized only the TcP2beta C terminus. By using these antisera with distinct profiles of epitope recognition, it could be shown that only C terminus-specific antibodies were able to increase the beating frequency of cardiomyocytes from neonatal rats in vitro by selective stimulation of the beta1-adrenergic receptor. Thus, antibodies against the TcP2beta C terminus elicited in the absence of infection are able to modulate a functional activity of host cells through a molecular mimicry mechanism.
Collapse
Affiliation(s)
- P Sepulveda
- Laboratoire d'Immunopathogenèse, Département d'Immunologie, Institut Pasteur, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
18
|
Garcia CA, Oliveira EC, Sakurada JK, Santos LM. Protective immunity induced by a Trypanosoma cruzi soluble extract antigen in experimental Chagas' disease. Role of interferon gamma. Immunol Invest 2000; 29:1-12. [PMID: 10709842 DOI: 10.3109/08820130009105140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CBA/J mice can be protected against lethal infection with Trypanosoma cruzi by treatment using T. cruzi soluble extract antigen (TCSE). In vivo administration of TCSE (400 microg/mouse) into naive mice increased the cellular proliferative response to Con A and elevated the levels of IFN-gamma. The production of IFN-gamma was extremely important in controlling the replication of the parasite since the protective activity of TCSE was completely abrogated by in vivo treatment with an anti IFN-gamma neutralizing antibody. These results suggest that depending on the level, cytokine production results in the control of replication of the parasite in experimental Chagas' disease.
Collapse
Affiliation(s)
- C A Garcia
- Department of Microbiology and Immunology, University of Campinas--UNICAMP, SP, Brazil
| | | | | | | |
Collapse
|
19
|
Krautz GM, Kissinger JC, Krettli AU. The targets of the lytic antibody response against Trypanosoma cruzi. PARASITOLOGY TODAY (PERSONAL ED.) 2000; 16:31-4. [PMID: 10637586 DOI: 10.1016/s0169-4758(99)01581-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trypanosoma cruzi trypomastigotes, but not epimastigotes, are normally resistant to the lytic effects of complement from vertebrate hosts susceptible to infection. This resistance facilitates parasite survival and infectivity. During the course of chronic infections, however, the vertebrate hosts produce antibodies that render the trypomastigotes sensitive to lysis, primarily via the alternative complement cascade and amplified by the classical pathway. Here, Greice Krautz, Jessica Kissinger and Antoniana Krettli summarize research on lytic antibodies, and on their respective target(s) on the T. cruzi surface. These targets are useful in tests aimed at the diagnosis of chronic Chagas disease for control of cure after specific treatment and for vaccine development.
Collapse
Affiliation(s)
- G M Krautz
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | | | | |
Collapse
|
20
|
Da Silva AC, Espinoza AG, Taibi A, Ouaissi A, Minoprio P. A 24,000 MW Trypanosoma cruzi antigen is a B-cell activator. Immunol Suppl 1998; 94:189-96. [PMID: 9741340 PMCID: PMC1364204 DOI: 10.1046/j.1365-2567.1998.00498.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trypanosoma cruzi, the causative agent of Chagas' disease, is a protozoan parasite that infects humans and other mammals in Central and Latin America. Several alterations of the immune response after infection have been described, such as severe immunosuppression of both cellular and humoral responses and massive polyclonal B- and T-cell activation, including the expansion of self-reactive clones. We have investigated the effects of the intraperitoneal injection of a recombinant 24,000 MW T. cruzi-specific antigen (rTc24) on the immune response of normal and deficient strains of mice. We analysed the in vivo and ex vivo levels of lymphocyte activation and the proliferative responses to rTc24 by determining the expression of CD69 activation marker and the levels of thymidine incorporation by spleen cells. The numbers of antibody-producing cells were determined by ELISPOT and the levels of immunoglobulin in the sera by isotype-specific enzyme-linked immunosorbent assay. We observed an increased [3H]thymidine ([3H]TdR) incorporation by spleen cells after rTc24 stimulation in vivo and in vitro. This proliferative activity induced by rTc24 was independent of the mouse strain used in the experiments (including C3H/HeJ mice) and ruled out the possibility that rTc24 preparations were contaminated by lipopolysaccharide. The injection of rTc24 protein induced preferentially the activation of B cells, as determined by the increased expression of CD69 molecules on IgM+ spleen cells. Considerable increases of IgM-secreting B cells were determined in both athymic and euthymic BALB/c mice. Mice that are deficient in B cells (BALB.Xid) responded to rTc24 but to a lesser extent. These increases in IgM B-cell numbers were accompanied by elevated levels of IgM immunoglobulins in the sera of injected animals. Our results suggest a role for rTc24 in B-cell activation.
Collapse
Affiliation(s)
- A C Da Silva
- Department of Immunology, Pasteur Institute, Paris, France
| | | | | | | | | |
Collapse
|
21
|
Fernandez-Gomez R, Esteban S, Gomez-Corvera R, Zoulika K, Ouaissi A. Trypanosoma cruzi: Tc52 Released Protein-Induced Increased Expression of Nitric Oxide Synthase and Nitric Oxide Production by Macrophages. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.7.3471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Trypanosoma cruzi target molecules that might regulate the host immune responses have not yet been fully identified. In the present study, we demonstrate that the parasite-released molecule (Tc52) was able to synergize with IFN-γ to stimulate nitric oxide production by macrophages. This synergistic effect was also observed at the level of inducible nitric oxide synthase gene expression. Furthermore, Tc52 was also shown to induce gene expression for IL-1α, IL-12, and IL-10. Moreover, the combination of Tc52 and IFN-γ down-regulates IL-1α and IL-10 gene expression, but not IL-12. Isotype profiles and Tc52 or anti-CD3-induced T cell proliferation were also analyzed, indicating that active immunization with Tc52 partially relieves the immunosuppression observed during the acute phase of the disease. Moreover, under conditions of experimental infection, the Tc52 appears immunologically silent, failing to elicit Ab response and lymphocyte proliferation during the initial acute phase infection. Following active immunization, Tc52 was capable of stimulating T cell proliferation and Ab production with a predominance of IgG1, IgG2a, IgG2b, IgG3, and to a lesser extent IgA. Taken together, these results demonstrate that T. cruzi Tc52-released Ag could be involved in the immunoregulatory processes. The immune response against Tc52 that appears late in the T. cruzi infection may play a role in the modulation of its biological function(s).
Collapse
Affiliation(s)
- Rodolfo Fernandez-Gomez
- *Facultad De Ciencias Quimicas Universidad Autonoma de Zacatecas, Cuauhtemoc, Guadalupe, Mexico
| | - Serra Esteban
- *Facultad De Ciencias Quimicas Universidad Autonoma de Zacatecas, Cuauhtemoc, Guadalupe, Mexico
| | - Rosalia Gomez-Corvera
- *Facultad De Ciencias Quimicas Universidad Autonoma de Zacatecas, Cuauhtemoc, Guadalupe, Mexico
| | | | - Ali Ouaissi
- ‡CJF INSERM N° 96-04 Approches moléculaires et Immunologisques de la Pathogénie des trypanosomatidae, Département santé, Centre ORSTOM de Montpellier, Montpellier, France
| |
Collapse
|