1
|
Miao Y, Zhao GL, Cheng S, Wang Z, Yang XL. Activation of retinal glial cells contributes to the degeneration of ganglion cells in experimental glaucoma. Prog Retin Eye Res 2023; 93:101169. [PMID: 36736070 DOI: 10.1016/j.preteyeres.2023.101169] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Elevation of intraocular pressure (IOP) is a major risk factor for neurodegeneration in glaucoma. Glial cells, which play an important role in normal functioning of retinal neurons, are well involved into retinal ganglion cell (RGC) degeneration in experimental glaucoma animal models generated by elevated IOP. In response to elevated IOP, mGluR I is first activated and Kir4.1 channels are subsequently inhibited, which leads to the activation of Müller cells. Müller cell activation is followed by a complex process, including proliferation, release of inflammatory and growth factors (gliosis). Gliosis is further regulated by several factors. Activated Müller cells contribute to RGC degeneration through generating glutamate receptor-mediated excitotoxicity, releasing cytotoxic factors and inducing microglia activation. Elevated IOP activates microglia, and following morphological and functional changes, these cells, as resident immune cells in the retina, show adaptive immune responses, including an enhanced release of pro-inflammatory factors (tumor neurosis factor-α, interleukins, etc.). These ATP and Toll-like receptor-mediated responses are further regulated by heat shock proteins, CD200R, chemokine receptors, and metabotropic purinergic receptors, may aggravate RGC loss. In the optic nerve head, astrogliosis is initiated and regulated by a complex reaction process, including purines, transmitters, chemokines, growth factors and cytokines, which contributes to RGC axon injury through releasing pro-inflammatory factors and changing extracellular matrix in glaucoma. The effects of activated glial cells on RGCs are further modified by the interplay among different types of glial cells. This review is concluded by presenting an in-depth discussion of possible research directions in this field in the future.
Collapse
Affiliation(s)
- Yanying Miao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Guo-Li Zhao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Xiong-Li Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Herrera E, Agudo-Barriuso M, Murcia-Belmonte V. Cranial Pair II: The Optic Nerves. Anat Rec (Hoboken) 2018; 302:428-445. [DOI: 10.1002/ar.23922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/19/2017] [Accepted: 05/14/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Eloísa Herrera
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH); Av. Santiago Ramón y Cajal, s/n., 03550 Sant Joan d'Alacant Alicante Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina; Universidad de Murcia, Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIB-Arrixaca); Murcia Spain
| | - Verónica Murcia-Belmonte
- Instituto de Neurociencias de Alicante (Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, CSIC-UMH); Av. Santiago Ramón y Cajal, s/n., 03550 Sant Joan d'Alacant Alicante Spain
| |
Collapse
|
3
|
Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 2015; 51:1-40. [PMID: 26113209 DOI: 10.1016/j.preteyeres.2015.06.003] [Citation(s) in RCA: 553] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023]
Abstract
The mammalian retina provides an excellent opportunity to study glia-neuron interactions and the interactions of glia with blood vessels. Three main types of glial cells are found in the mammalian retina that serve to maintain retinal homeostasis: astrocytes, Müller cells and resident microglia. Müller cells, astrocytes and microglia not only provide structural support but they are also involved in metabolism, the phagocytosis of neuronal debris, the release of certain transmitters and trophic factors and K(+) uptake. Astrocytes are mostly located in the nerve fibre layer and they accompany the blood vessels in the inner nuclear layer. Indeed, like Müller cells, astrocytic processes cover the blood vessels forming the retinal blood barrier and they fulfil a significant role in ion homeostasis. Among other activities, microglia can be stimulated to fulfil a macrophage function, as well as to interact with other glial cells and neurons by secreting growth factors. This review summarizes the main functional relationships between retinal glial cells and neurons, presenting a general picture of the retina recently modified based on experimental observations. The preferential involvement of the distinct glia cells in terms of the activity in the retina is discussed, for example, while Müller cells may serve as progenitors of retinal neurons, astrocytes and microglia are responsible for synaptic pruning. Since different types of glia participate together in certain activities in the retina, it is imperative to explore the order of redundancy and to explore the heterogeneity among these cells. Recent studies revealed the association of glia cell heterogeneity with specific functions. Finally, the neuroprotective effects of glia on photoreceptors and ganglion cells under normal and adverse conditions will also be explored.
Collapse
Affiliation(s)
- Elena Vecino
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - F David Rodriguez
- Department of Biochemistry and Molecular Biology, E-37007, University of Salamanca, Salamanca, Spain
| | - Noelia Ruzafa
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Xandra Pereiro
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Sansar C Sharma
- Department of Ophthalmology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA; IKERBASQUE, Basque Foundation for Science at Dept. Cell Biology and Histology, UPV/EHU, Spain
| |
Collapse
|
4
|
Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T. Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res 2014; 45:30-57. [PMID: 25476242 DOI: 10.1016/j.preteyeres.2014.11.004] [Citation(s) in RCA: 394] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
Resident microglial cells can be regarded as the immunological watchdogs of the brain and the retina. They are active sensors of their neuronal microenvironment and rapidly respond to various insults with a morphological and functional transformation into reactive phagocytes. There is strong evidence from animal models and in situ analyses of human tissue that microglial reactivity is a common hallmark of various retinal degenerative and inflammatory diseases. These include rare hereditary retinopathies such as retinitis pigmentosa and X-linked juvenile retinoschisis but also comprise more common multifactorial retinal diseases such as age-related macular degeneration, diabetic retinopathy, glaucoma, and uveitis as well as neurological disorders with ocular manifestation. In this review, we describe how microglial function is kept in balance under normal conditions by cross-talk with other retinal cells and summarize how microglia respond to different forms of retinal injury. In addition, we present the concept that microglia play a key role in local regulation of complement in the retina and specify aspects of microglial aging relevant for chronic inflammatory processes in the retina. We conclude that this resident immune cell of the retina cannot be simply regarded as bystander of disease but may instead be a potential therapeutic target to be modulated in the treatment of degenerative and inflammatory diseases of the retina.
Collapse
Affiliation(s)
- Marcus Karlstetter
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Rebecca Scholz
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jan M Provis
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany.
| |
Collapse
|
5
|
Huang TL, Huang SP, Chang CH, Lin KH, Sheu MM, Tsai RK. Factors influencing the retrograde labeling of retinal ganglion cells with fluorogold in an animal optic nerve crush model. Ophthalmic Res 2014; 51:173-8. [PMID: 24662310 DOI: 10.1159/000357736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 12/04/2013] [Indexed: 01/21/2023]
Abstract
PURPOSE To investigate whether different crush durations or a different fluorogold (FG) injection timing can affect the efficiency of FG retrograde labeling of retinal ganglion cells (RGCs) in the optic nerve (ON) crush model. METHODS We performed the ON crush in rats with a clip at different durations or a jewel forceps to compare the effects of different crush methods with FG staining. RGC density was compared between the FG injection 1 week before the sacrifice of the animals (group A) and the injection before the crush experiment (group B). Double staining with CD11b and FG in the retinal sections was conducted to investigate the relationship between the overcounting of RGCs and microglia. RESULTS The FG-stained particles were significantly decreased at the distal part of the crush site compared to the proximal site of the ON with a crush duration of over 30 s or when crushed with the jewel forceps. Two weeks after ON crush, the RGC count was higher both in the central and mid-peripheral retinas in group B. The percentage of CD11b-stained cells among the FG-stained cells in the RGC layer of retinas in group B was higher than that of group A (34% in group B vs. 4% in group A, p = 0.0001). Overcounting of RGC density in group B was due to additional microglia with FG engulfing. CONCLUSIONS Our results suggest that each laboratory should test its setting conditions to avoid factors influencing the RGC density measurement before conducting ON crush experiments.
Collapse
Affiliation(s)
- Tzu-Lun Huang
- Institute of Eye Research, Buddhist Tzu Chi General Hospital, Tzu Chi University, Hualien, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
6
|
Abbott CJ, Choe TE, Lusardi TA, Burgoyne CF, Wang L, Fortune B. Imaging axonal transport in the rat visual pathway. BIOMEDICAL OPTICS EXPRESS 2013; 4:364-386. [PMID: 23412846 PMCID: PMC3567722 DOI: 10.1364/boe.4.000364] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/10/2013] [Accepted: 01/28/2013] [Indexed: 06/01/2023]
Abstract
A technique was developed for assaying axonal transport in retinal ganglion cells using 2 µl injections of 1% cholera toxin b-subunit conjugated to AlexaFluor488 (CTB). In vivo retinal and post-mortem brain imaging by confocal scanning laser ophthalmoscopy and post-mortem microscopy were performed. The transport of CTB was sensitive to colchicine, which disrupts axonal microtubules. The bulk rates of transport were determined to be approximately 80-90 mm/day (anterograde) and 160 mm/day (retrograde). Results demonstrate that axonal transport of CTB can be monitored in vivo in the rodent anterior visual pathway, is dependent on intact microtubules, and occurs by active transport mechanisms.
Collapse
Affiliation(s)
- Carla J. Abbott
- Discoveries in Sight Research Laboratories, Devers Eye Institute, and
Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Tiffany E. Choe
- Discoveries in Sight Research Laboratories, Devers Eye Institute, and
Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Theresa A. Lusardi
- R.S. Dow Neurobiology Laboratories, Legacy Research Institute, Legacy
Health, Portland, OR 97232, USA
| | - Claude F. Burgoyne
- Discoveries in Sight Research Laboratories, Devers Eye Institute, and
Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Lin Wang
- Discoveries in Sight Research Laboratories, Devers Eye Institute, and
Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute, and
Legacy Research Institute, Legacy Health, Portland, OR 97232, USA
| |
Collapse
|
7
|
Chauhan BC, Stevens KT, Levesque JM, Nuschke AC, Sharpe GP, O'Leary N, Archibald ML, Wang X. Longitudinal in vivo imaging of retinal ganglion cells and retinal thickness changes following optic nerve injury in mice. PLoS One 2012; 7:e40352. [PMID: 22768284 PMCID: PMC3386976 DOI: 10.1371/journal.pone.0040352] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 06/07/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Retinal ganglion cells (RGCs) die in sight-threatening eye diseases. Imaging RGCs in humans is not currently possible and proof of principle in experimental models is fundamental for future development. Our objective was to quantify RGC density and retinal thickness following optic nerve transection in transgenic mice expressing cyan fluorescent protein (CFP) under control of the Thy1 promoter, expressed by RGCs and other neurons. METHODOLOGY/PRINCIPAL FINDINGS A modified confocal scanning laser ophthalmoscopy (CSLO)/spectral-domain optical coherence tomography (SD-OCT) camera was used to image and quantify CFP+ cells in mice from the B6.Cg-Tg(Thy1-CFP)23Jrs/J line. SD-OCT circle (1 B-scan), raster (37 B-scans) and radial (24 B-scans) scans of the retina were also obtained. CSLO was performed at baseline (n = 11) and 3 (n = 11), 5 (n = 4), 7 (n = 10), 10 (n = 6), 14 (n = 7) and 21 (n = 5) days post-transection, while SD-OCT was performed at baseline and 7, 14 and 35 days (n = 9) post-transection. Longitudinal change in CFP+ cell density and retinal thickness were computed. Compared to baseline, the mean (SD) percentage CFP+ cells remaining at 3, 5, 7, 10, 14 and 21 days post-transection was 86 (9)%, 63 (11)%, 45 (11)%, 31 (9)%, 20 (9)% and 8 (4)%, respectively. Compared to baseline, the mean (SD) retinal thickness at 7 days post-transection was 97 (3)%, 98 (2)% and 97 (4)% for the circle, raster and radial scans, respectively. The corresponding figures at 14 and 35 days post-transection were 96 (3)%, 97 (2)% and 95 (3)%; and 93 (3)%, 94 (3)% and 92 (3)%. CONCLUSIONS/SIGNIFICANCE Longitudinal imaging showed an exponential decline in CFP+ cell density and a small (≤8%) reduction in SD-OCT measured retinal thickness post-transection. SD-OCT is a promising tool for detecting structural changes in experimental optic neuropathy. These results represent an important step towards translation for clinical use.
Collapse
Affiliation(s)
- Balwantray C Chauhan
- Retina and Optic Nerve Research Laboratory, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Wohl SG, Schmeer CW, Friese T, Witte OW, Isenmann S. In situ dividing and phagocytosing retinal microglia express nestin, vimentin, and NG2 in vivo. PLoS One 2011; 6:e22408. [PMID: 21850226 PMCID: PMC3151247 DOI: 10.1371/journal.pone.0022408] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/21/2011] [Indexed: 11/18/2022] Open
Abstract
Background Following injury, microglia become activated with subsets expressing nestin as well as other neural markers. Moreover, cerebral microglia can give rise to neurons in vitro. In a previous study, we analysed the proliferation potential and nestin re-expression of retinal macroglial cells such as astrocytes and Müller cells after optic nerve (ON) lesion. However, we were unable to identify the majority of proliferative nestin+ cells. Thus, the present study evaluates expression of nestin and other neural markers in quiescent and proliferating microglia in naïve retina and following ON transection in adult rats in vivo. Methodology/Principal Findings For analysis of cell proliferation and cells fates, rats received BrdU injections. Microglia in retinal sections or isolated cells were characterized using immunofluorescence labeling with markers for microglia (e.g., Iba1, CD11b), cell proliferation, and neural cells (e.g., nestin, vimentin, NG2, GFAP, Doublecortin etc.). Cellular analyses were performed using confocal laser scanning microscopy. In the naïve adult rat retina, about 60% of resting ramified microglia expressed nestin. After ON transection, numbers of nestin+ microglia peaked to a maximum at 7 days, primarily due to in situ cell proliferation of exclusively nestin+ microglia. After 8 weeks, microglia numbers re-attained control levels, but 20% were still BrdU+ and nestin+, although no further local cell proliferation occurred. In addition, nestin+ microglia co-expressed vimentin and NG2, but not GFAP or neuronal markers. Fourteen days after injury and following retrograde labeling of retinal ganglion cells (RGCs) with Fluorogold (FG), nestin+NG2+ microglia were positive for the dye indicating an active involvement of a proliferating cell population in phagocytosing apoptotic retinal neurons. Conclusions/Significance The current study provides evidence that in adult rat retina, a specific resident population of microglia expresses proteins of immature neural cells that are involved in injury-induced cell proliferation and phagocytosis while transdifferentiation was not observed.
Collapse
Affiliation(s)
- Stefanie G Wohl
- Hans Berger Clinic of Neurology, Jena University Hospital, Jena, Germany.
| | | | | | | | | |
Collapse
|
9
|
Modla S, Czymmek KJ. Correlative microscopy: a powerful tool for exploring neurological cells and tissues. Micron 2011; 42:773-92. [PMID: 21782457 DOI: 10.1016/j.micron.2011.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/30/2011] [Accepted: 07/01/2011] [Indexed: 11/24/2022]
Abstract
Imaging tools for exploring the neurological samples have seen a rapid transformation over the last decade. Approaches that allow clear and specific delineation of targeted tissues, individual neurons, and their cell-cell connections as well as subcellular constituents have been especially valuable. Considering the significant complexity and extent to which the nervous system interacts with every organ system in the body, one non-trivial challenge has been how to identify and target specific structures and pathologies by microscopy. To this end, correlative methods enable one to view the same exact structure of interest utilizing the capabilities of typically separate, but powerful, microscopy platforms. As such, correlative microscopy is well-positioned to address the three critical problems of identification, scale, and resolution inherent to neurological systems. Furthermore, the application of multiple imaging platforms to the study of singular biological events enables more detailed investigations of structure-function relationships to be conducted, greatly facilitating our understanding of relevant phenomenon. This comprehensive review provides an overview of methods for correlative microscopy, including histochemistry, transgenic markers, immunocytochemistry, photo-oxidation as well as various probes and tracers. An emphasis is placed on correlative light and electron microscopic strategies used to facilitate relocation of neurological structures. Correlative microscopy is an invaluable tool for neurological research, and we fully anticipate developments in automation of the process, and the increasing availability of genomic and transgenic tools will facilitate the adoption of correlative microscopy as the method of choice for many imaging experiments.
Collapse
Affiliation(s)
- Shannon Modla
- Delaware Biotechnology Institute, Bio-Imaging Center, 15 Innovation Way, Suite 117, Newark, DE 19711, USA.
| | | |
Collapse
|
10
|
Grieshaber P, Lagrèze WA, Noack C, Boehringer D, Biermann J. Staining of fluorogold-prelabeled retinal ganglion cells with calcein-AM: A new method for assessing cell vitality. J Neurosci Methods 2010; 192:233-9. [PMID: 20691729 DOI: 10.1016/j.jneumeth.2010.07.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 07/21/2010] [Accepted: 07/29/2010] [Indexed: 01/31/2023]
Abstract
PURPOSE The number of retinal ganglion cells (RGC) is often used as an outcome measure in neuroprotection. The gold standard for staining RGC is retrograde labeling, e.g. with fluorogold (FG). However, this method alone does not permit to differentiate between viable and dead cells, because dying cells only avoid being counted once they have undergone complete microglial-phagocytosis. To differentiate between viable and dead but still existent RGC, we additionally stained FG-labeled RGC with calcein-acetoxymethylester (CAM). METHODS The left optic nerves of rats were crushed 6 days after stereotactical injection of FG into both superior colliculi. The right eyes served as controls. Retinal whole mounts were prepared 2, 5, 8 or 11 days after optic nerve crush (ONC), and incubated for 30min in culture media containing 0.01% CAM. RGC densities were determined in defined areas at different eccentricities under a fluorescence microscope using the appropriate filters. Twice-positive RGC were counted after merging both filters. RESULTS The loss of RGC induced by ONC is identified earlier when these cells are detected by FG+CAM rather than by FG-labeling alone. The percentages of FG-positive RGC stained with CAM were 83% in controls, 68% on day 2, 48% on day 5, 26% on day 8, and 9% on day 11 after ONC. The decay rate of FG-prelabeled RGC appears accelerated and becomes more linear when only viable RGC positive for CAM are counted. CONCLUSIONS The staining of FG-prelabeled RGC with CAM permits the discrimination between dead and viable RGC in retinal whole mounts, which enables to quantify RGC degeneration earlier after injury than by using microglial-phagocytosis-dependant retrograde labeling alone.
Collapse
Affiliation(s)
- Philippe Grieshaber
- University Eye Hospital Freiburg, Killianstraße 5, 79106 Freiburg im Breisgau, Germany
| | | | | | | | | |
Collapse
|
11
|
Hao M, Flynn K, Nien-Shy C, Jester BE, Winkler M, Brown DJ, La Schiazza O, Bille J, Jester JV. In vivo non-linear optical (NLO) imaging in live rabbit eyes using the Heidelberg Two-Photon Laser Ophthalmoscope. Exp Eye Res 2010; 91:308-14. [PMID: 20558159 DOI: 10.1016/j.exer.2010.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 06/02/2010] [Accepted: 06/09/2010] [Indexed: 12/13/2022]
Abstract
Imaging of non-linear optical (NLO) signals generated from the eye using ultrafast pulsed lasers has been limited to the study of ex vivo tissues because of the use of conventional microscopes with slow scan speeds. The purpose of this study was to evaluate the ability of a novel, high scan rate ophthalmoscope to generate NLO signals using an attached femtosecond laser. NLO signals were generated and imaged in live, anesthetized albino rabbits using a newly designed Heidelberg Two-Photon Laser Ophthalmoscope with attached 25 mW fs laser having a central wavelength of 780 nm, pulsewidth of 75 fs, and a repetition rate of 50 MHz. To assess two-photon excited fluorescent (TPEF) signal generation, cultured rabbit corneal fibroblasts (RCF) were first labeled by Blue-green fluorescent FluoSpheres (1 mum diameter) and then cells were micro-injected into the central cornea. Clumps of RCF cells could be detected by both reflectance and TPEF imaging at 6 h after injection. By 6 days, RCF containing fluorescent microspheres confirmed by TPEF showed a more spread morphology and had migrated from the original injection site. Overall, this study demonstrates the potential of using NLO microscopy to sequentially detect TPEF signals from live, intact corneas. We conclude that further refinement of the Two-photon laser Ophthalmoscope should lead to the development of an important, new clinical instrument capable of detecting NLO signals from patient corneas.
Collapse
Affiliation(s)
- Ming Hao
- Shanghai Jiaotong University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Microglia-associated granule cell death in the normal adult dentate gyrus. Brain Struct Funct 2009; 214:25-35. [PMID: 19936784 PMCID: PMC2782120 DOI: 10.1007/s00429-009-0231-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 11/11/2009] [Indexed: 01/28/2023]
Abstract
Microglial cells are constantly monitoring the central nervous system for sick or dying cells and pathogens. Previous studies showed that the microglial cells in the dentate gyrus have a heterogeneous morphology with multipolar cells in the hilus and fusiform cells apposed to the granule cell layer both at the hilar and at the molecular layer borders. Although previous studies showed that the microglia in the dentate gyrus were not activated, the data in the present study show dying granule cells apposed by Iba1-immunolabeled microglial cell bodies and their processes both at hilar and at molecular layer borders of the granule cell layer. Initially, these Iba1-labeled microglial cells surround individual, intact granule cell bodies. When small openings in the plasma membrane of granule cells are observed, microglial cells are apposed to these openings. When larger openings in the plasma membrane occur at this site of apposition, the granule cells display watery perikaryal cytoplasm, watery nucleoplasm and damaged organelles. Such morphological features are characteristic of neuronal edema. The data also show that following this localized disintegration of the granule cell’s plasma membrane, the Iba1-labeled microglial cell body is found within the electron-lucent perikaryal cytoplasm of the granule cell, where it is adjacent to the granule cell’s nucleus which is deformed. We propose that granule cells are dying by a novel microglia-associated mechanism that involves lysis of their plasma membranes followed by neuronal edema and nuclear phagocytosis. Based on the morphological evidence, this type of cell death differs from either apoptosis or necrosis.
Collapse
|
13
|
The neuropeptide NAP provides neuroprotection against retinal ganglion cell damage after retinal ischemia and optic nerve crush. Graefes Arch Clin Exp Ophthalmol 2008; 246:1255-63. [PMID: 18414890 DOI: 10.1007/s00417-007-0746-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 11/21/2007] [Accepted: 11/26/2007] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND NAP, an 8-amino acid peptide (NAPVSIPQ=Asn-Ala-Pro-Val-Ser-Ile-Pro-Gln) derived from activity-dependent neuroprotective protein (ADNP), plays an important role in neuronal differentiation and the survival of neurons in different pathological situations. We already discovered that NAP increases the survival of retinal ganglion cells (RGC) in vitro, and supports neurite outgrowth in retinal explants at femtomolar concentrations. The aim of this study was to investigate the effects of NAP on RGC survival after transient retinal ischemia and optic nerve crush. METHODS RGC of male Wistar rats were labelled retrogradely with 6 l FluoroGold injected stereotactically into both superior colliculi. Seven days later, retinal ischemia was induced by elevating the intraocular pressure to 120 mm Hg for 60 minutes or by crushing one optic nerve for 10 s after a partial orbitotomy. NAP was either injected intraperitoneally in the concentration of 100 microg/kg [corrected] 1 day before, directly after, and on the first and the second days after damage, or intravitreally (0.05 or 0.5 microg/eye) [corrected] directly after the optic nerve crush. Controls received the same concentrations of a control peptide. Densities of surviving RGC and activated microglial cells (AMC) were quantified in a masked fashion 10 days after damage by counting FluoroGold-labelled cells. RESULTS After retinal ischemia, intraperitoneal injections of NAP increased the number of surviving RGC by 40% (p < 0.005) compared to the control group. After optic nerve crush, NAP raised the number of surviving RGC by 31% (p = 0.07) when injected intraperitoneally and by 54% (p < 0.05) when administered intravitreally. CONCLUSIONS NAP acts neuroprotectively in vivo after retinal ischemia and optic nerve crush, and may have potential in treating optic nerve diseases.
Collapse
|
14
|
Galoyan AA, Sarkissian DS, Chavushyan VA, Meliksetyan IB, Avakyan ZE, Sulkhanyan RM, Poghosyan MV, Avetisyan ZA. Studies of the protective effect of the hypothalamic peptide PRP-3 on spinal cord neurons at different periods after lateral hemisection. NEUROCHEM J+ 2007. [DOI: 10.1134/s1819712407020092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Abstract
Microglia cells are phagocytic sentinels in the CNS and in the retina required for neuronal homeostasis and innate immune defense. Accumulating experimental evidence suggests that chronic microglia activation is associated with various neurodegenerative diseases including retinal dystrophies. Endogenous triggers alert microglia cells rapidly in the degenerating retina, leading to local proliferation, migration, enhanced phagocytosis, and secretion of cytokines, chemokines, and neurotoxins. This amplified, immunological cascade and the loss of limiting control mechanisms may contribute significantly to retinal tissue damage and proapoptotic events. This review summarizes the developmental and immune surveillance functions of microglia in the healthy retina and discusses early signaling events and transcriptional networks of microglia activation in retinal degeneration. The characterization of activation pathways at the molecular level may lead to innovative, therapeutic options in degenerative retinal diseases based on a selective, pharmacological interference with the neurotoxic activities of microglia cells, without compromising their homeostastic functions.
Collapse
Affiliation(s)
- Thomas Langmann
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
16
|
MacLaren RE, Buch PK, Smith AJ, Balaggan KS, MacNeil A, Taylor JS, Osborne NN, Ali RR. CNTF gene transfer protects ganglion cells in rat retinae undergoing focal injury and branch vessel occlusion. Exp Eye Res 2006; 83:1118-27. [PMID: 16831422 DOI: 10.1016/j.exer.2006.05.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 04/20/2006] [Accepted: 05/26/2006] [Indexed: 11/29/2022]
Abstract
Ciliary neurotrophic factor (CNTF) has been shown to protect ganglion cells in a variety of acute ischaemia models. Here we assess the efficacy of local CNTF gene transfer in protecting retinal ganglion cells when there is focal ischaemia combined with interruption of axoplasmic flow. This dual injury may be more representative of the pathological mechanisms operating in acute retinal diseases, such as vascular events acting at the optic nerve head. Fourteen rats received an intravitreal injection of an adeno-associated viral (AAV) vector expressing a secretable form of CNTF into the right eye and a control vector into the left eye. Three weeks later, each rat underwent a symmetrical small vertical 2mm standardised retinal crush injury approximately 2mm temporal to the optic disc. The injury also occluded the temporal retinal arteriole so that the axon crush was combined with an acute retinal infarction visible on fundoscopy. Changes in the damaged sector were compared histologically four weeks after injury and ganglion cell survival was estimated by comparing cell counts on retinal flat-mounts immunostained with RT-97 antibody. This mode of injury led to a profound loss of both the inner nuclear and ganglion cell layers, but was limited to the lesioned sector. In AAV.CNTF-treated eyes approximately 12% of ganglion cells survived compared with approximately 2% in control eyes (p=0.01). The scotopic electroretinogram (ERG), however, was reduced to about 50% in AAV.CNTF-treated eyes, both before and after injury. We therefore show that CNTF gene transfer confers neuroprotection to ganglion cells undergoing an acute ischaemic injury combined with interruption of axoplasmic flow. This approach may be relevant to optic nerve trauma and a variety of retinal vascular diseases that lead to swelling of the optic nerve head, provided CNTF can be delivered in a way that does not significantly suppress retinal function.
Collapse
Affiliation(s)
- Robert E MacLaren
- Division of Molecular Therapy, Institute of Ophthalmology, University College London, London EC1V 9EL, UK.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Gimsa U, Peter SV, Lehmann K, Bechmann I, Nitsch R. Axonal damage induced by invading T cells in organotypic central nervous system tissue in vitro: involvement of microglial cells. Brain Pathol 2006; 10:365-77. [PMID: 10885655 PMCID: PMC8098590 DOI: 10.1111/j.1750-3639.2000.tb00268.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Neuroinflammation in the course of multiple sclerosis and experimental autoimmune encephalomyelitis results in demyelination and, recently demonstrated, axonal loss. Invading neuroantigen specific T cells are the crucial cellular elements in these processes. Here we demonstrate that invasion of activated T cells induces a massive microglial attack on myelinated axons in entorhinal-hippocampal slice cultures. Flow cytometry analysis of activation markers revealed that the activation state of invading MBP-specific T cells was significantly lower in comparison to PMA-activated T cells. Moreover, MBP-specific T cells showed a significantly lower secretion of IFN-gamma. Conversely, MBP-specific T cells displayed a significantly higher potential to trigger activation of microglial cells, i.e. upregulation of MHC class II and ICAM-1 expression, and, most importantly, microglial phagocytosis of pre-traced axons. Our data suggest that this was mediated via specific cellular interactions of T cells and microglial cells since IFN-gamma alone was not sufficient to induce axonal damage while such damage was apparent in response to TNF-alpha which is released by activated microglial cells. TNF-alpha secretion by both T cell populations was negligible. Thus, MBP-specific T cells which invade nervous tissue in the course of neuroinflammation are more effective in axon-damaging recruiting microglial cells than activated T cells of other specificities.
Collapse
Affiliation(s)
- U Gimsa
- Department of Cell and Neurobiology, Institute of Anatomy, Humboldt-University Clinic Charité, Berlin, Germany.
| | | | | | | | | |
Collapse
|
18
|
Heiduschka P, Thanos S. Cortisol promotes survival and regeneration of axotomised retinal ganglion cells and enhances effects of aurintricarboxylic acid. Graefes Arch Clin Exp Ophthalmol 2006; 244:1512-21. [PMID: 16568288 DOI: 10.1007/s00417-005-0164-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 08/04/2005] [Accepted: 09/20/2005] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Neuroprotection is essential for repair processes after a traumatic insult in the central nervous system. We have demonstrated previously significant neuroprotective properties of the anti-apoptotic drug aurintricarboxylic acid in the model of axotomised retinal ganglion cells. Glucocorticoids are widely used to treat injuries of the nervous system. Due to the anti-inflammatory and microglia-inhibiting properties of glucocorticoids, we studied the neuroprotective effects of intravitreally administered cortisol after an optic nerve cut. METHODS Ninety-eight adult Sprague-Dawley rats were used in this study. The optic nerve was cut intra-orbitally. Either vehicle or compound solution was injected intravitreally. Fluorescent dye was put onto the optic nerve stump to label retinal ganglion cells retrogradely. Retinal whole mounts were prepared 2 weeks after axotomy, and surviving retinal ganglion cells were counted. RESULTS Two weeks after axotomy, up to 50+/-7% of all retinal ganglion cells survived if cortisol was injected into the eye compared with 17+/-5% survival if only vehicle solution was injected. The neuroprotective effects of aurintricarboxylic acid (43+/-5% survival) could be further enhanced if combined with cortisol (up to 61+/-5% survival). Regeneration of cut retinal ganglion cell axons into a peripheral nerve graft could also be enhanced by an intravitreal injection of cortisol (169+/-42 regenerating retinal ganglion cells per mm2 vs. 73+/-12 cells per mm2 after vehicle injection). The increase was not as high as with aurintricarboxylic acid (192+/-40 cells per mm2), although more retinal ganglion cells survived with cortisol. This indicates that neuronal survival alone is not sufficient for subsequent axonal regeneration. Nevertheless, regeneration could be markedly increased if aurintricarboxylic acid and cortisol were combined (308+/-72 cells per mm2). CONCLUSIONS Whereas aurintricarboxylic acid seems to act directly on lesioned retinal ganglion cells, cortisol seems to act on the glial environment, as indicated by microglial cell morphology and enhanced glial fibrillary acidic protein expression. The results show that both neuroprotection and regeneration can be enhanced by the combination of two simple compounds acting on different sites.
Collapse
Affiliation(s)
- Peter Heiduschka
- Department of Experimental Ophthalmology, University of Münster Eye Hospital, Domagkstrasse 15, 48149 Münster, Germany.
| | | |
Collapse
|
19
|
Galoyan AA, Sarkissian JS, Chavushyan VA, Sulkhanyan RM, Avakyan ZE, Avetisyan ZA, Grigorian YK, Abrahamyan DO. Neuroprotective action of hypothalamic peptide PRP-1 at various time survivals following spinal cord hemisection. Neurochem Res 2005; 30:507-25. [PMID: 16076021 DOI: 10.1007/s11064-005-2686-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The purpose of the present study was to evaluate the neuroprotective action of proline-rich peptide-1 (PRP-1) produced by hypothalamic nuclei cells (nuclei paraventricularis and supraopticus) following lateral hemisection of spinal cord (SC). The dynamics of rehabilitative shifts were investigated at various periods of postoperative survival (1-2, 3, and 4 weeks), both with administration of PRP-1 and without it (control). We registered evoked spike flow activity in both interneurons and motoneurons of the same segment of transected and symmetric intact sides of SC and below it on the stimulation of mixed (n. ischiadicus), flexor (n. gastrocnemius) and extensor (n. peroneus communis) nerves. In the control group (administration of 0.9% saline as placebo), no significant decrease of post-stimulus activity of neurons was observed on the transected side by the 2nd week. This activity strongly decreased by week 3 postaxotomy, with some increase on the intact side, possibly of compensatory origin. No shifts occurred by the 4th week. Regardless of the period of administration, PRP-1 increased neuronal activity on the transected side, with the same activation levels on both SC sides. These data were confirmed by histochemical investigation. PRP-1 administration, both daily and every other day, for a period of 2-3 weeks led to prevention of scar formation and promotion of the re-growth of white matter nerve fibers in the damaged area. It also resulted in prevention of neuroglial elements degeneration and reduction in gliosis expression in the lesion supporting neuronal survival. Thus, PRP-1 achieved protection against "tissue stress", which was also confirmed by the registration of activity on the level of transection and restoration of the motor activity on the injured side. The obtained data propose the possibility of PRP-1 application in clinical practice for prevention of neurodegeneration of traumatic origin.
Collapse
Affiliation(s)
- Armen A Galoyan
- Buniatian Institute of Biochemistry NAS RA, Yerevan, Republic of Armenia.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Baptiste DC, Powell KJ, Jollimore CAB, Hamilton C, LeVatte TL, Archibald ML, Chauhan BC, Robertson GS, Kelly MEM. Effects of minocycline and tetracycline on retinal ganglion cell survival after axotomy. Neuroscience 2005; 134:575-82. [PMID: 15939545 DOI: 10.1016/j.neuroscience.2005.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 04/05/2005] [Accepted: 04/07/2005] [Indexed: 11/26/2022]
Abstract
In the present study, we compared the in vivo neuroprotective efficacy of intraperitoneally administered tetracycline and minocycline to enhance the survival of retinal ganglion cells (RGCs) following unilateral axotomy of the adult rat optic nerve. We also examined the effects of the tetracycline drugs on the activation of retinal microglia. RGCs in retinal whole-mounts were visualized by retrograde labeling with fluorogold. The presence of activated microglia was confirmed immunohistochemically using OX-42 monoclonal antibodies. Optic nerve axotomy produced RGC death and increased activation of microglia. No significant RGC loss was seen prior to 5 days and approximately 50% and 80-90% cell loss occurred at 7 and 14 days, respectively. Examination of the effects of tetracycline and minocycline on RGC survival at 7 days post-axotomy, revealed increased numbers of RGCs in minocycline-treated animals (75% of non-axotomized control) compared with vehicle-only (52% of control) and tetracycline-treated (58% of control) animals. The densities of RGCs (RGCs/mm2+/-S.D.) for control, vehicle-, tetracycline- and minocycline-treated axotomized animals were 1996+/-81, 1029+/-186, 1158+/-190 and 1497+/-312, respectively. The neuroprotective effect of minocycline seen at 7 days was transient, since RGCs present in minocycline-treated animals at 14 days post-axotomy (281+/-43, 14% of control) were not significantly different to vehicle-treated animals (225+/-47, 11% of control). OX-42 staining of activated retinal microglia was reduced in tetracycline- and minocycline-treated axotomized animals compared with axotomized animals receiving vehicle-only. These results demonstrate that systemic administration of the second-generation tetracycline derivative, minocycline, delays the death of axotomized RGCs by a mechanism that may be associated with inhibition of microglia activation. The neuroprotective efficacy of minocycline following optic nerve axotomy was superior to that of tetracycline.
Collapse
Affiliation(s)
- D C Baptiste
- Laboratory for Retina and Optic Nerve Research, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schuetz E, Thanos S. Neuro-glial interactions in the adult rat retina after reaxotomy of ganglion cells: examination of neuron survival and phagocytic microglia using fluorescent tracers. Brain Res Bull 2004; 62:391-6. [PMID: 15168904 DOI: 10.1016/j.brainresbull.2003.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2003] [Revised: 09/19/2003] [Accepted: 10/28/2003] [Indexed: 01/05/2023]
Abstract
Retinal ganglion cells (RGCs) regenerating through peripheral nerve grafts show enhanced survival after further axonal injury for at least 4 weeks [Restor. Neurol. Neurosci. 21 (2003) 11]. Here, we examined the survival of the neurons and their microglial phagocytosis in dependence of the site of reaxotomy. Therefore, the optic nerve in adult rats was transected at different distances from the eye cup and replaced with an autologous piece of sciatic nerve. After 14 days of axonal growth, the regenerated neurites were reaxotomized either within the remaining optic stump or within the graft and their cell bodies were retrogradely labeled. Reaxotomy of regenerated ganglion cells within the remaining optic nerve resulted in reduced (but not significant) ganglion cell survival and significant microglial phagocytosis in contrast to reaxotomy within the peripheral nerve graft. Furthermore, phagocytosis-dependent labeling using two different fluorescent tracers revealed that the same microglial cell can phagocytose further dying ganglion cells within 14 days after the first activation. The results suggest that the intrasciatic segments of axons receive some trophic support that is retrogradely transported and required to limit the microglial activation. The microglial capability to phagocytose dying neurons several fold emphasizes their function in permanent scavenging within the retina.
Collapse
Affiliation(s)
- Erik Schuetz
- Department of Experimental Ophthalmology, University Eye Hospital Münster, Domagkstrasse 15, 48149 Münster, Germany
| | | |
Collapse
|
22
|
Cheung ZH, Chan YM, Siu FKW, Yip HK, Wu W, Leung MCP, So KF. Regulation of caspase activation in axotomized retinal ganglion cells. Mol Cell Neurosci 2004; 25:383-93. [PMID: 15033167 DOI: 10.1016/j.mcn.2003.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2002] [Revised: 10/22/2003] [Accepted: 11/05/2003] [Indexed: 12/21/2022] Open
Abstract
Transection of the optic nerve initiates massive death of retinal ganglion cells (RGCs). Interestingly, despite the severity of the injury, RGC loss was not observed until several days after axotomy. The mechanisms responsible for this initial lack of RGC death remained unknown. In the current study, immunohistochemical analysis revealed that caspases-3 and -9 activation in the RGCs were not detected until day 3 post-axotomy, coinciding with the onset of axotomy-induced RGC loss. Interestingly, elevated Akt phosphorylation was observed in axotomized retinas during the absence of caspase activation. Inhibiting the increase in Akt phosphorylation by intravitreal injection of wortmannin and LY294002, inhibitors of PI3K, resulted in premature nuclear fragmentation, caspases-3 and -9 activation in the ganglion cell layer. Our findings thus indicate that the PI3K/Akt pathway may serve as an endogenous regulator of caspase activation in axotomized RGCs, thereby, contributing to the late onset of RGC death following axotomy.
Collapse
Affiliation(s)
- Zelda H Cheung
- Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Thanos S, Indorf L, Naskar R. In vivo FM: using conventional fluorescence microscopy to monitor retinal neuronal death in vivo. Trends Neurosci 2002; 25:441-4. [PMID: 12183199 DOI: 10.1016/s0166-2236(02)02246-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Post-traumatic death of mature retinal neurons occurs in glaucoma and after optic nerve injury. The death is a dynamic process that can be fully analyzed with methods that monitor changes over time. We have coupled the development of retrogradely transportable fluorescent dyes with modification of conventional epifluorescence microscopy to manipulate and visualize rat retinal neurons in vivo. The method is a relatively new concept and has potential for the monitoring of retinal conditions, such as glaucoma or optic nerve transection, and for evaluation of neuroprotective strategies in the near future.
Collapse
Affiliation(s)
- Solon Thanos
- Dept of Experimental Ophthalmology, University Eye Hospital Münster, Domagkstrasse 15, D-48149 Münster, Germany.
| | | | | |
Collapse
|
24
|
Bcl-2 overexpression does not enhance in vivo axonal regeneration of retinal ganglion cells after peripheral nerve transplantation in adult mice. J Neurosci 2002. [PMID: 12040054 DOI: 10.1523/jneurosci.22-11-04468.2002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Optic nerve (ON) injury in adult mammals causes retinal ganglion cell (RGC) death and subsequent visual loss. Recovery of vision requires both rescuing axotomized RGCs and inducing their axonal regeneration. Axotomized RGCs are significantly rescued by overexpression of bcl-2, an anti-apoptotic gene. However, whether bcl-2 affects axonal regeneration is controversial. In neonatal bcl-2 transgenic mice (bcl-2 mice), optic tract regeneration after tectal lesion was promoted (Chen et al., 1997), whereas ON regeneration after ON crush was not (Lodovichi et al., 2001). These conflicting results may be attributable to different environments between tectum and ON. We tested here whether bcl-2 overexpression enhances in vivo RGC axonal regeneration in adult mice through a permissive environment in the peripheral nerve (PN) graft. Four weeks after PN transplantation to the proximal ON stump, we assessed the number of surviving and regenerating RGCs by retrograde labeling. Although the survival rate in bcl-2 mice was significantly enhanced compared with that in wild-type (wt) mice, the regeneration rate was not enhanced. In both bcl-2 and wt mice, RT97 immunostaining of the PN-grafted retinas revealed some RGC axons regrowing intraretinally but repulsed at the optic disk. To circumvent this repulsive barrier, we directly transplanted the PN graft to the partially injured retina and compared regeneration rates between these mice. Here again the regeneration rate in bcl-2 mice did not exceed that in wt mice. These findings indicate that bcl-2 overexpression enhances survival but not axonal regeneration of adult RGCs even within a permissive environment.
Collapse
|
25
|
Bechmann I, Priller J, Kovac A, Böntert M, Wehner T, Klett FF, Bohsung J, Stuschke M, Dirnagl U, Nitsch R. Immune surveillance of mouse brain perivascular spaces by blood-borne macrophages. Eur J Neurosci 2001; 14:1651-8. [PMID: 11860459 DOI: 10.1046/j.0953-816x.2001.01793.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Virchow-Robin's perivascular spaces lie between the basement membrane around pericytes and the basement membrane at the surface of the glia limitans of the brain vessels. They are directly connected to the subpial space and harbour a population of cells distinct from pericytes, perivascular microglia and other cells within perivascular spaces (e.g. T cells and mast cells) in their ability to quickly phagocytose particles from the cerebrospinal fluid (CSF). Morphology, function, and cell surface proteins of these perivascular cells suggest an origin from the monocyte/macrophage lineage. It is currently unclear to what extent these brain perivascular cells represent a resident population of histiocytes or undergo continuous supplementation from blood monocytes. Using transplants of green-fluorescent-protein (GFP)-transfected bone marrow cells, we therefore investigated the replacement of perivascular cells by blood-borne macrophages in adult mice. GFP-positive cells in the perivascular spaces were found as early as 2 weeks post transplantation. The substitution of host perivascular cells by donor-derived macrophages was then evaluated using immunocytochemistry and intraventricular injection of hydrophilic rhodamine-fluorescent tracers. Such tracers diffuse along perivascular spaces and are subsequently phagocytosed by perivascular cells leading to stable phagocytosis-dependent labelling. Thus, the population of newly immigrated macrophages could be related to the total number of perivascular macrophages. This approach revealed a continuous increase of donor-derived perivascular cells. At 14 weeks post transplantation, all perivascular cells were donor-derived. These data show that brain perivascular cells are a population of migratory macrophages and not resident histiocytes.
Collapse
Affiliation(s)
- I Bechmann
- Department of Cell and Neurobiology, Institute of Anatomy, Humboldt-University Hospital Charité, Schumannstrasse 20/21, D-10098 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Understanding the interaction of the cerebral cortex and cerebellum requires knowledge of the highly complex spatial characteristics of cerebro-cerebellar signal transfer. Cerebro-pontine fibers from one neocortical site terminate in several sharply demarcated patches across large parts of the pontine nuclei (PN), and fibers from different neocortical areas terminate in the same pontine region. To determine whether projections from segregated neocortical sites overlap in the PN, we studied double anterograde tracing of cerebro-pontine terminals from large parts of rat neocortex. In none of these experiments, including double injection into two functionally related areas, were we able to demonstrate overlapping patches, although close spatial relationships were always detected. This non-overlapping distribution is consistent with a compartmentalized organization of the cerebro-pontine projection and may be the basis of the fractured type of maps found in the cerebellar granular layer. The critical distance between two sites on the neocortical surface that project to non-overlapping patches in the PN was found to be 600 microm, by using double injection within the whisker representation of the primary somatosensory area. This matches the diameter of dendritic trees of layer 5 projection neurons, indicating that non-overlapping populations of neocortical projection neurons possess non-overlapping patches of pontine terminals. Estimations based on this critical distance and the pontine volume anterogradely labeled by one injection site indicate that the size of the PN may be well suited to accommodate a complete set of non-overlapping pontine patches from all possible neocortical sites.
Collapse
Affiliation(s)
- C Schwarz
- Abteilung Kognitive Neurologie, Neurologische Universitätsklinik Tübingen, 72076 Tübingen, Germany.
| | | |
Collapse
|
27
|
Marín G, Henny P, Letelier JC, Sentis E, Karten H, Mrosko B, Mpodozis J. A simple method to microinject solid neural tracers into deep structures of the brain. J Neurosci Methods 2001; 106:121-9. [PMID: 11325431 DOI: 10.1016/s0165-0270(01)00332-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have developed an instrument to perform microinjections of solid neural tracers into deep structures of the brain. The instrument consists of a thin hypodermic needle equipped with a movable internal rod, which is connected to a pressure chamber. When a pressure pulse is applied to the chamber, the rod moves forward and back inside the needle, pushing out a solid load previously packed inside the needle tip. By attaching a microelectrode to the instrument, it is also possible to have electrophysiological control of the injection placement. To test the instrument, we microinjected DiI and rhodamine crystals into selected structures of the visual system of pigeons. The results show small, well-defined injection sites, accurately located in the desired targets, together with well-developed anterogade and retrograde transport, selectively originated from the injection sites. This method extends the usage of solid tracers to most structures in the brain and may, in certain cases, be more advantageous than the conventional method of injecting tracer solutions.
Collapse
Affiliation(s)
- G Marín
- Departamento de Biología, Universidad de Chile, Casilla 653, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
28
|
Bechmann I, Peter S, Beyer M, Gimsa U, Nitsch R. Presence of B‐7.2 (CD86) and lack of B7‐1 (CD80) on myelin‐phagocytosing MHC‐II positive rat microglia are associated with nondestructive immunity in vivo. FASEB J 2001. [DOI: 10.1096/fsb2fj000563fje] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ingo Bechmann
- Institute of Anatomy, Department of Cell and Neurobiology Humboldt‐University Hospital Charité 10098 Berlin Germany
| | - Susanne Peter
- Institute of Anatomy, Department of Cell and Neurobiology Humboldt‐University Hospital Charité 10098 Berlin Germany
| | - Martin Beyer
- Clinic of Neurology, Department of Clinical Neuroimmunology Humboldt‐University Hospital Charité 10098 Berlin Germany
| | - Ulrike Gimsa
- Clinic of Neurology, Department of Clinical Neuroimmunology Humboldt‐University Hospital Charité 10098 Berlin Germany
| | - Robert Nitsch
- Institute of Anatomy, Department of Cell and Neurobiology Humboldt‐University Hospital Charité 10098 Berlin Germany
| |
Collapse
|
29
|
Bechmann I, Kwidzinski E, Kovac AD, Simbürger E, Horvath T, Gimsa U, Dirnagl U, Priller J, Nitsch R. Turnover of rat brain perivascular cells. Exp Neurol 2001; 168:242-9. [PMID: 11259112 DOI: 10.1006/exnr.2000.7618] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain perivascular spaces harbor a population of cells which exhibit high phagocytic capacity. Therefore, these cells can be labeled by intraventricular injection of tracers. Such perivascular cells at the interface between blood and brain are believed to belong to the monocyte/macrophage lineage and to be involved in antigen presentation. Currently, it is unclear whether these cells undergo a continuous turnover by entering and leaving the bloodstream. Using bone-marrow-chimeric animals, migration of donor macrophages into brain perivascular spaces has been reported. On the other hand, following intracerebral injection of india ink into nontransplanted animals, ink-labeled perivascular cells were still found 2 years after injection, suggesting a high stability of this cell pool. Thus, the turnover of perivascular cells observed in chimeras might be a result of bone marrow transplantation rather than a physiological occurrence. To address this issue, we monitored de novo invasion of macrophages into perivascular spaces of apparently healthy adult rats by applying techniques other than bone marrow transplantation, (i) consecutive injections of different tracers and (ii) ex vivo isolation of macrophages from the blood, cell labeling, and reinjection into the same animal to avoid MHC mismatch. Both approaches revealed vivid de novo invasion of macrophages into perivascular spaces, but not into brain parenchyma, rendering untenable the concept of perivascular cells forming a stable population of macrophages in the brain. Thus, brain perivascular spaces are under permanent immune surveillance of blood borne macrophages in normal adult rats.
Collapse
Affiliation(s)
- I Bechmann
- Institute of Anatomy, Humboldt-University Hospital Charité, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mertsch K, Hanisch UK, Kettenmann H, Schnitzer J. Characterization of microglial cells and their response to stimulation in an organotypic retinal culture system. J Comp Neurol 2001. [DOI: 10.1002/1096-9861(20010305)431:2<217::aid-cne1066>3.0.co;2-t] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Thanos S, Fischer D, Pavlidis M, Heiduschka P, Bodeutsch N. Glioanatomy assessed by cell-cell interactions and phagocytotic labelling. J Neurosci Methods 2000; 103:39-50. [PMID: 11074094 DOI: 10.1016/s0165-0270(00)00294-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the last three decades of research in neuroscience, fluorescent probes have gone from technical tools in the studies of physicochemical reactions, to being versatile tools in developmental neurobiology, neuroanatomy, angiography, neuromorphology, connectivity, cell death and even photodynamic therapy. Fluorescent dyes belong to heterogeneous groups of substances, but the feature to emit light of a certain wavelength depends on the energy status of the corresponding chemical bond. Therefore, light emission can range from the blue to the infrared spectrum, thus allowing multiple stains of the same cell, or event. The heterogeneity in their structure allows application of some fluorescent dyes for anterograde long-tract labelling, whereas others can be used for retrograde tracing. Lipophilic dyes are suitable for intramembraneous diffusion along cell membranes post-mortem, whereas hydrophilic stains seem more suitable for genealogic cell studies over several cell divisions. In the same time, less attention has been paid by most researchers to the use of fluorescent dyes to monitor neuroglial interactions and glioanatomy in the healthy and diseased brain. Studies of cell-cell-interactions during apoptosis can now be carried out with sequestration and subsequent phagocytosis of intracellular dyes. The present review focuses on recent developments that include the use of fluorescent probes. These probes make it possible to transneuronally assess functions of glial cells during programmed cell death, or induced degeneration. The high variety of available dyes, and their particular accumulation within subcellular compartments, is promising to shed light on some glial cell geometry and functions. The lessons obtained from the vast number of studies in neurons are of increasing importance for cells too, as their functions are not directly accessible. In short, some glial-glial and neuroglial negotiations will be analysed in near future by developing new, or by modifying existing fluorescent probes.
Collapse
Affiliation(s)
- S Thanos
- Department of Experimental Ophthalmology, Medical School, University of Muenster, Domagkstrasse 15, D-48149, Muenster, Germany.
| | | | | | | | | |
Collapse
|
32
|
Mey J, Thanos S. Development of the visual system of the chick. I. Cell differentiation and histogenesis. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 32:343-79. [PMID: 10760548 DOI: 10.1016/s0165-0173(99)00022-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This review summarizes present knowledge on the embryonic development of the avian visual projections, based on the domestic chick as a model system. The reductionist goal to understand formation and function of complex neuroanatomical systems on a causal level requires a synthesis of classic developmental biology with recent advances on the molecular mechanisms of cell differentiation and histogenesis. It is the purpose of this article. We are discussing the processes underlying patterning of the anterior neural tube, when the retina and optic tectum are specified and their axial polarity is determined. Then the development of these structures is described from the molecular to the anatomical level. Following sections deal with the establishment of secondary visual connections, and the developmental interactions between compartments of the retinotectal system. Using this latter pathway, from the retina to the optic tectum, many investigations aimed at mechanisms of axonal pathfinding and connectivity have accumulated a vast body of research, which will be covered by a following review.
Collapse
Affiliation(s)
- J Mey
- Institut für Biologie II, Rheinisch-Westfälische Technische Hochschule Aachen, Kopernikusstrasse 16, Aachen, Germany.
| | | |
Collapse
|
33
|
Heiduschka P, Thanos S. Aurintricarboxylic acid promotes survival and regeneration of axotomised retinal ganglion cells in vivo. Neuropharmacology 2000; 39:889-902. [PMID: 10699455 DOI: 10.1016/s0028-3908(99)00245-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Aurintricarboxylic acid (ATA) has been used as an anti-apoptotic drug to counteract ischemic or cytotoxic injury to neurons. We investigated whether ATA has a neuroprotective effect on axotomized, adult retinal ganglion cells (RGC) as a model for traumatic neuronal cell death. A solution of ATA was injected into the vitreous body of rat eyes whose optic nerves had been cut. In controls, 14% of RGC survived 14 days after axotomy, whereas 44% of RGC survived after a single injection of ATA solution, and 59% survived when the injection was repeated after 7 days. A single injection of ATA 1 day after axotomy rescued 58% of RGC. However, injection of ATA 4 days after axotomy did not influence the survival of RGC, indicating that crucial, irreversible cascades of death are initiated prior to this point in time. The TUNEL technique was used to visualise apoptotic ganglion cells and revealed that 4 days after axotomy their number was significantly less in retinas whose optic nerves were axotomized and treated with ATA, than those of controls. As a consequence of neuroprotection, more RGC were recruited to regenerate into a peripheral nerve graft used to replace the cut optic nerve. In this paradigm, ATA-treated RGC extended significantly more axons within the graft than control RGC. This number could be increased by a second injection of ATA 7 days after axotomy. These data show that ATA is not only able to delay post-traumatic neuronal death but also enhances the extent of axonal regeneration in vivo.
Collapse
Affiliation(s)
- P Heiduschka
- Department of Experimental Ophthalmology, University of Münster, Domagkstrasse 15, D-48149, Münster, Germany.
| | | |
Collapse
|
34
|
Dybowski JA, Heacock AM, Agranoff BW. A vulnerable period of colchicine toxicity during goldfish optic nerve regeneration. Brain Res 1999; 842:62-72. [PMID: 10526096 DOI: 10.1016/s0006-8993(99)01810-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of intraocular (i.o.) administration of the alkaloid colchicine on visual recovery following axotomy of the goldfish optic nerve were investigated. Under the experimental conditions used, control goldfish recovered vision, measured behaviorally, within 5-7 weeks of retro-orbital optic nerve crush. Fish injected i. o. with 0.1 microg of colchicine within 3 days of optic nerve crush (post-crush; PC) recovered vision after some delay relative to control fish, while injection with colchicine between 7 and 14 days PC produced a much more profound inhibition of recovery of vision, in most cases a complete block for the duration of the study (98 days). Further evidence for a delayed susceptibility of the regenerating optic nerve to colchicine following crush was reflected in a suppression of neurite outgrowth normally seen in explanted retinal tissue taken from PC goldfish. In addition, retrograde transport of the fluorescent dye 4-(4-didecylaminostyryl)-N-methylpyridinium iodide from the optic tectum to the retina as a measure of axonal continuity revealed substantially less labeling following i.o. administration of colchicine 1 week PC when compared to retinas from fish receiving colchicine at the time of optic nerve crush. Histological sections of the retina showed no evidence of residual retinal damage resulting from the colchicine injections or from interactions of axotomy and the drug administration. These results indicate a period of increased vulnerability of the regenerating visual system to the toxic effects of i.o. administered colchicine, beginning 3-5 days PC, and remaining until regenerating optic nerve fibers have begun to reach the tectum. While colchicine has many known effects on nerve function, it is proposed that the delayed susceptibility to disruption of regeneration observed in these experiments is largely, if not entirely, attributable to a colchicine-induced accumulation of tubulin heterodimers, which are known to block microtubule assembly and to participate in a feedback inhibition of tubulin synthesis. Thus, it is during the maximal induction of tubulin synthesis and of microtubule formation which normally occurs several days following axotomy that colchicine has its greatest effect. The results suggest that colchicine may be especially neurotoxic during neural development and regeneration.
Collapse
Affiliation(s)
- J A Dybowski
- Toxicology Program, Department of Environmental and Industrial Health, University of Michigan, Ann Arbor, MI 48104-1687, USA
| | | | | |
Collapse
|
35
|
Genesis, neurotrophin responsiveness, and apoptosis of a pronounced direct connection between the two eyes of the chick embryo: a natural error or a meaningful developmental event? J Neurosci 1999. [PMID: 10234021 DOI: 10.1523/jneurosci.19-10-03900.1999] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Unilateral intraocular injections of either of two fluorescent carbocyanine dyes into the embryonic chick eye resulted in both retrograde staining of ganglion cells (GCs) in the eye contralateral to site of injection and anterograde labeling of axons whose cell bodies were located within the injected eye. This prominent retino-retinal projection formed by thousands of GCs having a nasal origin and temporal termination appeared at embryonic day 6 (E6), attained its maximum intensity at E13-E14, and gradually disappeared until E18. The axonal growth cones ended superficially and never penetrated deeper layers of the retina. Treatment of the projection with BDNF resulted in massive terminal branching of the axons within deeper layers of the target retina. Double injection into the eye and the isthmo-optic nucleus showed a concomitant ingrowth of axons in the contralateral retina. Individual GCs died between E9 and E13, but massive apoptotic cell death was mainly monitored at E14 and later. Disintegrated cells showed typical images of apoptosis. Because degenerating cells were prelabeled with the membranophilic fluorescent carbocyanine dye, their death allowed the concomitant visualization of phagocytosing cells, too. Radial Müller glia were the only class of cells observed to become phagocytotic between E9 and E16. These cells became replaced exclusively with microglial cells from E17 on. The results suggest that the topologically restricted retino-retinal projection may have some developmental significance rather than representing a massive erroneous projection. Most likely, the projection may serve as a "template" to guide centrifugal isthmo-optic axons into the retina.
Collapse
|
36
|
Dailey ME, Waite M. Confocal imaging of microglial cell dynamics in hippocampal slice cultures. Methods 1999; 18:222-30, 177. [PMID: 10356354 DOI: 10.1006/meth.1999.0775] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Methods are described for imaging the cellular dynamics of microglia in live mammalian brain slice cultures. Brain slices prepared from developing rat hippocampus are cultured for up to 2 weeks by the roller tube or static filter culture technique, stained with one or more fluorescent dyes, and imaged by scanning laser confocal microscopy. One of several cell type-specific or nonspecific fluorescent dyes can be used independently or in combination to label cells in live brain tissues. The fluorescently conjugated plant isolectin GSA-IB4 is useful for identifying microglia and for following their structure, movement, and proliferation. Live and dead neurons and glia can be distinguished using membrane-permeant and -impermeant fluorescent nucleic acid dyes. Nonspecific fluorescent lipids such as DiIC18 can be used as a vital stain to label populations of endocytic and phagocytic cells. Using multichannel confocal imaging, tissue slices that are single-, double-, or triple-labeled can be imaged in the living state in two or three spatial dimensions as well as in time. This provides a means for investigating the cell-cell interaction and dynamic behavior of microglia and other cell types in live brain tissues cultured under various physiological conditions.
Collapse
Affiliation(s)
- M E Dailey
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242-1324, USA.
| | | |
Collapse
|
37
|
Chaudhary P, Ahmed F, Quebada P, Sharma SC. Caspase inhibitors block the retinal ganglion cell death following optic nerve transection. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 67:36-45. [PMID: 10101230 DOI: 10.1016/s0169-328x(99)00032-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Retinal ganglion cells die by apoptosis following axotomy. The molecular mechanisms of the retinal ganglion cell death are not well understood. In the present study using RT-PCR and in situ hybridization techniques we demonstrated that levels of mRNA for Bcl-2 and Bcl-x decreased after axotomy. Bax levels remained high until 4 days after axotomy, decreased by day 7 and remained low up to day 10. CPP32 levels increased at day 7 and remained high after optic nerve cut. We studied whether inhibitors of CPP32/caspase would save the axotomy induced ganglion cell death. DEVD-CHO (Ac-Asp-Glu-Val-aspartic acid aldehyde) and DEVD-FMK (Z-Asp-Glu-Val-Asp-FMK), caspase inhibitors, when administered intraocularly at the time of optic nerve cut, at days 3 and 7 protect about 30-35% the ganglion cells from death. We further demonstrated that the number of reactive microglia decrease in the retina when the inhibitors were given as compared with retina where no inhibitors were given. The present data offers new avenues for studying the complex interactions between the retinal ganglion cell death and the activation of resident microglia/macrophages.
Collapse
Affiliation(s)
- P Chaudhary
- Department of Ophthalmology/Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
38
|
Abstract
Damage to the central nervous system (CNS) elicits the activation of both astrocytes and microglia. This review is focused on the principal features that characterize the activation of microglia after CNS injury. It provides a critical discussion of concepts regarding microglial biology that include the relationship between microglia and macrophages, as well as the role of microglia as immunocompetent cells of the CNS. Mechanistic and functional aspects of microgliosis are discussed primarily in the context of microglial neuronal interactions. The controversial issue of whether reactive microgliosis is a beneficial or a harmful process is addressed, and a resolution of this dilemma is offered by suggesting different interpretations of the term 'activated microglia' depending on its usage during in vivo or in vitro experimentation.
Collapse
Affiliation(s)
- W J Streit
- Department of Neuroscience, University of Florida College of Medicine and Brain Institute, Gainesville 32610, USA.
| | | | | |
Collapse
|
39
|
Härtig W, Seeger J, Naumann T, Brauer K, Brückner G. Selective in vivo fluorescence labelling of cholinergic neurons containing p75(NTR) in the rat basal forebrain. Brain Res 1998; 808:155-65. [PMID: 9767155 DOI: 10.1016/s0006-8993(98)00792-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The cholinergic system of the rat basal forebrain is used as a model for the homologous region in humans which is highly susceptible to neuropathological alterations as in Alzheimer's disease. Cholinergic cells in the basal forebrain express the low-affinity neurotrophin receptor p75NTR. This has been utilized for selective immunolesioning of cholinergic neurons after internalization of an immunotoxin composed of anti-p75NTR and the ribosome-inactivating toxin saporin. However, the goal of many studies may be not the lesion, but the identification of cholinergic cells after other experimentally induced alterations in the basal forebrain. Therefore, a novel cholinergic marker was prepared by conjugating the monoclonal antibody 192IgG directed against p75NTR with the bright red fluorochrome carbocyanine 3 (Cy3). Three days after intraventricular injection of Cy3-192IgG the fluorescence microscopic analysis revealed a pattern of Cy3-labelled cells matching the distribution of cholinergic neurons. Apparently the marker was internalized within complexes of p75NTR and Cy3-192IgG which were then retrogradely transported to the cholinergic perikarya of the basal forebrain. In addition to the even labelling of somata, a strong punctate-like Cy3-immunofluorescence was seen in structures resembling lysosomes. The specificity of the in vivo staining was proven by subsequent immunolabelling of choline acetyltransferase (ChAT) with green fluorescent Cy2-tagged secondary antibodies. In the medial septum, the diagonal band and the nucleus basalis only cholinergic neurons were marked by Cy3-192IgG. In parallel experiments, digoxigenylated 192IgG was not detectable within cholinergic basal forebrain neurons after intraventricular injection. Presumably, this modified antibody could not be internalized. On the other hand, digoxigenylated 192IgG was found to be an excellent immunocytochemical marker for p75NTR as shown by double labelling including highly sensitive mouse antibodies directed against ChAT. Based on the present findings, future applications of the apparently non-toxic Cy3-192IgG and other antibodies for fluorescent in vivo and in vitro labelling are discussed.
Collapse
Affiliation(s)
- W Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Department of Neurochemistry, Jahnallee 59, D-04109, Leipzig, Germany
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Abstract
Axon injury rapidly activates microglial and astroglial cells close to the axotomized neurons. Following motor axon injury, astrocytes upregulate within hour(s) the gap junction protein connexin-43, and within one day glial fibrillary acidic protein (GFAP). Concomitantly, microglial cells proliferate and migrate towards the axotomized neuron perikarya. Analogous responses occur in central termination territories of peripherally injured sensory ganglion cells. The activated microglia express a number of inflammatory and immune mediators. When neuron degeneration occurs, microglia act as phagocytes. This is uncommon after peripheral nerve injury in the adult mammal, however, and the functional implications of the glial cell responses in this situation are unclear. When central axons are injured, the glial cell responses around the affected neuron perikarya appears to be minimal or absent, unless neuron degeneration occurs. Microglia proliferate, and astrocytes upregulate GFAP along central axons undergoing anterograde, Wallerian, degeneration. Although microglia develop into phagocytes, they eliminate the disintegrating myelin very slowly, presumably because they fail to release molecules which facilitate phagocytosis. During later stages of Wallerian degeneration, oligodendrocytes express clusterin, a glycoprotein implicated in several conditions of cell degeneration. A hypothetical scheme for glial cell activation following axon injury is discussed, implying the injured neurons initially interact with adjacent astrocytes. Subsequently, neighbouring resting microglia are activated. These glial reactions are amplified by paracrine and autocrine mechanisms, in which cytokines appear to be important mediators. The specific functional properties of the activated glial cells will determine their influence on neuronal survival, axon regeneration, and synaptic plasticity. The control of the induction and progression of these responses are therefore likely to be critical for the outcome of, for example, neurotrauma, brain ischemia and chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- H Aldskogius
- Department of Neuroscience, Biomedical Center, Uppsala, Sweden.
| | | |
Collapse
|
42
|
Gatzinsky KP, Persson GH, Berthold CH. Removal of retrogradely transported material from rat lumbosacral alpha-motor axons by paranodal axon-Schwann cell networks. Glia 1997; 20:115-26. [PMID: 9179596 DOI: 10.1002/(sici)1098-1136(199706)20:2<115::aid-glia3>3.0.co;2-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of this study was to investigate the potential ability of Schwann cells to sequester axonally transported material via so called axon-Schwann cell networks (ASNs). These are entities consisting of sheets of Schwann cell adaxonal plasma membrane that invade the axon and segregate portions of axoplasm in paranodes of large myelinated mammalian nerve fibres. Rat hindlimb alpha-motor axons were examined in the L4-S1 ventral roots using light/fluorescence, confocal laser, and electron microscopy for detection of retrogradely transported red-fluorescent latex nanospheres taken up at a sciatic nerve crush, and intramuscularly injected horseradish peroxidase endocytosed by intact synaptic terminals. Survival times after tracer administration ranged from 27 hours to 4 weeks. During their retrograde transport toward the motor neuron perikarya, organelles carrying nanospheres/peroxidase accumulated at nodes of Ranvier, where they often appeared in close association with the paranodal myelin sheath. Serial section electron microscopy showed that many of the tracer-containing bodies were situated within ASN complexes, thereby being segregated from the main axon. Four weeks after nanosphere administration, several node-paranode regions still showed ASN-associated aggregations of spheres, some of which were situated in the adaxonal Schwann cell cytoplasm. The data establish the ability of Schwann cells to segregate material from motor axons with intact myelin sheaths, using the ASN as mediator. Taken together with our earlier observations that ASNs in alpha-motor axons are also rich in lysosomes, this process would allow a local elimination and secluded degradation of retrogradely transported foreign substances and degenerate organelles before reaching the motor neuron perikarya. In addition, ASNs may serve as sites for disposal of indigestable material.
Collapse
Affiliation(s)
- K P Gatzinsky
- Department of Anatomy and Cell Biology, University of Göteborg, Sweden
| | | | | |
Collapse
|
43
|
Schauwecker PE, Steward O. Genetic influences on cellular reactions to brain injury: activation of microglia in denervated neuropil in mice carrying a mutation (Wld(S)) that causes delayed Wallerian degeneration. J Comp Neurol 1997; 380:82-94. [PMID: 9073084 DOI: 10.1002/(sici)1096-9861(19970331)380:1<82::aid-cne6>3.0.co;2-p] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study examines the relationship between the appearance of degenerative changes in synaptic terminals and axons and the activation of microglia in denervated neuropil regions of normal mice of the C57BL/6 strain and mutant mice (Wld(S)), in which Wallerian degeneration is substantially delayed. The time course of degenerative changes in synaptic terminals and axons was assessed using selective silver staining. Microglial cells were identified by immunostaining for Mac-1, a monoclonal antibody to the CR3 complement receptor, and by histochemical staining for nucleoside diphosphatase (NDPase). Increased argyrophilia, indicative of degenerative changes, was evident as early as 1 day postlesion in normal mice, but was not seen until 6-8 days in mice with the Wld(S) mutation. Microglial activation in normal C57BL/6 mice was evident by 24 hours postlesion, as evidenced by increased immunostaining for Mac-1, increased histochemical staining for NDPase, and morphological changes indicative of an activated phenotype (short, thick processes). Quantitative evaluation of immunostaining for Mac-1 revealed that peak activation occurred between 2 and 6 days postlesion with a return to a quiescent phenotype by 12 days. In contrast, the microglial response was significantly delayed and prolonged in mice bearing the Wld(S) mutation. Activated microglia were not seen within the deafferented area until 6 to 8 days postlesion and peak activation occurred between 12 and 20 days postlesion. These data suggest that the response of microglia in denervated neuropil zones is triggered by the same types of degenerative changes that cause increased argyrophilia as detected by selective silver staining methods.
Collapse
Affiliation(s)
- P E Schauwecker
- Department of Neuroscience, University of Virginia Health Sciences Center, Charlottesville 22908, USA
| | | |
Collapse
|
44
|
Affiliation(s)
- B A Sabel
- Institute of Medical Psychology, Otto-v.-Guericke-University of Magdeburg, Germany.
| | | | | |
Collapse
|
45
|
Kacza J, Härtig W, Seeger J. Oxygen-enriched photoconversion of fluorescent dyes by means of a closed conversion chamber. J Neurosci Methods 1997; 71:225-32. [PMID: 9128160 DOI: 10.1016/s0165-0270(96)00150-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The goal of the present study was an improvement of the widely used photoconversion technique, which still represents the major approach to the ultrastructural analysis of tissue labelled with fluorescent dyes. Since free access of oxygen to the tissue is essential for the dye-dependent photooxidation of diaminobenzidine (DAB), we attempted to facilitate the process using a closed conversion chamber (CCC), which allows photoconversion in an atmosphere of pure oxygen. Fixed rat tissue samples, containing 4Di-10ASP labelled retinal ganglion cells and Cy3 stained cortical perineuronal nets, were choosen to test the applicability and efficiency of the proposed system. The results are compared to corresponding structures photoconverted without pure oxygen. As a result, the employment of the CCC helps saving up to 50% of time required to achieve a comparable degree of photoconversion. Electron microscopical inspection showed no differences between both approaches regarding the distribution of DAB reaction product. However, probably due to the reduced time of irradiation, the ultrastructural integrity of tissue sometimes appeared considerably less affected after photoconversion in the CCC. Additionally, the chamber allowed for safety measures in handling DAB, as the unintentional emission of the presumable carcinogenic substance was completely avoided.
Collapse
Affiliation(s)
- J Kacza
- Institute of Veterinary Anatomy, University of Leipzig, Germany
| | | | | |
Collapse
|
46
|
Sørensen JC, Dalmau I, Zimmer J, Finsen B. Microglial reactions to retrograde degeneration of tracer-identified thalamic neurons after frontal sensorimotor cortex lesions in adult rats. Exp Brain Res 1996; 112:203-12. [PMID: 8951389 DOI: 10.1007/bf00227639] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Thalamic neuronal degeneration after neocortical lesions involve both anterograde and retrograde components. This study deals with the thalamic microglial response after neocortical aspiration lesions, using fluorogold fluorescent prelabeling, to identify retrogradely degenerating thalamocortical neurons, combined with histochemical or immunohistochemical staining of microglial cells. Adult male Wistar rats were injected with the retrograde fluorescent tracer fluorogold, in the right sensorimotor cortex (forepaw area) in order to retrogradely label thalamic neurons projecting to this area. After 1 week, the fluorogold injection site was removed by aspiration, axotomizing at the same time the thalamic projection neurons now retrogradely labeled with fluorogold. After 3, 7, 14, and 28 days the animals were killed and processed for nucleoside diphosphatase histochemistry or complement type 3 receptor immuno-histochemistry and class I and II major histocompatibility complex immunohistochemistry using OX42, OX18, and OX6 antibodies. The histological analysis showed a prominent and progressive nucleoside diphosphatase-, OX42-, and OX6-positive microglial cell response in the ventrolateral, posterior, and ventrobasal thalamic nuclei with ongoing retrograde and anterograde neuronal degeneration. Initially the reactive microglia had a bushy morphology and were succeeded by ameboid microglia and microglial cluster cells as the reaction progressed. However, in the reticular thalamic nucleus, which suffered exclusively anterograde neuronal degeneration, a different picture was seen with only bushy microglia. The neurons undergoing retrograde degeneration in the ventrolateral, posterior, and ventrobasal thalamic nuclei were retrogradely labeled by the fluorogold tracer. Individual nucleoside diphosphatase-, OX42-, or OX6-positive microglial cells extended long cytoplasmic processes surrounding fluorogold-labeled neurons and had in some cases apparently phagocytized these. Several microglial cells were thus double-labeled with nucleoside diphosphatase or OX42 and fluorogold. In addition, small nucleoside diphosphatase-positive, fluorogold-labeled perivascular cells were observed in the neocortex near the fluorogold-injected and ablated neocortical areas and in the ipsilateral thalamus. This study demonstrates: (1) that the microglial response to thalamic degeneration after neocortical lesion is graded with a limited reaction to the well-known massive anterograde axonal degeneration and a more extended reaction to the axotomy-induced retrograde cell death; and (2) that also perivascular cells and possibly macrophages may contribute to this reaction, as seen by uptake of fluorogold from axotomized neurons in the degenerating thalamic nuclei.
Collapse
Affiliation(s)
- J C Sørensen
- Department of Neurobiology, Institute of Anatomy, University of Aarhus, Denmark
| | | | | | | |
Collapse
|
47
|
Abstract
Lysosomes play an important role for the maintenance of a normal internal milieu in the cell. In neurons lysosomes are abundant in the perikaryon and dendrites, but have been observed to a much lesser degree in the axon. A general opinion has therefore formed among biologists interested in the nervous system that axonal material destined for degradation has to be transported to the neuronal perikaryon. The lysosomal occurrence and distribution at the level of the axon have, however, not been investigated systematically. This review summarizes recent morphological data based on light, fluorescence, and electron microscopic observations in peripheral nerve fibres of cats and rats providing evidence that node-paranode regions mainly along the peripheral parts of alpha motor axons, where the axon cross-section area decreases to 10-25% of internodal values, can control the passage and participate in a lysosome-mediated degradation of axonally transported materials directed towards the neuronal perikaryon. An important role is played by the paranodal axon-Schwann cell networks, which are lysosome-rich entities whereby the Schwann cells can sequester material from the axoplasm of large myelinated peripheral nerve fibres. The networks also seem to serve as depots for axonal waste products. The degradative ability of node-paranode regions in alpha-motor axons could be of some significance for the protection of the motor neuron perikarya from being flooded with and perhaps injured by indigestible materials as well as potentially deleterious, exogenous substances imbibed by the axon terminals in the muscle. A similar degradative capacity may not be needed in nerve fibres with synaptic terminals in the CNS where the local environment is regulated by the blood-brain barrier.
Collapse
Affiliation(s)
- K P Gatzinsky
- Department of Anatomy and Cell Biology, University of Göteborg, Sweden
| |
Collapse
|
48
|
Wakabayashi T, Fukuda Y, Kosaka J. Monoclonal antibody C38 labels surviving retinal ganglion cells after peripheral nerve graft in axotomized rat retina. Brain Res 1996; 725:121-4. [PMID: 8828595 DOI: 10.1016/0006-8993(96)00302-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
C38 is a monoclonal antibody that labels retinal ganglion cells in both intact and axotomized rat retinas. We report here that C38 labeled retinal ganglion cells that survived after optic nerve section and peripheral nerve graft in rats. Furthermore, with combination of the retrograde labeling, we succeeded to distinguish surviving retinal ganglion cells without axonal regeneration from those with regenerating axon.
Collapse
Affiliation(s)
- T Wakabayashi
- Department of Physiology, Osaka University Medical School, Japan
| | | | | |
Collapse
|
49
|
Wakabayashi T, Fukuda Y, Kosaka J. Monoclonal antibody C38 recognizes retinal ganglion cells in cats and rats. Vision Res 1996; 36:1081-90. [PMID: 8762713 DOI: 10.1016/0042-6989(95)00210-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We developed monoclonal antibody C38 which specifically recognizes retinal ganglion cells (RGCs) in flatmount preparations of cat and rat retinas. We first induced immunological tolerance in Balb/c mice against axotomized rat retinas which lack most of the RGCs. Then the mice were immunized with intact rat retinas to produce antibodies against RGCs. Monoclonal antibody C38 appeared to be specific for cat RGCs based on immunoreactivities seen in flatmounts and vertical sections of the retina. In rats, we verified that over 90% of retrogradely labeled RGCs were immunoreactive for C38 antibody. In axotomized rat retinas, surviving RGCs were labeled with C38 without erroneous labeling of glial cells. The antigen that C38 recognized was 24 kDa in molecular weight and found in cerebrum, cerebellum, and spinal cord as well as retina. It is suggested that monoclonal antibody C38 is a useful label for RGCs.
Collapse
Affiliation(s)
- T Wakabayashi
- Department of Physiology, Osaka University Medical School, Japan
| | | | | |
Collapse
|
50
|
|