1
|
Zhang A, Lu L, Yang F, Luo T, Yang S, Yang P, Li X, Deng X, Qiu Y, Chen L, Long K, Pan D, Jin L, Li M, Chen L. Effects of miR-29c on proliferation and adipogenic differentiation of porcine bone marrow mesenchymal stromal cells. Adipocyte 2024; 13:2365211. [PMID: 38858810 PMCID: PMC11174058 DOI: 10.1080/21623945.2024.2365211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
microRNAs (miRNAs), a subclass of noncoding short RNAs, direct cells fate decisions that are important for cell proliferation and cell lineage decisions. Adipogenic differentiation contributes greatly to the development of white adipose tissue, involving of highly organized regulation by miRNAs. In the present study, we screened and identified 78 differently expressed miRNAs of porcine BMSCs during adipogenic differentiation. Of which, the role of miR-29c in regulating the proliferation and adipogenic differentiation was proved and detailed. Specifically, over-expression miR-29c inhibits the proliferation and adipogenic differentiation of BMSCs, which were reversed upon miR-29c inhibitor. Interference of IGF1 inhibits the proliferation and adipogenic differentiation of BMSCs. Mechanistically, miR-29c regulates the proliferation and adipogenic differentiation of BMSCs by targeting IGF1 and further regulating the MAPK pathway and the PI3K-AKT-mTOR pathway, respectively. In conclusion, we highlight the important role of miR-29c in regulating proliferation and adipogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Anjing Zhang
- Department of Pig Production, Chongqing Academy of Animal Science, Chongqing, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lu Lu
- Department of Pig Production, Chongqing Academy of Animal Science, Chongqing, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Fuxing Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tingting Luo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuqi Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Peidong Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xuemin Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yang Qiu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Litong Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dengke Pan
- Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Chen
- Department of Pig Production, Chongqing Academy of Animal Science, Chongqing, China
- Key Laboratory of Animal Resource Evaluation and Utilization (Pigs), Ministry of Agriculture and Rural Affairs, Chongqing, China
| |
Collapse
|
2
|
Takahi M, Taira R, Onozuka J, Sunamura H, Kondow A, Nakade K, Nakashima K, Sato I, Hayashi Y, Patra C, Ohnuma K. Xenograft of human pluripotent stem cell-derived cardiac lineage cells on zebrafish embryo heart. Biochem Biophys Res Commun 2023; 674:190-198. [PMID: 37532637 DOI: 10.1016/j.bbrc.2023.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/13/2023] [Indexed: 08/04/2023]
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) are a promising cell source for regenerative medicine and drug discovery. However, the use of animal models for studying human cardiomyocytes derived from hiPSCs in vivo is limited and challenging. Given the shared properties between humans and zebrafish, their ethical advantages over mammalian models, and their immature immune system that is rejection-free against xenografted human cells, zebrafish provide a suitable alternative model for xenograft studies. We microinjected fluorescence-labeled cardiac lineage cells derived from hiPSCs, specifically mesoderm or cardiac mesoderm cells, into the yolk and the area proximal to the outflow tract of the linear heart at 24 hours post-fertilization (hpf). The cells injected into the yolk survived and did not migrate to other tissues. In contrast, the cells injected contiguous with the outflow tract of the linear heart migrated into the pericardial cavity and heart. After 1 day post injection (1 dpi, 22-24 hpi), the injected cells migrated into the pericardial cavity and heart. Importantly, we observed heartbeat-like movements of some injected cells in the zebrafish heart after 1 dpi. These results suggested successful xenografting of hiPSC-derived cardiac lineage cells into the zebrafish embryo heart. Thus, we developed a valuable tool using zebrafish embryos as a model organism for investigating the molecular and cellular mechanisms involved in the grafting process. This is essential in developing cell transplantation-based cardiac therapeutics as well as for drug testing, notably contributing to advancements in the field of cardio-medicine.
Collapse
Affiliation(s)
- Mika Takahi
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| | - Riko Taira
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| | - Jo Onozuka
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| | - Haruka Sunamura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| | - Akiko Kondow
- Advanced Comprehensive Research Organization, Teikyo University, 2-21-1 Kaga, Itabashi-ku, Tokyo, 173-0003, Japan.
| | - Koji Nakade
- Gene Engineering Division, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Kenichi Nakashima
- Gene Engineering Division, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Iori Sato
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Yohei Hayashi
- iPS Cell Advanced Characterization and Development Team, BioResource Research Center, RIKEN, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan.
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, 411004, India.
| | - Kiyoshi Ohnuma
- Department of Science of Technology Innovation, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan; Department of Materials Science and Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.
| |
Collapse
|
3
|
Wu WK, Ukita R, Patel YJ, Cortelli M, Trinh VQ, Ziogas IA, Francois SA, Mentz M, Cardwell NL, Talackine JR, Grogan WM, Stokes JW, Lee YA, Kim J, Alexopoulos SP, Bacchetta M. Xenogeneic cross-circulation for physiological support and recovery of ex vivo human livers. Hepatology 2023; 78:820-834. [PMID: 36988383 PMCID: PMC10440302 DOI: 10.1097/hep.0000000000000357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 03/30/2023]
Abstract
BACKGROUND AND AIMS The scarcity of suitable donor livers highlights a continuing need for innovation to recover organs with reversible injuries in liver transplantation. APPROACH AND RESULTS Explanted human donor livers (n = 5) declined for transplantation were supported using xenogeneic cross-circulation of whole blood between livers and xeno-support swine. Livers and swine were assessed over 24 hours of xeno-support. Livers maintained normal global appearance, uniform perfusion, and preservation of histologic and subcellular architecture. Oxygen consumption increased by 75% ( p = 0.16). Lactate clearance increased from -0.4 ± 15.5% to 31.4 ± 19.0% ( p = 0.02). Blinded histopathologic assessment demonstrated improved injury scores at 24 hours compared with 12 hours. Vascular integrity and vasoconstrictive function were preserved. Bile volume and cholangiocellular viability markers improved for all livers. Biliary structural integrity was maintained. CONCLUSIONS Xenogeneic cross-circulation provided multisystem physiological regulation of ex vivo human livers that enabled functional rehabilitation, histopathologic recovery, and improvement of viability markers. We envision xenogeneic cross-circulation as a complementary technique to other organ-preservation technologies in the recovery of marginal donor livers or as a research tool in the development of advanced bioengineering and pharmacologic strategies for organ recovery and rehabilitation.
Collapse
Affiliation(s)
- Wei Kelly Wu
- Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rei Ukita
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yatrik J. Patel
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael Cortelli
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Vincent Q. Trinh
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ioannis A. Ziogas
- Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sean A. Francois
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Meredith Mentz
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nancy L. Cardwell
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer R. Talackine
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - William M. Grogan
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John W. Stokes
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Youngmin A. Lee
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Sophoclis P. Alexopoulos
- Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University; Nashville, Tennessee, USA
| |
Collapse
|
4
|
Wu WK, Stier MT, Stokes JW, Ukita R, Patel YJ, Cortelli M, Landstreet SR, Talackine JR, Cardwell NL, Simonds EM, Mentz M, Lowe C, Benson C, Demarest CT, Alexopoulos SP, Shaver CM, Bacchetta M. Immune characterization of a xenogeneic human lung cross-circulation support system. SCIENCE ADVANCES 2023; 9:eade7647. [PMID: 37000867 PMCID: PMC10065447 DOI: 10.1126/sciadv.ade7647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Improved approaches to expanding the pool of donor lungs suitable for transplantation are critically needed for the growing population with end-stage lung disease. Cross-circulation (XC) of whole blood between swine and explanted human lungs has previously been reported to enable the extracorporeal recovery of donor lungs that declined for transplantation due to acute, reversible injuries. However, immunologic interactions of this xenogeneic platform have not been characterized, thus limiting potential translational applications. Using flow cytometry and immunohistochemistry, we demonstrate that porcine immune cell and immunoglobulin infiltration occurs in this xenogeneic XC system, in the context of calcineurin-based immunosuppression and complement depletion. Despite this, xenogeneic XC supported the viability, tissue integrity, and physiologic improvement of human donor lungs over 24 hours of xeno-support. These findings provide targets for future immunomodulatory strategies to minimize immunologic interactions on this organ support biotechnology.
Collapse
Affiliation(s)
- Wei K. Wu
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew T. Stier
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John W. Stokes
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rei Ukita
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yatrik J. Patel
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Cortelli
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stuart R. Landstreet
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer R. Talackine
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy L. Cardwell
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth M. Simonds
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meredith Mentz
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cindy Lowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Clayne Benson
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Caitlin T. Demarest
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sophoclis P. Alexopoulos
- Department of Surgery, Division of Hepatobiliary Surgery and Liver Transplantation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ciara M. Shaver
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Corresponding author. (M.B.); (C.M.S.)
| | - Matthew Bacchetta
- Department of Cardiac Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Corresponding author. (M.B.); (C.M.S.)
| |
Collapse
|
5
|
Carbohydrate antigen microarray analysis of serum IgG and IgM antibodies before and after adult porcine islet xenotransplantation in cynomolgus macaques. PLoS One 2021; 16:e0253029. [PMID: 34138941 PMCID: PMC8211184 DOI: 10.1371/journal.pone.0253029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 11/19/2022] Open
Abstract
Understanding the anti-carbohydrate antibody response toward epitopes expressed on porcine cells, tissues, and organs is critical to advancing xenotransplantation toward clinical application. In this study, we determined IgM and IgG antibody specificities and relative concentrations in five cynomolgus monkeys at baseline and at intervals following intraportal xenotransplantation of adult porcine islets. This study utilized a carbohydrate antigen microarray that comprised more than 400 glycoconjugates, including historically reported α-Gal and non-α-Gal carbohydrate antigens with various modifications. The elicited anti-carbohydrate antibody responses were predominantly IgM compared to IgG in 4 out of 5 monkeys. Patterns of elicited antibody responses greater than 1.5 difference (log2 base units; 2.8-fold on a linear scale) from pre-serum to post-serum sampling specific for carbohydrate antigens were heterogeneous and recipient-specific. Increases in the elicited antibody response to α-Gal, Sda, GM2 antigens, or Lexis X antigen were found in individual monkeys. The novel carbohydrate structures Galβ1-4GlcNAcβ1-3Galβ1 and N-linked glycans with Manα1-6(GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ structure were common targets of elicited IgM antibodies. These results provide important insights into the carbohydrate epitopes that elicit antibodies following pig-to-monkey islet xenotransplantation and reveal possible targets for gene editing.
Collapse
|
6
|
Abstract
The growing shortage of available organs is a major problem in transplantology. Thus, new and alternative sources of organs need to be found. One promising solution could be xenotransplantation, i.e., the use of animal cells, tissues and organs. The domestic pig is the optimum donor for such transplants. However, xenogeneic transplantation from pigs to humans involves high immune incompatibility and a complex rejection process. The rapid development of genetic engineering techniques enables genome modifications in pigs that reduce the cross-species immune barrier.
Collapse
|
7
|
Byrne G, Ahmad-Villiers S, Du Z, McGregor C. B4GALNT2 and xenotransplantation: A newly appreciated xenogeneic antigen. Xenotransplantation 2018; 25:e12394. [PMID: 29604134 PMCID: PMC6158069 DOI: 10.1111/xen.12394] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 12/20/2022]
Abstract
Analysis of non‐Gal antibody induced after pig‐to‐baboon cardiac xenotransplantation identified the glycan produced by porcine beta‐1,4‐N‐acetyl‐galactosaminyltransferase 2 (B4GALNT2) as an immunogenic xenotransplantation antigen. The porcine B4GALNT2 enzyme is homologous to the human enzyme, which synthesizes the human SDa blood group antigen. Most humans produce low levels of anti‐SDa IgM which polyagglutinates red blood cells from rare individuals with high levels of SDa expression. The SDa glycan is also present on GM2 gangliosides. Clinical GM2 vaccination studies for melanoma patients suggest that a human antibody response to SDa can be induced. Expression of porcine B4GALNT2 in human HEK293 cells results in increased binding of anti‐SDa antibody and increased binding of Dolichos biflorus agglutinin (DBA), a lectin commonly used to detect SDa. In pigs, B4GALNT2 is expressed by vascular endothelial cells and endothelial cells from a wide variety of pig backgrounds stain with DBA, suggesting that porcine vascular expression of B4GALNT2 is not polymorphic. Mutations in B4GALNT2 have been engineered in mice and pigs. In both species, the B4GALNT2‐KO animals are apparently normal and no longer show evidence of SDa antigen expression. Pig tissues with a mutation in B4GALNT2, added to a background of alpha‐1,3‐galactosyltransferase deficient (GGTA1‐KO) and cytidine monophosphate‐N‐acetylneuraminic acid hydroxylase deficient (CMAH‐KO), show reduced antibody binding, confirming the presence of B4GALNT2‐dependent antibodies in both humans and non‐human primates. Preclinical xenotransplantation using B4GALNT2‐deficient donors has recently been reported. Elimination of this source of immunogenic pig antigen should minimize acute injury by preformed anti‐pig antibody and eliminate an induced clinical immune response to this newly appreciated xenotransplantation antigen.
Collapse
Affiliation(s)
- Guerard Byrne
- Institute of Cardiovascular Science, University College London, London, UK.,Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Zeji Du
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Christopher McGregor
- Institute of Cardiovascular Science, University College London, London, UK.,Department of Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Te Velde A, Flendrig L, Ladiges N, Chamuleau R. Possible Immunological Problems of Bioartificial Liver Support. Int J Artif Organs 2018. [DOI: 10.1177/039139889702000802] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- A.A. Te Velde
- Department of Experimental Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam - The Netherlands
| | - L.M. Flendrig
- Department of Experimental Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam - The Netherlands
| | - N.C.J.J. Ladiges
- Department of Experimental Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam - The Netherlands
| | - R.A.F.M. Chamuleau
- Department of Experimental Internal Medicine, Academic Medical Center, University of Amsterdam, Amsterdam - The Netherlands
| |
Collapse
|
9
|
|
10
|
Koopmans J, de Haan A, Bruin E, van der Gun I, van Dijk H, Rozing J, de Leij L, Staal M. Porcine Fetal Ventral Mesencephalic Cells are Targets for Primed Xenoreactive Human T Cells. Cell Transplant 2017; 15:381-7. [PMID: 16970280 DOI: 10.3727/000000006783981846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Xenotransplantation of porcine fetal ventral mesencephalic (pfVM) cells to overcome the dopamine shortage in the striatum of patients with Parkinson's disease seems a viable alternative to allotransplantion of human fetal donor tissue, especially because the latter is complicated by both practical and ethical issues. There is, however, little known about the xenospecific immune responses involved in such an intracerebral xenotransplantation. The aim of our study was to investigate whether 1) naive human peripheral blood mononuclear cells (PMBC) display cytotoxicity against pfVM cells of E28 pig fetuses, and 2) priming of human PBMC by xenogeneic antigen presenting cells (APC) modulates pfVM-directed cellular cytotoxicity. For this purpose fresh PMBC from nine individual donors were primed by incubation with either irradiated pfVM cells or porcine spleen cells (PSC) as APC in the presence of IL-2 for 1 week before assessing cytotoxicity in a 51Cr release assay. Also, direct NK reactivity and antibody-dependent cellular cytotoxicity (ADCC) of fresh PMBC against pfVM cells was assessed. No direct cytotoxicity of naive cells (either NK reactivity or ADCC) against pfVM cells could be determined. Only PMBC primed with PSC were capable of lysing pfVM cells. PBMC primed with pfVM cells did not show cytolytic capacity towards pfVM. Interestingly, large differences in xenospecific T-cell responses exist between individual donor PBMC. Thus, human T cells are capable of killing pfVM cells in a xenoreactive response, but only after priming by donor APC. The large interindividual differences between human donors in their xenoreactive response may influence patient selection for xenotransplantation and chances of graft survival for individual patients.
Collapse
Affiliation(s)
- Jan Koopmans
- Department of Neurosurgery, University Medical Center Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Edge AS, Gosse ME, Dinsmore J. Xenogeneic Cell Therapy: Current Progress and Future Developments in Porcine Cell Transplantation. Cell Transplant 2017; 7:525-39. [PMID: 9853581 DOI: 10.1177/096368979800700603] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The multitude of distinct cell types present in mature and developing tissues display unique physiologic characteristics. Cellular therapy is a novel technology with the promise of utilizing this diversity to treat a wide range of human degenerative diseases. Intractable diseases, disorders, and injuries are characterized by cell death or aberrant cellular function. Cell transplantation can replace diseased or lost tissue to provide restorative therapy for these conditions. The limited use of cell transplants as a basis for current therapy can, in part, be attributed to the lack of available human cells suitable for transplantation. This has prevented further realization of the promise of cell transplantation as a platform technology. Accordingly, cell-based therapies such as blood transfusions, for which the cells are readily available, are a standard part of current medical practice. Despite numerous attempts to expand primary human cells in tissue culture, current technological limitations of this approach in regard to proliferative capacity and maintenance of the differentiated phenotype has prevented their use for transplantation. Further, use of human stem cells for the derivation of specific cell types for transplantation is an area of future application with great potential, but hurdles remain in regard to deriving and sufficiently expanding these multi-potential cells. Thus, it appears that primary cells are at present a superior source for transplantation. This review focuses on pigs as a source of a variety of primary cells to advance cell therapy to the clinic and implement achievement of its full potential. We outline the advantages and disadvantages of xenogeneic cell therapy while underscoring the utility of transplantable porcine cells for the treatment of human disease. © 1998 Elsevier Science Inc.
Collapse
Affiliation(s)
- A S Edge
- Diacrin Inc., Charlestown, MA 02129, USA
| | | | | |
Collapse
|
12
|
Appel JZ, Alwayn IP, Cooper DK. Xenotransplantation: The Challenge to Current Psychosocial Attitudes. Prog Transplant 2016; 10:217-25. [PMID: 11216177 DOI: 10.1177/152692480001000405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Because of the limited availability of transplantable human organs, xenotransplantation, the use of animal organs as an alternative source, has received considerable attention in recent years. Xenotransplantation would provide an unlimited supply of organs, and these organs would be available whenever required. Although the pig is considered the best source for organs, significant immunologic barriers currently prohibit the implementation of a clinical trial of organ transplantation. However, as medical research gains more insight into the mechanisms underlying rejection of pig organs in primates, therapeutic xenotransplantation is becoming more feasible. Clinical trials of porcine cell transplants are currently underway. Although xenotransplantation will minimize the waiting period for an organ and obviate the feelings of guilt or indebtedness commonly experienced by recipients of human organs, several psychosocial issues may hinder the reintegration of patients into society. For example, concerns that infectious pathogens could be transferred to recipients of pig organs will necessitate life-long monitoring and perhaps even temporary isolation of patients. The possible risk of the spread of a xenozoonosis from the patient to other members of the community may inspire public controversy and even fear, which may have an adverse impact on the patient's emotional state. Additionally, some patients may be psychologically disturbed by the need to incorporate pig organs into their body. This article addresses these and other psychosocial issues that may be associated with clinical xenotransplantation.
Collapse
Affiliation(s)
- J Z Appel
- Transplantation Biology Research Center, Massachusetts General Hospital, USA
| | | | | |
Collapse
|
13
|
Mohiuddin MM, Singh AK, Corcoran PC, Thomas III ML, Clark T, Lewis BG, Hoyt RF, Eckhaus M, Pierson III RN, Belli AJ, Wolf E, Klymiuk N, Phelps C, Reimann KA, Ayares D, Horvath KA. Chimeric 2C10R4 anti-CD40 antibody therapy is critical for long-term survival of GTKO.hCD46.hTBM pig-to-primate cardiac xenograft. Nat Commun 2016; 7:11138. [PMID: 27045379 PMCID: PMC4822024 DOI: 10.1038/ncomms11138] [Citation(s) in RCA: 354] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/23/2016] [Indexed: 12/11/2022] Open
Abstract
Preventing xenograft rejection is one of the greatest challenges of transplantation medicine. Here, we describe a reproducible, long-term survival of cardiac xenografts from alpha 1-3 galactosyltransferase gene knockout pigs, which express human complement regulatory protein CD46 and human thrombomodulin (GTKO.hCD46.hTBM), that were transplanted into baboons. Our immunomodulatory drug regimen includes induction with anti-thymocyte globulin and αCD20 antibody, followed by maintenance with mycophenolate mofetil and an intensively dosed αCD40 (2C10R4) antibody. Median (298 days) and longest (945 days) graft survival in five consecutive recipients using this regimen is significantly prolonged over our recently established survival benchmarks (180 and 500 days, respectively). Remarkably, the reduction of αCD40 antibody dose on day 100 or after 1 year resulted in recrudescence of anti-pig antibody and graft failure. In conclusion, genetic modifications (GTKO.hCD46.hTBM) combined with the treatment regimen tested here consistently prevent humoral rejection and systemic coagulation pathway dysregulation, sustaining long-term cardiac xenograft survival beyond 900 days.
Collapse
Affiliation(s)
| | - Avneesh K. Singh
- Cardiothoracic Surgery Research Program, NHLBI, NIH, Bethesda, Maryland 20892, USA
| | - Philip C. Corcoran
- Cardiothoracic Surgery Research Program, NHLBI, NIH, Bethesda, Maryland 20892, USA
| | | | | | - Billeta G. Lewis
- Division of Veterinary Resources, ORS, NIH, Bethesda, Maryland 20892, USA
| | - Robert F. Hoyt
- Leidos Biomedical Research, Inc., Bethesda, Maryland 20892, USA
| | - Michael Eckhaus
- Division of Veterinary Resources, ORS, NIH, Bethesda, Maryland 20892, USA
| | | | - Aaron J. Belli
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts 02126, USA
| | - Eckhard Wolf
- Ludwig Maximilian University, Munich 81377, Germany
| | | | | | - Keith A. Reimann
- MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts 02126, USA
| | | | - Keith A. Horvath
- Cardiothoracic Surgery Research Program, NHLBI, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
14
|
Hu J, Yan J, Rao G, Latha K, Overwijk WW, Heimberger AB, Li S. The Duality of Fgl2 - Secreted Immune Checkpoint Regulator Versus Membrane-Associated Procoagulant: Therapeutic Potential and Implications. Int Rev Immunol 2014; 35:325-339. [PMID: 25259408 DOI: 10.3109/08830185.2014.956360] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fibrinogen-like protein 2 (Fgl2), a member of the fibrinogen family, can be expressed as a membrane-associated protein with coagulation activity or in a secreted form possessing unique immune suppressive functions. The biological importance of Fgl2 is evident within viral-induced fibrin depositing inflammatory diseases and malignancies and provides a compelling rationale for Fgl2 expression to not only be considered as a disease biomarker but also as a therapeutic target. This article will provide a comprehensive review of the currently known biological properties of Fgl2 and clarifies future scientific directives.
Collapse
Affiliation(s)
- Jiemiao Hu
- a Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Jun Yan
- a Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Ganesh Rao
- b Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Khatri Latha
- b Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Willem W Overwijk
- c Department of Melanoma Medical Oncology , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Amy B Heimberger
- b Department of Neurosurgery , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Shulin Li
- a Department of Pediatrics-Research , The University of Texas MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
15
|
Park CS, Im SA, Song S, Kim K, Lee CK. Identification of HLA-A2-restricted immunogenic peptides derived from a xenogenic porcine major histocompatibility complex. Xenotransplantation 2014; 21:465-72. [DOI: 10.1111/xen.12119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/17/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Chan-Su Park
- College of Pharmacy; Chungbuk National University; Cheongju South Korea
| | - Sun-A Im
- College of Pharmacy; Chungbuk National University; Cheongju South Korea
| | - Sukgil Song
- College of Pharmacy; Chungbuk National University; Cheongju South Korea
| | - Kyungjae Kim
- College of Pharmacy; SahmYook University; Seoul South Korea
| | - Chong-Kil Lee
- College of Pharmacy; Chungbuk National University; Cheongju South Korea
| |
Collapse
|
16
|
Therapeutic Strategies for Xenotransplantation. Xenotransplantation 2014. [DOI: 10.1128/9781555818043.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Recognition of Foreign Antigen and Foreign Major Histocompatibility Complex. Xenotransplantation 2014. [DOI: 10.1128/9781555818043.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Cowan PJ, Cooper DKC, d'Apice AJF. Kidney xenotransplantation. Kidney Int 2014; 85:265-75. [PMID: 24088952 PMCID: PMC3946635 DOI: 10.1038/ki.2013.381] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 12/14/2022]
Abstract
Xenotransplantation using pigs as donors offers the possibility of eliminating the chronic shortage of donor kidneys, but there are several obstacles to be overcome before this goal can be achieved. Preclinical studies have shown that, while porcine renal xenografts are broadly compatible physiologically, they provoke a complex rejection process involving preformed and elicited antibodies, heightened innate immune cell reactivity, dysregulated coagulation, and a strong T cell-mediated adaptive response. Furthermore, the susceptibility of the xenograft to proinflammatory and procoagulant stimuli is probably increased by cross-species molecular defects in regulatory pathways. To balance these disadvantages, xenotransplantation has at its disposal a unique tool to address particular rejection mechanisms and incompatibilities: genetic modification of the donor. This review focuses on the pathophysiology of porcine renal xenograft rejection, and on the significant genetic, pharmacological, and technical progress that has been made to prolong xenograft survival.
Collapse
Affiliation(s)
- Peter J Cowan
- 1] Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia [2] Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anthony J F d'Apice
- 1] Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia [2] Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
19
|
Park CS, Kim KH, Im SA, Song S, Lee CK. Identification of HLA-DR4-restricted immunogenic peptide derived from xenogenic porcine major histocompatibility complex class I molecule. Xenotransplantation 2013; 19:317-22. [PMID: 22978463 DOI: 10.1111/xen.12001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Indirect recognition of xenoantigens has been implicated as the major mechanism underlying xenospecific CD4+ T-cell activation in chronic rejection. We identified swine leukocyte antigen (SLA)-derived immunogenic peptides that are presented in the context of human HLA-DR4 molecules. The SLA class I-derived peptides that bind HLA-DRB1*0401, a representative of the DR4 supertype, were predicted using a computer-assisted algorithm. The candidate peptides were synthesized, and their binding capacities to HLA-DRB1*0401 were compared in a competitive ELISA using biotinylated hemagglutinin reporter peptides [HA(307-319)]. Peptide-11 (LRSWTAADTAAQISK) was determined to exhibit the most potent binding capacity to HLA-DRB1*0401 in vitro and thus selected for in vivo immunization. Immunization of HLA-DRB1*0401-transgenic mice with peptide-11 elicited potent CD4+ Th1 responses. Peptide-11 shares homology to α2 domains of three SLA-1 alleles, six SLA-2 alleles, and 14 SLA-3 alleles. Thus, this study has important implications not only for the identification of an immunogenic indirect epitope shared by diverse SLA class I alleles, but also for the development of epitope-specific immunoregulation strategies.
Collapse
Affiliation(s)
- Chan-Su Park
- College of Pharmacy, Chungbuk National University, Cheongju, South Korea
| | | | | | | | | |
Collapse
|
20
|
Brock LG, Delputte PL, Waldman JP, Nauwynck HJ, Rees MA. Porcine sialoadhesin: a newly identified xenogeneic innate immune receptor. Am J Transplant 2012; 12:3272-82. [PMID: 22958948 PMCID: PMC3513673 DOI: 10.1111/j.1600-6143.2012.04247.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Extracorporeal porcine liver perfusion is being developed as a bridge to liver allotransplantation for patients with fulminant hepatic failure. This strategy is limited by porcine Kupffer cell destruction of human erythrocytes, mediated by lectin binding of a sialic acid motif in the absence of antibody and complement. Sialoadhesin, a macrophage restricted lectin that binds sialic acid, was originally described as a sheep erythrocyte binding receptor. Given similarities between sialoadhesin and the unidentified macrophage lectin in our model, we hypothesized porcine sialoadhesin contributed to recognition of human erythrocytes. Two additional types of macrophages were identified to bind human erythrocytes-spleen and alveolar. Expression of sialoadhesin was confirmed by immunofluorescence in porcine tissues and by flow cytometry on primary macrophages. A stable transgenic cell line expressing porcine sialoadhesin (pSn CHO) bound human erythrocytes, while a sialoadhesin mutant cell line did not. Porcine macrophage and pSn CHO recognition of human erythrocytes was inhibited approximately 90% by an antiporcine sialoadhesin monoclonal antibody and by human erythrocyte glycoproteins. Furthermore, this binding was substantially reduced by sialidase treatment of erythrocytes. These data support the hypothesis that porcine sialoadhesin is a xenogeneic receptor that mediates porcine macrophage binding of human erythrocytes in a sialic acid-dependent manner.
Collapse
Affiliation(s)
- Linda G. Brock
- Department of Urology, University of Toledo Health Sciences Campus, Toledo, OH USA
| | - Peter L. Delputte
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Joshua P. Waldman
- Department of Urology, University of Toledo Health Sciences Campus, Toledo, OH USA
| | - Hans J. Nauwynck
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Michael A. Rees
- Department of Urology, University of Toledo Health Sciences Campus, Toledo, OH USA
| |
Collapse
|
21
|
Ekser B, Burlak C, Waldman JP, Lutz AJ, Paris LL, Veroux M, Robson SC, Rees MA, Ayares D, Gridelli B, Tector AJ, Cooper DKC. Immunobiology of liver xenotransplantation. Expert Rev Clin Immunol 2012; 8:621-34. [PMID: 23078060 PMCID: PMC3774271 DOI: 10.1586/eci.12.56] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pigs are currently the preferred species for future organ xenotransplantation. With advances in the development of genetically modified pigs, clinical xenotransplantation is becoming closer to reality. In preclinical studies (pig-to-nonhuman primate), the xenotransplantation of livers from pigs transgenic for human CD55 or from α1,3-galactosyltransferase gene-knockout pigs+/- transgenic for human CD46, is associated with survival of approximately 7-9 days. Although hepatic function, including coagulation, has proved to be satisfactory, the immediate development of thrombocytopenia is very limiting for pig liver xenotransplantation even as a 'bridge' to allotransplantation. Current studies are directed to understand the immunobiology of platelet activation, aggregation and phagocytosis, in particular the interaction between platelets and liver sinusoidal endothelial cells, hepatocytes and Kupffer cells, toward identifying interventions that may enable clinical application.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - Christopher Burlak
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - Joshua P Waldman
- Department of Urology, University of Toledo Health Sciences Campus, Toledo, OH, USA
| | - Andrew J Lutz
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - Leela L Paris
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - Massimiliano Veroux
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - Simon C Robson
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael A Rees
- Department of Urology, University of Toledo Health Sciences Campus, Toledo, OH, USA
| | | | - Bruno Gridelli
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - A Joseph Tector
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - David KC Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Abstract
Microvascular thrombosis, following the activation of clotting cascade, is a hallmark of porcine solid organ xenograft rejection. The analysis of differences between human, monkey, and pig coagulation systems is crucial when monkey is used as animal model and pig as organ donor in xenotransplantation. Thrombosis, according to many authors, may be due to the molecular incompatibilities between natural anticoagulants present on pig endothelium and primate activated coagulation factors. The generation of activated protein C (PC) is critical for the physiological anticoagulation. One of the major incompatibilities may be related to the inability of pig thrombomodulin (TM) and endothelial protein C receptor to activate the recipient (primate) circulating PC in the presence of thrombin. Tissue factor pathway inhibitor (TFPI), is the primary inhibitor of tissue factor (TF)-induced coagulation. TFPI directly inhibits the activated factor X (FXa) and blocks the procoagulant activity of the TF/factor VIIa (FVIIa) complex by forming a quaternary TF/FVIIa/FXa/TFPI complex. Microvascular thrombosis, observed in the organ transplant, may also be due to the failure of pig TFPI to bind human FXa efficiently and inhibit human FVIIa/TF activity. The methods described in this chapter can be useful for the identification and characterization of primate and pig coagulation factors (isolated from a small volume of blood) by using SDS-PAGE and immunoblotting. Differences in molecular weight can help in the identification of the origin (pig or primate) of coagulation proteins in plasma from the recipient of xenografts. On the other hand, in vitro models of PC pathway and TFPI on human umbilical vein endothelial cells (HUVEC) and porcine aortic endothelial cells (PAEC) are described which can be used for studying incompatibilities between primate and pig.
Collapse
|
23
|
Kim DE, Oh KH, Yang JH, Kwon SK, Cho TJ, Lee SB, Nam H, Lee DS, Lee JR, Lee G, Cho J. The Porcine Aortic Tissue Culture System in vitro for Stem Cell Research. Int J Stem Cells 2011; 4:116-22. [PMID: 24298344 DOI: 10.15283/ijsc.2011.4.2.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2011] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Due to the shortage of human donors for transplantation, the use of animal organs for xenotransplantation has come into great interest. Xeno-derived vessels and cardiac valves would be possible alternatives for the patient suffering from cardiovascular diseases. Therefore, we established in vitro culture system of a porcine vessel that could be helpful for the research of xenograft and stem cell research. METHODS AND RESULTS We primarily isolated porcine thoracic aorta, cultured square-shaped pieces up to 17 days and analyzed its morphology and characters. The endothelial cells were primarily isolated from cultured porcine aortic pieces and their morphology, function and character were analyzed in order to confirm them as endothelial cells at day 3, 4, 8, 10 and 17. Even at day 17, the morphology exhibited the intact endothelial layer as well as specifically expressed CD31 and von Willebrand factor. The morphology of primarily isolated cells from cultured tissues was identical as an endothelial cell. By flow cytometry analysis, more than 80% of the isolated cells expressed CD31 and up to 80% took up acetyl low density lipoprotein (ac-LDL) until day 10 of tissue culture period even though it decreased to about 50% at day 17 that means they not only showed typical endothelial cell characters but also functioned properly. CONCLUSIONS We successfully established and optimized a porcine vascular tissue in vitro culture system that could be a valuable model for in vitro study of xenotransplantation and stem cell research.
Collapse
Affiliation(s)
- Dong-Eun Kim
- Laboratory of Developmental Biology and Stem Cell Differentiation/Transplantation ; Department of Dental Regenerative Biotechnology, Dental Research Institue, School of Dentistry, Seoul National University
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Montgomery RA, Cozzi E, West LJ, Warren DS. Humoral immunity and antibody-mediated rejection in solid organ transplantation. Semin Immunol 2011; 23:224-34. [PMID: 21958960 DOI: 10.1016/j.smim.2011.08.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/24/2011] [Indexed: 02/07/2023]
Abstract
The humoral arm of the immune system provides robust protection against extracellular pathogens via the production of antibody molecules that neutralize or facilitate the destruction of microorganisms. However, the humoral immune system also provides a significant barrier to solid organ transplantation due to the antibody-mediated recognition of non-self proteins and carbohydrates expressed on transplanted organs. Historically, the presence of donor-specific antibodies (DSA) that recognize donor HLA molecules, incompatible ABO blood group antigens and other endothelial or xenogeneic antigens was considered a contraindication to transplantation. However, recent advances in antibody testing and immunosuppressive therapies have made it possible to cross certain antibody barriers successfully. In this article, we review our current understanding of antibody-mediated processes in solid organ transplantation and discuss the clinically available treatment options for preventing and treating antibody-mediated rejection.
Collapse
Affiliation(s)
- Robert A Montgomery
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
25
|
Byrne GW, Du Z, Sun Z, Asmann YW, McGregor CGA. Changes in cardiac gene expression after pig-to-primate orthotopic xenotransplantation. Xenotransplantation 2011; 18:14-27. [PMID: 21342284 PMCID: PMC10022692 DOI: 10.1111/j.1399-3089.2010.00620.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Gene profiling methods have been widely useful for delineating changes in gene expression as an approach for gaining insight into the mechanism of rejection or disease pathology. Herein, we use gene profiling to compare changes in gene expression associated with different orthotopic cardiac xenotransplantation (OCXTx) outcomes and to identify potential effects of OCXTx on cardiac physiology. METHODS We used the Affymetrix GeneChip Porcine Genomic Array to characterize three types of orthotopic cardiac xenograft outcomes: 1) rejected hearts that underwent delayed xenograft rejection (DXR); 2) survivor hearts in which the xenograft was not rejected and recipient death was due to model complications; and 3) hearts which failed to provide sufficient circulatory support within the first 48 h of transplant, termed "perioperative cardiac xenograft dysfunction" (PCXD). Gene expression in each group was compared to control, not transplanted pig hearts, and changes in gene expression > 3 standard deviations (±3SD) from the control samples were analyzed. A bioinformatics analysis was used to identify enrichments in genes involved in Kyoto Encyclopedia of Genes and Genomes pathways and gene ontogeny molecular functions. Changes in gene expression were confirmed by quantitative RT-PCR. RESULTS The ±3SD data set contained 260 probes, which minimally exhibited a 3.5-fold change in gene expression compared to control pig hearts. Hierarchical cluster analysis segregated rejected, survivor and PCXD samples, indicating a unique change in gene expression for each group. All transplant outcomes shared a set of 21 probes with similarly altered expression, which were indicative of ongoing myocardial inflammation and injury. Some outcome-specific changes in gene expression were identified. Bioinformatics analysis detected an enrichment of genes involved in protein, carbohydrate and branched amino acid metabolism, extracellular matrix-receptor interactions, focal adhesion, and cell communication. CONCLUSIONS This is the first genome wide assessment of changes in cardiac gene expression after OCXTx. Hierarchical cluster analysis indicates a unique gene profile for each transplant outcome but additional samples will be required to define the unique classifier probe sets. Quantitative RT-PCR confirmed that all transplants exhibited strong evidence of ongoing inflammation and myocardial injury consistent with the effects of cytokines and vascular antibody-mediated inflammation. This was also consistent with bioinformatic analysis suggesting ongoing tissue repair in survivor and PCXD samples. Bioinformatics analysis suggests for the first time that xenotransplantation may affect cardiac metabolism in survivor and rejected samples. This study highlights the potential utility of molecular analysis to monitor xenograft function, to identify new molecular markers and to understand processes, which may contribute to DXR.
Collapse
Affiliation(s)
- Guerard W Byrne
- Department of Medicine, University College London, London, UK.
| | | | | | | | | |
Collapse
|
26
|
YEOM HJ, SHIN KJ, KIM JS, KIM SJ, LEE S, PAUL S, HAN JW, AHN C, SEONG JK, CHUNG J, HWANG SY. Porcine aortic endothelial cell genes responsive to selected inflammatory stimulators. J Vet Med Sci 2010; 71:1499-508. [PMID: 19959902 DOI: 10.1292/jvms.001499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Use of porcine tissues has been suggested as a promising solution for severe shortage of transplantable human organs. The immediate hurdle for xenotransplantation is acute immune/inflammatory vascular rejection of the transplant. Because endothelial cells play a key role in the initiation and the amplification of inflammation, alteration of gene expression in human endothelial cells, by various inflammatory stimulators has been studied extensively. However, transcriptional changes induced by human and other inflammatory stimulators in porcine endothelial cells have thus far not been studied. In this study, we treated porcine endothelial cells with human tumor necrosis factor (TNF)-alpha, porcine interferon (IFN)-gamma, H(2)O(2) and lypopolysaccharide (LPS) and profiled transcriptional change at 1 hr, 6 hr and 24 hr, using pig oligonucleotide 13K microarray. We found that mRNA species such as chemokine (C-X-C motif) ligand 6 (CXCL6) and Cathepsin S were significantly induced in porcine endothelial cells, as was previously reported with human endothelial cell. We also found that mRNA species including secreted frizzled-related protein 2 (SFRP2), radical S-adenosyl methionine domain containing 2 (RSAD2), structure specific recognition protein 1 (SSRP1) also were highly overexpressed in porcine endothelial cells. This result shows clues to understand underlying mechanisms of xenotransplantation rejection and the highly responsive porcine genes may serve as novel targets to be regulated for improving the function of grafted porcine donor organs.
Collapse
Affiliation(s)
- Hye-Jung YEOM
- Department of Biochemistry, Hanyang University & GenoCheck Co. Ltd, Ansan, Gyeonggi, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Steering orally induced deviation of xenogeneic immunity with exogenous cytokines in rats fed porcine proteins. Transpl Immunol 2009; 22:32-7. [DOI: 10.1016/j.trim.2009.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/21/2009] [Accepted: 09/01/2009] [Indexed: 11/19/2022]
|
28
|
Chang JM, Kim WG. Time-related Histopathologic Changes in Fresh Frozen Carotid Xenografts in a Pig-to-Goat Implantation Model. Artif Organs 2009; 33:827-34. [DOI: 10.1111/j.1525-1594.2009.00819.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Characterization of porcine factor VII, X and comparison with human factor VII, X. Blood Cells Mol Dis 2009; 43:111-8. [DOI: 10.1016/j.bcmd.2009.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 02/06/2009] [Accepted: 02/06/2009] [Indexed: 11/18/2022]
|
30
|
Li SZ, Qu YC, Liu BQ, Wang GY, Zhang Y, Ma ZF, Ma TX, Qiu M, Han RF. Synergistic effects of alpha-1,2-fucosyltransferase, DAF, and CD59 in suppression of xenogenic immunological responses. Xenotransplantation 2009; 16:27-33. [PMID: 19243558 DOI: 10.1111/j.1399-3089.2009.00509.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Previous studies showed that alpha-1,2-fucosyltransferase (HT), decay accelerating factor (DAF), and CD59 have an inhibitory effect on the immunological rejection of xenogenic transplantation. METHODS To investigate their possible synergistic effects in suppression of heterogeneic transplantation, we produced transgenic mouse lines expressing human HT, DAF, and/or CD59 by the standard pronuclear injection approach. PCR and Southern blot were used to identify the transgenic founder lines. Flow cytometry confirmed the high-level expression of HT, DAF, or CD59 in the transgenic mice. RESULTS The deposition of IgM, C3c, or C9 in the cardiac vascular endothelial cells of the HT, HT/CD59, and/or DAF multiple positive transgenic mice was markedly decreased. The survival time and function of the hearts of the co-transgenic mice were significantly longer and higher than that of the single HT-positive transgenic mice (P < 0.05). CONCLUSION The mice co-expressing HT/DAF or HT/CD59 could resist the hyperacute rejection better than those expressing HT alone. It is feasible to use HT and C-reactive proteins co-transgenic tissues to resist hyperacute rejection and xenograft rejection.
Collapse
Affiliation(s)
- Sheng-Zhi Li
- Tianjin Institute of Urology and Second Hospital of Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Knosalla C, Yazawa K, Behdad A, Bodyak N, Shang H, Bühler L, Houser S, Gollackner B, Griesemer A, Schmitt-Knosalla I, Schuurman HJ, Awwad M, Sachs DH, Cooper DKC, Yamada K, Usheva A, Robson SC. Renal and cardiac endothelial heterogeneity impact acute vascular rejection in pig-to-baboon xenotransplantation. Am J Transplant 2009; 9:1006-16. [PMID: 19422330 PMCID: PMC2824173 DOI: 10.1111/j.1600-6143.2009.02602.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Xenograft outcomes are dictated by xenoantigen expression, for example, Gal alpha1, 3Gal (Gal), but might also depend on differing vascular responses. We investigated whether differential vascular gene expression in kidney and cardiac xenografts correlate with development of thrombotic microangiopathy (TM) and consumptive coagulation (CC). Immunosuppressed baboons underwent miniswine or hDAF pig kidney (n = 6) or heart (n = 7), or Gal-transferase gene-knockout (GalT-KO) (thymo)kidney transplantation (n = 14). Porcine cDNA miniarrays determined donor proinflammatory, apoptosis-related and vascular coagulant/fibrinolytic gene expression at defined time points; validated by mRNA, protein levels and immunopathology. hDAF-transgenic and GalT-KO xenografts, (particularly thymokidneys) exhibited prolonged survival. CC was seen with Gal-expressing porcine kidneys (3 of 6), only 1 of 7 baboons postcardiac xenotransplantation and was infrequent following GalT-KO grafts (1 of 14). Protective-type genes (heme oxygenase-I, superoxide dismutases and CD39) together with von Willebrand factor and P-selectin were upregulated in all renal grafts. Transcriptional responses in Gal-expressing xenografts were comparable to those seen in the infrequent GalT-KO rejection. In cardiac xenografts, fibrin deposition was associated with increased plasminogen activator inhibitor-1 expression establishing that gene expression profiles in renal and cardiac xenografts differ in a quantitative manner. These findings suggest that therapeutic targets may differ for renal and cardiac xenotransplants.
Collapse
Affiliation(s)
- C. Knosalla
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - K. Yazawa
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - A. Behdad
- Transplantation and Liver Centers, Beth Israel-Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - N. Bodyak
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - H. Shang
- Transplantation and Liver Centers, Beth Israel-Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - L. Bühler
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - S. Houser
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - B. Gollackner
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - A. Griesemer
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - I. Schmitt-Knosalla
- Laboratory of Immunogenetics and Transplantation, Brigham and Women's Hospital/Harvard Medical School, Boston, MA
| | | | - M. Awwad
- Previously at Immerge BioTherapeutics, Cambridge, MA
| | - D. H. Sachs
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - D. K. C. Cooper
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - K. Yamada
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA
| | - A. Usheva
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA
| | - S. C. Robson
- Transplantation and Liver Centers, Beth Israel-Deaconess Medical Center/Harvard Medical School, Boston, MA
| |
Collapse
|
32
|
Cadili A, Kneteman N. The role of macrophages in xenograft rejection. Transplant Proc 2009; 40:3289-93. [PMID: 19100374 DOI: 10.1016/j.transproceed.2008.08.125] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/29/2008] [Indexed: 11/25/2022]
Abstract
Safe and effective xenotransplantation would provide a valuable answer to many of the limitations of allogenic transplantation. Such limitations include scarcity of organ supply and morbidity to donors in cases of living-related donor transplantation. The main hurdle to the efficacious application of xenotransplantation in clinical medicine is the fierce host immune response to xenografts. This immune response is embodied in 3 different types of xenograft rejection. Both hyperacute rejection and delayed xenograft rejection are mediated by natural antibodies and are concerned primarily with whole organ rejection. Cellular xenograft rejection (CXR), on the other hand, is concerned with both whole organ and CXR and is mediated by innate immunity rather than natural antibodies. Macrophages, which are cells of the innate immune system, play a role in all 3 types of xenograft rejection (not just CXR). They impart their effects both directly and through T-cell activation.
Collapse
Affiliation(s)
- A Cadili
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
33
|
Kim HK, Kim JE, Wi HC, Lee SW, Kim JY, Kang HJ, Kim YT. Aurintricarboxylic acid inhibits endothelial activation, complement activation, and von Willebrand factor secretion in vitro and attenuates hyperacute rejection in an ex vivo model of pig-to-human pulmonary xenotransplantation. Xenotransplantation 2009; 15:246-56. [PMID: 18957047 DOI: 10.1111/j.1399-3089.2008.00481.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND In the xenotransplantation of vascularized organs, such as the lung, a large area of endothelial cell layer is a big hurdle to be overcome. We investigated the potential protective effect of aurintricarboxylic acid (ATA), a known inhibitor of platelet adhesion, on endothelial damage induced by xenogeneic serum. We also assessed its role in hyperacute xenograft rejection using a porcine ex vivo lung perfusion model. METHODS Porcine endothelial cells were incubated with human serum and other inflammatory stimuli. For the evaluation of von Willebrand factor (vWF) secretion and tissue factor (TF) expression, we used human endothelial cells. E-selectin expression, complement activation, TF expression and platelet activation were investigated by flow cytometry. In an ex vivo porcine lung perfusion model, the porcine lungs were perfused with fresh human whole blood: unmodified blood (n = 5), ATA-treated blood (n = 5), and ATA and lepirudin-treated blood (n = 5). RESULTS Aurintricarboxylic acid significantly inhibited TNF-alpha- or lipopolysaccharide-induced endothelial E-selectin expression in a dose-dependent manner. ATA also prevented human serum induced-E-selectin expression and human monocytic cell adhesion to porcine endothelial cells. Moreover, ATA abolished thrombin-induced vWF secretion as well as complement activation. However, ATA induced endothelial TF expression and platelet activation in vitro. In ex-vivo experiments, ATA treatment improved pulmonary function and attenuated sequestration of leukocytes. Although ATA did not influence thrombin generation, we were able to minimize its activity by adding lepirudin to the blood with ATA. CONCLUSIONS Our study demonstrated in vitro protective effect of ATA on the inhibition of endothelial activation and vWF secretion and confirmed detrimental effect of ATA on induction of endothelial TF and platelet activation. The combination of ATA and lepirudin may act beneficially by preventing coagulation perturbation while maintaining improved xenograft survival.
Collapse
Affiliation(s)
- Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
34
|
Cozzi E, Bosio E, Seveso M, Rubello D, Ancona E. Xenotransplantation as a model of integrated, multidisciplinary research. Organogenesis 2009; 5:288-96. [PMID: 19568350 PMCID: PMC2659370 DOI: 10.4161/org.7578] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Accepted: 11/19/2008] [Indexed: 11/19/2022] Open
Abstract
Xenotransplantation was proposed a long time ago as a possible solution to the world-wide shortage of human organs. For years, researchers in this field have almost exclusively directed their efforts towards combating the immunological barrier that precluded long-term xenograft survival. Studies have been conducted in both small and large animal models and the most relevant results have been obtained in pre-clincal studies, specifically those utilising the pig-to-nonhuman primate combination. In this context, a better understanding of the immunological mechanisms underlying the rejection of a xenograft have allowed the identification of specific targets of intervention that have resulted in considerable improvements in survival of porcine organs or cells in nonhuman primates. However it has also become apparent that if xenotransplantation has to enter the clinical arena, a multidisciplinary approach will be needed to comprehensively tackle the different issues related to the use of a xenograft to cure human disease.In this regard, the safety, ethics and regulatory aspects of xenotransplantation are currently being aggressively addressed to enable the initiation of xenotransplantation with a favourable risk/benefit ratio.
Collapse
Affiliation(s)
- Emanuele Cozzi
- Direzione Sanitaria; Padua General Hospital; Padua, Italy; Department of Surgical and Gastroenterological Sciences; University of Padua; Padua, Italy; CORIT (Consorzio per la Ricerca sul Trapianto d'Organi); Padua, Italy; Department of Nuclear Medicine; PET Centre; S. Maria della Misericordia Hospital; Rovigo, Italy; Clinica Chirurgica III; Padua General Hospital; Padua, Italy
| | - Erika Bosio
- Direzione Sanitaria; Padua General Hospital; Padua, Italy; Department of Surgical and Gastroenterological Sciences; University of Padua; Padua, Italy; CORIT (Consorzio per la Ricerca sul Trapianto d'Organi); Padua, Italy; Department of Nuclear Medicine; PET Centre; S. Maria della Misericordia Hospital; Rovigo, Italy; Clinica Chirurgica III; Padua General Hospital; Padua, Italy
| | - Michela Seveso
- Direzione Sanitaria; Padua General Hospital; Padua, Italy; Department of Surgical and Gastroenterological Sciences; University of Padua; Padua, Italy; CORIT (Consorzio per la Ricerca sul Trapianto d'Organi); Padua, Italy; Department of Nuclear Medicine; PET Centre; S. Maria della Misericordia Hospital; Rovigo, Italy; Clinica Chirurgica III; Padua General Hospital; Padua, Italy
| | - Domenico Rubello
- Direzione Sanitaria; Padua General Hospital; Padua, Italy; Department of Surgical and Gastroenterological Sciences; University of Padua; Padua, Italy; CORIT (Consorzio per la Ricerca sul Trapianto d'Organi); Padua, Italy; Department of Nuclear Medicine; PET Centre; S. Maria della Misericordia Hospital; Rovigo, Italy; Clinica Chirurgica III; Padua General Hospital; Padua, Italy
| | - Ermanno Ancona
- Direzione Sanitaria; Padua General Hospital; Padua, Italy; Department of Surgical and Gastroenterological Sciences; University of Padua; Padua, Italy; CORIT (Consorzio per la Ricerca sul Trapianto d'Organi); Padua, Italy; Department of Nuclear Medicine; PET Centre; S. Maria della Misericordia Hospital; Rovigo, Italy; Clinica Chirurgica III; Padua General Hospital; Padua, Italy
| |
Collapse
|
35
|
Zhu L, Fang Y, Liu Z, Wang P, Wang Y, Xu H. Rabbit anti-human leukocyte polyclonal antibody inhibits xenogeneic cell-mediated immune responses. Transplant Proc 2008; 40:2760-3. [PMID: 18929855 DOI: 10.1016/j.transproceed.2008.07.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We studied the interactions between human monocytes and porcine endothelial cells (PEC) as well as the effects of a new generation of rabbit anti-human leukocyte polyclonal antibody (newRALG) to inhibit xenogeneic cell-mediated immune responses. Human peripheral blood mononuclear cells (PBMC) were cocultured with the florescent dye PKH-26 labeled-PEC, which showed membrane uptake by monocytes detected by florescence activated cell scanning (FACS). Scavenger receptor (SR) ligand poly-(G) or the newRALG or Thymoglobulin was added into the cocultures followed by FACS. Lymphocyte proliferation upon exposure to PEC with or without newRALG or thymoglobulin was evaluated by a xenogeneic mixed-lymphocyte-endothelial cell reaction (xMLER). FACS analysis demonstrated that CD14+ monocytes became positive for PKH-26 following their interaction with PKH-26-labeled PEC. These PKH-26+ monocytes displayed up-regulated CD40 and CD80 expression during the PBMC-PEC interaction. Furthermore, SR blockade with poly-(G) prevented PEC membrane uptake by CD14+ monocytes. The newRALG from rabbits immunized with activated human monocytes and lymphocytes greatly reduced SR-mediated PEC membrane uptake. xMLER demonstrated strong lymphocyte proliferation in response to PEC. Lymphocyte proliferation was dramatically inhibited in dose-dependent manner by the newRALG. In summary, monocytes up-regulate costimulatory molecules during xenogeneic interactions, indicating that they may serve as a source of T-cell costimulation during xenogeneic reactions, enguling PEC membranes. This phenomenon was inhibited by poly (G), suggesting that PEC membrane uptake was via SR. The newRALG inhibited monocyte SR-mediated PEC membrane uptake and lymphocyte proliferation in response to PEC suggesting that this new polyclonal preparation may impair the initiation of xeno-specific immune responses.
Collapse
Affiliation(s)
- L Zhu
- Department of Transplantation, Jinan City Central Hospital, P.R. China
| | | | | | | | | | | |
Collapse
|
36
|
Dehoux JP, Gianello P. Accommodation and antibodies. Transpl Immunol 2008; 21:106-10. [PMID: 18973811 DOI: 10.1016/j.trim.2008.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 10/09/2008] [Indexed: 12/26/2022]
Abstract
Accommodation refers to the condition in which an organ transplant functions normally by acquiring resistance to immune-mediated injury (especially), despite the presence of anti-transplant antibodies in the recipient. This status is associated with several modifications in the recipient as well as in the graft, such as previous depletion of anti-graft antibodies and their slow return once the graft is placed; expression of several protective genes in the graft; a Th2 immune response in the recipient; and inhibition of the membrane attack complex of complement.
Collapse
Affiliation(s)
- Jean-Paul Dehoux
- Laboratory of Experimental Surgery, Faculté de médecine, Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
37
|
Fang Y, Liu Z, Zhu L, Wang P, Wang Y, Xu H. CD4+ T-cell and monocyte interdependence during discordant xenoimmune responses. Transplant Proc 2008; 40:2764-8. [PMID: 18929856 DOI: 10.1016/j.transproceed.2008.07.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study was designed to examine our hypothesis that human monocytes provide missing constimulatory signals to host CD4+ cells during interactions with porcine endothelial cells (PECs). PECs were isolated from the aorta. Human CD4+ T cells and monocytes were purified from peripheral blood mononuclear cells (PBMCs). A xenogeneic mixed lymphocyte-PEC reaction (xMLER) was performed to determine the proliferation of PBMCs or CD4+ cells in response to PEC. Monocyte-PEC cocultures with or without CD4+ cells were followed by analysis using fluorescence-activated cell scanning (FACS). We evaluated the CD4+ cells proliferation induced by PEC-conditioned monocytes with or without costimulation blockade. xMLER demonstrated strong lymphocyte proliferation in response to PECs. However, purified CD4+ cells showed reduced proliferative responses to PECs when compared with PBMCs. FACS analysis found that CD14+ monocytes up-regulated CD40 and CD80 expressions in the presence of CD4+ cells. PEC-activated but not resting monocytes induced CD4+-cell proliferation, which was inhibited by anti-CD154, anti-CD80, or anti-CD86 antibodies. In summary, human monocytes exposed to PECs are conditioned to up-regulate costimulatory molecules upon exposure to T cells. PEC-conditioned monocytes induced T-cell proliferation by indirect presentation. Costimulation blockade inhibited T-cell proliferation induced by PEC-conditioned monocytes. Our findings suggested that monocytes play an important role in indirect xenoantigen presentation, providing costimulation to T cells. This interaction can occur distant from the initial site of xenoantigen, but monocytes remaide void of costimulatory signals until their interaction with T cells.
Collapse
Affiliation(s)
- Y Fang
- Department of Transplantation, Jinan City Central Hospital, PR China
| | | | | | | | | | | |
Collapse
|
38
|
Tran PD, Christiansen D, Winterhalter A, Brooks A, Gorrell M, Lilienfeld BG, Seebach JD, Sandrin M, Sharland A. Porcine cells express more than one functional ligand for the human lymphocyte activating receptor NKG2D. Xenotransplantation 2008; 15:321-332. [PMID: 19134162 DOI: 10.1111/j.1399-3089.2008.00489.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Xenotransplantation could ameliorate the severe shortage of donor organs. The initial results of transplantation from genetically-modified pig donors to primate recipients suggest that hyperacute rejection can be overcome, but thrombotic microangiopathy and the human anti-pig cellular immune response remain as significant impediments to successful clinical xenotransplantation. NKG2D is an activating immunoreceptor found on human natural killer (HuNK) cells, CD8(+) and gammadelta T cells. Signaling through NKG2D mediates cytotoxicity and cytokine secretion by NK cells and co-stimulation of T cells. METHODS Chinese hamster ovary P (CHOP) cells were transfected with human NKG2D and used in cell-cell binding studies with porcine epithelial, and endothelial cell lines. Soluble recombinant NKG2D-Fc was used to stain various porcine cells and tissues to indicate ligand expression. Porcine cells were used as targets in cytotoxicity assays with the HuNK cell lines NKL and YT, with and without enzymatic removal of pULBP1 and antibody blockade of NKG2D signaling. RESULTS AND CONCLUSIONS In this study, we demonstrate the expression of ligands for human NKG2D on porcine cell lines of endothelial and epithelial origin, islet cell clusters and rejecting kidney. HuNK cells were activated to kill pig cells expressing NKG2D ligands, and cytotoxicity was inhibited by antibody blockade of NKG2D. A previous study identified pULBP1 as the principal ligand for human NKG2D on pig aortic endothelial cells. In the current study, renal epithelial and intestinal endothelial cells each expressed high surface levels of pULBP1, but binding of soluble recombinant NKG2D and NKG2D-dependent cytotoxicity against these cells persisted after the enzymatic removal of pULBP1, strongly suggesting the presence of at least one additional functional ligand for human NKG2D in these cell types.
Collapse
Affiliation(s)
- Peter D Tran
- Collaborative Transplantation Research Group, Bosch Institute, Faculty of Medicine, University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liu B, Cheng C, Wu Y, Wei J, Li G, Ma T. Transgenic mice designed to express human alpha-1,2-fucosyltransferase in combination of human DAF and CD59 to avoid xenograft rejection. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 2008; 51:199-204. [PMID: 18246307 DOI: 10.1007/s11427-008-0019-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 11/29/2007] [Indexed: 11/24/2022]
Abstract
The expression of human alpha-1,2-fucosyltransferase (HT) or complement regulatory proteins has been proved as an strategy to overcome hypercute rejection in discordant xenogeneic organ transplantation. In this study, we examined whether peripheral blood mononuclear cells (PBMCs) from polytransgenic mice expressing the human HT, and complement regulatory proteins (DAF and CD59), can provide more effective protection against xenograft rejection. Transgenic mice were produced by co-injection of gene constructs for human HT, DAF and/or CD59. Flow Cytometry (FCM) was used to screen the positive transgenic mice. PBMCs from transgenic mice were incubated with 15% human serum to evaluate natural antibody binding, complement activation and expression of adhesion molecules. Three transgenes were strongly expressed in PBMCs of transgenic mice, and HT expression significantly reduced expression of the major xenoepitope galactose-alpha-1,3-galactose (alpha-Gal). Functional studies with PBMCs showed that co-expression of HT and DAF or CD59 markedly increased their resistance to human serum-mediated cytolysis when compared with single transgenic PBMCs. Moreover, the combined expression of triple transgenes in PBMCs led to the greatest protection against human serum-mediated cytolysis, avoided hyperacute rejection and reduced expression of adhesion molecules. Strong co-expression of triple transgenes was completely protected from xenograft hyperacute rejection and partially inhibited acute vascular rejection. The studies suggest that engineering mice to express triple molecules represents an critical step toward prolonging xenograft survival and might be more suitable for xenotransplantation.
Collapse
Affiliation(s)
- BingQian Liu
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | | | | | | | | | | |
Collapse
|
40
|
Kirk AD, Elster EA. Immunology of Transplantation. Surgery 2008. [DOI: 10.1007/978-0-387-68113-9_81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Reduced Fibrin Deposition and Intravascular Thrombosis in hDAF Transgenic Pig Hearts Perfused With Tirofiban. Transplantation 2007; 84:1667-76. [DOI: 10.1097/01.tp.0000295742.45413.dc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Ricci D, Tazelaar HD, Miyagi N, Rao VP, Pedersen RA, Kremers WK, Byrne GW, McGregor CGA. The utility of right ventricular endomyocardial biopsy for the diagnosis of xenograft rejection after CD46 pig-to-baboon cardiac transplantation. J Heart Lung Transplant 2007; 26:1025-32. [PMID: 17919623 DOI: 10.1016/j.healun.2007.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/05/2007] [Accepted: 07/15/2007] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Endomyocardial biopsy is the standard means of establishing cardiac allograft rejection diagnosis. The efficacy of this procedure in xenotransplantation has not been determined. In this study we compare the histology of right ventricular endomyocardial biopsy specimens with the corresponding full cross sections of explanted right ventricle (RV). We also compare RV with the related left ventricle (LV) cross sections. METHODS Heterotopic CD46 pig-to-baboon cardiac xenotransplants (n = 64) were studied. RV endomyocardial biopsy specimens were taken at cardiac explant by using a standard bioptome (n = 24) or by sharp dissection (n = 40). Hematoxylin and eosin stained sections of RV and LV cross-section and RV endomyocardial biopsy specimens were compared in a blinded fashion. Characteristics of delayed xenograft rejection and a global assessment of ischemia were scored from 0 to 4 according to the percentage of myocardium involved (0, 0%; 1, 1%-25%; 2, 26%-50%; 3, 51%-75%; and 4, 76%-100%). RESULTS Median graft survival was 30 days (range, 3-137 days). Linear regression analysis of histology scores demonstrated that specimens from both bioptome and sharp dissection equally represented the histology of the RV cross section. Global ischemic injury was strongly correlated between RV and RV endomyocardial biopsy (R(2) = 0.84) and between RV and LV cross sections (R(2) = 0.84). Individual characteristics of delayed xenograft rejection showed no significant variation between RV and RV endomyocardial biopsy or between RV and LV (p < 0.05). CONCLUSIONS These results indicate that delayed xenograft rejection is a widespread process involving both right and left ventricles similarly. This study shows that histologic assessment of RV endomyocardial biopsy specimens is an effective method for the monitoring of delayed xenograft rejection after cardiac xenotransplantation.
Collapse
Affiliation(s)
- Davide Ricci
- Mayo Clinic William J von Liebig Transplant Center, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kawahara T, Rodriguez-Barbosa JI, Zhao Y, Zhao G, Sykes M. Global unresponsiveness as a mechanism of natural killer cell tolerance in mixed xenogeneic chimeras. Am J Transplant 2007; 7:2090-7. [PMID: 17640313 DOI: 10.1111/j.1600-6143.2007.01905.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mixed xenogeneic chimerism induces T- and B-cell tolerance in mice receiving T-cell-depleted rat bone marrow cells (BMC) following nonmyeloablative conditioning that includes alphabeta and gammadelta T cell and Natural killer (NK) cell-depleting mAbs. NK-cell depletion is essential to permit marrow engraftment, but NK-cell tolerance has not been previously assessed in mixed xenogeneic chimeras. We assessed NK-cell tolerance in rat --> mouse mixed xenogeneic chimeras using in vivo(125)I-5iodo-2-deoxyuridine assays. Additional rapid marrow rejection mechanisms resulted in a requirement for 10-fold more rat than ss2 microglobulin knockout (ss2M(-/-)) (MHC class I-deficient) mouse BMC to achieve engraftment in NK-cell-depleted mice. Both 12-week mixed xenogeneic chimeras and conditioned controls showed reduced resistance to engraftment of ss2M(-/-) mouse and rat BMC. While conditioned control mice recovered NK-cell-mediated resistance to ss2M(-/-) and rat BMC by 16 weeks, mixed chimeras lacked resistance to either, similar to NK-cell-deficient Ly49A transgenic mice. Thus, global NK-cell unresponsiveness is induced by mixed xenogeneic chimerism. Our data suggest that NK-cell anergy is induced by interactions with xenogeneic hematopoietic cells that express activating but not inhibitory ligands for recipient NK cells.
Collapse
Affiliation(s)
- T Kawahara
- Transplantation Biology Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
44
|
Cozzi E, Seveso M, Hutabba S, Fabris S, Cavicchioli L, Ancona E. An update on xenotransplantation. Vet Res Commun 2007; 31 Suppl 1:15-25. [PMID: 17682842 DOI: 10.1007/s11259-007-0002-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Xenotransplantation is one of the possible avenues currently being explored to address the shortage problem of human organs. With this in mind, this article will briefly review the current situation with respect to the immunological, physiological and biosafety aspects related to the transplantation of pig organs into primates. Acute humoral xenograft rejection (AHXR) currently remains the central immunological obstacle and the development of strategies for both a better control of the elicited anti-pig humoral immune response or the prevention of the onset of coagulation disorders that accompany AHXR are the two primary focuses of research. To date, porcine xenografts have been shown to sustain the life of nonhuman primates for several months. Such preclinical studies have also demonstrated the absence of insurmountable physiological incompatibilities between pig and primate. In addition, reassuring findings regarding biosafety aspects have been generated and pro-active research aimed at the identification of an organ source with a higher safety profile is also underway. These advancements, in conjunction with ongoing research in pig genetic engineering, immunosuppression and tolerance are expected to further extend the survival of porcine xenografts transplanted into primates. However, until further physiological, efficacy and safety data are generated in relevant primate models, clinical xenotransplantation should not be considered.
Collapse
Affiliation(s)
- E Cozzi
- CORIT (Consorzio per la Ricerca sul Trapianto d'Organi), Padua, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
AbuAttieh M, Rebrovich M, Wettstein PJ, Vuk-Pavlovic Z, Limper AH, Platt JL, Cascalho M. Fitness of cell-mediated immunity independent of repertoire diversity. THE JOURNAL OF IMMUNOLOGY 2007; 178:2950-60. [PMID: 17312140 DOI: 10.4049/jimmunol.178.5.2950] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fitness of cell-mediated immunity is thought to depend on TCR diversity; however, this concept has not been tested formally. We tested the concept using JH(-/-) mice that lack B cells and have TCR Vbeta diversity <1% that of wild-type mice and quasimonoclonal (QM) mice with oligoclonal B cells and TCR Vbeta diversity 7% that of wild-type mice. Despite having a TCR repertoire contracted >99% and defective lymphoid organogenesis, JH(-/-) mice rejected H-Y-incompatible skin grafts as rapidly as wild-type mice. JH(-/-) mice exhibited T cell priming by peptide and delayed-type hypersensitivity, although these responses were less than normal owing either to TCR repertoire contraction or defective lymphoid organogenesis. QM mice with TCR diversity contracted >90%, and normal lymphoid organs rejected H-Y incompatible skin grafts as rapidly as wild type mice and exhibited normal T cell priming and normal delayed-type hypersensitivity reactions. QM mice also resisted Pneumocystis murina like wild-type mice. Thus, cell-mediated immunity can function normally despite contractions of TCR diversity >90% and possibly >99%.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/immunology
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/genetics
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor/immunology
- Graft Rejection/genetics
- Graft Rejection/immunology
- Graft Rejection/pathology
- Hypersensitivity, Delayed/genetics
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/pathology
- Immunity, Cellular/genetics
- Immunity, Cellular/immunology
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Mice
- Mice, Knockout
- Organogenesis/genetics
- Organogenesis/immunology
- Pneumocystis/immunology
- Pneumocystis Infections/genetics
- Pneumocystis Infections/immunology
- Pneumocystis Infections/pathology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Skin Transplantation/immunology
- Skin Transplantation/pathology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
- Transplantation, Homologous
Collapse
Affiliation(s)
- Mouhammed AbuAttieh
- Transplantation Biology Program, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Mohiuddin discusses the lessons learned from large animal xenograft models and why the immunological barrier is still the most important hurdle preventing clinical xenotransplantation of organs.
Collapse
Affiliation(s)
- Muhammad M Mohiuddin
- Cardiothoracic Surgery Research Program, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| |
Collapse
|
47
|
Dwyer KM, Deaglio S, Crikis S, Gao W, Enjyoji K, Strom TB, Cowan PJ, d'Apice AJ, Robson SC. Salutary roles of CD39 in transplantation. Transplant Rev (Orlando) 2007. [DOI: 10.1016/j.trre.2007.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Abstract
A series of immunological and physiological barriers must be overcome for the successful clinical application of xenotransplantation. The acute phases of xenograft rejection have been prevented or at least attenuated by a variety of interventions including treatment of the recipient and genetic modification of the donor. However, recent data suggest that xenografts have a heightened susceptibility to intravascular thrombosis, a process that is emerging as a major contributor to xenograft loss. Current data strongly suggest that thrombosis is primarily a direct consequence of the rejection process, but it may also be facilitated by the failure of porcine regulators of coagulation to efficiently regulate the primate coagulation cascade. Systemic anticoagulant therapy has met with limited success and poses significant risks. Genetic strategies to express antithrombotic agents on xenograft endothelium appear to be more promising and achievable, with candidate molecules including human and leech anticoagulants and the antiplatelet enzyme CD39. Deletion of porcine procoagulants may also prove to be a useful approach.
Collapse
Affiliation(s)
- Sandra Crikis
- Immunology Research Centre and the Department of Medicine, St. Vincent's Health, University of Melbourne, Melbourne, Australia
| | | | | |
Collapse
|
49
|
Christiansen D, Mouhtouris E, Milland J, Zingoni A, Santoni A, Sandrin MS. Recognition of a carbohydrate xenoepitope by human NKRP1A (CD161). Xenotransplantation 2006; 13:440-6. [PMID: 16925668 DOI: 10.1111/j.1399-3089.2006.00332.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Many immunologically important interactions are mediated by leukocyte recognition of carbohydrates via cell surface receptors. Uncharacterized receptors on human natural killer (NK) cells interact with ligands containing the terminal Galalpha(1,3)Gal xenoepitope. The aim of this work was to isolate and characterize carbohydrate binding proteins from NK cells that bind alphaGal or other potential xenoepitopes, such as N-acetyllactosamine (NAcLac), created by the deletion of alpha1,3galactosyltransferase (GT) in animals. METHODS AND RESULTS Initial analysis suggested the human C-type lectin NKRP1A bound to a pool of glycoconjugates, the majority of which contained the terminal Galalpha(1,3)Gal epitope. This was confirmed by high level binding of cells expressing NKRP1A to mouse laminin, which contains a large number of N-linked oligosaccharides with the Galalpha(1,3)Gal structure. The consequence of removing the terminal alphaGal was then investigated. Elevated NAcLac levels were observed on thymocytes from GT-/- mice. Exposing NAcLac on laminin, by alpha-galactosidase treatment, resulted in a significant increase in NKRP1A binding. CONCLUSIONS NKRPIA binds to the alphaGal epitope. Moreover, exposing NAcLac by removal of alphaGal resulted in an increase in binding. This may be relevant in the later phases of xenotransplant rejection if GT-/- pigs, like GT-/- mice, display increased NAcLac expression.
Collapse
Affiliation(s)
- Dale Christiansen
- Department of Surgery, The University of Melbourne, Austin Health/Northern Health, Heidelberg, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Saethre M, Lea T, Borgen MS, Fiane AE, Michaelsen TE, Thorsby E, Haraldsen G, Mollnes TE. Human complement-activating immunoglobulin (Ig)G3 antibodies are essential for porcine endothelial cell activation. Xenotransplantation 2006; 13:215-23. [PMID: 16756564 DOI: 10.1111/j.1399-3089.2006.00289.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Complement-activating naturally occurring anti-porcine endothelial cell antibodies (Abs) are responsible for hyperacute rejection in porcine-to-primate transplantation, whereas the role of complement in acute vascular rejection, characterized by type II endothelial cell activation, is less well understood. We previously demonstrated a correlation between porcine type II endothelial cell activation, as detected by E-selectin expression, and human immunoglobulin (Ig)G3 anti-Gal alpha1-3Gal (Gal) Abs, which was not seen for IgG1, IgG2 or IgG4. The present study was undertaken to investigate whether there is a causal relationship between human anti-porcine IgG3 Abs and porcine endothelial cell activation. METHODS IgG3 was isolated employing a Protein A column to 98.3% purity. Porcine endothelial cells were incubated with isolated human IgG3 or the combination of IgG1, IgG2 and IgG4. E-selectin expression and complement activation were investigated by flow cytometry and Western blotting, respectively. RESULTS Purified IgG3, in contrast to the other IgG subclasses, induced a substantial increase in E-selectin expression. This activation was accompanied by complement activation as detected by C3 cleavage, and was abolished by heat inactivation or by adding the complement inhibitor FUT-175. Depletion of anti-Gal Abs reduced E-selectin expression by 60%, consistent with the presence of complement-activating anti-porcine non-Gal Abs of the IgG3 subclass. CONCLUSIONS Collectively, these data strengthen the hypothesis that human anti-porcine endothelial cell Abs of the IgG3 subclass are essential for endothelial cell activation in porcine-to-human species grafts and demonstrate such activation to be partly independent of Gal epitopes.
Collapse
Affiliation(s)
- Marit Saethre
- Institute of Immunology, Rikshospitalet University Hospital, University of Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|