1
|
Chen Y, Nagib MM, Yasmen N, Sluter MN, Littlejohn TL, Yu Y, Jiang J. Neuroinflammatory mediators in acquired epilepsy: an update. Inflamm Res 2023; 72:683-701. [PMID: 36745211 DOI: 10.1007/s00011-023-01700-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is a group of chronic neurological disorders that have diverse etiologies but are commonly characterized by spontaneous seizures and behavioral comorbidities. Although the mechanisms underlying the epileptic seizures mostly remain poorly understood and the causes often can be idiopathic, a considerable portion of cases are known as acquired epilepsy. This form of epilepsy is typically associated with prior neurological insults, which lead to the initiation and progression of epileptogenesis, eventually resulting in unprovoked seizures. A convergence of evidence in the past two decades suggests that inflammation within the brain may be a major contributing factor to acquired epileptogenesis. As evidenced in mounting preclinical and human studies, neuroinflammatory processes, such as activation and proliferation of microglia and astrocytes, elevated production of pro-inflammatory cytokines and chemokines, blood-brain barrier breakdown, and upregulation of inflammatory signaling pathways, are commonly observed after seizure-precipitating events. An increased knowledge of these neuroinflammatory processes in the epileptic brain has led to a growing list of inflammatory mediators that can be leveraged as potential targets for new therapies of epilepsy and/or biomarkers that may provide valued information for the diagnosis and prognosis of the otherwise unpredictable seizures. In this review, we mainly focus on the most recent progress in understanding the roles of these inflammatory molecules in acquired epilepsy and highlight the emerging evidence supporting their candidacy as novel molecular targets for new pharmacotherapies of acquired epilepsy and the associated behavioral deficits.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Marwa M Nagib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Taylor L Littlejohn
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
2
|
López-Meraz ML, Álvarez-Croda DM. Microglia and Status Epilepticus in the Immature Brain. Epilepsia Open 2022; 8 Suppl 1:S73-S81. [PMID: 35531942 PMCID: PMC10173848 DOI: 10.1002/epi4.12610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/21/2022] [Accepted: 04/01/2022] [Indexed: 11/06/2022] Open
Abstract
Microglia are the resident immune cells of the Central Nervous System (CNS), which are activated due to brain damage, as part of the neuroinflammatory response. Microglia undergo morphological and biochemical modifications during activation, adopting a pro-inflammatory or an anti-inflammatory state. In the developing brain, status epilepticus (SE) promotes microglia activation that is associated with neuronal injury in some areas of the brain, such as the hippocampus, thalamus and amygdala. However, the timing of this activation, the anatomical pattern, and the morphological and biochemical characteristics of microglia in the immature brain are age-dependent and have not been fully characterized. Therefore, this review focuses on the response of microglia to SE and its relationship to neurodegeneration.
Collapse
|
3
|
Dexamethasone after early-life seizures attenuates increased susceptibility to seizures, seizure-induced microglia activation and neuronal injury later in life. Neurosci Lett 2020; 728:134953. [DOI: 10.1016/j.neulet.2020.134953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/29/2022]
|
4
|
Hamadi N, Sheikh A, Madjid N, Lubbad L, Amir N, Shehab SADS, Khelifi-Touhami F, Adem A. Increased pro-inflammatory cytokines, glial activation and oxidative stress in the hippocampus after short-term bilateral adrenalectomy. BMC Neurosci 2016; 17:61. [PMID: 27586269 PMCID: PMC5009504 DOI: 10.1186/s12868-016-0296-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022] Open
Abstract
Background Bilateral adrenalectomy has been shown to damage the hippocampal neurons. Although the effects of long-term adrenalectomy have been studied extensively there are few publications on the effects of short-term adrenalectomy. In the present study we aimed to investigate the effects of short-term bilateral adrenalectomy on the levels of pro-inflammatory cytokines IL-1β, IL-6 and TNF-α; the response of microglia and astrocytes to neuronal cell death as well as oxidative stress markers GSH, SOD and MDA over the course of time (4 h, 24 h, 3 days, 1 week and 2 weeks) in the hippocampus of Wistar rats. Results Our results showed a transient significant elevation of pro-inflammatory cytokines IL-1β and IL-6 from 4 h to 3 days in the adrenalectomized compared to sham operated rats. After 1 week, the elevation of both cytokines returns to the sham levels. Surprisingly, TNF-α levels were significantly elevated at 4 h only in adrenalectomized compared to sham operated rats. The occurrence of neuronal cell death in the hippocampus following adrenalectomy was confirmed by Fluoro-Jade B staining. Our results showed a time dependent increase in degenerated neurons in the dorsal blade of the dentate gyrus from 3 days to 2 weeks after adrenalectomy. Our results revealed an early activation of microglia on day three whereas activation of astroglia in the hippocampus was observed at 1 week postoperatively. A progression of microglia and astroglia activation all over the dentate gyrus and their appearance for the first time in CA3 of adrenalectomized rats hippocampi compared to sham operated was seen after 2 weeks of surgery. Quantitative analysis revealed a significant increase in the number of microglia (3, 7 and 14 days) and astrocytes (7 and 14 days) of ADX compared to sham operated rats. Our study revealed no major signs of oxidative stress until 2 weeks after adrenalectomy when a significant decrease of GSH levels and SOD activity as well as an increase in MDA levels were found in adrenalectomized compared to sham rats. Conclusion Our study showed an early increase in the pro-inflammatory cytokines followed by neurodegeneration and activation of glial cells as well as oxidative stress. Taking these findings together it could be speculated that the early inflammatory components might contribute to the initiation of the biological cascade responsible for subsequent neuronal death in the current neurodegenerative animal model. These findings suggest that inflammatory mechanisms precede neurodegeneration and glial activation.
Collapse
Affiliation(s)
- Naserddine Hamadi
- Department of Pharmacology, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates.,Ethnobotany-Palynology and Ethnopharmacology-Toxicology Laboratory, Department of Animal Biology, Constantine-1 University, 25000, Constantine, Algeria
| | - Azimullah Sheikh
- Department of Pharmacology, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates
| | - Nather Madjid
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Loai Lubbad
- Department of Surgery, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates
| | - Naheed Amir
- Department of Pharmacology, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates
| | - Safa Al-Deen Saudi Shehab
- Department of Anatomy, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates
| | - Fatima Khelifi-Touhami
- Ethnobotany-Palynology and Ethnopharmacology-Toxicology Laboratory, Department of Animal Biology, Constantine-1 University, 25000, Constantine, Algeria
| | - Abdu Adem
- Department of Pharmacology, College of Medicine and Health Science, United Arab Emirates University, 17666, Maqam, Al Ain, United Arab Emirates.
| |
Collapse
|
5
|
Facts and fiction: the impact of hypothermia on molecular mechanisms following major challenge. Mediators Inflamm 2012; 2012:762840. [PMID: 22481864 PMCID: PMC3316953 DOI: 10.1155/2012/762840] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/02/2012] [Indexed: 01/02/2023] Open
Abstract
Numerous multiple trauma and surgical patients suffer from accidental hypothermia. While induced hypothermia is commonly used in elective cardiac surgery due to its protective effects, accidental hypothermia is associated with increased posttraumatic complications and even mortality in severely injured patients. This paper focuses on protective molecular mechanisms of hypothermia on apoptosis and the posttraumatic immune response. Although information regarding severe trauma is limited, there is evidence that induced hypothermia may have beneficial effects on the posttraumatic immune response as well as apoptosis in animal studies and certain clinical situations. However, more profound knowledge of mechanisms is necessary before randomized clinical trials in trauma patients can be initiated.
Collapse
|
6
|
Claycomb RJ, Hewett SJ, Hewett JA. Neuromodulatory role of endogenous interleukin-1β in acute seizures: possible contribution of cyclooxygenase-2. Neurobiol Dis 2011; 45:234-42. [PMID: 21856425 DOI: 10.1016/j.nbd.2011.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/20/2011] [Accepted: 08/03/2011] [Indexed: 10/17/2022] Open
Abstract
The function of endogenous interleukin-1β (IL-1β) signaling in acute seizure activity was examined using transgenic mice harboring targeted deletions in the genes for either IL-1β (Il1b) or its signaling receptor (Il1r1). Acute epileptic seizure activity was modeled using two mechanistically distinct chemoconvulsants, kainic acid (KA) and pentylenetetrazole (PTZ). KA-induced seizure activity was more severe in homozygous null (-/-) Il1b mice compared to their wild-type (+/+) littermate controls, as indicated by an increase in the incidence of sustained generalized convulsive seizure activity. In the PTZ seizure model, the incidence of acute convulsive seizures was increased in both Il1b and Il1r1-/- mice compared to their respective +/+ littermate controls. Interestingly, the selective cyclooxygenase (COX)-2 inhibitor, rofecoxib, mimicked the effect of IL-1β deficiency on PTZ-induced convulsions in Il1r1+/+ but not -/- mice. Together, these results suggest that endogenous IL-1β possesses anticonvulsive properties that may be mediated by arachidonic acid metabolites derived from the catalytic action of COX-2.
Collapse
Affiliation(s)
- Robert J Claycomb
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | | | | |
Collapse
|
7
|
Louboutin JP, Chekmasova A, Marusich E, Agrawal L, Strayer DS. Role of CCR5 and its ligands in the control of vascular inflammation and leukocyte recruitment required for acute excitotoxic seizure induction and neural damage. FASEB J 2010; 25:737-53. [PMID: 20940264 DOI: 10.1096/fj.10-161851] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemokines may play a role in leukocyte migration across the blood-brain barrier (BBB) during neuroinflammation and other neuropathological processes, such as epilepsy. We investigated the role of the chemokine receptor CCR5 in seizures. We used a rat model based on intraperitoneal kainic acid (KA) administration. Four months before KA injection, adult rats were given femoral intramarrow inoculations of SV (RNAiR5-RevM10.AU1), which carries an interfering RNA (RNAi) against CCR5, plus a marker epitope (AU1), or its monofunctional RNAi-carrying homologue, SV(RNAiR5). This treatment lowered expression of CCR5 in circulating cells. In control rats, seizures induced elevated expression of CCR5 ligands MIP-1α and RANTES in the microvasculature, increased BBB leakage and CCR5(+) cells, as well as neuronal loss, inflammation, and gliosis in the hippocampi. Animals given either the bifunctional or the monofunctional vector were largely protected from KA-induced seizures, neuroinflammation, BBB damage, and neuron loss. Brain CCR5 mRNA was reduced. Rats receiving RNAiR5-bearing vectors showed far greater repair responses: increased neuronal proliferation, and decreased production of MIP-1α and RANTES. Controls received unrelated SV(BUGT) vectors. Decrease in CCR5 in circulating cells strongly protected from excitotoxin-induced seizures, BBB leakage, CNS injury, and inflammation, and facilitated neurogenic repair.
Collapse
Affiliation(s)
- Jean-Pierre Louboutin
- Department of Pathology, Jefferson Medical College, 1020 Locust St., Rm. 251, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
8
|
Jaako K, Zharkovsky T, Zharkovsky A. Effects of repeated citalopram treatment on kainic acid-induced neurogenesis in adult mouse hippocampus. Brain Res 2009; 1288:18-28. [DOI: 10.1016/j.brainres.2009.06.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 06/23/2009] [Accepted: 06/26/2009] [Indexed: 02/01/2023]
|
9
|
Campuzano O, Castillo-Ruiz MM, Acarin L, Castellano B, Gonzalez B. Increased levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine response after excitotoxic damage. J Neurosci Res 2009; 87:2484-2497. [PMID: 19326443 DOI: 10.1002/jnr.22074] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In order to evaluate proinflammatory cytokine levels and their producing cell types in the control aged rat brain and after acute excitotoxic damage, both adult and aged male Wistar rats were injected with N-methyl-D-aspartate in the striatum. At different survival times between 6 hr and 7 days after lesioning, interleukin-1 beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-alpha) were analyzed by enzyme-linked immunosorbent assay and by double immunofluorescence of cryostat sections by using cell-specific markers. Basal cytokine expression was attributed to astrocytes and was increased in the normal aged brain showing region specificity: TNF-alpha and IL-6 displayed age-dependent higher levels in the aged cortex, and IL-1beta and IL-6 in the aged striatum. After excitotoxic striatal damage, notable age-dependent differences in cytokine induction in the aged vs. the adult were seen. The adult injured striatum exhibited a rapid induction of all cytokines analyzed, but the aged injured striatum showed a weak induction of cytokine expression: IL-1beta showed no injury-induced changes at any time, TNF-alpha presented a late induction at 5 days after lesioning, and IL-6 was only induced at 6 hr after lesioning. At both ages, in the lesion core, all cytokines were early expressed by neurons and astrocytes, and by microglia/macrophages later on. However, in the adjacent lesion border, cytokines were found in reactive astrocytes. This study highlights the particular inflammatory response of the aged brain and suggests an important role of increased basal levels of proinflammatory cytokines in the reduced ability to induce their expression after damage.
Collapse
Affiliation(s)
- O Campuzano
- Medical Histology, Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | | | | | |
Collapse
|
10
|
Spulber S, Bartfai T, Schultzberg M. IL-1/IL-1ra balance in the brain revisited - evidence from transgenic mouse models. Brain Behav Immun 2009; 23:573-9. [PMID: 19258032 DOI: 10.1016/j.bbi.2009.02.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 02/09/2009] [Accepted: 02/19/2009] [Indexed: 01/07/2023] Open
Abstract
The interleukin-1 (IL-1) family is unique in its including an endogenous antagonist of the IL-1 receptor (IL-1ra). IL-1ra has been shown to antagonise IL-1 signalling so effectively, that it came into clinical use within a few years from its discovery. Although barely detectable in the normal brain, IL-1 is dramatically upregulated during neuroinflammation, and also displays peaks of expression in the brain during development, as well as following the induction of long-term potentiation. IL-1 has been ascribed a central role in neuroinflammation accompanying ageing and age-related neurodegenerative conditions. Several experimental models based on genetically modified mice have been used in order to address the role of IL-1 in neurodegeneration and neuroprotection. Most of the findings here are based on the experiments involving a transgenic mouse strain with brain-directed overexpression of human IL-1ra, in which the balance between IL-1 and IL-1ra is permanently tipped towards inhibiting IL-1 signalling. The developmental effects of IL-1 are evident in the altered brain morphology in adult transgenic mice. In addition, IL-1 appears to be central in regulating the elasticity of the brain response to injury. Thus, a number of lines of evidence support the essential role played by IL-1 in development, plasticity, and physiological brain function.
Collapse
Affiliation(s)
- S Spulber
- Karolinska Institutet, Dept. of Neurobiology, Care Sciences and Society, Stockholm, Sweden.
| | | | | |
Collapse
|
11
|
The role of interleukin-1 in seizures and epilepsy: a critical review. Exp Neurol 2008; 216:258-71. [PMID: 19162013 DOI: 10.1016/j.expneurol.2008.12.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 12/01/2008] [Accepted: 12/13/2008] [Indexed: 01/15/2023]
Abstract
Interleukin-1 (IL-1) has a multitude of functions in the central nervous system. Some of them involve mechanisms that are related to epileptogenesis. The role of IL-1 in seizures and epilepsy has been investigated in both patients and animal models. This review aims to synthesize, based on the currently available literature, the consensus role of IL-1 in epilepsy. Three lines of evidence suggest a role for IL-1: brain tissue from epilepsy patients and brain tissue from animal models shows increased IL-1 expression after seizures, and IL-1 has proconvulsive properties when applied exogeneously. However, opposing results have been published as well. More research is needed to fully establish the role of IL-1 in seizure generation and epilepsy, and to explore possible new treatment strategies that are based on interference with intracellular signaling cascades that are initiated when IL-1 binds to its receptor.
Collapse
|
12
|
Protective effect of chuanxiongzine-puerarin in a rat model of transient middle cerebral artery occlusion-induced focal cerebral ischemia. Nucl Med Commun 2008; 29:1113-22. [DOI: 10.1097/mnm.0b013e3283108995] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Spulber S, Oprica M, Bartfai T, Winblad B, Schultzberg M. Blunted neurogenesis and gliosis due to transgenic overexpression of human soluble IL-1ra in the mouse. Eur J Neurosci 2008; 27:549-58. [DOI: 10.1111/j.1460-9568.2008.06050.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
14
|
Wu GJ, Chen WF, Sung CS, Jean YH, Shih CM, Shyu CY, Wen ZH. Preventive effects of intrathecal methylprednisolone administration on spinal cord ischemia in rats: The role of excitatory amino acid metabolizing systems. Neuroscience 2007; 147:294-303. [PMID: 17543466 DOI: 10.1016/j.neuroscience.2007.04.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Revised: 03/20/2007] [Accepted: 04/10/2007] [Indexed: 12/22/2022]
Abstract
Spinal cord ischemic injury usually results in paraplegia, which is a major cause of morbidity after thoracic aorta operations. Ample evidence indicates that massive release of excitatory amino acids (EAAs; glutamate) plays an important role in the development of neuronal ischemic injuries. However, there is a lack of direct evidence to indicate the involvement of EAAs in the glutamate metabolizing system (including the glutamate transporter isoforms, i.e. the Glu-Asp transporter (GLAST), Glu transporter-1 (GLT-1), and excitatory amino acid carrier one (EAAC1); glutamine synthetase (GS); and glutamate dehydrogenase (GDH)) in spinal cord ischemia. In the present results, we found that methylprednisolone (MP; intrathecal (i.t.) injection, 200 mug twice daily administered for 3 days before ischemia), a synthetic glucocorticoid, is the therapeutic agent for the treatment of spinal injuries in humans, can significantly reduce the ischemia-induced motor function defect and down-regulate the glutamate metabolizing system (including GLAST, GLT-1, GS, and GDH) in male Wistar rats. The spinal cord ischemia-induced down-regulation of EAAC1 protein expression in the ventral portion of the lumbar spinal cord was partly inhibited by pretreatment with i.t. MP. However, MP did not affect the down-regulation of EAAC1 in the dorsal portion of the lumbar spinal cord after spinal cord ischemia. The i.t. injection of MP alone did not change the neurological functions and the expression of proteins of the glutamate metabolizing system in the spinal cord. Our results indicate that spinal cord ischemia-induced neurological deficits accompany the decrease in the expression of proteins of the glutamate metabolizing system in the lumbar portion of the spinal cord. The i.t. MP pretreatment significantly prevented these symptoms. These results support the observation that MP delivery through an i.t. injection, is beneficial for the treatment of spinal cord ischemic injuries.
Collapse
Affiliation(s)
- G-J Wu
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Chakir A, Fabene PF, Ouazzani R, Bentivoglio M. Drug resistance and hippocampal damage after delayed treatment of pilocarpine-induced epilepsy in the rat. Brain Res Bull 2006; 71:127-38. [PMID: 17113938 DOI: 10.1016/j.brainresbull.2006.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2006] [Accepted: 08/21/2006] [Indexed: 11/27/2022]
Abstract
Temporal lobe epilepsy (TLE) is the most common and pharmacoresistant form of epilepsy. Problems that cause pharmacoresistance may include delayed therapy due to late consultation, especially in developing countries. Our study aimed at unraveling consequences of delayed drug treatment using a rat model of TLE. Following pilocarpine-induced status epilepticus interrupted after 4h, rats were continuously videorecorded for onset and recurrence of spontaneous convulsive seizures. The animals were then treated for 50 days with carbamazepine (CBZ; first-line drug in TLE and effective also in rats), starting at seizure onset (27.22+/-3.38 days after status epilepticus) or 50 days later, and compared with epileptic untreated rats and non-epileptic CBZ-treated ones. Convulsive seizure frequency and duration, and hippocampal cell changes were evaluated. In particular, parvalbumin-containing hippocampal interneurons, astrocytes and microglia were characterized with immunohistochemistry and quantitative analyses. Prompt administration of CBZ suppressed seizures; delayed treatment only decreased frequency of convulsive seizures, which were also relatively prolonged. In hippocampal regions, histopathological damage, parvalbumin immunoreactivity loss, and glial activation were very marked after delayed treatment, and were reduced only slightly compared to untreated epilepsy, but enhanced compared to early treatment. The data on high frequency and duration of convulsive seizures in late-therapy rats indicate that delayed CBZ administration caused a high degree of drug resistance. This condition was subserved by severe damage in the hippocampus, presumably consequent to long-term seizure recurrence. Overall the data indicate that the paradigm of delayed treatment of limbic epilepsy could provide a model of drug-refractory TLE with hippocampal sclerosis.
Collapse
Affiliation(s)
- A Chakir
- Department of Morphological and Biomedical Sciences, University of Verona, Italy
| | | | | | | |
Collapse
|
16
|
Oprica M, Spulber SD, Aronsson AF, Post C, Winblad B, Schultzberg M. The influence of kainic acid on core temperature and cytokine levels in the brain. Cytokine 2006; 35:77-87. [PMID: 16950633 DOI: 10.1016/j.cyto.2006.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Revised: 07/05/2006] [Accepted: 07/26/2006] [Indexed: 10/24/2022]
Abstract
Excitotoxic brain injury is associated with hyperthermia, and there are data showing beneficial effects of hypothermia on neurodegeneration and that hyperthermia facilitates the neurodegeneration. Cytokines are inflammatory proteins that seem to be involved in the neuroinflammation associated with epilepsy. Core temperature changes caused by the epileptogenic glutamate analogue kainic acid (KA) were investigated in relation to changes in levels of the pro-inflammatory cytokines interleukin-1beta (IL-1beta) and interleukin-6 (IL-6), and the endogenous interleukin-1 receptor antagonist (IL-1ra). The temperature was measured every 10 min during the first hour, and at 90 and 120 min, and hourly until 8 h after KA-injection (10 mg/kg). The cytokines were measured in the hypothalamus, a site of temperature regulation, and in hippocampus, cerebellum, and frontal cortex. KA induced a brief hypothermia followed by hyperthermia. IL-1beta levels were increased after KA-administration in all brain regions examined and, excepting hippocampus, returned to baseline levels at 24 h. The hippocampal IL-1ra levels were significantly increased at 24 h, whereas no changes in IL-6 levels were observed. The changes in IL-1beta levels and in ratios between the levels of the three cytokines, may account for some of the temperature changes and the behavioural manifestations induced by KA.
Collapse
Affiliation(s)
- Mircea Oprica
- Department of Neurobiology, Care Sciences and Society, Division of Neurodegeneration and Neuroinflammation, Karolinska Institutet, Novum, SE-141 86 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
17
|
Tabarean IV, Korn H, Bartfai T. Interleukin-1beta induces hyperpolarization and modulates synaptic inhibition in preoptic and anterior hypothalamic neurons. Neuroscience 2006; 141:1685-95. [PMID: 16777343 DOI: 10.1016/j.neuroscience.2006.05.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/03/2006] [Accepted: 05/04/2006] [Indexed: 11/26/2022]
Abstract
Most of the inflammatory effects of the cytokine interleukin 1beta (IL-1beta) are mediated by induction of cyclooxygenase (COX)2 and the subsequent synthesis and release of prostaglandin E2. This transcription-dependent process takes 45-60 min, but IL-1beta, a well-characterized endogenous pyrogen also exerts faster neuronal actions in the preoptic area/anterior hypothalamus. Here, we have studied the fast (1-3 min) signaling by IL-1beta using whole-cell patch clamp recordings in preoptic area/anterior hypothalamus neurons. Exposure to IL-1beta (0.1-1 nM) hyperpolarized a subset ( approximately 20%) of preoptic area/anterior hypothalamus neurons, decreased their input resistance and reduced their firing rate. These effects were associated with an increased frequency of bicuculline-sensitive spontaneous inhibitory postsynaptic currents and putative miniature inhibitory postsynaptic currents, strongly suggesting a presynaptic mechanism of action. These effects require the type 1 interleukin 1 receptor (IL-1R1), and the adapter protein myeloid differentiation primary response protein (MyD88), since they were not observed in cultures obtained from IL-1R1 (-/-) or from MyD88 (-/-) mice. Ceramide, a second messenger of the IL-1R1-dependent fast signaling cascade, is produced by IL-1R1-MyD88-mediated activation of the neutral sphingomyelinase. C2-ceramide, its cell penetrating analog, also increased the frequency of miniature inhibitory postsynaptic currents in a subset of cells. Both IL-1beta and ceramide reduced the delayed rectifier and the A-type K(+) currents in preoptic area/anterior hypothalamus neurons. The latter effect may account in part for the increased spontaneous inhibitory postsynaptic current frequency as suggested by experiments with the A-type K(+) channel blockers 4-aminopyridine. Taken together our data suggest that IL-1beta inhibits the activity of preoptic area/anterior hypothalamus neurons by increasing the presynaptic release of GABA.
Collapse
Affiliation(s)
- I V Tabarean
- Harold L. Dorris Neurological Research Center, Molecular and Integrative Neurosciences Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
18
|
Bernardino L, Xapelli S, Silva AP, Jakobsen B, Poulsen FR, Oliveira CR, Vezzani A, Malva JO, Zimmer J. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J Neurosci 2006; 25:6734-44. [PMID: 16033883 PMCID: PMC6725352 DOI: 10.1523/jneurosci.1510-05.2005] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The inflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha (TNF-alpha) have been identified as mediators of several forms of neurodegeneration in the brain. However, they can produce either deleterious or beneficial effects on neuronal function. We investigated the effects of these cytokines on neuronal death caused by exposure of mouse organotypic hippocampal slice cultures to toxic concentrations of AMPA. Either potentiation of excitotoxicity or neuroprotection was observed, depending on the concentration of the cytokines and the timing of exposure. A relatively high concentration of mouse recombinant TNF-alpha (10 ng/ml) enhanced excitotoxicity when the cultures were simultaneously exposed to AMPA and to this cytokine. Decreasing the concentration of TNF-alpha to 1 ng/ml resulted in neuroprotection against AMPA-induced neuronal death independently on the application protocol. By using TNF-alpha receptor (TNFR) knock-out mice, we demonstrated that the potentiation of AMPA-induced toxicity by TNF-alpha involves TNF receptor-1, whereas the neuroprotective effect is mediated by TNF receptor-2. AMPA exposure was associated with activation and proliferation of microglia as assessed by macrophage antigen-1 and bromodeoxyuridine immunohistochemistry, suggesting a functional recruitment of cytokine-producing cells at sites of neurodegeneration. Together, these findings are relevant for understanding the role of proinflammatory cytokines and microglia activation in acute and chronic excitotoxic conditions.
Collapse
Affiliation(s)
- Liliana Bernardino
- Center for Neuroscience and Cell Biology, Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sayyah M, Beheshti S, Shokrgozar MA, Eslami-far A, Deljoo Z, Khabiri AR, Haeri Rohani A. Antiepileptogenic and anticonvulsant activity of interleukin-1β in amygdala-kindled rats. Exp Neurol 2005; 191:145-53. [PMID: 15589521 DOI: 10.1016/j.expneurol.2004.08.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2004] [Revised: 08/03/2004] [Accepted: 08/30/2004] [Indexed: 11/22/2022]
Abstract
Ischaemic, excitotoxic and traumatic brain injuries have been associated with the occurrence of epileptic seizures. Microglia, the principal immune cells in the brain, produce a variety of proinflammatory and cytotoxic factors especially interleukin-1 (IL-1) early after an acute insult. We studied the effect of intracerebroventricularly administered IL-1beta on seizure acquisition and on fully kindled seizures in amygdala kindling model of epilepsy. IL-1beta (0.01 ng/rat) retarded acquisition of kindled behavioral seizures and growth of afterdischarges (AD). IL-1beta (0.01-10 ng/rat) also exhibited significant anticonvulsant effect on established kindled seizures and AD duration. This effect began 0.5 h after administration and was continued up to 72 h. Pretreatment of the kindled animals with nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester, or cyclooxygenase inhibitor, piroxicam, reversed the anticonvulsant effect of IL-1beta at early time points. Although most of the previous studies indicate a proconvulsant or convulsant property of IL-1, our results support a protective and antiepileptogenic role of IL-1beta.
Collapse
Affiliation(s)
- M Sayyah
- Department of Physiology and Pharmacology, Institute Pasteur of Iran, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
20
|
Billiau AD, Wouters CH, Lagae LG. Epilepsy and the immune system: is there a link? Eur J Paediatr Neurol 2005; 9:29-42. [PMID: 15701565 DOI: 10.1016/j.ejpn.2004.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 10/27/2004] [Accepted: 10/28/2004] [Indexed: 11/28/2022]
Abstract
The concept that the immune system plays a role in the epileptogenic process of some epileptic syndromes was first proposed more than 20 years ago. Since then, numerous studies have reported on the existence of a variety of immunological alterations in epileptic patients, on the observation of favourable responses of refractory epilepsy syndromes to immunomodulatory treatment, and on the association of certain well-known immune-mediated disease states with epilepsy. This review comprehensively recapitulates the currently available evidence supporting or arguing against the possible involvement of the immune system in the pathogenesis of certain types of epilepsy. It is concluded that an abundance of facts is in support of this concept and that further studies should be directed at substantiating the pathogenic significance of (auto)immune responses in certain types of epilepsy. Current progress in the functional and molecular immunological research techniques will indisputably contribute to the elucidation of this link.
Collapse
Affiliation(s)
- An D Billiau
- Pediatric Rheumatology Department, University Hospital Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
21
|
Zhang X, Chintala SK. Influence of interleukin-1 beta induction and mitogen-activated protein kinase phosphorylation on optic nerve ligation-induced matrix metalloproteinase-9 activation in the retina. Exp Eye Res 2004; 78:849-60. [PMID: 15037119 DOI: 10.1016/j.exer.2003.10.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2003] [Accepted: 10/02/2003] [Indexed: 02/08/2023]
Abstract
Ischemic damage to the retina is a multifaceted process that results in irreversible loss of ganglion cells and blinding disease. Although the mechanisms underlying ischemia-induced ganglion cell death in the retina are not clearly understood, we have recently reported that retinal damage induced by ligation of the optic nerve results in increased matrix metalloproteinase-9 (MMP-9) synthesis and promotes ganglion cell loss. In this study, we have investigated the roles of IL-1beta and mitogen activated protein kinases in MMP-9 induction in the retina. Optic nerve ligation led to a transient increase in IL-1beta and MMP-9 levels and phosphorylation of p42/p44 mitogen activated protein kinases (extracellular signal-regulated kinases, ERK1 and ERK2) in the retina. We found no significant increase in phosphorylation of p38 MAP kinase or c-jun N-terminal kinases indicating that ERK1/2 plays a major role in MMP-9 induction. Intravitreal injection of IL-1 receptor antagonist (IL-1Ra) or MAP kinase inhibitor U0126 significantly decreased both ERK1/2 phosphorylation and MMP-9 induction suggesting that interruption of this cascade might attenuate retinal damage. In support of this, intravitreal injection of IL-1Ra and U0126 offered significant protection against optic nerve-induced retinal damage. These results suggest that optic nerve ligation-induced IL-1beta promotes retinal damage by increasing MMP-9 synthesis in the retina.
Collapse
Affiliation(s)
- Xu Zhang
- Eye Research Institute, Oakland University, 409 Dodge Hall, Rochester, MI 48309, USA
| | | |
Collapse
|
22
|
Rizzi M, Perego C, Aliprandi M, Richichi C, Ravizza T, Colella D, Velískŏvá J, Moshé SL, De Simoni MG, Vezzani A. Glia activation and cytokine increase in rat hippocampus by kainic acid-induced status epilepticus during postnatal development. Neurobiol Dis 2004; 14:494-503. [PMID: 14678765 DOI: 10.1016/j.nbd.2003.08.001] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In adult rats, status epilepticus (SE) induces cytokine production by glia especially when seizures are associated with neuronal injury. This suggests that cytokines may play a role in seizure-induced neuronal damage. As SE-induced injury is age-specific, we used rats of different ages (with distinct susceptibilities to seizure-induced neuronal injury) to elucidate the role of cytokines in this process. Thus, we investigated the activation of microglia and astrocytes, induction of cytokines, and hippocampal neuronal injury 4 and 24 h following kainic acid-induced SE in postnatal day (PN) 9, 15, and 21 rats. At PN9, there was little activation of microglia and astrocytes at any time point studied. Interleukin-1beta (IL), tumor necrosis factor-alpha (TNF), and IL-6 or the naturally occurring IL-1 receptor antagonist (Ra) mRNA expression did not increase. No evidence of cell injury has been detected. At PN15, immunostaining of microglia and astrocytes was enhanced, but only IL-1beta mRNA expression was increased. These changes were observed 4 h after SE. Scattered injured neurons in CA3 and subiculum, but not in any other region, were present 24 h following SE. At PN21, immunostaining of microglia and astrocytes and the mRNA expression of all cytokines studied was significantly increased already 4 h after SE. At 24 h, many injured neurons were present in CA1 and CA3 regions and in 40% of rats in other forebrain areas. These data show that (i) the pattern of glia activation and cytokine gene transcription induced by SE is age-dependent and (ii) neuronal injury in the hippocampus occurs only when cytokines are induced and their synthesis precedes the appearance of neuronal damage. Thus, cytokine expression in immature brain is associated specifically with cell injury rather than with seizures per se, suggesting that proinflammatory cytokines may contribute to the occurence of SE-induced hippocampal damage.
Collapse
Affiliation(s)
- Massimo Rizzi
- Department of Neuroscience, Mario Negri Institute for Pharmacological Research, 20157 Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vezzani A, Moneta D, Richichi C, Perego C, De Simoni MG. Functional role of proinflammatory and anti-inflammatory cytokines in seizures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 548:123-33. [PMID: 15250591 DOI: 10.1007/978-1-4757-6376-8_10] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent evidence has shown that proinflammatory and anti-inflammatory molecules are synthesized during epileptic activity in glial cells in CNS regions where seizures initiate and spread. These molecules are released and interact with specific receptors on neurons. Since various cytokines have been shown to affect neuronal excitability, this led to the hypothesis that they may have a role in altering synaptic transmission in epileptic conditions. Indeed, intracerebral application of IL-1beta enhances epileptic activity in experimental models while its naturally occurring receptor antagonist (IL-1Ra) mediates anticonvulsant actions. Transgenic mice overexpressing IL-1Ra in astrocytes are less susceptible to seizures, indicating that endogenous IL-1 has proconvulsant activity. Several studies indicate a central role of IL-1beta for the exacerbation of brain damage after ischemic, traumatic or excitotoxic insults, suggesting that it may also contribute to neuronal cell injury associated with seizures. Finally, a functional polymorphism in the IL-1beta gene promoter, possibly associated with enhanced ability to produce this cytokine, has been specifically found in temporal lobe epilepsy patients with hippocampal sclerosis and in children with febrile seizures. Thus, the IL-1 system may represent a novel target for controlling seizure activity and/or the associated long-term sequelae. Furthermore, these studies suggest that other inflammatory and anti-inflammatory molecules produced in the CNS may have a role in the pathophysiology of seizure disorders.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute for Pharmacology Research, Milano, Italy
| | | | | | | | | |
Collapse
|
24
|
Patel HC, Boutin H, Allan SM. Interleukin-1 in the brain: mechanisms of action in acute neurodegeneration. Ann N Y Acad Sci 2003; 992:39-47. [PMID: 12794045 DOI: 10.1111/j.1749-6632.2003.tb03136.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interleukin-1 (IL-1) exerts a number of diverse actions in the brain, and it is currently well accepted that it contributes to experimentally induced neurodegeneration. Much of this is based on studies using the IL-1 receptor antagonist, which inhibits cell death caused by ischemia, brain injury, or excitotoxins. Our aim is to determine how and where in the brain IL-1 acts to produce these effects. Most of the neurodegenerative effects of IL-1 are thought to be through IL-1 beta. However, we have data implicating IL-1 alpha in excitotoxic cell death. Furthermore mice lacking both IL-1 alpha and IL-1 beta show dramatically reduced ischemic cell death, whereas deletion of IL-1 alpha or IL-1 beta alone fails to modify damage. It has also been demonstrated that IL-1 exacerbates ischemic injury in mice in the absence of the type I IL-1 receptor, suggesting the existence of novel IL-1 receptors in the brain. IL-1 also dramatically exacerbates neuronal loss in response to intrastriatal administration of the excitotoxin AMPA in the rat brain, an effect accompanied by marked increases in cytokine expression in the frontoparietal cortex, which precedes subsequent cell death in this region. Intrastriatal AMPA also results in limbic seizures that are exacerbated by IL-1, and we hypothesize, therefore, that IL-1 exacerbates cell death through increased seizure activity. Therefore, IL-1 appears to induce acute neurodegeneration through a number of mechanisms.
Collapse
Affiliation(s)
- H C Patel
- School of Biological Sciences, 1.124 Stopford Building, University of Manchester, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
25
|
Oprica M, Eriksson C, Schultzberg M. Inflammatory mechanisms associated with brain damage induced by kainic acid with special reference to the interleukin-1 system. J Cell Mol Med 2003; 7:127-40. [PMID: 12927051 PMCID: PMC6740282 DOI: 10.1111/j.1582-4934.2003.tb00211.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The evidence of inflammatory processes in the clinical manifestations and neuropathological sequelae of epilepsy have accumulated in the last decade. Administration of kainic acid, an analogue of the excitatory amino acid glutamate, induces a characteristic behavioural syndrome and a reproducible pattern of neurodegeneration in several brain areas, closely resembling human temporal lobe epilepsy. Results from studies using the kainic acid model indicate that manipulation of pro- and anti-inflammatory cytokines can modify the outcome with regard to the behavioural syndrome as well as the neuropathological consequences. Interleukin-1 is one of the most important cytokines and has several actions in the brain that are critical for the host defense against injury and infection, and it is involved in the initiation of early stages of inflammation. It is believed that interleukin-1 plays a pivotal role in the neuroinflammation associated with certain forms of neurodegeneration, including cerebral ischemia, trauma and excitotoxic brain injury. In this review, we have summarized the experimental data available with regard to the involvement of the interleukin-1 system in kainic acid-induced changes in the brain and emphasized the modulatory role of interleukin-1beta in this model of epilepsy
Collapse
Affiliation(s)
- M Oprica
- Neurotec Department, Karolinska Institute, Division of Experimental Geriatrics, Huddinge University Hospital, Novum, 4th floor, SE-141 86 Stockholm, Sweden.
| | | | | |
Collapse
|
26
|
Vezzani A, Moneta D, Richichi C, Aliprandi M, Burrows SJ, Ravizza T, Perego C, De Simoni MG. Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia 2002; 43 Suppl 5:30-5. [PMID: 12121291 DOI: 10.1046/j.1528-1157.43.s.5.14.x] [Citation(s) in RCA: 286] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE We investigated the changes in the expression of proinflammatory cytokines and related molecules in the rodent hippocampus after the induction of limbic seizures. We then studied the effects of pharmacologic intervention on the interleukin (IL)-1 system on limbic seizures and the susceptibility to seizures of transgenic mice overexpressing the naturally occurring antagonist of IL-1 (IL-1Ra) in astrocytes. METHODS Limbic seizures were induced in rodents by intrahippocampal injection of kainic acid or bicuculline methiodide or by electrical stimulation of the hippocampus causing status epilepticus (SE). Seizure activity was recorded by EEG analysis and behavioral observation according to Racine's scale. Cytokine expression in the hippocampus was studied by reverse transcriptase-polymerase chain reaction (RT-PCR) followed by Southern blot quantification of the various messenger RNAs (mRNAs) and by immunocytochemistry. RESULTS We found that limbic seizures rapidly and transiently enhanced IL-1beta, IL-6, and tumor necrosis factor (TNF)-alpha mRNA in the hippocampus with a peak effect at 6 h after SE. Immunoreactivity of the various cytokines was increased in glia. The increase of IL-1Ra was delayed because the peak effect was observed at 24 h after SE. Moreover, IL-1Ra was not produced in large excess, as during peripheral inflammation but in a molar ratio to IL-1beta of 1:1. Intrahippocampal injection of IL-1beta worsened seizure activity, whereas IL-1Ra was a powerful anticonvulsant in various models of limbic seizures. Transgenic mice overexpressing IL-1Ra in astrocytes were less sensitive to bicuculline-induced seizures. CONCLUSIONS This study shows that limbic seizures in rodents rapidly and reversibly induce proinflammatory cytokines in glia and suggests that changes in the IL-1Ra/IL-1beta ratio in brain may represent an effective physiopathologic mechanism to control seizures.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Mario Negri Institute of Pharmacological Research, Via Eritrea 62, 20157 Milan, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Zucconi GG, Laurenzi MA, Semprevivo M, Torni F, Lindgren JA, Marinucci E. Microglia activation and cell death in response to diethyl-dithiocarbamate acute administration. J Comp Neurol 2002; 446:135-50. [PMID: 11932932 DOI: 10.1002/cne.10197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An increasing body of evidence suggests a role for activated microglia in the pathogenesis of neurodegenerative disorders. Hence, it would be useful to have a better understanding of the significance of microglial activation for neuronal damage. Unfortunately, most models of microglial activation use invasive or long-lasting insults, which make it difficult to evaluate the role played by microglia. We have instead developed a model for microglial activation by using brief exposure to the widely available neurotoxin diethyl-dithiocarbamate (DDTC). Despite evidence for the neurotoxic nature of this substance, microglia involvement has not been hitherto investigated. After acute i.p. administration of DDTC at two different doses, microglia were already activated in selected areas of the rat brain (hippocampal dentate gyrus, entorhinal-pyriform cortex and hypothalamus) after 1 hour, reaching a peak at 3-6 hours and subsided within 6-48 hours, depending on the brain region. Microglia activation was associated with interleukin-1 beta immunopositivity between 3 and 6 hours and with up-regulation of major histocompatibility complex class II expression between 24 and 48 hours. No significant changes in astrocyte immunostaining were detected between 6 hours and 6 days. The TUNEL procedure revealed the death of a limited number of cells in the above-mentioned structures that peaked at 6h and then declined rapidly. Cell death was detected in sites with major, minor, or no microglial activation, indicating that these two events can occur concomitantly or independently. The study shows that the administration of DDTC provides a useful model for studying the implications of region-specific reactivity of microglia and its differential interaction with neuronal damage.
Collapse
|
28
|
Oprica M, Forslin Aronsson A, Post C, Eriksson C, Ahlenius S, Popescu LM, Schultzberg M. Effects of alpha-MSH on kainic acid induced changes in core temperature in rats. Peptides 2002; 23:143-9. [PMID: 11814629 DOI: 10.1016/s0196-9781(01)00590-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of intraperitoneal (i.p.) administration of kainic acid (KA) and alpha-melanocyte-stimulating hormone (alpha-MSH) alone or in combination, on core temperature of freely moving rats were examined. KA or saline was administered once (10 mg/kg) and alpha-MSH or saline was given repeatedly i.e. 10 min before and 10, 30 and 60 min after the administration of saline or KA. Two doses of alpha-MSH were used: 0.5 and 2.5 mg/kg. KA alone produced a biphasic effect on core temperature, i.e. an initial short-lasting hypothermia followed by hyperthermia that lasted about 6 h. The higher dose of alpha-MSH had a potentiating effect on KA-induced hypothermia, while the lower dose of alpha-MSH increased the hyperthermia produced by KA. alpha-MSH administered alone produced a late (3 h), dose-dependent increase in core temperature. It is conceivable that repeated administration of alpha-MSH in the doses used in our study may cause a cumulative effect in raising body temperature for a limited period of time. The previously described interactions between KA and alpha-MSH, respectively, with dopaminergic and serotoninergic systems may account for the effects on core temperature in rats observed in our study.
Collapse
Affiliation(s)
- M Oprica
- Division of Geriatric Medicine, Department of NEUROTEC, Karolinska Institute, Huddinge Hospital, Novum, SE-141 86, Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|
29
|
Pazdernik TL, Emerson MR, Cross R, Nelson SR, Samson FE. Soman-induced seizures: limbic activity, oxidative stress and neuroprotective proteins. J Appl Toxicol 2001; 21 Suppl 1:S87-94. [PMID: 11920927 DOI: 10.1002/jat.818] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Soman, a potent acetylcholinesterase inhibitor, induces status epilepticus in rats followed by conspicuous neuropathology, most prominent in piriform cortex and the CA3 region of the hippocampus. Cholinergic seizures originate in striatal-nigral pathways and with fast-acting agents (soman) rapidly spread to limbic related areas and finally culminate in a full-blown status epilepticus. This leads to neurochemical changes, some of which may be neuroprotective whereas others may cause brain damage. Pretreatment with lithium sensitizes the brain to cholinergic seizures. Likewise, other agents that increase limbic hyperactivity may sensitize the brain to cholinergic agents. The hyperactivity associated with the seizure state leads to an increase in intracellular calcium, cellular edema and metal delocalization producing an oxidative stress. These changes induce the synthesis of stress-related proteins such as heat shock proteins, metallothioneins and heme oxygenases. We show that soman-induced seizures cause a depletion in tissue glutathione and an increase in tissue 'catalytic' iron, metallothioneins and heme oxygenase-1. The oxidative stress induces the synthesis of stress-related proteins, which are indicators of 'stress' and possibly provide neuroprotection. These findings suggest that delocalization of iron may catalyze Fenton-like reactions, causing progressive cellular damage via free radical products.
Collapse
Affiliation(s)
- T L Pazdernik
- Ralph L. Smith Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
30
|
Minami M. [Cytokines and chemokines: mediators for intercellular communication in the brain]. YAKUGAKU ZASSHI 2001; 121:875-85. [PMID: 11766402 DOI: 10.1248/yakushi.121.875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The brain includes glial cells (astrocytes, microglia and oligodendrocytes) and endothelial cells in addition to neurons. Under some pathological conditions, it is invaded by leukocytes such as neutrophils, monocytes/macrophages and lymphocytes. Intercellular communication across these cell species is supposed to play crucial roles both in the brain functions and dysfunctions. However, the molecular basis of such intercellular communication remains unclear. We have studied the roles of cytokines and chemokines, which have been investigated as essential mediators in the immune and inflammatory systems, in intercellular communication across neurons, glial cells, endothelial cells and leukocytes. Messenger RNA expression of cytokines such as interleukin-1 beta was induced in brain microglia by i.p. injection of excitotoxin and neurostimulant, at least, partly via catecholaminergic systems. Messenger RNA of other cytokines such as leukemia inhibitory factor was induced in astrocytes. This cytokine specifically induced nociceptin mRNA in the cultured cortical neurons. Constitutive expression of some chemokines such as fractalkine and stromal cell derived factor-1 alpha was observed in the brain, suggesting that they play important roles in maintenance of brain homeostasis or determination of the patterning of neurons and/or glial cells in the developing and adult brains. Cytokines such as interleukin-1 beta and chemokines such as monocyte chemoattractant protein-1 and macrophage inflammatory protein-1 alpha were produced in ischemic brain and implicated in ischemic brain injury. In addition to ischemia, cytokines, chemokines and their receptors have been shown to be involved in various neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease and AIDS dementia syndrome. They are potential targets for therapeutic intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- M Minami
- Department of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida, Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
31
|
Yoneda S, Tanihara H, Kido N, Honda Y, Goto W, Hara H, Miyawaki N. Interleukin-1beta mediates ischemic injury in the rat retina. Exp Eye Res 2001; 73:661-7. [PMID: 11747366 DOI: 10.1006/exer.2001.1072] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two types of experiment were performed to examine the role of interleukin-1beta in ischemia-induced damage in the rat retina. In the in vivo study, enzyme-linked immunosorbent assay was used to investigate the expression of immunoreactive interleukin-1beta in the rat retina following a hypertension-induced ischemia/reperfusion, while the effect of a recombinant human interleukin-1 receptor antagonist or an anti-interleukin-1beta neutralizing antibody on the ischemia-induced damage was examined histologically. A transient increase in the expression of immunoreactive interleukin-1beta was observed in the retina 3-12 hr after reperfusion, and morphometric evaluation at 7 days after the ischemia showed a decrease in cell numbers in the ganglion cell layer and a decreased thickness of the inner plexiform layer with no change in the other retinal layers. Intravitreal injection of interleukin-1 receptor antagonist (1 or 10 ng per eye) or anti-interleukin-1beta antibody (50 or 500 ng per eye) 5 min before the onset of the ischemia reduced the damage. In the in vitro study, interleukin-1 receptor antagonist (500 ng ml(-1)) significantly reduced glutamate-induced neurotoxicity in rat cultured retinal neurons. These results suggest that interleukin-1 plays an important role in mediating ischemic and excitotoxic damage in the retina, and that interleukin-1 inhibitors may be therapeutically useful against neuronal injury caused by optic nerve or retinal diseases such as glaucoma and central retinal artery or vein occlusion.
Collapse
Affiliation(s)
- S Yoneda
- Ophthalmic Research Division, Santen Pharmaceuticals Co. Ltd, 8916-16, Takayama, Ikoma 630-0101, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Zagulska-Szymczak S, Filipkowski RK, Kaczmarek L. Kainate-induced genes in the hippocampus: lessons from expression patterns. Neurochem Int 2001; 38:485-501. [PMID: 11248397 DOI: 10.1016/s0197-0186(00)00101-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kainate, the analog of the excitatory amino acid L-glutamate, upon binding to non-NMDA glutamate receptors, causes depolarization of neurons followed by severe status epilepticus, neurodegeneration, plasticity and gliosis. These events are best observed in hippocampus, the limbic structure implicated in learning and long-term memory formation. Neurons in all hippocampal structures undergo hyper-activation, however, whereas the cells in the CA subfields degenerate within 2--3 days following the application of kainate, the granule cells of the dentate gyrus are resistant to any form of neurodegeneration and even initiate new synaptic contacts. These physiological and histological changes are modulated by short-term and long-term alterations in gene expression. Perhaps close examination of the changing spatio-temporal patterns of mRNAs of various genes may help in generating a clearer picture of the molecular events leading to complex cognitive functions.
Collapse
Affiliation(s)
- S Zagulska-Szymczak
- Department of Molecular and Cellular Neurobiology, Nencki Institute, Pasteura 3, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
33
|
Abstract
Experimental and clinical damage to the brain leads to rapid upregulation of an array of cytokines predominantly by glia. These cytokines may exert neurotoxic or neuroprotective actions. This paper will focus on the pro-inflammatory cytokine interleukin-1 (IL-1), which participates in diverse forms of brain damage including ischemia, brain trauma, and excitotoxic injury. Administration of low doses of IL-1 markedly exacerbates these forms of brain damage, whereas blocking IL-1 release or actions reduces neuronal death. IL-1 receptor antagonist (IL-1ra) is also upregulated by brain damage (mainly by neurons) and acts as an endogenous inhibitor of neurodegeneration, presumably by blocking IL-1 actions on its receptor. We have studied the actions of both IL-1 and IL-1ra in experimental models of ischemic and neurotoxic injury in rats, and have found site-specific effects within the striatum. On the basis of this and further work, we propose that IL-1 can exacerbate cell death in these conditions by modifying polysynaptic anterograde pathways leading from the striatum to the cortex. The precise nature of these pathways remains undetermined, as do the underlying mechanisms by which IL-1 can exert its effects, but appear to involve induction of IL-1 in specific brain regions and activation of cortical glutamatergic pathways.
Collapse
Affiliation(s)
- S M Allan
- School of Biological Sciences, 1.124 Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.
| |
Collapse
|
34
|
Barnea A, Roberts J, Keller P, Word RA. Interleukin-1beta induces expression of neuropeptide Y in primary astrocyte cultures in a cytokine-specific manner: induction in human but not rat astrocytes. Brain Res 2001; 896:137-45. [PMID: 11277982 DOI: 10.1016/s0006-8993(01)02141-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies have demonstrated that astrocyte cultures express neuropeptide Y (NPY) in a regulated manner, namely, phorbol ester leads to an increase in proNPY-mRNA and NPY production. In this respect, the behavior of astrocytes derived from the human fetal or rat neonatal brain is similar (Regul. Pept. 75 (1998) 293). Since astrocytes can be exposed to high levels of IL-1beta, we addressed the question: Does IL-1beta regulate NPY expression by the astrocytes? Primary astrocytes derived from the human fetal or rat neonatal cortex were cultured in serum-free medium. IL-1beta, but not IL-6 or TNF-alpha, led to an increase in NPY production dose-dependently. IL-1beta action manifested in the human but not in the rat astrocytes and it was completely abolished by IL-1 receptor antagonist. The responsiveness to IL-1beta did not diminish upon sub-culture of the astrocytes (five passages). In addition, IL-1beta led to an increase in the abundance of proNPY-mRNA, which was preceded by a rapid and transient increase in cFos-mRNA and a rapid and sustained increase in JunB-mRNA. In contrast to cFos/JunB, IL-1beta did not alter the abundance of cJun-mRNA. In summary, we demonstrate that IL-1beta induction of NPY expression in astrocytes is species- and cytokine-specific and that IL-1 receptor is involved. Moreover, induction of NPY expression is preceded by a rapid increase in the expression of two transcription factors (cFos, JunB) that have been previously (Oncogene 9 (1994) 2369; J. Neurochem. 70 (1998) 1887) implicated in transcriptional regulation of the human NPY gene.
Collapse
Affiliation(s)
- A Barnea
- Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center at Dallas, 5373 Harry Hines Boulevard, Dallas, TX 75390-9032, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
Although the neuropathological changes caused by severe or repeated seizures have been well characterized, many questions about the molecular mechanisms involved remain unanswered. Neuronal cell death, reactive gliosis, enhanced neurogenesis, and axonal sprouting are four of the best-studied sequelae of seizures. In vitro, each of these pathological processes can be substantially influenced by soluble protein factors, including neurotrophins, cytokines, and growth factors. Furthermore, many of these proteins and their receptors are expressed in the adult brain and are up-regulated in response to neuronal activity and injury. We review the evidence that these intercellular signaling proteins regulate seizure activity as well as subsequent pathology in vivo. As nerve growth factor and brain derived neurotrophic factor are the best-studied proteins of this class, we begin by discussing the evidence linking these neurotrophins to epilepsy and seizure. More than a dozen additional cytokines, growth factors, and neurotrophins that have been examined in the context of epilepsy models are then considered. We discuss the effect of seizure on expression of cytokines and growth factors, and explore the regulation of seizure development and aftermath by exogenous application or antagonist perturbation of these proteins. The experimental evidence supports a role for these factors in each aspect of seizure and pathology, and suggests potential targets for future therapeutics.
Collapse
Affiliation(s)
- J L Jankowsky
- Biology Division, California Institute of Technology, 216-76 Caltech, Pasadena, CA 91125, USA
| | | |
Collapse
|
36
|
Eriksson C, Zou LP, Ahlenius S, Winblad B, Schultzberg M. Inhibition of kainic acid induced expression of interleukin-1 beta and interleukin-1 receptor antagonist mRNA in the rat brain by NMDA receptor antagonists. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 85:103-13. [PMID: 11146112 DOI: 10.1016/s0169-328x(00)00251-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytokines interleukin-1 beta (IL-1 beta) and IL-1 receptor antagonist (IL-1ra) are rapidly induced in response to excitotoxic and ischemic brain damage. The aim of the present study was to investigate the influence of a non-competitive (dizocilpine maleate, MK-801) and a competitive ((R)-CPP) NMDA receptor antagonist on the transient cytokine expression in the rat brain induced by systemic kainic acid administration. Peripheral administration of kainic acid (10 mg/kg, i.p.) results in a transient expression of IL-1 beta and IL-1ra mRNA, mainly in microglia, in regions showing neurodegeneration such as the hippocampus, thalamus, amygdala, and certain cortical regions. In addition, a few neurons expressing IL-1ra mRNA were observed in the piriform cortex and amygdala following kainic acid injection. Administration of MK-801 (i.p.) 1 h prior to kainic acid injection reduced cytokine expression in all of these regions. MK-801 at 3.0 mg/kg decreased the IL-1 beta mRNA expression, blocked or decreased the IL-1ra mRNA expression, depending on the brain region. MK-801 at 5.0 mg/kg abolished IL-1ra mRNA expression in all of the regions, whereas the IL-1 beta mRNA expression was decreased or blocked, depending on the brain region, or the time point investigated. Peripheral administration of (R)-CPP (15 mg/kg, i.p.) 15 min prior to the kainic acid injection abolished the IL-1 beta mRNA expression. The IL-1ra mRNA expression was abolished in all regions except for a few neurons in the piriform cortex. The finding that NMDA receptor antagonists inhibit the IL-1 beta and IL-1ra mRNA synthesis induced by kainic acid suggests that NMDA receptor activation may be involved in triggering cytokine synthesis following excitotoxic brain damage.
Collapse
Affiliation(s)
- C Eriksson
- Division of Geriatric Medicine, NEUROTEC, Karolinska Institute, Huddinge Hospital, Novum, S-141 86 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
37
|
Ye S, Mozayeni P, Gamburd M, Zhong H, Campese VM. Interleukin-1beta and neurogenic control of blood pressure in normal rats and rats with chronic renal failure. Am J Physiol Heart Circ Physiol 2000; 279:H2786-96. [PMID: 11087233 DOI: 10.1152/ajpheart.2000.279.6.h2786] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased sympathetic nervous system (SNS) activity plays a role in the genesis of hypertension in rats with chronic renal failure (CRF). The rise in central SNS activity is mitigated by increased local expression of neuronal nitric oxide synthase (NOS) mRNA and NO(2)/NO(3) production. Because interleukin (IL)-1beta may activate nitric oxide in the brain, we have tested the hypothesis that IL-1beta may modulate the activity of the SNS via regulation of the local expression of neuronal NOS (nNOS) in the brain of CRF and control rats. To this end, we first found that administration of IL-1beta in the lateral ventricle of control and CRF rats decreased blood pressure and norepinephrine (NE) secretion from the posterior hypothalamus (PH) and increased NOS mRNA expression. Second, we observed that an acute or chronic injection of an IL-1beta-specific antibody in the lateral ventricle raised blood pressure and NE secretion from the PH and decreased NOS mRNA abundance in the PH of control and CRF rats. Finally, we measured the IL-1beta mRNA abundance in the PH, locus coeruleus, and paraventricular nuclei of CRF and control rats by RT-PCR and found it to be greater in CRF rats than in control rats. In conclusion, these studies have shown that IL-1beta modulates the activity of the SNS in the central nervous system and that this modulation is mediated by increased local expression of nNOS mRNA.
Collapse
MESH Headings
- Adrenergic alpha-Antagonists/pharmacology
- Angiotensin II/pharmacology
- Animals
- Antibodies/pharmacology
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Creatinine/classification
- Disease Models, Animal
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Hypothalamus, Posterior/enzymology
- Hypothalamus, Posterior/metabolism
- Hypothalamus, Posterior/physiopathology
- Interleukin-1/immunology
- Interleukin-1/pharmacology
- Kidney Failure, Chronic/metabolism
- Kidney Failure, Chronic/physiopathology
- Male
- Nephrectomy
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type I
- Norepinephrine/metabolism
- Phentolamine/pharmacology
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Sympathetic Nervous System/drug effects
- Sympathetic Nervous System/physiology
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- S Ye
- Division of Nephrology, Department of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | |
Collapse
|
38
|
Acarin L, González B, Castellano B. Neuronal, astroglial and microglial cytokine expression after an excitotoxic lesion in the immature rat brain. Eur J Neurosci 2000; 12:3505-20. [PMID: 11029620 DOI: 10.1046/j.1460-9568.2000.00226.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytokines are important intercellular messengers involved in neuron-glia interactions and in the microglial-astroglial crosstalk, modulating the glial response to brain injury and the lesion outcome. In this study, excitotoxic lesions were induced by the injection of N-methyl-D-aspartate in postnatal day 9 rats, and the cytokines interleukin-1 beta (IL-1beta), interleukin-6 (IL-6), tumour necrosis factor alpha (TNFalpha) and transforming growth factor beta 1 (TGF-beta1) analysed by ELISA and/or immunohistochemistry. Moreover, cytokine-expressing glial cells were identified by means of double labelling with glial fibrillary acidic protein or tomato lectin binding. Our results show that both neurons and glia were capable of cytokine expression following different patterns in the excitotoxically damaged area vs. the nondegenerating surrounding grey matter (SGM). Excitotoxically damaged neurons showed upregulation of IL-6 and downregulation of TNFalpha and TGF-beta1 before they degenerated. Moreover, in the SGM, an increased expression of neuronal IL-6, TNFalpha and TGF-beta1 was observed. A subpopulation of microglial cells, located in the SGM and showing IL-1beta and TNFalpha expression, were the earliest glial cells producing cytokines, at 2-10 h postinjection. Later on, cytokine-positive glial cells were found within the excitotoxically damaged area and the adjacent white matter: some reactive astrocytes expressed TNFalpha and IL-6, and microglia/macrophages showed mild IL-1beta and TGF-beta1. Finally, the expression of all cytokines was observed in the glial scar. As discussed, this pattern of cytokine production suggests their implication in the evolution of excitotoxic neuronal damage and the associated glial response.
Collapse
Affiliation(s)
- L Acarin
- Unit of Histology, School of Medicine, Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra 08193, Spain.
| | | | | |
Collapse
|
39
|
De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, De Luigi A, Garattini S, Vezzani A. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 2000; 12:2623-33. [PMID: 10947836 DOI: 10.1046/j.1460-9568.2000.00140.x] [Citation(s) in RCA: 408] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Limbic status epilepticus was induced in rats by unilateral 60-min electrical stimulation of the CA3 region of the ventral hippocampus. As assessed by RT-PCR followed by Southern blot analysis, transcripts of interleukin-1beta, interleukin-6, interleukin-1 receptor antagonist and inducible nitric oxide synthase were significantly increased 2 h after status epilepticus in the stimulated hippocampus. Induction was maximal at 6 h for interleukin-1beta (445%), interleukin-6 (405%) and tumour necrosis factor-alpha (264%) and at 24 h for interleukin-1 receptor antagonist (494%) and inducible nitric oxide synthase (432%). In rats with spontaneous seizures (60 days after status epilepticus), interleukin-1beta mRNA was still higher than controls (241%). Immunocytochemical staining of interleukin-1beta, interleukin-6 and tumour necrosis factor-alpha was enhanced in glia with a time-course similar to that of the respective transcripts. Sixty days after status epilepticus, interleukin-1beta immunoreactivity was increased exclusively in neurons in one third of the animals. Multiple intracerebroventricular injections of interleukin-1 receptor antagonist (0.5 microg/3 microL) significantly decreased the severity of behavioural convulsions during electrical stimulation and selectively reduced tumour necrosis factor-alpha content in the hippocampus measured 18 h after status epilepticus. Thus, the induction of spontaneously recurring seizures in rats involves the activation of inflammatory cytokines and related pro- and anti-inflammatory genes in the hippocampus. These changes may play an active role in hyperexcitability of the epileptic tissue.
Collapse
Affiliation(s)
- M G De Simoni
- Laboratory of Inflammation and Nervous System Diseases and Laboratory of Experimental Neurology, Department of Neuroscience, Mario Negri Institute for Pharmacological Research, Milano, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Allan SM, Parker LC, Collins B, Davies R, Luheshi GN, Rothwell NJ. Cortical cell death induced by IL-1 is mediated via actions in the hypothalamus of the rat. Proc Natl Acad Sci U S A 2000; 97:5580-5. [PMID: 10779559 PMCID: PMC25871 DOI: 10.1073/pnas.090464197] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The cytokine IL-1 mediates diverse forms of neurodegeneration, but its mechanism of action is unknown. We have demonstrated previously that exogenous and endogenous IL-1 acts specifically in the rat striatum to dramatically enhance ischemic and excitotoxic brain damage and cause extensive cortical injury. Here we tested the hypothesis that this distant effect of IL-1 is mediated through polysynaptic striatal outputs to the cortex via the hypothalamus. We show that IL-1beta injected into the rat striatum with the excitotoxin alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (S-AMPA) caused increased expression of IL-1beta (mRNA and protein) mainly in the cortex where maximum injury occurs. Marked increases in IL-1beta mRNA and protein were also observed in the hypothalamus. S-AMPA, injected alone into the striatum, caused only localized damage, but administration of IL-1beta into either the striatum or the lateral hypothalamus immediately after striatal S-AMPA resulted in widespread cell loss throughout the ipsilateral cortex. Finally we showed that the cortical cell death produced by striatal coinjection of S-AMPA and IL-1beta was significantly reduced by administration of the IL-1 receptor antagonist into the lateral hypothalamus. These data suggest that IL-1beta can act in the hypothalamus to modify cell viability in the cortex. We conclude that IL-1-dependent pathways project from the striatum to the cortex via the hypothalamus and lead to cortical injury, and that these may contribute to a number of human neurological conditions including stroke and head trauma.
Collapse
Affiliation(s)
- S M Allan
- School of Biological Sciences, 1.124 Stopford Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
Eriksson C, Tehranian R, Iverfeldt K, Winblad B, Schultzberg M. Increased expression of mRNA encoding interleukin-1beta and caspase-1, and the secreted isoform of interleukin-1 receptor antagonist in the rat brain following systemic kainic acid administration. J Neurosci Res 2000; 60:266-79. [PMID: 10740232 DOI: 10.1002/(sici)1097-4547(20000415)60:2<266::aid-jnr16>3.0.co;2-p] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Kainic acid, an analogue of glutamate, injected systemically to rats evokes seizures that are accompanied by nerve cell damage primarily in the limbic system. In the present study, we have analyzed the temporal profile of the expression of the cytokines interleukin-1beta (IL-1beta) and IL-1 receptor antagonist (IL-1ra), and the related IL-1beta-converting enzyme (ICE/caspase-1), in different regions of the rat brain in response to peripheral kainic acid administration (10 mg/kg, i.p.). In situ hybridization histochemistry experiments revealed that IL-1beta mRNA-expressing cells, morphologically identified as microglial cells, were mainly localized to regions showing pronounced neuronal degeneration; hippocampus, thalamus, amygdala, and certain cortical regions. The strongest expression of IL-1beta mRNA was observed after 12 hr in these regions. A weak induction of the IL-1beta mRNA expression was observed already at 2 hr. Similar results were obtained by RT-PCR analysis, showing a significantly increased expression of IL-1beta mRNA in the hippocampus and amygdala after 12 hr. In addition, RT-PCR analysis revealed that IL-1ra mRNA, and specifically mRNA encoding the secreted isoform of IL-1ra (sIL-1ra), was strongly induced in the hippocampus and amygdala at 12 and 24 hr post-injection. RT-PCR analysis of mRNA encoding caspase-1 showed a significantly increased expression in the amygdala after 12 hr. In conclusion, in response to systemic kainic acid injection IL-1beta mRNA is rapidly induced and followed by induction of IL-1ra mRNA and caspase-1 mRNA, supporting a role of the IL-1 system in the inflammatory response during excitotoxic damage.
Collapse
Affiliation(s)
- C Eriksson
- Division of Geriatric Medicine, NEUROTEC, Karolinska Institute, Huddinge Hospital, Novum, Huddinge, Sweden.
| | | | | | | | | |
Collapse
|
42
|
Nakagawa T, Masuda T, Watanabe T, Minami M, Satoh M. Possible involvement of the locus coeruleus in inhibition by prostanoid EP(3) receptor-selective agonists of morphine withdrawal syndrome in rats. Eur J Pharmacol 2000; 390:257-66. [PMID: 10708732 DOI: 10.1016/s0014-2999(99)00901-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We examined the mechanism of the inhibitory effect of prostanoid EP(3) receptor agonists on naloxone-precipitated withdrawal syndrome in morphine-dependent rats. Rats were rendered morphine dependent by subcutaneous (s.c.) implantation of two pellets containing 75 mg morphine for 5 days. Morphine withdrawal syndrome was precipitated by i.p. injection of naloxone (3 mg/kg). Intracerebroventricular (i.c.v.) administration of (+/-)-15alpha-hydroxy-9-oxo-16-phenoxy-17,18, 19,20-tetranorprost-13-trans-enoic acid (M&B28,767: prostanoid EP(3) receptor agonist) or sulprostone (prostanoid EP(1)/EP(3) receptor agonist) significantly suppressed many withdrawal signs. Northern blotting and in situ hybridization studies revealed that i.c.v. administration of M&B28,767 (1 pg/rat) attenuated the elevation of c-fos mRNA during naloxone-precipitated withdrawal in many brain regions, including the cerebral cortex, thalamus, hypothalamus and locus coeruleus. Double in situ hybridization analysis revealed that in the locus coeruleus most of the tyrosine hydroxylase mRNA-positive neurons expressed mu-opioid receptor mRNA and more than half of these neurons were positive for prostanoid EP(3) receptor mRNA. These results indicate that the suppression by prostanoid EP(3) receptor agonists of naloxone-precipitated morphine withdrawal syndrome can be attributed to the inhibition of neuronal activity in several brain regions, including the locus coeruleus, the largest source of central noradrenergic neurons.
Collapse
MESH Headings
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Animals
- Brain/drug effects
- Brain/metabolism
- Dinoprostone/analogs & derivatives
- Dinoprostone/pharmacology
- Dose-Response Relationship, Drug
- Gene Expression Regulation/drug effects
- In Situ Hybridization
- Injections, Intraventricular
- Locus Coeruleus/drug effects
- Locus Coeruleus/metabolism
- Male
- Morphine/adverse effects
- Morphine Dependence/prevention & control
- Naloxone/pharmacology
- Proto-Oncogene Proteins c-fos/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, mu/genetics
- Receptors, Prostaglandin E/agonists
- Receptors, Prostaglandin E/genetics
- Receptors, Prostaglandin E, EP3 Subtype
- Substance Withdrawal Syndrome/etiology
- Substance Withdrawal Syndrome/physiopathology
- Substance Withdrawal Syndrome/prevention & control
- Tyrosine 3-Monooxygenase/genetics
Collapse
Affiliation(s)
- T Nakagawa
- Department of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
43
|
Plata-Salamán CR, Ilyin SE, Turrin NP, Gayle D, Flynn MC, Romanovitch AE, Kelly ME, Bureau Y, Anisman H, McIntyre DC. Kindling modulates the IL-1beta system, TNF-alpha, TGF-beta1, and neuropeptide mRNAs in specific brain regions. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 75:248-58. [PMID: 10686345 DOI: 10.1016/s0169-328x(99)00306-x] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cytokines and neuropeptides may be involved in seizure-associated processes. Following amygdala kindling in rats, we determined alterations of IL-1beta, IL-1 receptor antagonist (IL-1Ra), IL-1 receptor type I (IL-1RI), IL-1 receptor accessory proteins (IL-1R AcPs) I and II, TNF-alpha, TGF-beta1, neuropeptide Y (NPY), glycoprotein 130 (gp 130) and pro-opiomelanocortin (POMC) mRNA levels in the parietal, prefrontal and piriform cortices, amygdala, hippocampus and hypothalamus. Messenger RNAs expression in all brain regions was determined 2 h or 3 weeks following the last generalized convulsive seizure triggered from the ipsilateral kindled amygdala. The same brain region sample was used to assay for changes of all mRNA components. The results show that the 2 h-kindled group exhibited a significant up-regulation of IL-1beta, IL-1RI, TNF-alpha and TGF-beta1 mRNAs in all three cortical brain regions, amygdala and hippocampus. The largest up-regulation occurred in the prefrontal cortex (about 30-fold induction for IL-1beta and TNF-alpha mRNAs). IL-1R AcP I and II mRNA levels were also up-regulated in the cortical regions. No changes in IL-1beta, IL-1RI or TNF-alpha mRNA levels occurred in the 3 week-kindled group. NPY mRNA levels increased in the hippocampus, prefrontal and piriform cortices in the 2 h-kindled group, while IL-1Ra, gp 130, or POMC mRNA levels did not change in any group. The overall profile of mRNA changes shows specificity of transcriptional modulation induced by amygdala kindling. The data support a role of cytokines and NPY in the adaptive mechanisms associated with generalized seizure activity, with implications for neuroprotection, neuronal dysfunction and vulnerability associated with epileptic activity.
Collapse
Affiliation(s)
- C R Plata-Salamán
- Division Molecular Biology, School of Life and Health Sciences, University of Delaware, Newark, DE, USA. cplatasa@
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Plata-Salamán CR, Ilyin SE, Turrin NP, Gayle D, Flynn MC, Bedard T, Merali Z, Anisman H. Neither acute nor chronic exposure to a naturalistic (predator) stressor influences the interleukin-1beta system, tumor necrosis factor-alpha, transforming growth factor-beta1, and neuropeptide mRNAs in specific brain regions. Brain Res Bull 2000; 51:187-93. [PMID: 10709966 DOI: 10.1016/s0361-9230(99)00204-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Physical (neurogenic) stressors may influence immune functioning and interleukin-1beta (IL-1beta) mRNA levels within several brain regions. The present study assessed the effects of an acute or repeated naturalistic, psychogenic stressor (predator exposure) on brain cytokine and neuropeptide mRNAs. Acute predator (ferret) exposure induced stress-like behavioral effects, including elicitation of a startle response and reduced exploratory behaviors; these responses diminished after 30 sessions. Moreover, acute and repeated predator exposure, like acute restraint stress, increased plasma corticosterone levels measured 5 min later, but not 2 h after stressor exposure. In contrast, none of the stressors used influenced IL-1beta, IL-1 receptor antagonist, IL-1 receptor type I, IL-1 receptor accessory proteins I and II, or tumor necrosis factor-alpha mRNA levels in the prefrontal cortex, amygdala, hippocampus, or hypothalamus. Likewise, there were no stressor effects on transforming growth factor-beta1, neuropeptide Y, glycoprotein 130, or leptin receptor mRNAs in brain regions. Thus, the naturalistic/psychogenic stressor used does not affect any of the brain cytokine component mRNAs studied. It is suggested that this type of stressor activates homeostatic mechanisms (e.g., glucocorticoid release), which act to preclude brain cytokine alterations that would otherwise favor neuroinflammatory/neuroimmunological responses and the consequent increase of brain sensitivity to neurotoxic and neurodegenerative processes.
Collapse
Affiliation(s)
- C R Plata-Salamán
- Molecular Biology, School of Life and Health Sciences, University of Delaware, Newark 19716-2590, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Tanebe K, Nishijo H, Muraguchi A, Ono T. Effects of chronic stress on hypothalamic lnterleukin-1beta, interleukin-2, and gonadotrophin-releasing hormone gene expression in ovariectomized rats. J Neuroendocrinol 2000; 12:13-21. [PMID: 10692139 DOI: 10.1046/j.1365-2826.2000.00414.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The influence of chronic stress on the expression of interleukin (IL)-1beta and IL-2 mRNAs in ovariectomized rat brains, and the physiological consequences of the expression of these cytokines on hypothalamic-pituitary-gonadal (HPG) activity were investigated. Using polymerase chain reaction (PCR)-assisted semiquantitative analysis, we demonstrated alterated expression of IL-1beta and IL-2 mRNA during repeated cold stress; the expression of both IL-beta and IL-2 mRNA increased in the medial preoptic area and ventromedial hypothalamus, and decreased in the lateral hypothalamic area. In the arcuate nucleus/median eminence, IL-2 mRNA expression was dramatically decreased, in contrast to the increase in IL-1beta mRNA expression. Concomitant analysis of GnRH mRNA expression indicated significant suppression of GnRH synthesis in the chronic phase, and a strong negative correlation with cytokine expression in the medial preoptic area. Similar results were obtained in intact females exposed to this stress. These results, together with previous pharmacological studies, suggest that chronic stress may induce reproductive dysfunction through the effects of stress-induced expression of endogenous cytokines.
Collapse
Affiliation(s)
- K Tanebe
- Department of Physiology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Sugitani, Toyama, Japan
| | | | | | | |
Collapse
|
46
|
Eriksson C, Van Dam AM, Lucassen PJ, Bol JG, Winblad B, Schultzberg M. Immunohistochemical localization of interleukin-1beta, interleukin-1 receptor antagonist and interleukin-1beta converting enzyme/caspase-1 in the rat brain after peripheral administration of kainic acid. Neuroscience 1999; 93:915-30. [PMID: 10473257 DOI: 10.1016/s0306-4522(99)00178-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The temporal and anatomical distribution of members of the interleukin-1 system in the rat brain following intraperitoneal kainic acid administration was studied in relation to neurodegeneration as detected with in situ end labelling. Kainic acid administration (10 mg/kg, i.p.) resulted in the induced expression of interleukin-1beta, interleukin- receptor antagonist and caspase-1p10 immunoreactivity in areas known to display neuronal and tissue damage upon excitotoxic lesions. The induction of these proteins was transient. Interleukin-1 immunoreactivity appeared at 5 h, and the interleukin-1 receptor antagonist-immunoreactive cells were first detected at 12 h, whereas the induction of caspase- 1p10 expression was first detected 24 h after kainic acid injection. Double labelling with the microglial marker Ox42 confirmed that both interleukin-1beta and interleukin-1 receptor antagonist were mainly localized in microglial cells. The regional distribution of in situ end-labelled neurons was similar to the distribution of cells expressing interleukin-1beta and interleukin-1 receptor antagonist, whereas the distribution of caspase-1 was more limited. The in situ end-labelled neurons, were, similarly to the interleukin-1beta-positive cells, first detected at 5 h, which is earlier than the induction of caspase-1. Our results show that the induction of IL-1beta and IL-1 receptor antagonist proteins after kainic acid are closely associated with the temporal as well as the anatomical distribution of in situ end-labelled neurons, whereas the induction of caspase-1 protein exhibited a delayed temporal profile and limited distribution. Since cytokine production occurs in activated microglial cells, the inflammatory component seems to be a strong mediator of this type of excitotoxic damage. The late onset of the caspase-1 expression would seem to indicate that this enzyme has no fundamental role in directly causing neuronal cell death induced by systemic kainic acid.
Collapse
Affiliation(s)
- C Eriksson
- Department of Clinical Neuroscience and Family Medicine, Karolinska Institute, Huddinge Hospital, Novum, Sweden
| | | | | | | | | | | |
Collapse
|
47
|
Anisman H, Merali Z. Anhedonic and anxiogenic effects of cytokine exposure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 461:199-233. [PMID: 10442175 DOI: 10.1007/978-0-585-37970-8_12] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Systemic interleukin IL-1 beta, TNF alpha, and IL-2 profoundly influenced central monoamine activity, as well as behavioral outputs. The effects of the various cytokines were clearly distinguishable from one another, although synergistic effects were detected between several of these cytokines and between the actions of cytokines and stressors. Acutely applied IL-2 appeared to affect reward processes, but did not affect anxiety. When chronically administered, this cytokine markedly influenced working memory in a spatial learning test. In contrast to IL-2, both IL-1 beta and TNF alpha appeared to provoke an anxiogenic action, and provoked clear signs of illness. While these cytokines induced anorexia, they did not appear to affect reward processes. IL-1 beta and TNF alpha were found to act synergistically, and the TNF alpha provoked a sensitization with respect to the action of subsequent TNF alpha treatment. The findings indicated that cytokine treatments profoundly influence extrahypothalamic neurochemical functioning and may thus impact on behavioral outputs. Analyses of the behavioral and neurochemical changes elicited by cytokines, and particularly TNF alpha, need to consider not only the immediate impact of such treatments, but also the proactive effects that may be engendered.
Collapse
Affiliation(s)
- H Anisman
- Institute of Neuroscience, Carleton University, Ottawa, Canada
| | | |
Collapse
|
48
|
Lim JH, Brunjes PC. Activity-dependent regulation of interleukin-1 beta immunoreactivity in the developing rat olfactory bulb. Neuroscience 1999; 93:371-4. [PMID: 10430500 DOI: 10.1016/s0306-4522(99)00093-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interleukin-1beta is a relatively small and abundant polypeptide that plays diverse roles in the central nervous system. In the present study, patterns of interleukin-1beta expression were observed in the olfactory bulbs of rats that had either undergone unilateral closure of the external naris or sham surgery on postnatal day 1 and then survived until postnatal day 30. Interleukin-1beta-immunoreactive fibers occupied distinct layers of the olfactory bulb. Dense immunostaining was found in the periglomerular and granule cell layers. Odor deprivation resulted in a noticeable reduction in interleukin-1beta immunoreactivity only in the periglomerular layer. The data demonstrate that interleukin-1beta is present abundantly in the bulbs, and that it can be regulated in an activity-dependent manner.
Collapse
Affiliation(s)
- J H Lim
- University of Virginia, Department of Psychology, Charlottesville 22903, USA
| | | |
Collapse
|
49
|
Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J Neurosci 1999. [PMID: 10366638 DOI: 10.1523/jneurosci.19-12-05054.1999] [Citation(s) in RCA: 438] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using immunocytochemistry and ELISA, we investigated the production of interleukin (IL)-1beta in the rat hippocampus after focal application of kainic acid inducing electroencephalographic (EEG) seizures and CA3 neuronal cell loss. Next, we studied whether EEG seizures per se induced IL-1beta and microglia changes in the hippocampus using bicuculline as a nonexcitotoxic convulsant agent. Finally, to address the functional role of this cytokine, we measured the effect of human recombinant (hr)IL-1beta on seizure activity as one marker of the response to kainate. Three and 24 hr after unilateral intrahippocampal application of 0.19 nmol of kainate, IL-1beta immunoreactivity was enhanced in glia in the injected and the contralateral hippocampi. At 24 hr, IL-1beta concentration increased by 16-fold (p < 0.01) in the injected hippocampus. Reactive microglia was enhanced with a pattern similar to IL-1beta immunoreactivity. Intrahippocampal application of 0.77 nmol of bicuculline methiodide, which induces EEG seizures but not cell loss, enhanced IL-1beta immunoreactivity and microglia, although to a less extent and for a shorter time compared with kainate. One nanogram of (hr)IL-1beta intrahippocampally injected 10 min before kainate enhanced by 226% the time spent in seizures (p < 0.01). This effect was blocked by coinjection of 1 microgram (hr)IL-1beta receptor antagonist or 0.1 ng of 3-((+)-2-carboxypiperazin-4-yl)-propyl-1-phosphonate, selective antagonists of IL-1beta and NMDA receptors, respectively. Thus, convulsant and/or excitotoxic stimuli increase the production of IL-1beta in microglia-like cells in the hippocampus. In addition, exogenous application of IL-1beta prolongs kainate-induced hippocampal EEG seizures by enhancing glutamatergic neurotransmission.
Collapse
|
50
|
Lim JH, Brunjes PC. Calcium-binding proteins: differential expression in the rat olfactory cortex after neonatal olfactory bulbectomy. JOURNAL OF NEUROBIOLOGY 1999; 39:207-17. [PMID: 10235675 DOI: 10.1002/(sici)1097-4695(199905)39:2<207::aid-neu5>3.0.co;2-c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Calbindin, parvalbumin, and calretinin, members of EF-hand calcium-binding proteins, play important roles in buffering intracellular calcium ions. These proteins are localized in distinct populations of cells in the olfactory bulb (the primary sensory relay in the olfactory system) and its major synaptic target, the primary olfactory cortex (POC). In the present study, the postnatal expression of these calcium-binding proteins in layer III of POC was quantitatively examined 30 days after neonatal bulbectomy, a manipulation known to cause cell death and neurotransmitter changes. The numbers of both calbindin and parvalbumin-immunoreactive profiles showed significant increases (68% and 163%, respectively), while calretinin-immunoreactive profiles exhibited a 46% reduction. The data demonstrate that the expression of these calcium-binding proteins is regulated in part by the afferent input from the olfactory bulb. Furthermore, the resultant increase in calbindin and parvalbumin expression may provide neuroprotective support necessitated by possible alterations in intracellular calcium ions and other neurochemical factors that accompany neonatal bulb removal.
Collapse
Affiliation(s)
- J H Lim
- Department of Psychology, University of Virginia, Charlottesville 22903, USA
| | | |
Collapse
|