1
|
Hypertension and renal disease programming: focus on the early postnatal period. Clin Sci (Lond) 2022; 136:1303-1339. [PMID: 36073779 DOI: 10.1042/cs20220293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022]
Abstract
The developmental origin of hypertension and renal disease is a concept highly supported by strong evidence coming from both human and animal studies. During development there are periods in which the organs are more vulnerable to stressors. Such periods of susceptibility are also called 'sensitive windows of exposure'. It was shown that as earlier an adverse event occurs; the greater are the consequences for health impairment. However, evidence show that the postnatal period is also quite important for hypertension and renal disease programming, especially in rodents because they complete nephrogenesis postnatally, and it is also important during preterm human birth. Considering that the developing kidney is vulnerable to early-life stressors, renal programming is a key element in the developmental programming of hypertension and renal disease. The purpose of this review is to highlight the great number of studies, most of them performed in animal models, showing the broad range of stressors involved in hypertension and renal disease programming, with a particular focus on the stressors that occur during the early postnatal period. These stressors mainly include undernutrition or specific nutritional deficits, chronic behavioral stress, exposure to environmental chemicals, and pharmacological treatments that affect some important factors involved in renal physiology. We also discuss the common molecular mechanisms that are activated by the mentioned stressors and that promote the appearance of these adult diseases, with a brief description on some reprogramming strategies, which is a relatively new and promising field to treat or to prevent these diseases.
Collapse
|
2
|
Bertagnolli M, Dartora DR, Lamata P, Zacur E, Mai-Vo TA, He Y, Beauchamp L, Lewandowski AJ, Cloutier A, Sutherland MR, Santos RAS, Nuyt AM. Reshaping the Preterm Heart: Shifting Cardiac Renin-Angiotensin System Towards Cardioprotection in Rats Exposed to Neonatal High-Oxygen Stress. Hypertension 2022; 79:1789-1803. [PMID: 35588210 PMCID: PMC9278707 DOI: 10.1161/hypertensionaha.122.19115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Approximately 10% of infants are born preterm. Preterm birth leads to short and long-term changes in cardiac shape and function. By using a rat model of neonatal high-oxygen (80%O2) exposure, mimicking the premature hyperoxic transition to the extrauterine environment, we revealed a major role of the renin-angiotensin system peptide Angio II (angiotensin II) and its receptor AT1 (angiotensin receptor type 1) on neonatal O2-induced cardiomyopathy. Here, we tested whether treatment with either orally active compounds of the peptides Angio-(1-7) or alamandine included in cyclodextrin could prevent postnatal cardiac remodeling and the programming of cardiomyopathy induced by neonatal high-O2 exposure. METHODS Sprague-Dawley pups were exposed to room air or 80% O2 from postnatal day 3 (P3) to P10. Neonatal rats were treated orally from P3 to P10 and assessed at P10 and P28. Left ventricular (LV) shapes were characterized by tridimensional computational atlases of ultrasound images in addition to histomorphometry. RESULTS At P10, high O2-exposed rats presented a smaller, globular and hypertrophied LV shape versus controls. Treatment with cyclodextrin-Angio-(1-7) significantly improved LV function in the O2-exposed neonatal rats and slightly changed LV shape. Cyclodextrin-alamandine and cyclodextrin-Angio-(1-7) treatments similarly reduced hypertrophy at P10 as well as LV remodeling and dysfunction at P28. Both treatments upregulated cardiac angiotensin-converting enzyme 2 in O2-exposed rats at P10 and P28. CONCLUSIONS Our findings demonstrate LV remodeling changes induced by O2-stress and the potential benefits of treatments targeting the cardioprotective renin-angiotensin system axis, supporting the neonatal period as an important window for interventions aiming at preventing cardiomyopathy in people born preterm.
Collapse
Affiliation(s)
- Mariane Bertagnolli
- Sainte-Justine University Hospital Research Center, Université de Montréal, Canada (M.B., D.R.D., T.-A.M.-V., Y.H., L.B., A.C., M.R.S., A.M.N.).,Research Center of the Hospital Sacré-Coeur, CIUSSS Nord-de-l'Île-de-Montréal, Canada (M.B.).,School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montréal, Canada (M.B.)
| | - Daniela R Dartora
- Sainte-Justine University Hospital Research Center, Université de Montréal, Canada (M.B., D.R.D., T.-A.M.-V., Y.H., L.B., A.C., M.R.S., A.M.N.).,Instituto de Cardiologia de Porto Alegre, Fundação Universitária de Cardiologia, Brazil (D.R.D.)
| | - Pablo Lamata
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (P.L., E.Z.)
| | - Ernesto Zacur
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom (P.L., E.Z.)
| | - Thuy-An Mai-Vo
- Sainte-Justine University Hospital Research Center, Université de Montréal, Canada (M.B., D.R.D., T.-A.M.-V., Y.H., L.B., A.C., M.R.S., A.M.N.)
| | - Ying He
- Sainte-Justine University Hospital Research Center, Université de Montréal, Canada (M.B., D.R.D., T.-A.M.-V., Y.H., L.B., A.C., M.R.S., A.M.N.)
| | - Léonie Beauchamp
- Sainte-Justine University Hospital Research Center, Université de Montréal, Canada (M.B., D.R.D., T.-A.M.-V., Y.H., L.B., A.C., M.R.S., A.M.N.)
| | - Adam J Lewandowski
- Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom (A.J.L.)
| | - Anik Cloutier
- Sainte-Justine University Hospital Research Center, Université de Montréal, Canada (M.B., D.R.D., T.-A.M.-V., Y.H., L.B., A.C., M.R.S., A.M.N.)
| | - Megan R Sutherland
- Sainte-Justine University Hospital Research Center, Université de Montréal, Canada (M.B., D.R.D., T.-A.M.-V., Y.H., L.B., A.C., M.R.S., A.M.N.).,Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia (M.R.S.)
| | - Robson A S Santos
- Department of Physiology, Instituto Nacional de Ciência e Tecnologia - Nanobiofar, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil (R.A.S.S.)
| | - Anne Monique Nuyt
- Sainte-Justine University Hospital Research Center, Université de Montréal, Canada (M.B., D.R.D., T.-A.M.-V., Y.H., L.B., A.C., M.R.S., A.M.N.)
| |
Collapse
|
3
|
Hoffmann S, Mullins L, Rider S, Brown C, Buckley CB, Assmus A, Li Z, Sierra Beltran M, Henderson N, Del Pozo J, De Goes Martini A, Sequeira-Lopez MLS, Gomez RA, Mullins J. Comparative Studies of Renin-Null Zebrafish and Mice Provide New Functional Insights. Hypertension 2022; 79:e56-e66. [PMID: 35000430 DOI: 10.1161/hypertensionaha.121.18600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The renin-angiotensin system is highly conserved across vertebrates, including zebrafish, which possess orthologous genes coding for renin-angiotensin system proteins, and specialized mural cells of the kidney arterioles, capable of synthesising and secreting renin. METHODS We generated zebrafish with CRISPR-Cas9-targeted knockout of renin (ren-/-) to investigate renin function in a low blood pressure environment. We used single-cell (10×) RNA sequencing analysis to compare the transcriptome profiles of renin lineage cells from mesonephric kidneys of ren-/- with ren+/+ zebrafish and with the metanephric kidneys of Ren1c-/- and Ren1c+/+ mice. RESULTS The ren-/- larvae exhibited delays in larval growth, glomerular fusion and appearance of a swim bladder, but were viable and withstood low salinity during early larval stages. Optogenetic ablation of renin-expressing cells, located at the anterior mesenteric artery of 3-day-old larvae, caused a loss of tone, due to diminished contractility. The ren-/- mesonephric kidney exhibited vacuolated cells in the proximal tubule, which were also observed in Ren1c-/- mouse kidney. Fluorescent reporters for renin and smooth muscle actin (tg(ren:LifeAct-RFP; acta2:EGFP)), revealed a dramatic recruitment of renin lineage cells along the renal vasculature of adult ren-/- fish, suggesting a continued requirement for renin, in the absence of detectable angiotensin metabolites, as seen in the Ren1YFP Ren1c-/- mouse. Both phenotypes were rescued by alleles lacking the potential for glycosylation at exon 2, suggesting that glycosylation is not essential for normal physiological function. CONCLUSIONS Phenotypic similarities and transcriptional variations between mouse and zebrafish renin knockouts suggests evolution of renin cell function with terrestrial survival.
Collapse
Affiliation(s)
- Scott Hoffmann
- Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Linda Mullins
- Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Sebastien Rider
- Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
- Now with DSM Nutritional Products Ltd, Switzerland (S.R.)
| | - Cara Brown
- Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Charlotte B Buckley
- Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
- Now with Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom (C.B.B.)
| | - Adrienne Assmus
- Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Ziwen Li
- Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Mariana Sierra Beltran
- Centre for Inflammation Research (M.S.B., N.H.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Neil Henderson
- Centre for Inflammation Research (M.S.B., N.H.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, United Kingdom (N.H.)
| | - Jorge Del Pozo
- Veterinary Pathology, Royal (Dick)School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Easter Bush Campus, United Kingdom (J.d.P.)
| | - Alexandre De Goes Martini
- Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville (A.D.G.M., M.L.S.S.-L., R.A.G.)
| | - Maria Luisa S Sequeira-Lopez
- Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville (A.D.G.M., M.L.S.S.-L., R.A.G.)
| | - R Ariel Gomez
- Department of Pediatrics, School of Medicine, University of Virginia, Charlottesville (A.D.G.M., M.L.S.S.-L., R.A.G.)
| | - John Mullins
- Centre for Cardiovascular Science (S.H., L.M., S.R., C.B., C.B.B., A.A., Z.L., J.M.), The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| |
Collapse
|
4
|
Kessel F, Steglich A, Hickmann L, Lira-Martinez R, Gerlach M, Sequeira-Lopez ML, Gomez RA, Hugo C, Todorov VT. Patterns of differentiation of renin lineage cells during nephrogenesis. Am J Physiol Renal Physiol 2021; 321:F378-F388. [PMID: 34338032 DOI: 10.1152/ajprenal.00151.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Developmentally heterogeneous renin expressing cells serve as progenitors for mural, glomerular and tubular cells during nephrogenesis and are collectively termed renin lineage cells (RLCs). In this study, we quantified different renal vascular and tubular cell types based on specific markers, assessed proliferation, and de-novo differentiation in the RLC population. We used kidney sections of mRenCre-mT/mG mice throughout nephrogenesis. Marker positivity was evaluated in whole digitalized sections. At embryonic day 16, RLCs appeared in the developing kidney, and expression of all stained markers in RLCs was observed. The proliferation rate of RLCs did not differ from the proliferation rate of non-RLCs. The RLCs expanded mainly by de-novo differentiation (neogenesis). The fractions of RLCs originating from the stromal progenitors of the metanephric mesenchyme (renin producing cells, vascular smooth muscle cells, mesangial cells) decreased during nephrogenesis. In contrast, aquaporin 2 positive RLCs in the collecting duct system that embryonically emerges almost exclusively from the ureteric bud, expanded postpartum. The cubilin positive RLC fraction in the proximal tubule, deriving from the cap mesenchyme, remained constant. During nephrogenesis, RLCs were continuously detectable in the vascular and tubular compartments of the kidney. Therein, various patterns of RLC differentiation that depend on the embryonic origin of the cells were identified.
Collapse
Affiliation(s)
- Friederike Kessel
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Anne Steglich
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Linda Hickmann
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Institute of Physiology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ricardo Lira-Martinez
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael Gerlach
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.,Core Facility Cellular Imaging (CFCI), University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Maria Luisa Sequeira-Lopez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - R Ariel Gomez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia, United States
| | - Christian Hugo
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Vladimir T Todorov
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
5
|
Park E. Inhibition of the renin-angiotensin system during fetal kidney development. Clin Exp Pediatr 2021; 64:121-122. [PMID: 32972051 PMCID: PMC7940092 DOI: 10.3345/cep.2020.01228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/08/2020] [Indexed: 11/27/2022] Open
Affiliation(s)
- Eujin Park
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Hoffmann S, Mullins L, Buckley C, Rider S, Mullins J. Investigating the RAS can be a fishy business: interdisciplinary opportunities using Zebrafish. Clin Sci (Lond) 2018; 132:2469-2481. [PMID: 30518571 PMCID: PMC6279434 DOI: 10.1042/cs20180721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system (RAS) is highly conserved, and components of the RAS are present in all vertebrates to some degree. Although the RAS has been studied since the discovery of renin, its biological role continues to broaden with the identification and characterization of new peptides. The evolutionarily distant zebrafish is a remarkable model for studying the kidney due to its genetic tractability and accessibility for in vivo imaging. The zebrafish pronephros is an especially useful kidney model due to its structural simplicity yet complex functionality, including capacity for glomerular and tubular filtration. Both the pronephros and mesonephros contain renin-expressing perivascular cells, which respond to RAS inhibition, making the zebrafish an excellent model for studying the RAS. This review summarizes the physiological and genetic tools currently available for studying the zebrafish kidney with regards to functionality of the RAS, using novel imaging techniques such as SPIM microscopy coupled with targeted single cell ablation and synthesis of vasoactive RAS peptides.
Collapse
Affiliation(s)
- Scott Hoffmann
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Linda Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Charlotte Buckley
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Sebastien Rider
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - John Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K.
| |
Collapse
|
7
|
GRK2 knockdown in mice exacerbates kidney injury and alters renal mechanisms of blood pressure regulation. Sci Rep 2018; 8:11415. [PMID: 30061705 PMCID: PMC6065385 DOI: 10.1038/s41598-018-29876-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system regulates blood pressure and fluid balance in the body primarily via angiotensin receptor 1 (AT1R). Renal AT1R was found to be primarily responsible for Ang II-mediated hypertension. G protein-coupled receptor kinase 2 (GRK2) modulates AT1R desensitization and increased GRK2 protein expression is reported in hypertensive patients. However, the consequences of GRK2 inhibition on kidney functions remain unknown. We employed shGRK2 knockdown mice (shGRK2 mice) to test the role of GRK2 in kidney development and function that can be ultimately linked to the hypertensive phenotype detected in shGRK2 mice. GRK2 knockdown reduced kidney size, nephrogenesis and glomerular count, and impaired glomerular filtration. Glomerular damage in adult shGRK2 mice was associated with increased renin- and AT1R-mediated production of reactive oxygen species. The AT1R blocker, Losartan, normalized elevated blood pressure and markedly improved glomerular filtration in the shGRK2 knockdown mice. Our findings provide evidence for the crucial role of GRK2 in renal regulation of blood pressure. It also suggests that the detrimental outcomes of GRK2 inhibitors on the kidney should be carefully examined when used as antihypertensive.
Collapse
|
8
|
Development of the renal vasculature. Semin Cell Dev Biol 2018; 91:132-146. [PMID: 29879472 DOI: 10.1016/j.semcdb.2018.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
The kidney vasculature has a unique and complex architecture that is central for the kidney to exert its multiple and essential physiological functions with the ultimate goal of maintaining homeostasis. An appropriate development and coordinated assembly of the different vascular cell types and their association with the corresponding nephrons is crucial for the generation of a functioning kidney. In this review we provide an overview of the renal vascular anatomy, histology, and current knowledge of the embryological origin and molecular pathways involved in its development. Understanding the cellular and molecular mechanisms involved in renal vascular development is the first step to advance the field of regenerative medicine.
Collapse
|
9
|
Martini AG, Danser AHJ. Juxtaglomerular Cell Phenotypic Plasticity. High Blood Press Cardiovasc Prev 2017; 24:231-242. [PMID: 28527017 PMCID: PMC5574949 DOI: 10.1007/s40292-017-0212-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022] Open
Abstract
Renin is the first and rate-limiting step of the renin-angiotensin system. The exclusive source of renin in the circulation are the juxtaglomerular cells of the kidney, which line the afferent arterioles at the entrance of the glomeruli. Normally, renin production by these cells suffices to maintain homeostasis. However, under chronic stimulation of renin release, for instance during a low-salt diet or antihypertensive therapy, cells that previously expressed renin during congenital life re-convert to a renin-producing cell phenotype, a phenomenon which is known as “recruitment”. How exactly such differentiation occurs remains to be clarified. This review critically discusses the phenotypic plasticity of renin cells, connecting them not only to the classical concept of blood pressure regulation, but also to more complex contexts such as development and growth processes, cell repair mechanisms and tissue regeneration.
Collapse
Affiliation(s)
- Alexandre Góes Martini
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Room EE1418b, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Room EE1418b, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Raaijmakers A, Zhang ZY, Claessens J, Cauwenberghs N, van Tienoven TP, Wei FF, Jacobs L, Levtchenko E, Pauwels S, Kuznetsova T, Allegaert K, Staessen JA. Does Extremely Low Birth Weight Predispose to Low-Renin Hypertension? Hypertension 2017; 69:443-449. [DOI: 10.1161/hypertensionaha.116.08643] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 11/21/2016] [Accepted: 12/22/2016] [Indexed: 11/16/2022]
Abstract
Low birth weight and prematurity are risk factors for hypertension in adulthood. Few studies in preterm or full-term born children reported on plasma renin activity (PRA). We tested the hypothesis that renin might modulate the incidence of hypertension associated with prematurity. We enrolled 93 prematurely born children with birth weight <1000 g and 87 healthy controls born at term, who were all examined at ≈11 years. Renal length and glomerular filtration rate derived from serum cystatin C were 0.28 cm (95% confidence interval, 0.09–0.47) and 11.5 mL/min per 1.73 m
2
(6.4–16.6) lower in cases, whereas their systolic/diastolic blood pressure (BP) was 7.5 mm Hg (4.8–10.3)/4.0 mm Hg (2.1–5.8) higher (
P
<0.001 for all). The odds of having systolic prehypertension or systolic hypertension associated with extreme low birth weight were 6.43 (2.52–16.4;
P
<0.001) and 10.9 (2.46–48.4;
P
=0.002). Twenty-four hours of urinary sodium excretion was similar in cases and controls (102.1 versus 106.8 mmol;
P
=0.47). Sodium load per nephron was estimated as sodium excretion divided by kidney length (mmol/cm). PRA was 0.54 ng/mL per hour (0.23–0.85;
P
=0.001) lower in cases. PRA, systolic BP, and sodium load were available in 43 cases and 56 controls. PRA decreased with systolic BP (slope −0.022 ng/mL per hour/
−
mm Hg
;
P
=0.048), but was unrelated to sodium load (slope +0.13 mmol/cm
−
mm Hg
;
P
=0.54). The slope of PRA on systolic BP was similar (
P
=0.17) in cases and controls. In conclusion, extremely low birth weight predisposes young adolescents to low-renin hypertension, but does not affect the inverse association between PRA and BP.
Clinical Trial Registration—
URL:
https://www.clinicaltrials.gov
. Unique identifier: NCT02147457.
Collapse
Affiliation(s)
- Anke Raaijmakers
- Departments of Pediatrics and Neonatology (A.R., E.L.) and Laboratory Medicine (J.C., S.P.), University Hospitals Leuven, Belgium; KU Leuven Department of Development and Regeneration (A.R., E.L., K.A.) and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences (Z.-Y.Z., N.C., F.-F.W., L.J., T.K., J.A.S.), University of Leuven, Belgium; Department of Sociology, Vrije Universiteit Brussel, Belgium (T.P. v.T.); R&D Group VitaK, Maastricht
| | - Zhen-Yu Zhang
- Departments of Pediatrics and Neonatology (A.R., E.L.) and Laboratory Medicine (J.C., S.P.), University Hospitals Leuven, Belgium; KU Leuven Department of Development and Regeneration (A.R., E.L., K.A.) and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences (Z.-Y.Z., N.C., F.-F.W., L.J., T.K., J.A.S.), University of Leuven, Belgium; Department of Sociology, Vrije Universiteit Brussel, Belgium (T.P. v.T.); R&D Group VitaK, Maastricht
| | - Jolien Claessens
- Departments of Pediatrics and Neonatology (A.R., E.L.) and Laboratory Medicine (J.C., S.P.), University Hospitals Leuven, Belgium; KU Leuven Department of Development and Regeneration (A.R., E.L., K.A.) and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences (Z.-Y.Z., N.C., F.-F.W., L.J., T.K., J.A.S.), University of Leuven, Belgium; Department of Sociology, Vrije Universiteit Brussel, Belgium (T.P. v.T.); R&D Group VitaK, Maastricht
| | - Nicholas Cauwenberghs
- Departments of Pediatrics and Neonatology (A.R., E.L.) and Laboratory Medicine (J.C., S.P.), University Hospitals Leuven, Belgium; KU Leuven Department of Development and Regeneration (A.R., E.L., K.A.) and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences (Z.-Y.Z., N.C., F.-F.W., L.J., T.K., J.A.S.), University of Leuven, Belgium; Department of Sociology, Vrije Universiteit Brussel, Belgium (T.P. v.T.); R&D Group VitaK, Maastricht
| | - Theun Pieter van Tienoven
- Departments of Pediatrics and Neonatology (A.R., E.L.) and Laboratory Medicine (J.C., S.P.), University Hospitals Leuven, Belgium; KU Leuven Department of Development and Regeneration (A.R., E.L., K.A.) and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences (Z.-Y.Z., N.C., F.-F.W., L.J., T.K., J.A.S.), University of Leuven, Belgium; Department of Sociology, Vrije Universiteit Brussel, Belgium (T.P. v.T.); R&D Group VitaK, Maastricht
| | - Fang-Fei Wei
- Departments of Pediatrics and Neonatology (A.R., E.L.) and Laboratory Medicine (J.C., S.P.), University Hospitals Leuven, Belgium; KU Leuven Department of Development and Regeneration (A.R., E.L., K.A.) and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences (Z.-Y.Z., N.C., F.-F.W., L.J., T.K., J.A.S.), University of Leuven, Belgium; Department of Sociology, Vrije Universiteit Brussel, Belgium (T.P. v.T.); R&D Group VitaK, Maastricht
| | - Lotte Jacobs
- Departments of Pediatrics and Neonatology (A.R., E.L.) and Laboratory Medicine (J.C., S.P.), University Hospitals Leuven, Belgium; KU Leuven Department of Development and Regeneration (A.R., E.L., K.A.) and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences (Z.-Y.Z., N.C., F.-F.W., L.J., T.K., J.A.S.), University of Leuven, Belgium; Department of Sociology, Vrije Universiteit Brussel, Belgium (T.P. v.T.); R&D Group VitaK, Maastricht
| | - Elena Levtchenko
- Departments of Pediatrics and Neonatology (A.R., E.L.) and Laboratory Medicine (J.C., S.P.), University Hospitals Leuven, Belgium; KU Leuven Department of Development and Regeneration (A.R., E.L., K.A.) and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences (Z.-Y.Z., N.C., F.-F.W., L.J., T.K., J.A.S.), University of Leuven, Belgium; Department of Sociology, Vrije Universiteit Brussel, Belgium (T.P. v.T.); R&D Group VitaK, Maastricht
| | - Steven Pauwels
- Departments of Pediatrics and Neonatology (A.R., E.L.) and Laboratory Medicine (J.C., S.P.), University Hospitals Leuven, Belgium; KU Leuven Department of Development and Regeneration (A.R., E.L., K.A.) and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences (Z.-Y.Z., N.C., F.-F.W., L.J., T.K., J.A.S.), University of Leuven, Belgium; Department of Sociology, Vrije Universiteit Brussel, Belgium (T.P. v.T.); R&D Group VitaK, Maastricht
| | - Tatiana Kuznetsova
- Departments of Pediatrics and Neonatology (A.R., E.L.) and Laboratory Medicine (J.C., S.P.), University Hospitals Leuven, Belgium; KU Leuven Department of Development and Regeneration (A.R., E.L., K.A.) and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences (Z.-Y.Z., N.C., F.-F.W., L.J., T.K., J.A.S.), University of Leuven, Belgium; Department of Sociology, Vrije Universiteit Brussel, Belgium (T.P. v.T.); R&D Group VitaK, Maastricht
| | - Karel Allegaert
- Departments of Pediatrics and Neonatology (A.R., E.L.) and Laboratory Medicine (J.C., S.P.), University Hospitals Leuven, Belgium; KU Leuven Department of Development and Regeneration (A.R., E.L., K.A.) and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences (Z.-Y.Z., N.C., F.-F.W., L.J., T.K., J.A.S.), University of Leuven, Belgium; Department of Sociology, Vrije Universiteit Brussel, Belgium (T.P. v.T.); R&D Group VitaK, Maastricht
| | - Jan A. Staessen
- Departments of Pediatrics and Neonatology (A.R., E.L.) and Laboratory Medicine (J.C., S.P.), University Hospitals Leuven, Belgium; KU Leuven Department of Development and Regeneration (A.R., E.L., K.A.) and Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences (Z.-Y.Z., N.C., F.-F.W., L.J., T.K., J.A.S.), University of Leuven, Belgium; Department of Sociology, Vrije Universiteit Brussel, Belgium (T.P. v.T.); R&D Group VitaK, Maastricht
| |
Collapse
|
11
|
Murphy MO, Cohn DM, Loria AS. Developmental origins of cardiovascular disease: Impact of early life stress in humans and rodents. Neurosci Biobehav Rev 2017; 74:453-465. [PMID: 27450581 PMCID: PMC5250589 DOI: 10.1016/j.neubiorev.2016.07.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/06/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
Abstract
The Developmental Origins of Health and Disease (DOHaD) hypothesizes that environmental insults during childhood programs the individual to develop chronic disease in adulthood. Emerging epidemiological data strongly supports that early life stress (ELS) given by the exposure to adverse childhood experiences is regarded as an independent risk factor capable of predicting future risk of cardiovascular disease. Experimental animal models utilizing chronic behavioral stress during postnatal life, specifically maternal separation (MatSep) provides a suitable tool to elucidate molecular mechanisms by which ELS increases the risk to develop cardiovascular disease, including hypertension. The purpose of this review is to highlight current epidemiological studies linking ELS to the development of cardiovascular disease and to discuss the potential molecular mechanisms identified from animal studies. Overall, this review reveals the need for future investigations to further clarify the molecular mechanisms of ELS in order to develop more personalized therapeutics to mitigate the long-term consequences of chronic behavioral stress including cardiovascular and heart disease in adulthood.
Collapse
Affiliation(s)
- M O Murphy
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - D M Cohn
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - A S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
12
|
Gomez RA, Sequeira-Lopez MLS. Novel Functions of Renin Precursors in Homeostasis and Disease. Physiology (Bethesda) 2017; 31:25-33. [PMID: 26661526 DOI: 10.1152/physiol.00039.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Renin progenitors appear early and are found in multiple tissues throughout the embryo. Besides their well known role in blood pressure and fluid homeostasis, renin progenitors participate in tissue morphogenesis, repair, and regeneration, and may integrate immune and endocrine responses. In the bone marrow, renin cells offer clues to understand normal and neoplastic hematopoiesis.
Collapse
Affiliation(s)
- R Ariel Gomez
- University of Virginia School of Medicine, Child Health Research Center, Charlottesville, Virginia
| | | |
Collapse
|
13
|
Ito H, Wang J, Strandhoy JW, Rose JC. Importance of the Renal Nerves for Basal and Stimulated Renin mRNA Levels in Fetal and Adult Ovine Kidneys. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/107155760100800604] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | | | - Jack W. Strandhoy
- Department of Physiology and Pharmacology, and Department of Obstetrics and Gynecology and Perinatal Research Laboratories, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - James C. Rose
- Department of Physiology and Pharmacology, and Department of Obstetrics and Gynecology and Perinatal Research Laboratories, Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157
| |
Collapse
|
14
|
Castro EC, Parks WT, Galambos C. The ontogeny of human pulmonary angiotensin-converting enzyme and its aberrant expression may contribute to the pathobiology of bronchopulmonary dysplasia (BPD). Pediatr Pulmonol 2014; 49:985-90. [PMID: 24574430 DOI: 10.1002/ppul.22911] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 09/04/2013] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The mammalian lung possesses the highest level of angiotensin converting enzyme (ACE) amongst all the organs. ACE is known to generate angiotensin (AT)-II from AT-I and to regulate serum bradykinin level, thereby controlling blood pressure. Recent data, however, indicate a role for ACE derived AT-II in angiogenesis, pulmonary hypertension, and neonatal lung disease. The ontogeny of ACE in humans has not been investigated. We studied pulmonary ACE expression during human lung development and in human bronchopulmonary dysplasia (BPD). MATERIAL AND METHODS Human fetal autopsy lung tissue representing all three trimesters (12, 13, 16, 18, 24, 34, 39, and 40 weeks of gestational age (WGA)), as well as from 1 to 10 years of age with no significant lung pathology were used. In addition lung sections of patients with BPD (n = 5) were selected. The slides were immunostained using an anti-ACE monoclonal antibody. The temporal and spatial pattern of ACE expression was contrasted to that of the pan-endothelial marker CD31. Staining intensity was graded. RESULTS Mildly diffuse and strong microvascular endothelial immunreactivity for ACE was seen in the human fetus as early as 12 WGA. ACE expression peaked at mid gestation and remained high throughout gestation and postnatally. In BPD lungs ACE endothelial staining was largely absent, and when focal staining was observed the intensity was weak. CONCLUSION We established that ACE expression is present in the human fetal lung as early as 12 WGA, remains active pre- and postnatally, and ACE expression was downregulated in BPD lungs. We speculate that ACE may be involved in the process of lung development.
Collapse
Affiliation(s)
- E C Castro
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | | | | |
Collapse
|
15
|
Beckman D, Barbeau S, McLean LA, Yan JH, Hoffmann P. Absence of irreversible effects of aliskiren in standard juvenile rat toxicity studies. ACTA ACUST UNITED AC 2014; 101:144-51. [PMID: 24692426 DOI: 10.1002/bdrb.21095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Accepted: 12/24/2013] [Indexed: 11/08/2022]
Abstract
BACKGROUND Aliskiren is the first orally bioavailable direct renin inhibitor approved for the treatment of hypertension in adults. Juvenile toxicity studies in rats were initiated to support treatment in the pediatric population. METHODS In Study 1, aliskiren oral administration was initiated on postpartum day (PPD) 14, after nephrogenesis was completed, and continued through PPD 70 at doses of 0, 30, 100, and 300 mg/kg/day. In-life, clinical pathology, anatomic pathology, developmental, behavioral, reproductive, and toxicokinetics evaluations were performed. In Study 2, oral administration was initiated on PPD 8, before completion of nephrogenesis, and continued through PPD 35/36. In-life, clinical pathology, anatomic pathology, developmental, and toxicokinetics evaluations were performed. RESULTS With dosing initiated on PPD 8, mortality at 100 and 300 mg/kg/day and slightly increased kidney weight at 100 mg/kg/day occurred. Decreased absolute lymphocyte count at 300 mg/kg/day at the end of dosing occurred with dosing initiated on PPD 14. There were clinical signs and transient effects on body weight gains in both studies. There were no changes in other parameters. Systemic exposure was much higher on PPD 8 and 14 compared with adult rats on PPD 64. CONCLUSIONS All effects produced by aliskiren, including kidney effects, were reversible. Increased exposure in very young animals is considered to be the result of immature drug transporter systems.
Collapse
Affiliation(s)
- David Beckman
- Preclinical Safety, Novartis Institutes for BioMedical Research, East Hanover, New Jersey
| | | | | | | | | |
Collapse
|
16
|
Gomez RA, Belyea B, Medrano S, Pentz ES, Sequeira-Lopez MLS. Fate and plasticity of renin precursors in development and disease. Pediatr Nephrol 2014; 29:721-6. [PMID: 24337407 PMCID: PMC3999616 DOI: 10.1007/s00467-013-2688-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 10/04/2013] [Accepted: 10/28/2013] [Indexed: 01/04/2023]
Abstract
Renin-expressing cells appear early in the embryo and are distributed broadly throughout the body as organogenesis ensues. Their appearance in the metanephric kidney is a relatively late event in comparison with other organs such as the fetal adrenal gland. The functions of renin cells in extra renal tissues remain to be investigated. In the kidney, they participate locally in the assembly and branching of the renal arterial tree and later in the endocrine control of blood pressure and fluid-electrolyte homeostasis. Interestingly, this endocrine function is accomplished by the remarkable plasticity of renin cell descendants along the kidney arterioles and glomeruli which are capable of reacquiring the renin phenotype in response to physiological demands, increasing circulating renin and maintaining homeostasis. Given that renin cells are sensors of the status of the extracellular fluid and perfusion pressure, several signaling mechanisms (β-adrenergic receptors, Notch pathway, gap junctions and the renal baroreceptor) must be coordinated to ensure the maintenance of renin phenotype--and ultimately the availability of renin--during basal conditions and in response to homeostatic threats. Notably, key transcriptional (Creb/CBP/p300, RBP-J) and posttranscriptional (miR-330, miR125b-5p) effectors of those signaling pathways are prominent in the regulation of renin cell identity. The next challenge, it seems, would be to understand how those factors coordinate their efforts to control the endocrine and contractile phenotypes of the myoepithelioid granulated renin-expressing cell.
Collapse
Affiliation(s)
- R Ariel Gomez
- Department of Pediatrics, University of Virginia School of Medicine, 409 Lane Road, Room 2001, Charlottesville, VA, 22908, USA,
| | | | | | | | | |
Collapse
|
17
|
Consumption of a high-salt diet by ewes during pregnancy alters nephrogenesis in 5-month-old offspring. Animal 2013; 6:1803-10. [PMID: 23031391 DOI: 10.1017/s1751731112000584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Maternal nutrition during pregnancy can affect kidney development in the foetus, which may lead to adverse consequences in the mature kidney. It was expected that high-salt intake by pregnant ewes would lead to a reduction in foetal glomerular number but that the ovine kidney would adapt to maintain homoeostasis, in part by increasing the size of each glomerulus. Merino ewes that were fed either a control (1.5% NaCl) or high-salt (10.5% NaCl) diet during pregnancy, as well as their 5-month-old offspring, were subjected to a dietary salt challenge, and glomerular number and size and sodium excretion were measured. The high-salt offspring had 20% fewer glomeruli compared with the control offspring (P < 0.001), but they also had larger glomerular radii compared with the control offspring (P < 0.001). Consequently, the cross-sectional area of glomeruli was 18% larger in the high-salt offspring than in the control offspring (P < 0.05). There was no difference in the daily urinary sodium excretion between the two offspring groups (P > 0.05), although the high-salt offspring produced urine with a higher concentration of sodium. Our results demonstrated that maternal high-salt intake during pregnancy affected foetal nephrogenesis, altering glomerular number at birth. However, the ability to concentrate and excrete salt was not compromised, which indicates that the kidney was able to adapt to the reduction in the number of glomeruli.
Collapse
|
18
|
Vaccari B, Mesquita FF, Gontijo JAR, Boer PA. Fetal kidney programming by severe food restriction: effects on structure, hormonal receptor expression and urinary sodium excretion in rats. J Renin Angiotensin Aldosterone Syst 2013; 16:33-46. [PMID: 23482371 DOI: 10.1177/1470320313481081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 11/01/2013] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION The present study investigates, in 23-day-old and adult male rats, the effect of severe food restriction in utero on blood pressure (BP), and its association with nephron structure and function changes, angiotensin II (AT1R/AT2R), glucocorticoid (GR) and mineralocorticoid (MR) receptor expression. MATERIALS AND METHODS The daily food supply to pregnant rats was measured and one group (n=15) received normal quantity of food (NF) while the other received 50% of that (FR50%) (n=15). Kidneys were processed to AT1R, AT2R, MR, and GR immunolocalization and for western blotting analysis. The renal function was estimated by creatinine and lithium clearances in 12-week-old offspring. RESULTS By stereological analyses, FR50% offspring present a reduction of nephron numbers (35%) with unchanged renal volume. Expression of AT1R and AT2R was significantly decreased in FR50% while the expression of GR and MR increased in FR50%. We also verified a pronounced decrease in urinary sodium excretion accompanied by increased BP in 12-week-old FR50% offspring. CONCLUSION The current data suggest that changes in renal function are conducive to excess sodium tubule reabsorption, and this might potentiate the programming of adult hypertension. It is plausible to arise in the current study an association between decreasing natriuresis, reciprocal changes in renal AngII and steroid receptors with the hypertension development found in FR50% compared with age-matched NF offspring.
Collapse
Affiliation(s)
- Barbara Vaccari
- Department of Morphology, São Paulo State University, Botucatu, SP, Brazil
| | - Flavia F Mesquita
- Department of Internal Medicine School of Medicine, State University of Campinas, Campinas, SP, Brazil
| | - Jose A R Gontijo
- Department of Internal Medicine School of Medicine, State University of Campinas, Campinas, SP, Brazil
| | - Patricia A Boer
- Department of Morphology, São Paulo State University, Botucatu, SP, Brazil
| |
Collapse
|
19
|
Feeding pregnant ewes a high-salt diet or saltbush suppresses their offspring's postnatal renin activity. Animal 2012; 3:972-9. [PMID: 22444817 DOI: 10.1017/s175173110900425x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
If ewes consumed a high-salt diet or saltbush during the last 3 months of pregnancy and for 3 weeks after birth, we expected the renin activity of their lamb to be suppressed at birth and at 3 weeks of age. We also expected an increase in the concentration of cations other than sodium in the ewe's milk and an increase in the plasma Na concentration of the lamb at birth. To test these hypotheses, Merino ewes were fed a high-salt diet (14% NaCl) in an animal house and compared to control ewes eating a control diet (2% NaCl). In addition, we compared ewes grazing saltbush (about 13% salt in diet) to ewes grazing pasture from day 60 of pregnancy to 3 weeks after birth. Lambs born to ewes consuming saltbush had 85% lower (P < 0.001) renin activity than offspring from ewes consuming pasture at 3 weeks of age. Similarly, lambs born to ewes consuming a high-salt diet had 20% lower renin activity at birth and 3 weeks (P = 0.07). Feeding ewes a high-salt diet or saltbush altered the mineral composition of the milk; the largest change was a 10% increase in K levels (P 0.05). Consuming a high-salt diet or saltbush lowered the plasma Na of ewes at 130 days of gestation (by 3-5 mmol/l; P < 0.001), but only lambs from ewes fed the high-salt diet had a lower plasma Na at birth (P < 0.05). Suppression of the renin activity of lambs could lead to permanent physiological changes in salt balance in later life.
Collapse
|
20
|
|
21
|
Pentz ES, Cordaillat M, Carretero OA, Tucker AE, Sequeira Lopez MLS, Gomez RA. Histone acetyl transferases CBP and p300 are necessary for maintenance of renin cell identity and transformation of smooth muscle cells to the renin phenotype. Am J Physiol Heart Circ Physiol 2012; 302:H2545-52. [PMID: 22523253 DOI: 10.1152/ajpheart.00782.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In response to a homeostatic threat circulating renin increases by increasing the number of cells expressing renin by dedifferentiation and re-expression of renin in arteriolar smooth muscle cells (aSMCs) that descended from cells that expressed renin in early life. However, the mechanisms that govern the maintenance and reacquisition of the renin phenotype are not well understood. The cAMP pathway is important for renin synthesis and release: the transcriptional effects are mediated by binding of cAMP responsive element binding protein with its co-activators, CBP and p300, to the cAMP response element in the renin promoter. We have shown previously that mice with conditional deletion of CBP and p300 (cKO) in renin cells had severely reduced renin expression in adult life. In this study we investigated when the loss of renin-expressing cells in the cKO occurred and found that the loss of renin expression becomes evident after differentiation of the kidney is completed during postnatal life. To determine whether CBP/p300 is necessary for re-expression of renin we subjected cKO mice to low sodium diet + captopril to induce retransformation of aSMCs to the renin phenotype. The cKO mice did not increase circulating renin, their renin mRNA and protein expression were greatly diminished compared with controls, and only a few aSMCs re-expressed renin. These studies underline the crucial importance of the CREB/CBP/p300 complex for the ability of renin cells to retain their cellular memory and regain renin expression, a fundamental survival mechanism, in response to a threat to homeostasis.
Collapse
Affiliation(s)
- Ellen Steward Pentz
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
22
|
Song R, Van Buren T, Yosypiv IV. Histone deacetylases are critical regulators of the renin-angiotensin system during ureteric bud branching morphogenesis. Pediatr Res 2010; 67:573-8. [PMID: 20496471 PMCID: PMC3039915 DOI: 10.1203/pdr.0b013e3181da477c] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mutations in the genes encoding components of the renin-angiotensin system (RAS) in mice or humans cause congenital abnormalities of the kidney and urinary tract. We hypothesized that absence of angiotensin (Ang) II in angiotensinogen (AGT)-deficient mice leads to defects in ureteric bud (UB) branching and that RAS genes are critically dependent on histone deacetylase (HDAC) activity. The number of UB tips was lower in AGT-/- compared with AGT+/+ embryonic (E) day E13.5 metanephroi (24+/-1.5 versus 36+/-3.7, p<0.05). Real-time RT-PCR demonstrated that pharmacological inhibition of HDAC activity with Scriptaid increases AGT, renin, angiotensin-converting enzyme (ACE), and AT1 receptor (AT1R) mRNA levels in E12.5 mouse metanephroi and early mesenchymal (MK3) cells. Furthermore, Scriptaid enhanced Ang II induced decrease in Sprouty (Spry) 1 gene expression in cultured UB cells. Treatment of intact E12.5 mouse metanephroi grown ex vivo with Ang II (10(-5) M, 24 h) increased HDAC-1 and decreased total acetylated histone H3 protein levels. These findings indicate that lack of endogenous Ang II in AGT-deficient mice inhibits UB branching. We conclude that intact RAS is critical in structural integrity of the renal collecting system and that UB morphogenetic program genes, such as AGT, renin, ACE, AT1R, or Spry1, are epigenetically controlled via HDACs.
Collapse
Affiliation(s)
- Renfang Song
- Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
23
|
Bonilla SF, Melin-Aldana H, Whitington PF. Relationship of proximal renal tubular dysgenesis and fetal liver injury in neonatal hemochromatosis. Pediatr Res 2010; 67:188-93. [PMID: 19809376 DOI: 10.1203/pdr.0b013e3181c2df69] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Renal tubular dysgenesis has been reported in isolated cases of neonatal hemochromatosis (NH). We hypothesized that fetal liver injury in NH impairs proximal renal tubular development via impaired hepatic angiotensinogen (AGT) elaboration. Morphometric analyses were performed of postmortem liver and kidney sections of cases of proven NH and postconception age-matched controls for renal proximal tubule density, hepatocyte mass, and hepatic AGT expression. Proximal tubule density was markedly reduced in NH cases, although they showed a spectrum from mild to severe paucity. Hepatic AGT expression was markedly reduced in NH cases and correlated closely with reduced hepatocyte mass. A linear relationship was established between hepatic AGT expression and the degree of renal tubular dysgenesis suggesting that there is a relationship between them. Our results demonstrate that there is a spectrum of kidney pathology in patients with NH including a large proportion of cases with severe proximal tubular dysgenesis. Hepatic synthetic failure resulting in insufficient production of AGT to support renal tubular development is the likely mechanism of kidney disease in NH.
Collapse
Affiliation(s)
- Silvana F Bonilla
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60614, USA
| | | | | |
Collapse
|
24
|
Casellas D. Methods for imaging Renin-synthesizing, -storing, and -secreting cells. Int J Hypertens 2009; 2010:298747. [PMID: 20948562 PMCID: PMC2949082 DOI: 10.4061/2010/298747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/07/2009] [Accepted: 09/08/2009] [Indexed: 12/04/2022] Open
Abstract
Renin-producing cells have been the object of intense research efforts for the past fifty years within the field of hypertension. Two decades ago, research focused on the concept and characterization of the intrarenal renin-angiotensin system. Early morphological studies led to the concept of the juxtaglomerular apparatus, a minute organ that links tubulovascular structures and function at the single nephron level. The kidney, thus, appears as a highly "topological organ" in which anatomy and function are intimately linked. This point is reflected by a concurrent and constant development of functional and structural approaches. After summarizing our current knowledge about renin cells and their distribution along the renal vascular tree, particularly along glomerular afferent arterioles, we reviewed a variety of imaging techniques that permit a fine characterization of renin synthesis, storage, and release at the single-arteriolar, -cell, or -granule level. Powerful tools such as multiphoton microscopy and transgenesis bear the promises of future developments of the field.
Collapse
Affiliation(s)
- Daniel Casellas
- Groupe Rein et Hypertension (EA3127), Institut Universitaire de Recherche Clinique, 641 Avenue du Doyen Giraud, 34093 Montpellier Cédex 5, France
| |
Collapse
|
25
|
Chadwick M, Vercoe P, Williams I, Revell D. Dietary exposure of pregnant ewes to salt dictates how their offspring respond to salt. Physiol Behav 2009; 97:437-45. [DOI: 10.1016/j.physbeh.2009.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 03/17/2009] [Accepted: 03/17/2009] [Indexed: 11/29/2022]
|
26
|
Gomez RA, Pentz ES, Jin X, Cordaillat M, Sequeira Lopez MLS. CBP and p300 are essential for renin cell identity and morphological integrity of the kidney. Am J Physiol Heart Circ Physiol 2009; 296:H1255-62. [PMID: 19252086 DOI: 10.1152/ajpheart.01266.2008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The mechanisms that govern the identity of renin cells are not well understood. We and others have identified cAMP as an important pathway in the regulation of renin synthesis and release. Recently, experiments in cells from the renin lineage led us to propose that acquisition and maintenance of renin cell identity are mediated by cAMP and histone acetylation at the cAMP responsive element (CRE) of the renin gene. Ultimately, the transcriptional effects of cAMP depend on binding of the appropriate transcription factors to CRE. It has been suggested that access of transcription factors to this region of the promoter is facilitated by the coactivators CREB-binding protein (CBP) and p300, which possess histone acetyltransferase activity and may be, in turn, responsible for the remodeling of chromatin underlying expression of the renin gene. We hypothesized that CBP and p300 are therefore required for expression of the renin gene and maintenance of the renin cell. Because mice homozygous for the deletion of CBP or p300 die before kidney organogenesis begins, no data on kidney or juxtaglomerular cell development in these mice are available. Therefore, to define the role of these histone acetyltransferases in renin cell identity in vivo, we used a conditional deletion approach, in which floxed CBP and p300 mice were crossed with mice expressing cre recombinase in renin cells. Results show that the histone acetyltransferases CBP and p300 are necessary for maintenance of renin cell identity and structural integrity of the kidney.
Collapse
Affiliation(s)
- R Ariel Gomez
- Dept. of Pediatrics, Univ. of Virginia School of Medicine, 409 Lane Rd., MR4 2001, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
27
|
Chadwick MA, Vercoe PE, Williams IH, Revell DK. Programming sheep production on saltbush: adaptations of offspring from ewes that consumed high amounts of salt during pregnancy and early lactation. ANIMAL PRODUCTION SCIENCE 2009. [DOI: 10.1071/ea08234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated if feeding a high salt diet (pellet containing 14% NaCl) or saltbush (Atriplex nummularia) to ewes between day 60 of gestation and day 21 of lactation would allow their offspring to gain more weight, and produce more wool, when grazing saltbush as adults compared to offspring from ewes that were fed a control diet (2% NaCl) or grazed pasture.
At 10 months of age, offspring grazed saltbush for 8 weeks then dry pasture for 2 weeks. Throughout this time, liveweights, plasma renin activity and wool growth (g/day) were measured. Greasy and clean fleece weights, and fleece characteristics were measured at 14 months of age, and greasy fleece weight was measured again at 22 months after grazing pasture.
Offspring from ewes that consumed the high salt pellet had an 8 and 10% increased fleece weight at 14 and 22 months of age, respectively (P ≤ 0.01). Offspring of ewes that consumed saltbush also showed an 8% increase in greasy fleece weight at 22 months of age (P ≤ 0.05). Offspring from ewes that consumed saltbush had lower plasma renin activity and gained tissue weight when grazing saltbush (P ≤ 0.05), whereas the other three treatment groups all lost weight (P > 0.05).
Grazing pregnant ewes on saltbush induces important adaptations in plasma renin activity of their offspring, which allows them to gain weight when grazing saltbush as adults and may also increase the density of their wool follicles. Grazing pregnant ewes on saltbush can profit farmers in three main ways: (i) ability to utilise salt-affected land; (ii) increase weight gain of sheep when grazing saltbush; and (iii) increase fleece weight.
Collapse
|
28
|
Sauter A, Machura K, Neubauer B, Kurtz A, Wagner C. Development of renin expression in the mouse kidney. Kidney Int 2008; 73:43-51. [PMID: 17898695 DOI: 10.1038/sj.ki.5002571] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During metanephric kidney development, renin is expressed in the walls of larger intrarenal arteries, but is restricted to the terminal part of the preglomerular arterioles in the adult kidney. Our study describes the three-dimensional development of renin expression in mouse kidneys during fetal and postnatal life. Renin immunoreactivity first appeared at day 14 of development in the cells expressing alpha-smooth muscle actin (alphaSMA) in the arcuate arteries. Before adulthood, the branching of the arcuate arterial tree increased exponentially and renin expression shifted from proximal to distal parts of the tree. Renin expression at branching points or in the cones of growing vessels was not seen. Instead, renin expression appeared after vessel walls and branches were already established, disappeared a few days later, and remained only in the juxtaglomerular regions of afferent arterioles. In these arterioles, coexpression of renin and alphaSMA disappeared gradually, with the terminal cells expressing only renin. At all stages of kidney development, renin expression among comparable vessel segments was heterogeneous. Renin expression remained stable after it reached the terminal parts of afferent arterioles.
Collapse
Affiliation(s)
- A Sauter
- Institut für Physiologie der Universität Regensburg, D-93040 Regensburg, Germany
| | | | | | | | | |
Collapse
|
29
|
Jayasooriya AP, Begg DP, Chen N, Mathai ML, Sinclair AJ, Wilkinson-Berka J, Wark JD, Weisinger HS, Weisinger RS. Omega-3 polyunsaturated fatty acid supplementation reduces hypertension in TGR(mRen-2)27 rats. Prostaglandins Leukot Essent Fatty Acids 2008; 78:67-72. [PMID: 18083506 DOI: 10.1016/j.plefa.2007.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 10/26/2007] [Accepted: 11/13/2007] [Indexed: 11/15/2022]
Abstract
To establish the effect of dietary omega-3 PUFA on angiotensin II (ANG II)-mediated hypertension, male TGR (mRen-2)27 (Ren-2) rats (animals with high ANG II activity) were maintained on a diet either deficient or sufficient in omega-3 PUFA from conception. Half the animals on each diet were treated with the angiotensin-converting enzyme inhibitor, perindopril, from birth. Ren-2 rats fed the omega-3 PUFA deficient diet were significantly more hypertensive than those fed the omega-3 PUFA sufficient diet. Perindopril reduced the blood pressure of both omega-3 PUFA-deficient and omega-3 PUFA-sufficient diet-fed Ren-2 rats. Body weight, body fat and plasma leptin were reduced by perindopril treatment but not affected by omega-3 PUFA supply. Given that the elevated blood pressure of the Ren-2 rat is mediated by ANG II, the data suggest that omega-3 PUFA may reduce hypertension via the renin-angiotensin system.
Collapse
Affiliation(s)
- A P Jayasooriya
- Howard Florey Institute, University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pentz ES, Lopez MLSS, Cordaillat M, Gomez RA. Identity of the renin cell is mediated by cAMP and chromatin remodeling: an in vitro model for studying cell recruitment and plasticity. Am J Physiol Heart Circ Physiol 2007; 294:H699-707. [PMID: 18055510 DOI: 10.1152/ajpheart.01152.2007] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The renin-angiotensin system (RAS) regulates blood pressure and fluid-electrolyte homeostasis. A key step in the RAS cascade is the regulation of renin synthesis and release by the kidney. We and others have shown that a major mechanism to control renin availability is the regulation of the number of cells capable of making renin. The kidney possesses a pool of cells, mainly in its vasculature but also in the glomeruli, capable of switching from smooth muscle to endocrine renin-producing cells when homeostasis is threatened. The molecular mechanisms governing the ability of these cells to turn the renin phenotype on and off have been very difficult to study in vivo. We, therefore, developed an in vitro model in which cells of the renin lineage are labeled with cyan fluorescent protein and cells actively making renin mRNA are labeled with yellow fluorescent protein. The model allowed us to determine that it is possible to culture cells of the renin lineage for numerous passages and that the memory to express the renin gene is maintained in culture and can be reenacted by cAMP and chromatin remodeling (histone H4 acetylation) at the cAMP-responsive element in the renin gene.
Collapse
Affiliation(s)
- Ellen Steward Pentz
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
31
|
|
32
|
Ruster M, Sommer M, Stein G, Bauer K, Walter B, Wolf G, Bauer R. Renal Angiotensin receptor type 1 and 2 upregulation in intrauterine growth restriction of newborn piglets. Cells Tissues Organs 2006; 182:106-14. [PMID: 16804301 DOI: 10.1159/000093065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2006] [Indexed: 11/19/2022] Open
Abstract
Epidemiological and experimental studies suggest that intrauterine growth restriction (IUGR) is associated with abnormalities in kidney development which is thought to be linked with alterations causing adult cardiovascular diseases. The renin-angiotensin system (RAS) plays an important role in the development of renal vascular and tubular structures, and is known to be altered by experimentally induced IUGR. These experimental models of IGUR have been criticized because they may have a more severe impact on intrauterine development than that which is normally encountered in humans. Therefore, we asked whether naturally occurring small-for-gestational-age newborn piglets exhibit features of altered RAS activity. We investigated the regional renal expression of angiotensin II type 1 (AT1) and AT2 receptors in normal-weight and IUGR piglets. The AT1 receptor mRNA expression was markedly enhanced in IUGR piglets, in the renal cortex by 64% and in the renal medulla by 52% (p < 0.05, compared with normal littermates). In contrast, mRNA expression for the AT2 receptor was similar in both the normal-weight and IUGR piglets. A significantly higher AT1 receptor protein expression was found in the IUGR piglets (p < 0.05) in the glomeruli, in the proximal and distal tubules, as well as in the collecting ducts by immunohistochemistry. Furthermore, AT2 receptor protein expression was significantly higher in the IUGR piglets (p < 0.05) in the subcapsular nephrogenic zone and in the distal tubules and collecting ducts. Thus, IUGR is accompanied by an upregulation of angiotensin II receptor expression in the kidneys of newborn piglets. This may indicate an alteration of the RAS in newborns suffering from naturally occurring IUGR.
Collapse
Affiliation(s)
- Michael Ruster
- Department of Internal Medicine III, Universitatsklinikum Jena, Friedrich Schiller University, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Lopes Del Ben G, Redublo Quinto BM, Casarini DE, Bueno Ferreira LC, Sousa Ayres S, de Abreu Carvalhaes JT. The urinary activity of angiotensin-converting enzyme in preterm, full-term newborns, and children. Pediatr Nephrol 2006; 21:1138-43. [PMID: 16810513 DOI: 10.1007/s00467-006-0160-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 03/14/2006] [Accepted: 03/17/2006] [Indexed: 11/25/2022]
Abstract
The urinary activity of the angiotensin-converting enzyme (U(ACE)) is not yet completely documented in human neonates. We measured the U(ACE) in 36 premature neonates on the 1st day and in the 1st, 2nd, 3rd, and 4th weeks of life, in 22 full-term neonates between the 1st and 2nd days, and in 30 nursing and preschool children between 1 month and 6 years of age. The urinary excretion of sodium (U(Na)/U(Cr)) and the potassium/sodium index (U(K)/U(Na)) were analyzed in the neonates. U(ACE) was greater in premature than in full-term neonates and greater in both than in older children (p<0.001). In the premature neonates, U(ACE) peaked at the 2nd week, the U(Na)/U(Cr) index decreased, and the U(K)/U(Na) index increased between the 1st day and the 2nd week (p<0.001). The U(Na)/U(Cr) index on the 1st day and in the 1st and 2nd weeks was greater in premature than in full-term neonates (p<0.001). There was no significant correlation between the U(ACE) and the U(Na)/U(Cr) index. In conclusion, the U(ACE) profile was shown to be age dependent and related to the postnatal renal development. The increase in U(ACE) activity may reflect the high activity of the neonatal intrarenal renin-angiotensin system (RAS).
Collapse
Affiliation(s)
- Graziela Lopes Del Ben
- Pediatric Nephrology Division, Department of Pediatrics, Paulista Medical School, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
34
|
Samuelsson AM, Alexanderson C, Mölne J, Haraldsson B, Hansell P, Holmäng A. Prenatal exposure to interleukin-6 results in hypertension and alterations in the renin-angiotensin system of the rat. J Physiol 2006; 575:855-67. [PMID: 16825309 PMCID: PMC1995698 DOI: 10.1113/jphysiol.2006.111260] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cytokines are emerging as important in developmental processes. They may induce alterations in normal gene expression patterns, activate angiotensinogen transcription, or alter expression of the renin-angiotensin system (RAS). To determine whether prenatal exposure to interleukin-6 (IL-6) influences gene expression of the intrarenal RAS and contributes to renal dysfunction and hypertension in adulthood, we exposed female rats to IL-6 early (EIL-6 females) and late (LIL-6 females) in pregnancy and analysed blood pressure in the offspring at 5-20 weeks of age. Renal fluid and electrolyte excretion was assessed in clearance experiments, mRNA expression by real-time PCR, and protein levels by Western blot. Systolic pressure was increased at 5 weeks in IL-6 females and at 11 weeks in males. Circulatory RAS levels were increased in all IL-6 females, but angiotensin-1-converting enzyme (ACE) activity was increased only in LIL-6 females. LIL-6 males and IL-6 females showed decreased urinary flow rate and urinary sodium and potassium excretion. Dopamine excretion was decreased IL-6 females. In adult renal cortex, renin expression was increased in all IL-6 females, but angiotensinogen mRNA was increased only in LIL-6 females; AT(1) receptor (AT(1)-R) mRNA and protein levels were increased in LIL-6 females, whereas AT(2) receptor (AT(2)-R) levels were decreased in LIL-6 females and EIL-6 males. In adult renal medulla, AT(1)-R protein levels were increased in LIL-6 females, and AT(2)-R mRNA and protein levels were decreased in EIL-6 males and LIL-6 females. Prenatal IL-6 exposure may cause hypertension by altering the renal and circulatory RAS and renal fluid and electrolyte excretion, especially in females.
Collapse
Affiliation(s)
- Anne-Maj Samuelsson
- Institute of Neuroscience and Physiology, Göteborg University, S-413 45 Göteborg, Sweden.
| | | | | | | | | | | |
Collapse
|
35
|
Takimoto-Ohnishi E, Saito T, Ishida J, Ohnishi J, Sugiyama F, Yagami KI, Fukamizu A. Differential roles of renin and angiotensinogen in the feto-maternal interface in the development of complications of pregnancy. Mol Endocrinol 2005; 19:1361-72. [PMID: 15695374 DOI: 10.1210/me.2004-0158] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We previously identified a transgenic mouse model that developed pregnancy-associated hypertension (PAH) and intrauterine growth restriction (IUGR) by mating females expressing human angiotensinogen (hANG) with males expressing human renin (hRN). These phenotypic defects were not observed in the opposite type of mating combination, despite the feto-placental overexpression of hRN and hANG detected in both types of crossbreeding. Detailed analysis of transgene localization in the labyrinth and its permeability to the maternal circulation revealed that hRN produced in trophoblast giant cells was secreted into the maternal circulation, whereas hANG, produced in chorionic trophoblasts and trophoblastic epithelium, was undetectable in the maternal plasma, probably due to their distinct spatial and temporal expression in labyrinth. These results demonstrated that PAH and IUGR could be mediated by feto-placental hRN through its permeability to the maternal circulation, not by feto-placental hANG production. Furthermore, overexpression of maternally derived hANG in decidua and spiral arteries of pregnant females with PAH and IUGR raises the possibility of local activation of the renin-angiotensin system and its pathophysiological effects on placental hypoperfusion in complications of pregnancy. This study provides in vivo evidence that the cell-specific expression of RN and ANG in the feto-maternal interface impacts their differential roles in pregnancy.
Collapse
Affiliation(s)
- Eriko Takimoto-Ohnishi
- Center for Tsukuba Advanced Research Alliance, Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Choi BM, Yoo KH, Bae IS, Oh MH, Hong YS, Lee JW, Kim SK. Angiotensin-converting enzyme inhibition modulates mitogen-activated protein kinase family expressions in the neonatal rat kidney. Pediatr Res 2005; 57:115-23. [PMID: 15531746 DOI: 10.1203/01.pdr.0000148064.27632.1d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Among the mitogen-activated protein kinase (MAPK) family members, extracellular signal-regulated kinase (ERK) promotes cell proliferation or differentiation, whereas c-jun N terminal kinase (JNK) and p38 MAPK are thought to inhibit cell growth and induce apoptosis. The MAPK family may plays some role during kidney development, when large-scale proliferation and apoptosis have been observed to occur. Also, in this period, the renin-angiotensin system is markedly activated. We have demonstrated that angiotensin-converting enzyme inhibition in the developing rat kidney increases apoptosis and decreases cell proliferation, which may account for renal growth impairment. The aim of this study, therefore, was to examine the relationship between the MAPK family and renin-angiotensin system during neonatal renal development. Newborn rat pups were treated with enalapril (30 mg . kg(-1) . d(-1)) or normal saline for 7 d. Right kidneys of both groups were selected for immunohistochemical stains of MAPKs and activating transcription factor-2 (ATF-2), and left kidneys were selected for reverse transcriptase-PCR and immunoblot analysis of MAPKs, phospho-MAPKs, and ATF-2. To determine whether apoptosis is involved in the same tubules that highly expressed JNK and p38, we performed terminal deoxynucleotide transferase-mediated nick-end labeling stain for apoptotic cells and immunohistochemical stains for JNK-2, p38, and ATF-2 expression in the serial sections from the same kidney of the enalapril-treated group. In the enalapril-treated group, JNK-2, p38, phospho-JNK-2, phospho-p38, and ATF-2 protein expressions were significantly increased, and their immunoactivities were strongly detected in the proximal tubular epithelial cells in the cortex, compared with the control group. Especially JNK-2 and p38 expressions were highly activated and were spatially in accordance with the occurrence of apoptosis. ERK1/2 and phospho-ERK expressions were not changed by enalapril. These results suggest that the expressions of the MAPK family are modulated by angiotensin-converting enzyme inhibition in the developing kidney. JNK and p38 may be implicated to participate in angiotensin II-related intracellular signaling pathways of renal apoptosis in the developing kidney.
Collapse
Affiliation(s)
- Byung Min Choi
- Department of Pediatrics, Korea University, 152-703, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
All components of the renin-angiotensin system (RAS) are highly expressed in the developing kidney in a pattern suggesting a role for angiotensin II in renal development. In support of this notion, pharmacological interruption of angiotensin II type-1 (AT(1)) receptor signalling in animals with an ongoing nephrogenesis produces specific renal abnormalities characterized by papillary atrophy, abnormal wall thickening of intrarenal arterioles, tubular atrophy associated with expansion of the interstitium, and a marked impairment in urinary concentrating ability. Similar changes in renal morphology and function develop also in mice with targeted inactivation of genes encoding renin, angiotensinogen, angiotensin-converting enzyme, or both AT(1) receptor isoforms simultaneously. Taken together, these results clearly indicate that an intact signalling through AT(1) receptors is a prerequisite for normal renal development. The present report mainly reviews the renal abnormalities induced by blocking the RAS pharmacologically in experimental animal models. In addition, pathogenetic mechanisms are discussed.
Collapse
Affiliation(s)
- Y Chen
- Department of Physiology, University of Gothenburg, Gothenburg, Sweden
| | | | | |
Collapse
|
38
|
Sequeira López MLS, Pentz ES, Nomasa T, Smithies O, Gomez RA. Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. Dev Cell 2004; 6:719-28. [PMID: 15130496 DOI: 10.1016/s1534-5807(04)00134-0] [Citation(s) in RCA: 218] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 03/08/2004] [Accepted: 03/11/2004] [Indexed: 01/05/2023]
Abstract
Renin-synthesizing cells are crucial in the regulation of blood pressure and fluid-electrolyte homeostasis. Adult mammals subjected to manipulations that threaten homeostasis increase circulating renin by increasing the number of renin-expressing/-releasing cells. We hypothesize that the ability of adult cells to synthesize renin does not occur randomly in any cell type, depending instead on the cell's lineage. To determine the fate of renin-expressing cells, we generated knockin mice expressing cre recombinase in renin-expressing cells and crossed them with reporter mice. Results show that renin-expressing cells are precursors for a variety of cells that differentiate into non-renin-expressing cells such as smooth-muscle, epithelial, mesangial, and extrarenal cells. In the kidney, these cells retain the capability to synthesize renin when additional hormone is required to reestablish homeostasis: specific subpopulations of apparently differentiated cells are "held in reserve" to respond (repeatedly) by de-differentiating and expressing renin in response to stress, and re-differentiating when the crisis passes.
Collapse
|
39
|
Mertz HL, Liu J, Valego NK, Stallings SP, Figueroa JP, Rose JC. Inhibition of cyclooxygenase-2: effects on renin secretion and expression in fetal lambs. Am J Physiol Regul Integr Comp Physiol 2003; 284:R1012-8. [PMID: 12456386 DOI: 10.1152/ajpregu.00523.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The importance of prostaglandins in the regulation of the renin-angiotensin system during development is not known. These experiments were conducted to examine the effects of prostaglandin synthesis inhibitors on basal and isoproterenol-induced plasma renin concentration and renin gene expression in the late-gestation fetal lamb. Eighteen lamb fetuses ranging in gestational age from 129 to 138 days underwent surgical insertion of femoral arterial and venous catheters under general endotracheal anesthesia. After a period of recovery, animals underwent an infusion of isoproterenol after administration of a saline bolus (control experiments); 24-48 h later a second study was performed after administration of NS-398, a cyclooxygenase (COX)-2 inhibitor, or saline for a second control study. Administration of COX-2 inhibitor significantly reduced baseline plasma renin levels and attenuated responses in fetal renin secretion to isoproterenol infusions. Renal cortical cells from animals receiving COX-2 inhibitor had significantly lower levels of renin mRNA compared with animals receiving only saline. Renal cortical cells in culture from animals receiving only saline exhibited increased levels of renin mRNA when treated with isoproterenol, forskolin, or IBMX. Only forskolin increased renin mRNA levels in renal cortical cells in culture from animals receiving COX-2 inhibitor. We conclude that prostaglandins play a stimulatory role in the regulation of the renin-angiotensin system and are necessary for beta-adrenergic stimulation of renin secretion and gene expression in the late-gestation fetal lamb.
Collapse
Affiliation(s)
- Heather L Mertz
- Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | | | | | |
Collapse
|
40
|
Yosipiv IV, Dipp S, El-Dahr SS. Targeted disruption of the bradykinin B(2) receptor gene in mice alters the ontogeny of the renin-angiotensin system. Am J Physiol Renal Physiol 2001; 281:F795-801. [PMID: 11592936 DOI: 10.1152/ajprenal.2001.281.5.f795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Angiotensin II type 1 (AT(1)) receptor knockout (KO) mice exhibit an activated kallikrein-kinin system (KKS) that serves to attenuate the severity of the renal vascular phenotype in these mice (Tsuchida S, Miyazaki Y, Matsusaka T, Hunley TE, Inagami T, Fogo A, and Ichikawa I, Kidney Int 56: 509-516, 1999). Conversely, gestational high salt suppresses the fetal renin-angiotensin system (RAS) and provokes aberrant renal development in bradykinin B(2)-KO mice (El-Dahr SS, Harrison-Bernard LM, Dipp S, Yosipiv IV, and Meleg-Smith S, Physiol Genomics 3: 121-131, 2000). Thus the cross talk between the RAS and KKS may be critical for normal renal maturation. To further define the developmental interactions between the KKS and RAS, we examined the consequences of B(2) receptor gene ablation on the expression of RAS components. Renal renin mRNA levels are 50% lower in newborn B(2)-KO than wild-type (WT) mice. Also, the age-related decline in renin mRNA is greater in B(2)-KO than WT mice (3.5- vs. 2-fold, P < 0.05). Although renal angiotensinogen (Ao) protein levels are higher in newborn B(2)-KO than WT mice, Ao mRNA levels are not, suggesting accumulation of Ao as a result of decreased renin-mediated cleavage. Similar age-related increases (8-fold) in angiotensin I-converting enzyme (ACE) activity are observed in B(2)-KO and WT mice. Renal AT(1) protein levels are not different in B(2)-KO and WT mice. Furthermore, the developmental increases in renal kallikrein mRNA and enzymatic activity are more pronounced in B(2)-KO compared with WT mice (mRNA: 8- vs. 3-fold; activity: 13- vs. 6-fold, P < 0.05). We conclude that 1) bradykinin stimulates renin gene expression, 2) renal kallikrein is regulated via a negative feedback loop involving the B(2) receptor, and 3) Ao, ACE, and AT(1) are not bradykinin-target genes.
Collapse
Affiliation(s)
- I V Yosipiv
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
41
|
Yosipiv IV, Dipp S, El-Dahr SS. Targeted disruption of the bradykinin B2 receptor gene in mice alters the ontogeny of the renin-angiotensin system. Am J Physiol Renal Physiol 2001. [DOI: 10.1152/ajprenal.0020.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
First published July 12, 2001; 10.1152/ajprenal.0020.2001.—Angiotensin II type 1 (AT1) receptor knockout (KO) mice exhibit an activated kallikrein-kinin system (KKS) that serves to attenuate the severity of the renal vascular phenotype in these mice (Tsuchida S, Miyazaki Y, Matsusaka T, Hunley TE, Inagami T, Fogo A, and Ichikawa I, Kidney Int 56: 509–516, 1999). Conversely, gestational high salt suppresses the fetal renin-angiotensin system (RAS) and provokes aberrant renal development in bradykinin B2-KO mice (El-Dahr SS, Harrison-Bernard LM, Dipp S, Yosipiv IV, and Meleg-Smith S, Physiol Genomics 3: 121–131, 2000). Thus the cross talk between the RAS and KKS may be critical for normal renal maturation. To further define the developmental interactions between the KKS and RAS, we examined the consequences of B2 receptor gene ablation on the expression of RAS components. Renal renin mRNA levels are 50% lower in newborn B2-KO than wild-type (WT) mice. Also, the age-related decline in renin mRNA is greater in B2-KO than WT mice (3.5- vs. 2-fold, P < 0.05). Although renal angiotensinogen (Ao) protein levels are higher in newborn B2-KO than WT mice, Ao mRNA levels are not, suggesting accumulation of Ao as a result of decreased renin-mediated cleavage. Similar age-related increases (8-fold) in angiotensin I-converting enzyme (ACE) activity are observed in B2-KO and WT mice. Renal AT1 protein levels are not different in B2-KO and WT mice. Furthermore, the developmental increases in renal kallikrein mRNA and enzymatic activity are more pronounced in B2-KO compared with WT mice (mRNA: 8- vs. 3-fold; activity: 13- vs. 6-fold, P < 0.05). We conclude that 1) bradykinin stimulates renin gene expression, 2) renal kallikrein is regulated via a negative feedback loop involving the B2 receptor, and 3) Ao, ACE, and AT1 are not bradykinin-target genes.
Collapse
Affiliation(s)
- Igor V. Yosipiv
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, Louisiana 70112
| | - Susana Dipp
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, Louisiana 70112
| | - Samir S. El-Dahr
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
42
|
Glicklich D, Burris L, Urban A, Tellis V, Greenstein S, Schechner R, Devarajan P, Croizat H. Angiotensin-converting enzyme inhibition induces apoptosis in erythroid precursors and affects insulin-like growth factor-1 in posttransplantation erythrocytosis. J Am Soc Nephrol 2001; 12:1958-1964. [PMID: 11518790 DOI: 10.1681/asn.v1291958] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A number of studies suggest that erythropoietin (Ep), angiotensin II, and insulin-like growth factor (IGF-1) are involved in the pathogenesis of posttransplantation erythrocytosis (PTE). Angiotensin-converting enzyme inhibitors (ACEI) are the treatment of choice in PTE, but their mechanism of action is unclear. It was shown previously that ACEI added directly to cultures of erythroid precursors from patients with PTE inhibit colony growth. In this report, the effect of ACEI on CD34+ erythroid precursor apoptosis was studied, as were hematocrit (Hct), Ep, IGF-1, and IGF-binding protein 3 (IGF-BP3) levels. Ten patients with PTE, 10 transplant control patients, and 7 normal control subjects were studied. Peripheral blood CD34+ cells were isolated, and apoptosis was assessed by annexin assay and DNA laddering before and during ACEI therapy. At the same time, Hct, Ep, IGF-1, and IGF-BP3 levels were measured. Baseline CD34+ cell number, CD34+ apoptosis, Ep, IGF-1, and IGF-BP3 levels were the same between PTE and transplant control subjects. ACEI therapy was associated with a striking increase in CD34+ cell apoptosis and a decrease in Hct in both groups. In contrast to control subjects, patients with PTE on ACEI showed a significant decrease in IGF-1 levels and a greater percentage decrease in Hct. In normal control subjects, ACEI therapy was associated with a fall in Hct but no change in CD34+ cell apoptosis. In PTE, ACEI-related increase in erythroid progenitor apoptosis may partially explain the ACEI-associated decrease in Hct. However, it is not clear that erythroid precursor apoptosis is related to changes in IGF-1 or IGF-BP3.
Collapse
Affiliation(s)
- Daniel Glicklich
- Department of Medicine, Montefiore Medical Center of the Albert Einstein College of Medicine, Bronx, New York
| | - Larry Burris
- Department of Medicine, Montefiore Medical Center of the Albert Einstein College of Medicine, Bronx, New York
| | - Agnes Urban
- Department of Pediatrics, Montefiore Medical Center of the Albert Einstein College of Medicine, Bronx, New York
| | - Vivian Tellis
- Department of Surgery, Montefiore Medical Center of the Albert Einstein College of Medicine, Bronx, New York
| | - Stuart Greenstein
- Department of Surgery, Montefiore Medical Center of the Albert Einstein College of Medicine, Bronx, New York
| | - Richard Schechner
- Department of Surgery, Montefiore Medical Center of the Albert Einstein College of Medicine, Bronx, New York
| | - Prasad Devarajan
- Department of Pediatrics, Montefiore Medical Center of the Albert Einstein College of Medicine, Bronx, New York
| | - Helena Croizat
- Department of Medicine, Montefiore Medical Center of the Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
43
|
Prieto M, Dipp S, Meleg-Smith S, El-Dahr SS. Ureteric bud derivatives express angiotensinogen and AT1 receptors. Physiol Genomics 2001; 6:29-37. [PMID: 11395544 DOI: 10.1152/physiolgenomics.2001.6.1.29] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Inactivation of the renin-angiotensin system interferes with the morphogenesis of the renal medulla. Thus ureteric bud (UB) derivatives may be a target for angiotensin production and action. To begin to test this hypothesis, we examined the cellular expression of angiotensinogen (Ao) and AT(1) receptor proteins during rat metanephrogenesis by immunohistochemistry. In addition, we tested whether UB-derived cells in culture express the Ao and AT(1) proteins. On embryonic day E15, Ao and AT(1) are expressed in the UB branches and stromal mesenchyme. S-shaped bodies, including the vascular cleft, express AT(1) but not Ao. The metanephric mesenchyme and pretubular aggregates are Ao negative and AT(1) negative. Expression of Ao and AT(1) in UB branches and ampullae is also observed on E16. However, UB expression of Ao is transient and is no longer detectable in the developing distal nephron beyond E17. On E17, both Ao and AT(1) are expressed in capillary loop glomeruli and proximal tubules, whereas UB branches express AT(1) only. By E18, the majority of Ao immunoreactivity is clustered in terminally differentiated proximal tubules, whereas AT(1) receptors are expressed in both proximal and distal nephron segments. The specificity of Ao and AT(1) staining was documented by the elimination/attenuation of immunoreactivity after preadsorption of the primary antibodies with their respective antigens. Consistent with the in vivo findings, the AT(1) protein is abundantly expressed in cellular lysates of mouse UB (E11.5) and IMCD3 (adult) cells. Moreover, AT(1) receptors in UB and IMCD3 cells are functional, since angiotensin II treatment elicits the tyrosine phosphorylation of the mitogen-activated protein kinases, ERK1/2. To our knowledge, this is the first demonstration of Ao and AT(1) protein expression in the developing distal nephron. Angiotensin II may have a paracrine role in the ontogeny of the collecting system.
Collapse
MESH Headings
- Angiotensinogen/immunology
- Angiotensinogen/metabolism
- Animals
- Cell Line
- Cells, Cultured
- Epithelial Cells/metabolism
- Immunohistochemistry
- Kidney/embryology
- Kidney/metabolism
- Kidney Medulla/embryology
- Kidney Tubules, Proximal/embryology
- Kidney Tubules, Proximal/metabolism
- Nephrons/cytology
- Nephrons/embryology
- Nephrons/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/immunology
- Receptors, Angiotensin/metabolism
- Ureter/embryology
- Ureter/metabolism
Collapse
Affiliation(s)
- M Prieto
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Over the past 25 years, our perception of the neonatal kidney has changed markedly from its being a "limited" organ compared with that of the adult to being extraordinarily well adapted in its role in maintaining homeostasis and making possible the rapid somatic growth necessary during this critical period of life. The present review focuses on the physiologic adaptations by the neonatal kidney in the maintenance of a positive sodium balance, which is necessary for normal growth not only in mammals but also in moths. There is a fine interplay between the developing brain, heart, thyroid, adrenals, and sympathetic nervous system, all converging on the kidney to conserve sodium, which is limited in the diet. The renin-angiotensin system plays a central role in this response and is balanced by developmental changes in the renal response to atrial natriuretic peptide, all of which contribute to sodium conservation. Over the next 25 years, advances in molecular genetics will doubtless elucidate many more facets of the mechanisms underlying neonatal sodium homeostasis. This will be particularly important as the survival of ever smaller preterm infants improves steadily.
Collapse
Affiliation(s)
- R L Chevalier
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia 22908, USA.
| |
Collapse
|
45
|
Ding Y, Stec DE, Sigmund CD. Genetic evidence that lethality in angiotensinogen-deficient mice is due to loss of systemic but not renal angiotensinogen. J Biol Chem 2001; 276:7431-6. [PMID: 11096065 DOI: 10.1074/jbc.m003892200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Angiotensinogen (AGT)-deficient mice die shortly after birth presumably due to renal dysfunction caused by the presence of severe vascular and tubular lesions in the kidney. Because AGT is expressed in renal proximal tubule cells, we hypothesized that its loss may be the primary mediator of the lethal phenotype. We generated two models to test this hypothesis by breeding transgenic mice expressing human renin with mice expressing human AGT (hAGT) either systemically or kidney-specifically. We then bred double transgenic mice with AGT+/- mice, intercrossed the compound heterozygotes, and examined the offspring. We previously reported that the presence of the human renin and systemically expressed hAGT transgene complemented the lethality observed in AGT-/- mice. On the contrary, we show herein that the presence of the human renin and kidney-specific hAGT transgene cannot rescue lethality in AGT-/- mice. An analysis of newborns indicated that AGT-/- mice were born in normal numbers, and collection of dead 10-day old pups revealed an enrichment in AGT-/-. Importantly, we demonstrated that angiotensinogen protein and functional angiotensin II was generated in the kidney, and the kidney-specific transgene was temporally expressed during renal development similar to the endogenous AGT gene. These data strongly support the notion that the loss of systemic AGT, but not intrarenal AGT, is responsible for death in the AGT-/- mouse model. Taken together with our previous studies, we conclude that the intrarenal renin-angiotensin system located in the proximal tubule plays an important role in blood pressure regulation and may cause hypertension if overexpressed, but may not be required for continued development of the kidney after birth.
Collapse
Affiliation(s)
- Y Ding
- Genetics Interdisciplinary Graduate Program, The University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
46
|
Nishimura H. Angiotensin receptors--evolutionary overview and perspectives. Comp Biochem Physiol A Mol Integr Physiol 2001; 128:11-30. [PMID: 11137436 DOI: 10.1016/s1095-6433(00)00294-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The structure of the angiotensin molecule has been well preserved throughout the vertebrate scale with some amino acid variations. Specific angiotensin receptors (AT receptors) that mediate important physiological functions have been noted in a variety of tissues and species. Physiological and pharmacological characterization of AT receptors and, more recently, molecular cloning studies have elucidated the presence of AT receptor subtypes. Comparative studies suggest that an AT receptor subtype homologous to the mammalian type 1 receptor subtype (AT(1)), though pharmacologically distinct, is present in amphibians and birds, whereas AT receptors cloned from teleosts show low homology to both AT(1) and AT(2) receptor subtypes. Furthermore, receptors differing from both the AT(1)-homologue receptor and AT(2) receptor exist in some non-mammalian species. This may suggest that the prototype AT receptor evolved in primitive vertebrates and diverged to more than one type of AT receptor subtype during phylogeny. Furthermore, phenotypic modulation of AT receptors appears to occur during individual development/maturation.
Collapse
Affiliation(s)
- H Nishimura
- Department of Physiology, University of Tennessee Health Science Center, 894 Union Avenue, Memphis, TN 38163, USA.
| |
Collapse
|
47
|
Lessons to better understanding of hypoxia sensing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001. [DOI: 10.1007/978-1-4757-3401-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Abstract
The absolute polycythemias--those with increased red blood cell mass--can be divided into two groups: primary, caused by acquired or inherited mutations leading to a "gain-of-function" abnormalities expressed within the erythroid progenitors; and secondary, due to circulating serum factors, typically erythropoietin, stimulating erythropoiesis. This overview concentrates on the molecular biology of polycythemia vera (PV) discussed in the context of other polycythemic disorders. Recent advances in the regulation of erythropoiesis, as they may relate to polycythemic states, are discussed as a background for those well-defined polycythemic states wherein the molecular defect has not yet been elucidated. A number of cellular abnormalities associated with PV, including the hyperresponsiveness of PV progenitors to many cytokines as well as decreased expression of the thrombopoietin receptor on platelets and increased expression of Bcl-xL, suggest that the PV defect alters a number of cellular functions and is not restricted to cytokine receptor signal transduction. The increasing number of recognized instances of familial incidence of PV suggests that in these families the predisposition for PV is inherited as a dominant trait, and that PV is acquired as a new mutation that leads to a clonal hematopoiesis and may be due to loss of heterozygosity. The existence of these families provides a unique opportunity for isolation of the mutations in the gene leading to PV. Semin Hemaol 38(suppl 2):10-20.
Collapse
Affiliation(s)
- J T Prchal
- Division of Hematology/Oncology, Baylor College of Medicine, 1 Baylor Plaza MS 525 D, Houston, TX 77030, USA
| |
Collapse
|
49
|
Norwood VF, Garmey M, Wolford J, Carey RM, Gomez RA. Novel expression and regulation of the renin-angiotensin system in metanephric organ culture. Am J Physiol Regul Integr Comp Physiol 2000; 279:R522-30. [PMID: 10938241 DOI: 10.1152/ajpregu.2000.279.2.r522] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To evaluate the presence and regulation of the renin-angiotensin system (RAS) in metanephric organ culture, embryonic day 14 (E14) rat metanephroi were cultured for 6 days. mRNAs for renin and both ANG II receptors (AT(1) and AT(2)) are expressed at E14, and all three genes continue to be expressed in culture. Renin mRNA is localized to developing tubules and ureteral branches in the cultured explants. At E14, renin immunostaining is found in isolated cells scattered within the mesenchyme. As differentiation progresses, renin localizes to the ureteric epithelium, developing tubules and glomeruli. E14 metanephroi contain ANG II, and peptide production persists in culture. Renin activity is present at E14 (6.13 +/- 0.61 pg ANG I. kidney(-1). h(-1)) and in cultured explants (28.84 +/- 1. 13 pg ANG I. kidney(-1). h(-1)). Renin activity in explants is increased by ANG II treatment (70.1 +/- 6.36 vs. 40.97 +/- 1.94 pg ANG I. kidney(-1). h(-1) in control). This increase is prevented by AT(1) blockade, whereas AT(2) antagonism has no effect. These studies document an operational local RAS and a previously undescribed positive-feedback mechanism for renin generation in avascular, cultured developing metanephroi. This novel expression pattern and regulatory mechanism highlight the unique ability of developing renal cells to express an active RAS.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/physiology
- Immunohistochemistry
- In Situ Hybridization
- Kidney/embryology
- Organ Culture Techniques
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/physiology
- Renin/genetics
- Renin/metabolism
- Renin-Angiotensin System/physiology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- V F Norwood
- University of Virginia, Children's Medical Center, Charlottesville, Virginia 22908, USA.
| | | | | | | | | |
Collapse
|
50
|
Draper ML, Wang J, Valego N, Block WA, Rose JC. Effect of renal denervation on renin gene expression, concentration, and secretion in mature ovine fetus. Am J Physiol Regul Integr Comp Physiol 2000; 279:R263-70. [PMID: 10896890 DOI: 10.1152/ajpregu.2000.279.1.r263] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine the role of the renal nerves on renin secretion and expression in the mature ovine fetus, we performed bilateral renal denervation on eight fetuses of time-dated pregnant ewes (126.8 +/- 0.6 days gestation) and compared renin in them to seven fetuses that underwent sham denervation (126.7 +/- 0.6 days gestation). Fetal arterial and venous catheters were implanted, and after 5-7 days of recovery isoproterenol was infused. Plasma active renin was lower in denervated animals than in intact animals under basal conditions and at each dose of isoproterenol. Plasma prorenin levels were lower in denervated fetuses but unaffected by isoproterenol. Denervation did not change renal renin, prorenin, or renin mRNA, but it did block isoproterenol-induced increases in renin mRNA in renocortical cells in vitro. We conclude that the renal nerves are required for renin secretory mechanisms and responsiveness of renin mRNA to beta-adrenergic stimulation but not for the expression of renin in the fetal kidney. We propose that one or more of the factors that maintain renin expression in the perinatal period may be absent or may be replaced by the renal nerves in the adult.
Collapse
Affiliation(s)
- M L Draper
- Department of Obstetrics and Gynecology, and the Perinatal Research Laboratories, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | | | |
Collapse
|