1
|
Akmese C, Sevinc C, Halim S, Unal G. Differential role of GABAergic and cholinergic ventral pallidal neurons in behavioral despair, conditioned fear memory and active coping. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110760. [PMID: 37031946 DOI: 10.1016/j.pnpbp.2023.110760] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
The ventral pallidum (VP), a major component of the reward circuit, is well-associated with appetitive behaviors. Recent evidence suggests that this basal forebrain nucleus may have an overarching role in affective processing, including behavioral responses to aversive stimuli. We investigated this by utilizing selective immunotoxin lesions and a series of behavioral tests in adult male Wistar rats. We made bilateral GAT1-Saporin, 192-IgG-Saporin or PBS (vehicle) injections into the VP to respectively eliminate GABAergic and cholinergic neurons, and tested the animals in the forced swim test (FST), open field test (OFT), elevated plus maze (EPM), Morris water maze (MWM) and cued fear conditioning. Both GAT1-Saporin and 192-IgG-Saporin injections reduced behavioral despair without altering general locomotor activity. During the acquisition phase of cued fear conditioning, this antidepressant effect was accompanied by reduced freezing and increased darting in the 192-IgG-Saporin group, and increased jumping in the GAT1-Saporin group. In the extinction phase, cholinergic lesions impaired fear memory irrespective of the context, while GABAergic lesions reduced memory durability only during the early phases of extinction in a novel context. In line with this, selective cholinergic, but not GABAergic, lesions impaired spatial memory in the MWM. We observed no consistent effect in anxiety-like behavior assessed in the OFT and EPM. These findings indicate that both the GABAergic and cholinergic neuronal groups of the VP may contribute to emotion regulation through modulation of behavioral despair and acquired fear by suppressing active coping and promoting species-specific passive behaviors.
Collapse
Affiliation(s)
- Cemal Akmese
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Cem Sevinc
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Sahar Halim
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey
| | - Gunes Unal
- Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, 34342 Istanbul, Turkey.
| |
Collapse
|
2
|
Latina V, Caioli S, Zona C, Ciotti MT, Borreca A, Calissano P, Amadoro G. NGF-Dependent Changes in Ubiquitin Homeostasis Trigger Early Cholinergic Degeneration in Cellular and Animal AD-Model. Front Cell Neurosci 2018; 12:487. [PMID: 30618634 PMCID: PMC6300588 DOI: 10.3389/fncel.2018.00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/29/2018] [Indexed: 01/20/2023] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) depend on nerve growth factor (NGF) for their survival/differentiation and innervate cortical and hippocampal regions involved in memory/learning processes. Cholinergic hypofunction and/or degeneration early occurs at prodromal stages of Alzheimer's disease (AD) neuropathology in correlation with synaptic damages, cognitive decline and behavioral disability. Alteration(s) in ubiquitin-proteasome system (UPS) is also a pivotal AD hallmark but whether it plays a causative, or only a secondary role, in early synaptic failure associated with disease onset remains unclear. We previously reported that impairment of NGF/TrkA signaling pathway in cholinergic-enriched septo-hippocampal primary neurons triggers "dying-back" degenerative processes which occur prior to cell death in concomitance with loss of specific vesicle trafficking proteins, including synapsin I, SNAP-25 and α-synuclein, and with deficit in presynaptic excitatory neurotransmission. Here, we show that in this in vitro neuronal model: (i) UPS stimulation early occurs following neurotrophin starvation (-1 h up to -6 h); (ii) NGF controls the steady-state levels of these three presynaptic proteins by acting on coordinate mechanism(s) of dynamic ubiquitin-C-terminal hydrolase 1 (UCHL-1)-dependent (mono)ubiquitin turnover and UPS-mediated protein degradation. Importantly, changes in miniature excitatory post-synaptic currents (mEPSCs) frequency detected in -6 h NGF-deprived primary neurons are strongly reverted by acute inhibition of UPS and UCHL-1, indicating that NGF tightly controls in vitro the presynaptic efficacy via ubiquitination-mediated pathway(s). Finally, changes in synaptic ubiquitin and selective reduction of presynaptic markers are also found in vivo in cholinergic nerve terminals from hippocampi of transgenic Tg2576 AD mice, even from presymptomatic stages of neuropathology (1-month-old). By demonstrating a crucial role of UPS in the dysregulation of NGF/TrkA signaling on properties of cholinergic synapses, these findings from two well-established cellular and animal AD models provide novel therapeutic targets to contrast early cognitive and synaptic dysfunction associated to selective degeneration of BFCNs occurring in incipient early/middle-stage of disease.
Collapse
Affiliation(s)
| | | | - Cristina Zona
- IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Antonella Borreca
- Institute of Cellular Biology and Neurobiology – National Research Council, Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute, Rome, Italy
- Institute of Translational Pharmacology – National Research Council, Rome, Italy
| |
Collapse
|
3
|
Solari N, Hangya B. Cholinergic modulation of spatial learning, memory and navigation. Eur J Neurosci 2018; 48:2199-2230. [PMID: 30055067 PMCID: PMC6174978 DOI: 10.1111/ejn.14089] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023]
Abstract
Spatial learning, including encoding and retrieval of spatial memories as well as holding spatial information in working memory generally serving navigation under a broad range of circumstances, relies on a network of structures. While central to this network are medial temporal lobe structures with a widely appreciated crucial function of the hippocampus, neocortical areas such as the posterior parietal cortex and the retrosplenial cortex also play essential roles. Since the hippocampus receives its main subcortical input from the medial septum of the basal forebrain (BF) cholinergic system, it is not surprising that the potential role of the septo-hippocampal pathway in spatial navigation has been investigated in many studies. Much less is known of the involvement in spatial cognition of the parallel projection system linking the posterior BF with neocortical areas. Here we review the current state of the art of the division of labour within this complex 'navigation system', with special focus on how subcortical cholinergic inputs may regulate various aspects of spatial learning, memory and navigation.
Collapse
Affiliation(s)
- Nicola Solari
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - Balázs Hangya
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| |
Collapse
|
4
|
Latina V, Caioli S, Zona C, Ciotti MT, Amadoro G, Calissano P. Impaired NGF/TrkA Signaling Causes Early AD-Linked Presynaptic Dysfunction in Cholinergic Primary Neurons. Front Cell Neurosci 2017; 11:68. [PMID: 28360840 PMCID: PMC5350152 DOI: 10.3389/fncel.2017.00068] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
Alterations in NGF/TrkA signaling have been suggested to underlie the selective degeneration of the cholinergic basal forebrain neurons occurring in vivo in AD (Counts and Mufson, 2005; Mufson et al., 2008; Niewiadomska et al., 2011) and significant reduction of cognitive decline along with an improvement of cholinergic hypofunction have been found in phase I clinical trial in humans affected from mild AD following therapeutic NGF gene therapy (Tuszynski et al., 2005, 2015). Here, we show that the chronic (10–12 D.I.V.) in vitro treatment with NGF (100 ng/ml) under conditions of low supplementation (0.2%) with the culturing serum-substitute B27 selectively enriches the basal forebrain cholinergic neurons (+36.36%) at the expense of other non-cholinergic, mainly GABAergic (−38.45%) and glutamatergic (−56.25%), populations. By taking advantage of this newly-developed septo-hippocampal neuronal cultures, our biochemical and electrophysiological investigations demonstrate that the early failure in excitatory neurotransmission following NGF withdrawal is paralleled by concomitant and progressive loss in selected presynaptic and vesicles trafficking proteins including synapsin I, SNAP-25 and α-synuclein. This rapid presynaptic dysfunction: (i) precedes the commitment to cell death and is reversible in a time-dependent manner, being suppressed by de novo external administration of NGF within 6 hr from its initial withdrawal; (ii) is specific because it is not accompanied by contextual changes in expression levels of non-synaptic proteins from other subcellular compartments; (ii) is not secondary to axonal degeneration because it is insensible to pharmacological treatment with known microtubule-stabilizing drug such paclitaxel; (iv) involves TrkA-dependent mechanisms because the effects of NGF reapplication are blocked by acute exposure to specific and cell-permeable inhibitor of its high-affinity receptor. Taken together, this study may have important clinical implications in the field of AD neurodegeneration because it: (i) provides new insights on the earliest molecular mechanisms underlying the loss of synaptic/trafficking proteins and, then, of synapes integrity which occurs in vulnerable basal forebrain population at preclinical stages of neuropathology; (ii) offers prime presynaptic-based molecular target to extend the therapeutic time-window of NGF action in the strategy of improving its neuroprotective in vivo intervention in affected patients.
Collapse
Affiliation(s)
- Valentina Latina
- Institute of Translational Pharmacology, National Research Council (CNR) Rome, Italy
| | | | - Cristina Zona
- IRCCS Santa Lucia FoundationRome, Italy; Department of Systems Medicine, University of Rome Tor VergataRome, Italy
| | - Maria T Ciotti
- NGF and Molecular Mechanisms of Neurodegenerative Diseases, European Brain Research Institute (EBRI) Rome, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology, National Research Council (CNR)Rome, Italy; NGF and Molecular Mechanisms of Neurodegenerative Diseases, European Brain Research Institute (EBRI)Rome, Italy
| | - Pietro Calissano
- NGF and Molecular Mechanisms of Neurodegenerative Diseases, European Brain Research Institute (EBRI) Rome, Italy
| |
Collapse
|
5
|
BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2013; 110:19567-72. [PMID: 24218590 DOI: 10.1073/pnas.1319297110] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bone morphogenetic protein 9 (BMP9) promotes the acquisition of the cholinergic phenotype in basal forebrain cholinergic neurons (BFCN) during development and protects these neurons from cholinergic dedifferentiation following axotomy when administered in vivo. A decline in BFCN function occurs in patients with Alzheimer's disease (AD) and contributes to the AD-associated memory deficits. We infused BMP9 intracerebroventricularly for 7 d in transgenic AD model mice expressing green fluorescent protein specifically in cholinergic neurons (APP.PS1/CHGFP) and in wild-type littermate controls (WT/CHGFP). We used 5-mo-old mice, an age when the AD transgenics display early amyloid deposition and few cholinergic defects, and 10-mo-old mice, by which time these mice exhibit established disease. BMP9 infusion reduced the number of Aβ42-positive amyloid plaques in the hippocampus and cerebral cortex of 5- and 10-mo-old APP.PS1/CHGFP mice and reversed the reductions in choline acetyltransferase protein levels in the hippocampus of 10-mo-old APP.PS1/CHGFP mice. The treatment increased cholinergic fiber density in the hippocampus of both WT/CHGFP and APP.PS1/CHGFP mice at both ages. BMP9 infusion also increased hippocampal levels of neurotrophin 3, insulin-like growth factor 1, and nerve growth factor and of the nerve growth factor receptors, tyrosine kinase receptor A and p75/NGFR, irrespective of the genotype of the mice. These data show that BMP9 administration is effective in reducing the Aβ42 amyloid plaque burden, reversing cholinergic neuron abnormalities, and generating a neurotrophic milieu for BFCN in a mouse model of AD and provide evidence that the BMP9-signaling pathway may constitute a therapeutic target for AD.
Collapse
|
6
|
Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 2013; 138:155-75. [PMID: 23348013 DOI: 10.1016/j.pharmthera.2013.01.004] [Citation(s) in RCA: 590] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 01/07/2013] [Indexed: 12/16/2022]
Abstract
Glial cell-derived neurotrophic factor (GDNF), and the neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are important for the survival, maintenance and regeneration of specific neuronal populations in the adult brain. Depletion of these neurotrophic factors has been linked with disease pathology and symptoms, and replacement strategies are considered as potential therapeutics for neurodegenerative diseases such as Parkinson's, Alzheimer's and Huntington's diseases. GDNF administration has recently been shown to be an effective treatment for Parkinson's disease, with clinical trials currently in progress. Trials with NGF for Alzheimer's disease are ongoing, with some degree of success. Preclinical results using BDNF also show much promise, although there are accompanying difficulties. Ultimately, the administration of a therapy involving proteins in the brain has inherent problems. Because of the blood-brain-barrier, the protein must be infused directly, produced by viral constructs, secreted from implanted protein-secreting cells or actively transported across the brain. An alternative to this is the use of a small molecule agonist, a modulator or enhancer targeting the associated receptors. We evaluate these neurotrophic factors as potential short or long-term treatments, weighing up preclinical and clinical results with the possible effects on the underlying neurodegenerative process.
Collapse
|
7
|
Allen SJ, Watson JJ, Dawbarn D. The neurotrophins and their role in Alzheimer's disease. Curr Neuropharmacol 2011; 9:559-73. [PMID: 22654716 PMCID: PMC3263452 DOI: 10.2174/157015911798376190] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 12/15/2022] Open
Abstract
Besides being essential for correct development of the vertebrate nervous system the neurotrophins also play a vital role in adult neuron survival, maintenance and regeneration. In addition they are implicated in the pathogenesis of certain neurodegenerative diseases, and may even provide a therapeutic solution for some. In particular there have been a number of studies on the involvement of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) in the development of Alzheimer's disease. This disease is of growing concern as longevity increases worldwide, with little treatment available at the moment to alleviate the condition. Memory loss is one of the earliest symptoms associated with Alzheimer's disease. The brain regions first affected by pathology include the hippocampus, and also the entorhinal cortex and basal cholinergic nuclei which project to the hippocampus; importantly, all these areas are required for memory formation. Both NGF and BDNF are affected early in the disease and this is thought to initiate a cascade of events which exacerbates pathology and leads to the symptoms of dementia. This review briefly describes the pathology, symptoms and molecular processes associated with Alzheimer's disease; it discusses the involvement of the neurotrophins, particularly NGF and BDNF, and their receptors, with changes in BDNF considered particularly in the light of its importance in synaptic plasticity. In addition, the possibilities of neurotrophin-based therapeutics are evaluated.
Collapse
Affiliation(s)
- Shelley J Allen
- Dorothy Hodgkin Building, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, UK
| | | | | |
Collapse
|
8
|
BMP9 (bone morphogenetic protein 9) induces NGF as an autocrine/paracrine cholinergic trophic factor in developing basal forebrain neurons. J Neurosci 2010; 30:8221-8. [PMID: 20554873 DOI: 10.1523/jneurosci.5611-09.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acetylcholine (ACh) synthesis and release from basal forebrain cholinergic neurons (BFCN) innervating the cerebral cortex and hippocampus are essential processes for normal learning, memory and attention. Bone morphogenetic protein (BMP) 9 is a cholinergic differentiation factor in the developing septum that increases ACh synthesis and choline acetyltransferase (Chat) gene expression both in vivo and in vitro. We investigated the possible induction of cholinergic trophic factors by BMP9 in murine septal cells. Nerve growth factor (NGF) protein expression and secretion into the medium was increased in cultured embryonic septal cells treated with BMP9, and partially mediated BMP9-induced acetylcholine production and Chat gene expression. BMP9-induced Ngf gene expression was detected in postmitotic cells, required new protein synthesis and was blocked by BMP type I receptor inhibition. Cholinergic neurons were isolated by fluorescence-activated cell sorting based on either transgenic expression of green fluorescent protein driven by the Chat promoter or NGF receptor (p75) immunostaining. Although both noncholinergic and cholinergic neurons in untreated cultures expressed similar low levels of Ngf, increased Ngf gene expression was restricted to Chat-positive neurons in BMP9-treated cultures. Likewise, similar levels of Ngf mRNA were detected in p75-negative and p75-positive septal cells, yet only p75-positive BFCN increased their Ngf gene expression when treated with BMP9, and only these cells expressed the Alk1 BMP receptor. The data suggest an autocrine/paracrine role for NGF in the development and/or maintenance of BFCN and imply that the stimulation of NGF production and release contributes to the cholinergic-supportive properties of BMP9.
Collapse
|
9
|
Schnitzler AC, Lopez-Coviella I, Blusztajn JK. Differential modulation of nerve growth factor receptor (p75) and cholinergic gene expression in purified p75-expressing and non-expressing basal forebrain neurons by BMP9. Brain Res 2008; 1246:19-28. [PMID: 18952073 DOI: 10.1016/j.brainres.2008.09.085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/22/2008] [Accepted: 09/24/2008] [Indexed: 11/25/2022]
Abstract
The synthesis of acetylcholine and its release from basal forebrain cholinergic neurons (BFCN) that innervate the cerebral cortex and hippocampus are considered essential processes for normal learning, memory and attention. We have developed a purification and cell culture method of BFCN in order to examine the regulation of their cholinergic phenotype. Cells isolated from the septal region of late embryonic mice were purified by fluorescence-activated cell sorting based on their expression of the nerve growth factor receptor (p75), a surface marker for mature BFCN. Consistent with previous reports, p75-positive (p75+) cells were enriched in choline acetyltransferase (ChAT) and the high-affinity choline transporter (ChT), as measured by reverse transcriptase PCR. In culture, these cells maintained their gene expression of p75, ChAT and ChT, while p75-negative (p75-) cells had a low expression of these genes. Incubation of the cells with BMP9 not only increased p75 and ChAT gene expression in p75- cells, but also augmented the expression of these genes in p75+ cells. Conversely, BMP9 decreased ChT gene expression in p75+ cells and had no such effect in p75- cells. Immunostaining confirmed that p75 protein expression was modulated by BMP9 in a similar way as p75 mRNA, and also revealed that only a subset of p75- cells respond to BMP9 in this manner. These data suggest that mature BFCN in culture may express their cholinergic phenotype in the absence of exogenous trophic input, but that BMP9 can further modulate this phenotype. Moreover, BMP9 induces the cholinergic phenotype in a set of basal forebrain non-cholinergic neurons or precursor cells.
Collapse
Affiliation(s)
- Aletta C Schnitzler
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|
10
|
Purification and culture of nerve growth factor receptor (p75)-expressing basal forebrain cholinergic neurons. Nat Protoc 2008; 3:34-40. [PMID: 18193019 DOI: 10.1038/nprot.2007.477] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The activity of the basal forebrain cholinergic neurons (BFCNs) that innervate the cerebral cortex and hippocampus is essential for normal learning and memory. Here, we present a method to isolate and culture BFCNs from the embryonic murine septum that takes advantage of their restricted expression of the nerve growth factor receptor (p75) in conjunction with fluorescence-activated cell sorting. The septal region dissection, cell dissociation and staining process, and cell sorting parameters are described in detail. Sufficient cell yield and optimized cell culture conditions make this protocol suitable for multiple assays including immunocytochemistry, reverse transcriptase PCR, microarray profiling, acetylcholine measurements and electrophysiological assessment. The study of these neurons as a purified population will greatly advance our understanding of factors that influence their development and maintenance.
Collapse
|
11
|
Kidd S, Anderson D, Schneider J. Postnatal lead exposure alters expression of forebrain p75 and TrkA nerve growth factor receptors. Brain Res 2008; 1195:113-9. [DOI: 10.1016/j.brainres.2007.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/05/2007] [Accepted: 12/05/2007] [Indexed: 11/25/2022]
|
12
|
Abstract
Cell death is the final common pathway of cognitive decline in Alzheimer's disease (AD). Nervous system growth factors, or neurotrophic factors, are substances naturally produced in the nervous system that support neuronal survival during development and influence neuronal function throughout adulthood. Notably, in animal models, including primates, neurotrophic factors prevent neuronal death after injury and can reverse spontaneous neuronal atrophy in aging. Thus, neurotrophic factor therapy has the potential to prevent or reduce ongoing cell loss in disorders such as AD. The main challenge in clinical testing of neurotrophic factors has been their delivery to the brain in sufficient doses to impact cell function, while restricting their delivery to specific sites to prevent adverse effects from broad distribution. This article reviews progress in evaluating the therapeutic potential of growth factors, from early animal models to human clinical trials currently underway in AD.
Collapse
Affiliation(s)
- Mark H Tuszynski
- Department of Neurosciences-0626, University of California-San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
13
|
Abstract
Nervous system growth factors potently stimulate cell function and prevent neuronal death. These broad effects on survival and function arise from direct downstream activation of antiapoptotic pathways, inhibition of proapoptotic pathways, and stimulation of functionally important cellular mechanisms including ERK/MAP kinase and CREB. Thus, as a class, growth factors offer the potential to treat neurodegenerative disorders for the first time by preventing neuronal degeneration rather than compensating for cell loss after it has occurred. Different growth factors affect distinct and specific populations of neurons: the first nervous system growth factor identified, nerve growth factor, potentially stimulates the survival and function of basal forebrain cholinergic neurons, suggesting that nerve growth factor could be a means for reducing the cholinergic component of cell degeneration in Alzheimer disease. This review will discuss the transition of growth factors from preclinical studies to human clinical trials in Alzheimer disease. The implementation of clinical testing of growth factor therapy for neurologic disease has been constrained by the dual need to achieve adequate concentrations of these proteins in specific brain regions containing degenerating neurons, and preventing growth factor spread to nontargeted regions to avoid adverse effects. Gene therapy is one of a limited number of potential methods for achieving these requirements.
Collapse
Affiliation(s)
- Mark H Tuszynski
- Department of Neurosciences-0626, University of California-San Diego, La Jolla 92161, and Veterans Affairs Medical Center, San Diego, CA, USA.
| |
Collapse
|
14
|
Allen SJ, Dawbarn D. Clinical relevance of the neurotrophins and their receptors. Clin Sci (Lond) 2006; 110:175-91. [PMID: 16411894 DOI: 10.1042/cs20050161] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The neurotrophins are growth factors required by discrete neuronal cell types for survival and maintenance, with a broad range of activities in the central and peripheral nervous system in the developing and adult mammal. This review examines their role in diverse disease states, including Alzheimer's disease, depression, pain and asthma. In addition, the role of BDNF (brain-derived neurotrophic factor) in synaptic plasticity and memory formation is discussed. Unlike the other neurotrophins, BDNF is secreted in an activity-dependent manner that allows the highly controlled release required for synaptic regulation. Evidence is discussed which shows that sequestration of NGF (nerve growth factor) is able to reverse symptoms of inflammatory pain and asthma in animal models. Both pain and asthma show an underlying pathophysiology linked to increases in endogenous NGF and subsequent NGF-dependent increase in BDNF. Conversely, in Alzheimer's disease, there is a role for NGF in the treatment of the disease and a recent clinical trial has shown benefit from its exogenous application. In addition, reductions in BDNF, and changes in the processing and usage of NGF, are evident and it is possible that both NGF and BDNF play a part in the aetiology of the disease process. This highly selective choice of functions and disease states related to neurotrophin function, although in no way comprehensive, illustrates the importance of the neurotrophins in the brain, the peripheral nervous system and in non-neuronal tissues. Ways in which the neurotrophins, their receptors or agonists/antagonists may act therapeutically are discussed.
Collapse
Affiliation(s)
- Shelley J Allen
- University of Bristol, Dorothy Hodgkin Building, Bristol BS1 3NY, UK.
| | | |
Collapse
|
15
|
Ralph GS, Binley K, Wong LF, Azzouz M, Mazarakis ND. Gene therapy for neurodegenerative and ocular diseases using lentiviral vectors. Clin Sci (Lond) 2005; 110:37-46. [PMID: 16336203 DOI: 10.1042/cs20050158] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gene therapy holds great promise for the treatment of a wide range of inherited and acquired disorders. The development of viral vector systems to mediate safe and long-lasting expression of therapeutic transgenes in specific target cell populations is continually advancing. Gene therapy for the nervous system is particularly challenging due to the post-mitotic nature of neuronal cells and the restricted accessibility of the brain itself. Viral vectors based on lentiviruses provide particularly attractive vehicles for delivery of therapeutic genes to treat neurological and ocular diseases, since they efficiently transduce non-dividing cells and mediate sustained transgene expression. Furthermore, novel routes of vector delivery to the nervous system have recently been elucidated and these have increased further the scope of lentiviruses for gene therapy application. Several studies have demonstrated convincing therapeutic efficacy of lentiviral-based gene therapies in animal models of severe neurological disorders and the push for progressing such vectors to the clinic is ongoing. This review describes the key features of lentiviral vectors that make them such useful tools for gene therapy to the nervous system and outlines the major breakthroughs in the potential use of such vectors for treating neurodegenerative and ocular diseases.
Collapse
Affiliation(s)
- G Scott Ralph
- Oxford Biomedica plc, The Medawar Centre, Oxford Science Park, Oxford OX4 4GA, UK.
| | | | | | | | | |
Collapse
|
16
|
Levy YS, Gilgun-Sherki Y, Melamed E, Offen D. Therapeutic potential of neurotrophic factors in neurodegenerative diseases. BioDrugs 2005; 19:97-127. [PMID: 15807629 DOI: 10.2165/00063030-200519020-00003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
There is a vast amount of evidence indicating that neurotrophic factors play a major role in the development, maintenance, and survival of neurons and neuron-supporting cells such as glia and oligodendrocytes. In addition, it is well known that alterations in levels of neurotrophic factors or their receptors can lead to neuronal death and contribute to the pathogenesis of neurodegenerative diseases such as Parkinson disease, Alzheimer disease, Huntington disease, amyotrophic lateral sclerosis, and also aging. Although various treatments alleviate the symptoms of neurodegenerative diseases, none of them prevent or halt the neurodegenerative process. The high potency of neurotrophic factors, as shown by many experimental studies, makes them a rational candidate co-therapeutic agent in neurodegenerative disease. However, in practice, their clinical use is limited because of difficulties in protein delivery and pharmacokinetics in the central nervous system. To overcome these disadvantages and to facilitate the development of drugs with improved pharmacotherapeutic profiles, research is underway on neurotrophic factors and their receptors, and the molecular mechanisms by which they work, together with the development of new technologies for their delivery into the brain.
Collapse
Affiliation(s)
- Yossef S Levy
- Laboratory of Neuroscineces, Felsenstein Medical Research Center, Israel
| | | | | | | |
Collapse
|
17
|
Lopez-Coviella I, Follettie MT, Mellott TJ, Kovacheva VP, Slack BE, Diesl V, Berse B, Thies RS, Blusztajn JK. Bone morphogenetic protein 9 induces the transcriptome of basal forebrain cholinergic neurons. Proc Natl Acad Sci U S A 2005; 102:6984-9. [PMID: 15870197 PMCID: PMC1088172 DOI: 10.1073/pnas.0502097102] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Indexed: 01/19/2023] Open
Abstract
Basal forebrain cholinergic neurons (BFCN) participate in processes of learning, memory, and attention. Little is known about the genes expressed by BFCN and the extracellular signals that control their expression. Previous studies showed that bone morphogenetic protein (BMP) 9 induces and maintains the cholinergic phenotype of embryonic BFCN. We measured gene expression patterns in septal cultures of embryonic day 14 mice and rats grown in the presence or absence of BMP9 by using species-specific microarrays and validated the RNA expression data of selected genes by immunoblot and immunocytochemistry analysis of their protein products. BMP9 enhanced the expression of multiple genes in a time-dependent and, in most cases, reversible manner. The set of BMP9-responsive genes was concordant between mouse and rat and included genes encoding cell-cycle/growth control proteins, transcription factors, signal transduction molecules, extracellular matrix, and adhesion molecules, enzymes, transporters, and chaperonins. BMP9 induced the p75 neurotrophin receptor (NGFR), a marker of BFCN, and Cntf and Serpinf1, two trophic factors for cholinergic neurons, suggesting that BMP9 creates a trophic environment for BFCN. To determine whether the genes induced by BMP9 in culture were constituents of the BFCN transcriptome, we purified BFCN from embryonic day 18 mouse septum by using fluorescence-activated cell sorting of NGFR(+) cells and profiled mRNA expression of these and NGFR(-) cells. Approximately 30% of genes induced by BMP9 in vitro were overexpressed in purified BFCN, indicating that they belong to the BFCN transcriptome in situ and suggesting that BMP signaling contributes to maturation of BFCN in vivo.
Collapse
Affiliation(s)
- Ignacio Lopez-Coviella
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
There is growing evidence that reduced neurotrophic support is a significant factor in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). In this review we discuss the structure and functions of neurotrophins such as nerve growth factor, and the role of these proteins and their tyrosine kinase (Trk) receptors in the aetiology and therapy of such diseases. Neurotrophins regulate development and the maintenance of the vertebrate nervous system. In the mature nervous system they affect neuronal survival and also influence synaptic function and plasticity. The neurotrophins are able to bind to two different receptors: all bind to a common receptor p75NTR, and each also binds to one of a family of Trk receptors. By dimerization of the Trk receptors, and subsequent transphosphorylation of the intracellular kinase domain, signalling pathways are activated. We discuss here the structure and function of the neurotrophins and how they have been, or may be, used therapeutically in AD, PD, Huntington's diseases, ALS and peripheral neuropathy. Neurotrophins are central to many aspects of nervous system function. However they have not truly fulfilled their therapeutic potential in clinical trials because of the difficulties of protein delivery and pharmacokinetics in the nervous system. With the recent elucidation of the structure of the neurotrophins bound to their receptors it will now be possible, using a combination of in silico technology and novel screening techniques, to develop small molecule mimetics with much improved pharmacotherapeutic profiles.
Collapse
Affiliation(s)
- D Dawbarn
- University of Bristol, Bristol Royal Infirmary, Bristol, UK.
| | | |
Collapse
|
19
|
Gibbs RB. Effects of ageing and long-term hormone replacement on cholinergic neurones in the medial septum and nucleus basalis magnocellularis of ovariectomized rats. J Neuroendocrinol 2003; 15:477-85. [PMID: 12694373 DOI: 10.1046/j.1365-2826.2003.01012.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ovariectomized aged rats, some of which received long-term hormone replacement with oestrogen or oestrogen plus progesterone, were evaluated for the number and size of basal forebrain cholinergic neurones, as well as relative levels of choline acetyltransferase (ChAT) and trkA mRNA, in order to determine whether effects on basal forebrain cholinergic cell survival and function correspond with differences in cognitive performance previously described. The results show that ageing combined with long-term loss of ovarian function produced substantial reductions in the levels of ChAT and trkA mRNA in the medial septum and nucleus basalis magnocellularis, relative to much younger ovariectomized controls. In contrast, no significant effects on the number or size of the cholinergic cells were detected, indicating that loss of ovarian function does not cause a loss of cholinergic neurones with age. Long-term hormone replacement had no apparent effect on the number of ChAT-positive neurones detected, and did not prevent the reductions in ChAT and trkA mRNA associated with ovariectomy and ageing. Collectively, the data suggest that ageing combined with long-term loss of ovarian function has a severe negative impact on basal forebrain cholinergic function, but not on cholinergic cell survival per se.
Collapse
Affiliation(s)
- R B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA. gibbsr+@pitt.edu
| |
Collapse
|
20
|
Härtig W, Bauer A, Brauer K, Grosche J, Hortobágyi T, Penke B, Schliebs R, Harkany T. Functional recovery of cholinergic basal forebrain neurons under disease conditions: old problems, new solutions? Rev Neurosci 2003; 13:95-165. [PMID: 12160262 DOI: 10.1515/revneuro.2002.13.2.95] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recognition of the involvement of cholinergic neurons in the modulation of cognitive functions and their severe dysfunction in neurodegenerative disorders, such as Alzheimer's disease, initiated immense research efforts aimed at unveiling the anatomical organization and cellular characteristics of the basal forebrain (BFB) cholinergic system. Concomitant with our unfolding knowledge about the structural and functional complexity of the BFB cholinergic projection system, multiple pharmacological strategies were introduced to rescue cholinergic nerve cells from noxious attacks; however, a therapeutic breakthrough is still awaited. In this review, we collected recent findings that significantly contributed to our better understanding of cholinergic functions under disease conditions, and to the design of effective means to restore lost or damaged cholinergic functions. To this end, we first provide a brief survey of the neuroanatomical organization of BFB nuclei with emphasis on major evolutionary differences among mammalian species, in particular rodents and primates, and discuss limitations of the translation of experimental data to human therapeutic applications. Subsequently, we summarize the involvement of cholinergic dysfunction in the pathogenesis of severe neurological conditions, including stroke, traumatic brain injury, virus encephalitis and Alzheimer's disease, and emphasize the critical role of pro-inflammatory cytokines as common mediators of cholinergic neuronal damage. Moreover, we review leading functional concepts on the limited recovery of cholinergic neurons and their impaired plastic re-modeling, as well as on the hampered interplay of the ascending cholinergic and monoaminergic projection systems under neurodegenerative conditions. In addition, recent advances in the dynamic labeling of living cholinergic neurons by fluorochromated antibodies, referred to as in vivo labeling, and novel neuroimaging approaches as potential diagnostic tools of progressive cholinergic decline are surveyed. Finally, the potential of cell replacement strategies using embryonic and adult stem cells, and multipotent neural progenitors, as a means to recover damaged cholinergic functions, is discussed.
Collapse
Affiliation(s)
- Wolfgang Härtig
- Department of Neurochemistry, Paul Flechsig Institute for Brain Research, University of Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tuszynski MH, U HS, Alksne J, Bakay RA, Pay MM, Merrill D, Thal LJ. Growth factor gene therapy for Alzheimer disease. Neurosurg Focus 2002; 13:e5. [PMID: 15769074 DOI: 10.3171/foc.2002.13.5.6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The capacity to prevent neuronal degeneration and death during the course of progressive neurological disorders such as Alzheimer disease (AD) would represent a significant advance in therapy. Nervous system growth factors are families of naturally produced proteins that, in animal models, exhibit extensive potency in preventing neuronal death due to a variety of causes, reversing age-related atrophy of neurons, and ameliorating functional deficits. The main challenge in translating growth factor therapy to the clinic has been delivery of growth factors to the brain in sufficient concentrations to influence neuronal function. One means of achieving growth factor delivery to the central nervous system in a highly targeted, effective manner may be gene therapy. In this article the authors summarize the development and implementation of nerve growth factor gene delivery as a potential means of reducing cell loss in AD.
Collapse
Affiliation(s)
- Mark H Tuszynski
- Department of Neurosciences, Division of Neurosurgery, University of California at San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Ferreira G, Meurisse M, Tillet Y, Lévy F. Distribution and co-localization of choline acetyltransferase and p75 neurotrophin receptors in the sheep basal forebrain: implications for the use of a specific cholinergic immunotoxin. Neuroscience 2001; 104:419-39. [PMID: 11377845 DOI: 10.1016/s0306-4522(01)00075-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The basal forebrain cholinergic system is involved in different forms of memory. To study its role in social memory in sheep, an immunotoxin, ME20.4 immunoglobulin G (IgG)-saporin, was developed that is specific to basal forebrain cholinergic neurons bearing the p75 neurotrophin receptor. The distribution of sheep cholinergic neurons was mapped with an antibody against choline acetyltransferase. To assess the localization of the p75 receptor on basal forebrain cholinergic neurons, the distribution of p75 receptor-immunoreactive neurons with ME20.4 IgG was examined, and a double-labeling study with antibodies against choline acetyltransferase and p75 receptor was undertaken. The loss of basal forebrain cholinergic neurons and acetylcholinesterase fibers in basal forebrain projection areas was assessed in ewes that had received intracerebroventricular injections of the immunotoxin (50, 100 or 150 microg) alone, as well as, in some of the ewes treated with the highest dose, with bilateral immunotoxin injections in the nucleus basalis (11 microg/side). Results indicated that choline acetyltransferase- and p75 receptor-immunoreactive cells had similar distributions in the medial septum, the vertical and horizontal limbs of the band of Broca, and the nucleus basalis. The double-labeling procedure revealed that 100% of the cholinergic neurons are also p75 receptor positive in the medial septum and in the vertical and horizontal limbs of the band of Broca, and 82% in the nucleus basalis. Moreover, 100% of the p75 receptor-immunoreactive cells of these four nuclei were cholinergic. Combined immunotoxin injections into ventricles and the nucleus basalis produced a near complete loss (80-95%) of basal forebrain cholinergic neurons and acetylcholinesterase-positive fibers in the hippocampus, olfactory bulb and entorhinal cortex. This study provides the first anatomical data concerning the basal forebrain cholinergic system in ungulates. The availability of a selective cholinergic immunotoxin effective in sheep provides a new tool to probe the involvement of basal forebrain cholinergic neurons in cognitive processes in this species.
Collapse
Affiliation(s)
- G Ferreira
- Laboratoire de Comportement Animal, Station PRC, UMR 6073 INRA, CNRS, Université de Tours, 37380, Nouzilly, France
| | | | | | | |
Collapse
|
23
|
Perry T, Hodges H, Gray JA. Behavioural, histological and immunocytochemical consequences following 192 IgG-saporin immunolesions of the basal forebrain cholinergic system. Brain Res Bull 2001; 54:29-48. [PMID: 11226712 DOI: 10.1016/s0361-9230(00)00413-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Use of the selective immunotoxin; 192 IgG-saporin, is helping to elucidate the role of the cholinergic system in cognition by overcoming the problems of interpretation associated with the use of non-specific lesioning agents. In separate studies, we have compared the long- and short-term effects of single site and combined saporin lesions of the nucleus basalis magnocellularis and medial septal area, on spatial learning and memory in radial arm and water maze tasks. At 11 months, only rats with combined lesions showed deficits in both radial and water maze tasks, although terminal cholinergic deafferentation was substantial and extensive tissue loss was seen at the injection sites in both single and combined lesions. However, the extensive tissue loss with long-term lesions suggested that behavioural deficits were not solely attributable to cholinergic deafferentation. In contrast, when rats with combined lesions were tested 5 months after lesioning, no deficits were apparent, although there was almost complete loss of choline acetyltransferase- and nerve growth factor receptor-immunoreactivity in the basal forebrain with no tissue damage at the injection sites. This study supports existing literature that selective loss of cholinergic neurons in the basal forebrain does not produce behavioural impairments in standard tasks of learning and memory, but deficits are apparent when damage is non-selective as occurs late after lesioning, confounding interpretation of behavioural data. It further highlights potential problems with this immunotoxin in long-term studies.
Collapse
Affiliation(s)
- T Perry
- Department of Psychology, Institute of Psychiatry, King's College London, London, United Kingdom.
| | | | | |
Collapse
|
24
|
Silver MA, Fagiolini M, Gillespie DC, Howe CL, Frank MG, Issa NP, Antonini A, Stryker MP. Infusion of nerve growth factor (NGF) into kitten visual cortex increases immunoreactivity for NGF, NGF receptors, and choline acetyltransferase in basal forebrain without affecting ocular dominance plasticity or column development. Neuroscience 2001; 108:569-85. [PMID: 11738495 PMCID: PMC2452995 DOI: 10.1016/s0306-4522(01)00391-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intracerebroventricular or intracortical administration of nerve growth factor (NGF) has been shown to block or attenuate visual cortical plasticity in the rat. In cats and ferrets, the effects of exogenous NGF on development and plasticity of visual cortex have been reported to be small or nonexistent. To determine whether locally delivered NGF affects ocular dominance column formation or the plasticity produced by monocular deprivation in cats at the height of the critical period, we infused recombinant human NGF into the primary visual cortex of kittens using an implanted cannula minipump. NGF had no effect on the normal developmental segregation of geniculocortical afferents into ocular dominance columns as determined both physiologically and anatomically. The plasticity of binocular visual cortical responses induced by monocular deprivation was also normal in regions of immunohistochemically detectable NGF infusion, as measured using intrinsic signal optical imaging and single-unit electrophysiology. Immunohistochemical analysis of the basal forebrain regions of the same animals demonstrated that the NGF infused into cortex was biologically active, producing an increase in the number of NGF-, TrkA-, p75(NTR)-, and choline acetyltransferase-positive neurons in basal forebrain nuclei in the hemisphere ipsilateral to the NGF minipump compared to the contralateral basal forebrain neurons. We conclude that NGF delivered locally to axon terminals of cholinergic basal forebrain neurons resulted in increases in protein expression at the cell body through retrograde signaling.
Collapse
Affiliation(s)
- M A Silver
- W.M. Keck Center for Integrative Neuroscience and Neuroscience Graduate Program, Department of Physiology, Box 0444, 513 Parnassus Avenue, Room S-762, University of California, San Francisco, CA 94143-0444, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Dubus P, Faucheux B, Boissière F, Groppi A, Vital C, Vital A, Agid Y, Hirsch EC, Merlio JP. Expression of Trk isoforms in brain regions and in the striatum of patients with Alzheimer's disease. Exp Neurol 2000; 165:285-94. [PMID: 10993689 DOI: 10.1006/exnr.2000.7447] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The TrkAII tyrosine kinase receptor differs from the TrkAI isoform by an insertion of six amino acids in the extracellular domain. We used RT-PCR to determine their respective distribution in rat and human brain. Only trkAII transcripts were detected in 12 rat brain regions, while both trkAI and trkAII transcripts were detected in the cerebellum and pituitary gland. In human, both trkAI and trkAII transcripts were detected in the frontal, temporal, and occipital cortex and thalamus, while only trkAI transcripts were detected in the hippocampus and cerebellum. In the caudate and putamen, trkAII transcripts were exclusively detected. Thereafter, we studied the expression of TrkA isoforms in the striatum of five patients with Alzheimer's disease (AD), four patients with non-AD dementia, seven patients with Parkinson's disease, and six paired nondemented elderly control individuals. In controls and non-AD patients, a constant expression of trkAII transcripts was detected within all striatum parts. In AD patients, a heterogeneous decrease in trkAII expression was observed in the caudate, putamen, and ventral striatum, resulting either in a drop of trkAII transcript levels or in a weak coamplification of trkAII and trkAI transcripts. The alteration of TrkAII gene expression paralleled those of choline acetyltransferase. Together with previous data, this suggests that the alteration of trk gene expression could contribute to a decrease in NGF binding sites and its protective effects on cholinergic neurons of AD patients.
Collapse
Affiliation(s)
- P Dubus
- Laboratoire d'Histologie-Embryologie, EA 2406 Université de Bordeaux 2, Bordeaux Cedex, 33076, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nonner D, Barrett EF, Barrett JN. Brief exposure to neurotrophins produces a calcium-dependent increase in choline acetyltransferase activity in cultured rat septal neurons. J Neurochem 2000; 74:988-99. [PMID: 10693929 DOI: 10.1046/j.1471-4159.2000.0740988.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We demonstrate that brief (30-min) exposure of cultured embryonic rat septal neurons to neurotrophins (NTs) increases choline acetyltransferase (ChAT) activity by 20-50% for all tested NTs (nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4, each at 100 ng/ml). The increase in ChAT activity was first detected 12 h after NT exposure, persisted at least 48 h, and was not mediated by increased neuronal survival or action-potential activity. Under some conditions, the response to brief NT exposure was as great as that produced by continuous exposure. NT stimulation of ChAT activity was inhibited by inhibitors of p75- and Trk kinase-mediated signaling, by removal of extracellular Ca2+ during the period of NT exposure, and by buffering intracellular Ca2+ with BAPTA. Application of nerve growth factor and brain-derived neurotrophic factor transiently increased [Ca2+] within a subpopulation of neurons. NT stimulation of ChAT activity was not affected significantly by cyclic AMP agonists or antagonists. These findings suggest that brief exposure to NTs can have a long-lasting effect on cholinergic transmission, and that this effect requires Ca2+, but not cyclic AMP.
Collapse
Affiliation(s)
- D Nonner
- Department of Physiology and Biophysics, University of Miami School of Medicine, Florida 33101, USA
| | | | | |
Collapse
|
27
|
Dougherty KD, Milner TA. p75NTR immunoreactivity in the rat dentate gyrus is mostly within presynaptic profiles but is also found in some astrocytic and postsynaptic profiles. J Comp Neurol 1999; 407:77-91. [PMID: 10213189 DOI: 10.1002/(sici)1096-9861(19990428)407:1<77::aid-cne6>3.0.co;2-s] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To localize neurotrophin binding sites within the rat dentate gyrus, the distribution of low-affinity p75 neurotrophin receptor (p75NTR) immunoreactivity (IR) was examined by using antiserum raised against the cytoplasmic domain of the receptor. Semiquantitative electron microscopic examination of p75NTR-labeled sections showed that most p75NTR-labeled profiles were axons and axon terminals (72% from a total of 3,975); p75NTR-IR was observed throughout the extent of these structures and was not limited to the plasmalemmal surface. Axons and axon terminals containing p75NTR-IR were distributed in approximately equal proportions across the hilus, infragranular zone, and the inner, middle, and outer molecular layers; significantly fewer p75NTR-labeled profiles were observed in the granule cell layer. Axon terminals containing p75NTR-IR, which made synapses (296 of 552), formed equal proportions of symmetric and asymmetric synapses, primarily with the shafts and spines of dendrites. The remainder of the p75NTR-labeled terminals apposed unlabeled somata and dendrites without forming synapses in the single sections analyzed. In addition, p75NTR-IR was contained within some astrocytes (17.5% of 3,975) and dendritic shafts (3%) and spines (5%). Within dendritic spines, p75NTR-IR was most often associated with the plasmalemmal surface near postsynaptic densities; in dendritic shafts, p75NTR labeling was associated with microfilaments distant from the plasmalemma. Most p75NTR-labeled dendritic profiles were located in the molecular layer, and some originated from granule cells. Moreover, in some granule cell somata (<1% of 3,975), p75NTR-IR was associated with endosomes. The primary localization of p75NTR-IR to presynaptic structures in the dentate gyrus, presumably arising from medial septal/diagonal band neurons, agrees with previous reports. However, p75NTR-IR within some astrocytes, somata, and dendritic structures suggests that this receptor may also be involved in controlling local neurotrophin levels and possibly modulating the viability of local hippocampal cell populations.
Collapse
Affiliation(s)
- K D Dougherty
- Department of Neuroscience and Cell Biology, UMDNJ/RWJ Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
28
|
Salehi A, Verhaagen J, Swaab DF. Neurotrophin receptors in Alzheimer's disease. PROGRESS IN BRAIN RESEARCH 1999; 117:71-89. [PMID: 9932402 DOI: 10.1016/s0079-6123(08)64009-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- A Salehi
- Netherlands Institute for Brain Research, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
29
|
Gibbs RB. Levels of trkA and BDNF mRNA, but not NGF mRNA, fluctuate across the estrous cycle and increase in response to acute hormone replacement. Brain Res 1998; 787:259-68. [PMID: 9518642 DOI: 10.1016/s0006-8993(97)01511-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent studies suggest that hormone replacement therapy can help to reduce the risk and severity of Alzheimer's-related dementia in postmenopausal women. We have hypothesized that these effects are due, in part, to the ability for estrogen and progesterone to enhance hippocampal function, as well as the functional status of cholinergic projections to the hippocampus and cortex, by influencing the expression of specific neurotrophins and neurotrophin receptors. In the present study, quantitative in situ hybridization techniques were used to determine whether the levels of trkA mRNA in the basal forebrain, and nerve growth factor (NGF) mRNA and brain-derived neurotrophic factor (BDNF) mRNA in the hippocampus, are significantly affected by physiological changes in circulating gonadal steroids. Gonadally intact animals were sacrificed at different stages of the estrous cycle and ovariectomized animals were sacrificed at different times following the administration of either estrogen or estrogen plus progesterone. In gonadally intact animals, significant fluctuations in the levels of trkA mRNA in the medial septum (MS), and BDNF mRNA in regions CA1 and CA3/4 of the hippocampus, were detected across the estrous cycle. In animals that received hormone replacement, a significant increase (30.4%) in trkA mRNA was detected in the MS of animals sacrificed 24 h following estrogen administration. Levels of trkA mRNA in the MS declined to control levels over the next 48 h; however, a single injection of progesterone administered 48 h after estradiol appeared to prevent any further decline in trkA mRNA over the next 24 h. In addition, significant increases in BDNF mRNA were detected in the dentate granule cell layer (73.4%), region CA1 (28. 1%), and region CA3/4 (76.9%) of animals sacrificed 53 h after receiving estrogen and 5 h after receiving progesterone. No significant changes in trkA mRNA were detected in the nucleus basalis magnocellularis, and no significant changes in NGF mRNA were detected in the hippocampus. These data demonstrate that levels of trkA mRNA in the MS, and BDNF mRNA in the hippocampus, are affected by physiological changes in the levels of circulating gonadal steroids and are elevated in response to acute hormone replacement. The relevance of these effects to the ability for estrogen replacement to enhance cholinergic activity and hippocampal function, and thereby reduce the risk and severity of Alzheimer's-related dementia in postmenopausal women, is discussed.
Collapse
Affiliation(s)
- R B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, 1004 Salk Hall, Pittsburgh, PA 15261, USA.
| |
Collapse
|
30
|
Rossner S. Cholinergic immunolesions by 192IgG-saporin--useful tool to simulate pathogenic aspects of Alzheimer's disease. Int J Dev Neurosci 1997; 15:835-50. [PMID: 9568532 DOI: 10.1016/s0736-5748(97)00035-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease, the most common cause of senile dementia, is characterized by intracellular formation of neurofibrillary tangles, extracellular deposits of beta amyloid as well as cerebrovascular amyloid accumulation and a profound loss of cholinergic neurons within the nucleus basalis Meynert with alterations in cortical neurotransmitter receptor densities. The use of the cholinergic immunotoxin 192IgG-saporin allows for the first time study of the impact of cortical cholinergic deafferentation on cortical neurotransmission, learning, and memory without direct effects on other neuronal systems. This model also allows the elucidation of contributions of cholinergic mechanisms to the establishment of other pathological features of Alzheimer's disease. The findings discussed here demonstrate that cholinergic immunolesions by 192IgG-saporin induce highly specific, permanent cortical cholinergic hypoactivity and alterations in cortical neurotransmitter densities comparable to those described for Alzheimer's disease. The induced cortical cholinergic deficit also leads to cortical/hippocampal neurotrophin accumulation and reduced amyloid precursor protein (APP) secretion, possibly reflecting the lack of stimulation of postsynaptic M1/M3 muscarinic receptors coupled to protein kinase C. This immunolesion model should prove useful to test therapeutic strategies based on stimulation of cortical cholinergic neurotransmission or amelioration of pathogenic aspects of cholinergic degeneration in the basal forebrain. Application of the model to animal species that can develop beta-amyloid plaques could provide information about the contribution of cholinergic function to amyloidogenic APP processing.
Collapse
Affiliation(s)
- S Rossner
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Germany.
| |
Collapse
|
31
|
Fine A, Hoyle C, Maclean CJ, Levatte TL, Baker HF, Ridley RM. Learning impairments following injection of a selective cholinergic immunotoxin, ME20.4 IgG-saporin, into the basal nucleus of Meynert in monkeys. Neuroscience 1997; 81:331-43. [PMID: 9300425 DOI: 10.1016/s0306-4522(97)00208-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Four groups of monkeys (Callithrix jacchus) were injected with saline or increasing amounts of the immunotoxin, ME20.4 IgG-saporin, directly into the basal nucleus of Meynert via a frontal trajectory which avoided damage to the overlying basal ganglia. ME20.4 IgG binds to the primate p75 low-affinity neurotrophin receptor, when the saporin derivitized antibody is injected into the basal forebrain, it selectively destroys the magnocellular neurons of the basal nucleus of Meynert which are the cells of origin of the cholinergic projection to the neocortex. The highest dose of ME20.4 IgG-saporin produced a significant impairment on acquisition of a perceptually difficult visual discrimination. There was no significant effect on retention of tasks learnt before or after surgery, nor on concurrent acquisition of several perceptually easy discriminations or serial reversal of an easy discrimination. These results suggest that the impairment is not due to visual, motor or motivational difficulties and does not consist of difficulties with the formation of reward associations. Rather the impairment is largely confined to acquisition of perceptual discriminations. There was a significant correlation between the density of ME20.4 immunostaining in the basal nucleus of Meynert and the density of acetylcholinesterase histochemical staining in the frontal and temporal cortex and an inverse correlation between both of these and the degree of learning impairment in the animals. Lesioned animals also showed significant impairment on acquisition and reversal of perceptually easy discriminations when treated with a dose of scopolamine which did not impair performance in control animals. These results provide further evidence that cortical cholinergic neurotransmission contributes to certain forms of learning. The availability of a selective cholinergic immunotoxin effective in primates provides an important new tool for the study of cholinergic function and its involvement in ageing, Alzheimer's disease and other pathological states.
Collapse
Affiliation(s)
- A Fine
- MRC Comparative Cognition Team, Department of Experimental Psychology, University of Cambridge, U.K
| | | | | | | | | | | |
Collapse
|
32
|
Milner TA, Wiley RG, Kurucz OS, Prince SR, Pierce JP. Selective changes in hippocampal neuropeptide Y neurons following removal of the cholinergic septal inputs. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970915)386:1<46::aid-cne6>3.0.co;2-d] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Gibbs RB, Martynowski C. Nerve growth factor induces Fos-like immunoreactivity within identified cholinergic neurons in the adult rat basal forebrain. Brain Res 1997; 753:141-51. [PMID: 9125441 DOI: 10.1016/s0006-8993(97)00006-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immunocytochemical techniques were used to examine and compare the effects of intracerebroventricular administration of nerve growth factor (NGF) on Fos expression within identified cholinergic and non-cholinergic neurons located in different regions of the adult rat basal forebrain. Animals were killed 1, 3, 6, and 12 h after receiving NGF (0.5 or 5.0 microg) or vehicle into the left lateral ventricle and sections through the medial septum, diagonal band of Broca, nucleus basalis magnocellularis, and striatum were processed for the combined immunocytochemical detection of Fos and choline acetyltransferase (a marker for cholinergic neurons), or Fos and parvalbumin (a marker for gamma aminobutyric acid (GABA)-containing neurons). NGF produced a significant increase in the percentage of cholinergic neurons containing Fos-like immunoreactivity within all four regions examined. The largest increases were detected in the medial septum (47.8%) and the horizontal limb of the diagonal band of Broca (67.7%). In these areas, NGF-mediated induction of Fos-like immunoreactivity was detected as early as 3 h, peaked at 6 h, and was reduced by 12 h, postinfusion. Small but significant increases in the percentage of cholinergic neurons containing Fos-like immunoreactivity were also detected in the striatum (4.2%) and in the nucleus basalis magnocellularis (19.2%) 3-12 h following administration of the higher dose of NGF. No evidence for an NGF-mediated induction of Fos within parvalbumin-containing neurons was detected in any of the four regions at any of the time-points examined; however, evidence for an NGF-mediated induction of Fos within epithelial cells lining the lateral ventricle was observed. These data demonstrate that NGF induces Fos expression within cholinergic, and not parvalbumin-containing (GABAergic), neurons in the basal forebrain, and furthermore that intracerebroventricular administration of NGF influences the different subgroups of basal forebrain cholinergic neurons to different degrees.
Collapse
Affiliation(s)
- R B Gibbs
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, PA 15261, USA.
| | | |
Collapse
|
34
|
Bina KG, Rusak B, Semba K. Sources of p75-nerve growth factor receptor-like immunoreactivity in the rat suprachiasmatic nucleus. Neuroscience 1997; 77:461-72. [PMID: 9472404 DOI: 10.1016/s0306-4522(96)00496-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In mammals, the suprachiasmatic nucleus is critical for the generation of circadian rhythms and their entrainment to environmental cues. In the rat, the ventrolateral aspect of the suprachiasmatic nucleus receives a robust retinal input. This region also exhibits the most intense immunolabeling for the low-affinity nerve growth factor receptor in the forebrain. Our study was aimed at identifying the sources of this low-affinity nerve growth factor receptor immunoreactivity using immunohistochemistry combined with retrograde tract-tracing, and orbital enucleation. To determine the origin of the low-affinity nerve growth factor receptor immunoreactivity from sources extrinsic to the suprachiasmatic nucleus, unilateral injections of the retrograde tracer, Fluorogold, were made into the suprachiasmatic nucleus. Retrogradely labeled neurons that were also immunopositive for the low-affinity nerve growth factor receptor were found in both the basal forebrain and the retina. In the basal forebrain, such cells were found throughout its rostrocaudal extent, with the majority also being immunoreactive for the cholinergic marker, choline acetyltransferase. In the retina, cells retrogradely labeled with Fluorogold that were immunoreactive for low-affinity nerve growth factor receptor were located in the ganglion cell layer. Orbital enucleations were performed to confirm the findings observed following retrograde labeling in the retina. Unilateral orbital enucleations resulted in a significant reduction in low-affinity nerve growth factor receptor immunoreactivity in the contralateral suprachiasmatic nucleus compared to that seen on the ipsilateral side when examined one week post-surgery. Bilateral enucleations resulted in an equal decrease on both sides of the suprachiasmatic nucleus. Similar low-affinity nerve growth factor-like immunoreactivity was seen in the suprachiasmatic nucleus even two to four weeks after bilateral enucleations. Taken together, these findings suggest that low-affinity nerve growth factor receptors in the suprachiasmatic nucleus derive from multiple sources. While some receptors may be intrinsic to suprachiasmatic nucleus neurons, most appear to be of extrinsic origin and are located on axon terminals of basal forebrain cholinergic neurons and retinal ganglion cells.
Collapse
Affiliation(s)
- K G Bina
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
35
|
Siciliano R, Fontanesi G, Casamenti F, Berardi N, Bagnoli P, Domenici L. Postnatal development of functional properties of visual cortical cells in rats with excitotoxic lesions of basal forebrain cholinergic neurons. Vis Neurosci 1997; 14:111-23. [PMID: 9057274 DOI: 10.1017/s0952523800008816] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the rat, visual cortical cells develop their functional properties during a period termed as critical period, which is included between eye opening, i.e. postnatal day (PD) 15, and PD40. The present investigation was aimed at studying the influence of cortical cholinergic afferents from the basal forebrain (BF) on the development of functional properties of visual cortical neurons. At PD15, rats were unilaterally deprived of the cholinergic input to the visual cortex by stereotaxic injections of quisqualic acid in BF cholinergic nuclei projecting to the visual cortex. Cortical cell functional properties, such as ocular dominance, orientation selectivity, receptive-field size, and cell responsiveness were then assessed by extracellular recordings in the visual cortex ipsilateral to the lesioned BF both during the critical period (PD30) and after its end (PD45). After the recording session, the rats were sacrificed and the extent of both cholinergic lesion in BF and cholinergic depletion in the visual cortex was determined. Our results show that lesion of BF cholinergic nuclei transiently alters the ocular dominance of visual cortical cells while it does not affect the other functional properties tested. In particular, in lesioned animals recorded during the critical period, a higher percentage of visual cortical cells was driven by the contralateral eye with respect to normal animals. After the end of the critical period, the ocular dominance distribution of animals with cholinergic deafferentation was not significantly different from that of controls. Our results suggest the possibility that lesions of BF cholinergic neurons performed during postnatal development only transiently interfere with cortical competitive processes.
Collapse
Affiliation(s)
- R Siciliano
- Department of Physiology and Biochemistry, University of Pisa, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Salehi A, Verhaagen J, Dijkhuizen PA, Swaab DF. Co-localization of high-affinity neurotrophin receptors in nucleus basalis of Meynert neurons and their differential reduction in Alzheimer's disease. Neuroscience 1996; 75:373-87. [PMID: 8931004 DOI: 10.1016/0306-4522(96)00273-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
It has been suggested that degeneration of neurons in Alzheimer's disease is the result of diminished trophic support. However, so far no evidence has been forwarded that neuronal degeneration in Alzheimer's disease is causally related to insufficient production of neurotrophins. The present study deals with (i) the expression and co-localization of tyrosine kinase receptors (trks) in the human nucleus basalis of Meynert and (ii) alterations of these receptors in Alzheimer's disease in the nucleus basalis of Meynert, an area severely affected in Alzheimer's disease. The expression of trkA, trkB and trkC in the nucleus basalis of Meynert of control and Alzheimer's disease brains was studied using three polyclonal antibodies specifically recognizing the extracellular domain of trkA, trkB and trkC. Brain material of eight controls and seven Alzheimer's disease patients was obtained at autopsy, embedded in paraffin and stained immunocytochemically. Using an image analysis system, we determined the proportion of trk neurons expressing the different trk receptors in controls and Alzheimer's disease patients. In control brains, trkA, trkB and trkC were differentially expressed in numerous nucleus basalis of Meynert neurons. The highest proportion of neurons was found to express trkB (75%), followed by trkC (58%) and trkA (54%). Furthermore, using consecutive sections, a clear co-localization of trk receptors was observed in the same neurons. The highest degree of co-localization was observed between trkA and trkB. In Alzheimer's disease patients, the number of immunoreactive neurons and the staining intensity of individual neurons was reduced dramatically. Reduction in the proportion of neurons expressing trkA was 69%, in trkB 47% and in trkC 49%, which indicated a differential reduction in the amount of trk receptors in Alzheimer's disease. These observations indicate that nucleus basalis of Meynert neurons can be supported by more than one neurotrophin and that the degeneration of these neurons in Alzheimer's disease is associated with a decreased expression of trk receptors, suggesting a decreased neurotrophin responsiveness of nucleus basalis of Meynert neurons in Alzheimer's disease.
Collapse
Affiliation(s)
- A Salehi
- Graduate School of Neurosciences Amsterdam, Netherlands Institute for Brain Research, The Netherlands
| | | | | | | |
Collapse
|
37
|
Wilcock GK, Harrold PL. Treatment of Alzheimer's disease: future directions. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 1996; 165:128-36. [PMID: 8741000 DOI: 10.1111/j.1600-0404.1996.tb05883.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Following the introduction of tacrine hydrochloride (Cognex) in the United States and several other countries, researchers are pursuing two broad therapeutic strategies for Alzheimer's disease (AD). The first involves identifying agents or combinations of agents whose actions can compensate for the considerable cerebral damage that has typically occurred by the time the diagnosis of AD is made. Such therapeutic approaches include the development of additional cholinesterase inhibitors, agents that work on the receptors of other systems damaged by the disease process, and anti-inflammatory and immunomodulatory agents. The second and ultimately more promising strategy involves the development of approaches to retard, halt, or even prevent disease progression. Such protective approaches, which depend on the development of more effective methods for predicting and diagnosing AD, include the administration of nerve growth factor and other neurotrophins and the use of pharmacologic or genetic interventions to limit amyloid deposition and the formation of neurofibrillary tangles.
Collapse
Affiliation(s)
- G K Wilcock
- Department of Care of the Elderly, Frenchay Hospital, Bristol, England
| | | |
Collapse
|
38
|
Cimino M, Cattabeni F, Di Luca M, Peruzzi G, Andena M, Tirassa P, Angelucci F, Cozzari C, Aloe L. Levels of NGF, p75NGFR and ChAT immunoreactivity in brain of adult and aged microencephalic rats. Neurobiol Aging 1996; 17:137-42. [PMID: 8786796 DOI: 10.1016/0197-4580(95)02026-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Methylazoxymethanol (MAM)-induced microencephalic aged animals with reduced cortical mass and unmodified basal nucleus were used to study the relationship between cells that produce and cells that utilize NGF. Total cortical ChAT activity of MAM 2, 19 and 27 month old animals was reduced compared to their age-matched controls. To verify whether the reduction of enzyme activity can be ascribed to changes in or ablation of projecting neurons, we carried out immunohistochemical analysis of ChAT and low affinity NGF receptor (p75NGFR) in the basal nucleus of control and MAM-treated animals. ChAT and p75NGFR immunostaining of basal forebrain cholinergic neurons showed morphological changes in MAM animals, as revealed by cellular atrophy, reduced dendritic arborization and decreased staining intensity. In the cerebral cortex of microencephalic animals, reduced levels of NGF compared to controls were observed at all examined ages. These results suggest that MAM treatment induces long-lasting ablation of cortical NGF-synthesizing cells leading to reduced trophic support to basal forebrain cholinergic neurons, which might be responsible for the cellular atrophy observed in the basal nucleus.
Collapse
Affiliation(s)
- M Cimino
- Institute of Pharmacology and Pharmacognosy, University of Urbino, Chiara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rossner S, Härtig W, Schliebs R, Brückner G, Brauer K, Perez-Polo JR, Wiley RG, Bigl V. 192IgG-saporin immunotoxin-induced loss of cholinergic cells differentially activates microglia in rat basal forebrain nuclei. J Neurosci Res 1995; 41:335-46. [PMID: 7563226 DOI: 10.1002/jnr.490410306] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To characterize the specificity of a novel cholinergic immunotoxin (conjugate of the monoclonal antibody 192IgG against the low-affinity nerve growth factor receptor with the cytotoxic protein saporin), coronal sections through the basal forebrain of adult rats, that received a single intracerebro-ventricular injection of 4 micrograms of 192IgG-saporin conjugate, were subjected to histochemical and immunocytochemical procedures to evaluate cholinergic (choline acetyltransferase (ChAT)-immunoreactive, acetylcholinesterase-positive, NADPH-diaphorase-positive) and GABAergic structures (parvalbumin-immunoreactive, labeling of perineuronal nets with Wisteria floribunda agglutinin) as well as microglia (visualized with Griffonia simplicifolia agglutinin) and astrocytes (immunostaining for glial fibrillary acidic protein). Seven days following injection of the immunotoxin, ChAT-immunoreactive cells nearly completely disappeared throughout the magnocellular basal forebrain complex, including globus pallidus, as compared to vehicle-injected controls. However, there was no significant difference in the number of ChAT-positive cells in the adjacent ventral pallidum and in the caudate-putamen of immunolesioned and control animals. NADPH-diaphorase-containing cells, including a significant subpopulation of cholinergic cells, also strikingly decreased in number by more than 90% in the magnocellular basal forebrain complex following immunolesion, and only a few noncholinergic diaphorase-positive cells survived in the medial septum, vertical and horizontal diagonal band, and nucleus basalis of Meynert. In contrast, the number of parvalbumin-containing GABAergic projection neurons in the septum-diagonal band of Broca complex and nucleus basalis of Meynert from immunolesioned rats was not different from that of vehicle-injected control animals. Immunolesioning also did not result in any change in either number or shape of cells surrounded by perineuronal nets, which are frequently associated with parvalbumin-containing GABAergic neurons. Seven days following injection of the immunotoxin, a very strong activation of microglia with an identical distribution pattern was observed in all experimental animals. Large numbers of activated microglia were found in all magnocellular basal forebrain nuclei, corresponding to the distribution of degenerating cholinergic cells. Additionally, immunolesioning also resulted in a dramatic activation of microglia in the lateral septal nuclei, which are known to be almost free of cholinergic cells, but not of penetrating cholinergic dendrites in adjacent zones, and in the ventral pallidum, where there was no observed loss of cholinergic cells. There was no significant increase in microglia activation in striatum and cortical areas, and no astrocytic response in any of the basal forebrain nuclei at this particular time point of survival. These results suggest that 192IgG-saporin specifically destroys basal forebrain cholinergic neurons and does not suppress their neuronal activity.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S Rossner
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kew JN, Sofroniew MV. Ciliary neurotrophic factor supports p75NGFR-immunoreactive non-cholinergic, but not cholinergic, developing septal neurons in vitro. Neuroscience 1995; 66:793-804. [PMID: 7651610 DOI: 10.1016/0306-4522(94)00590-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ciliary neurotrophic factor is known to exert both survival and differentiative actions on a number of neuronal populations of the peripheral and central nervous systems. In this study we have compared the trophic effects of ciliary neurotrophic factor and nerve growth factor on developing septal neurons of the rat in vitro. Fetal septal neurons were grown in vitro under glass coverslips in sandwich culture. Septal cultures grown for 14 days in the continual presence of nerve growth factor contain a population of cholinergic neurons that stain intensely for the low-affinity nerve growth factor receptor (p75NGFR), choline acetyltransferase and acetylcholinesterase. Without added nerve growth factor, few neurons stain for these markers. Ciliary neurotrophic factor addition for 14 days from plating in the absence of exogenous nerve growth factor results in the appearance of a population of neurons that stains for p75NGFR. This population is similar in number to that seen in nerve growth factor-treated cultures but is not immunoreactive for choline acetyltransferase and is significantly smaller in mean cross-sectional area. Delayed addition of nerve growth factor to ciliary neurotrophic factor-supported cultures at 14 days for a further seven days fails to induce choline acetyltransferase immunoreactivity in these p75NGFR-positive septal neurons. In cultures grown in the continual presence of nerve growth factor from plating, removal of nerve growth factor and addition of nerve growth factor antibodies at 14 days results in the death of over 80% of the cholinergic neurons after a further four days. Addition of ciliary neurotrophic factor during the period of nerve growth factor withdrawal appears to preserve a p75NGFR-positive, choline acetyltransferase-negative neuronal population. However, seven day re-addition of nerve growth factor to ciliary neurotrophic factor-treated, nerve growth factor-withdrawn cultures fails to induce choline acetyltransferase immunoreactivity in the ciliary neurotrophic factor-supported p75NGFR-positive septal neurons. Simultaneous treatment of cultures with both ciliary neurotrophic factor and nerve growth factor for 14 days from plating approximately doubles the number of p75NGFR-positive neurons relative to cultures treated with either ciliary neurotrophic factor or nerve growth factor alone, but the number of choline acetyltransferase-positive neurons in these cultures is not significantly greater than that found in cultures treated solely with nerve growth factor. These results suggest that ciliary neurotrophic factor does not support the survival and differentiation of developing septal cholinergic neurons in vitro, but can support the development of a p75NGFR-immunoreactive population of non-cholinergic septal neurons.
Collapse
Affiliation(s)
- J N Kew
- MRC Cambridge Centre for Brain Repair, University of Cambridge, U.K
| | | |
Collapse
|
41
|
Söderström S, Fredriksson A, Dencker L, Ebendal T. The effect of mercury vapour on cholinergic neurons in the fetal brain: studies on the expression of nerve growth factor and its low- and high-affinity receptors. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 85:96-108. [PMID: 7781173 DOI: 10.1016/0165-3806(94)00199-a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effects of mercury vapour on the production of nerve growth factor during development have been examined. Pregnant rats were exposed to two different concentrations of mercury vapour during either embryonic days E6-E11 (early) or E13-E18 (late) in pregnancy, increasing the postnatal concentration of mercury in the brain from 1 ng/g tissue to 4 ng/g tissue (low-dose group) or 11 ng/g (high-dose group). The effect of this exposure in offspring was determined by looking at the NGF concentration at postnatal days 21 and 60 and comparing these levels to age-matched controls from sham-treated mothers. Changes in the expression of mRNA encoding NGF, the low- and high-affinity receptors for NGF (p75 and p140 trk, respectively) and choline acetyltransferase (ChAT) were also determined. When rats were exposed to high levels of mercury vapour during early embryonic development there was a significant (62%) increase in hippocampal NGF levels at P21 accompanied by a 50% decrease of NGF in the basal forebrain. The expression of NGF mRNA was found to be unaltered in the dentate gyrus. The expression of p75 mRNA was significantly decreased to 39% of control levels in the diagonal band of Broca (DB) and to approximately 50% in the medial septal nucleus (MS) whereas no alterations in the level of trk mRNA expression were detectable in the basal forebrain. ChAT mRNA was slightly decreased in the DB and MS, significantly in the striatum. These findings suggest that low levels of prenatal mercury vapour exposure can alter the levels of the NGF and its receptors, indicating neuronal damage and disturbed trophic regulations during development.
Collapse
Affiliation(s)
- S Söderström
- Department of Developmental Neuroscience, Uppsala University, Sweden
| | | | | | | |
Collapse
|
42
|
Wiley RG, Berbos TG, Deckwerth TL, Johnson EM, Lappi DA. Destruction of the cholinergic basal forebrain using immunotoxin to rat NGF receptor: modeling the cholinergic degeneration of Alzheimer's disease. J Neurol Sci 1995; 128:157-66. [PMID: 7738592 DOI: 10.1016/0022-510x(94)00226-e] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Degeneration of cholinergic neurons in the basal forebrain (CBF) is a prominent neuropathological feature of Alzheimer's disease and is thought responsible for some cognitive deficits seen in patients. An animal model of pure CBF degeneration would be valuable for analysis of the function of these neurons and testing therapeutic strategies. CBF neurons express receptors for nerve growth factor. In order to selectively destroy these neurons, we developed an immunotoxin using monoclonal antibody (192 IgG) to rat NGF receptor (p75NGFr) armed with the ribosome inactivating protein, saporin. In vitro 192-saporin was highly toxic to neurons expressing p75NGFr. Intraventricular injections of 192-saporin destroyed the CBF and impaired passive avoidance learning. These results indicate that 192-saporin treated rats can be used to model a key feature of Alzheimer's disease and that anti-neuronal immunotoxins are a powerful approach to selective neural lesioning.
Collapse
MESH Headings
- Alzheimer Disease
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/toxicity
- Avoidance Learning/physiology
- Basal Ganglia/drug effects
- Basal Ganglia/pathology
- Basal Ganglia/physiopathology
- Behavior, Animal/physiology
- Cell Count
- Cells, Cultured
- Cholinergic Fibers/drug effects
- Cholinergic Fibers/pathology
- Disease Models, Animal
- Ganglia, Sympathetic/cytology
- Ganglia, Sympathetic/drug effects
- Humans
- Immunoconjugates
- Immunoglobulin G/immunology
- Immunotoxins/administration & dosage
- Immunotoxins/toxicity
- Injections, Intraventricular
- Learning Disabilities/chemically induced
- Male
- Membrane Glycoproteins/drug effects
- Membrane Glycoproteins/immunology
- N-Glycosyl Hydrolases
- Neurons/drug effects
- Plant Proteins/administration & dosage
- Plant Proteins/toxicity
- Rats
- Rats, Sprague-Dawley
- Receptor, Nerve Growth Factor
- Receptors, Nerve Growth Factor/drug effects
- Receptors, Nerve Growth Factor/immunology
- Ribosome Inactivating Proteins, Type 1
- Saporins
- Septum Pellucidum/drug effects
- Septum Pellucidum/pathology
- Septum Pellucidum/physiopathology
- Substantia Innominata/drug effects
- Substantia Innominata/pathology
- Substantia Innominata/physiopathology
Collapse
Affiliation(s)
- R G Wiley
- Laboratory of Experimental Neurology, DVAMC, Nashville, TN 37212-2637, USA
| | | | | | | | | |
Collapse
|
43
|
|
44
|
Gibbs RB. Estrogen and nerve growth factor-related systems in brain. Effects on basal forebrain cholinergic neurons and implications for learning and memory processes and aging. Ann N Y Acad Sci 1994; 743:165-96; discussion 197-9. [PMID: 7802412 DOI: 10.1111/j.1749-6632.1994.tb55792.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Estrogen replacement can significantly affect the expression of ChAT and NGF receptors in specific basal forebrain cholinergic neurons. The time-course of the effects is consistent with a direct up-regulation of ChAT followed by either direct or indirect down-regulation of p75NGFR and trkA NGF receptors, possibly due to increased cholinergic activity in the hippocampal formation and cortex and a decrease in hippocampal levels of NGF. Current evidence suggests ChAT, p75NGFR, trkA, and NGF all play a role in regulating cholinergic function in the hippocampal formation and cortex. In addition, all have been implicated in the maintenance of normal learning and memory processes as well as in changes in cognitive function associated with aging and with neurodegenerative disease. It is possible that estrogen may affect cognitive function via effects on NGF-related systems and basal forebrain cholinergic neurons. Effects of estrogen on cognitive function have been reported, as has some preliminary evidence for beneficial effects of estrogen in decreasing the prevalence of and reducing some cognitive deficits associated with Alzheimer's disease. Whether these effects are related to effects on NGF-related systems or basal forebrain cholinergic neurons is currently unknown. Indirect evidence suggests that estrogen interacts with NGF-related systems and that changes in circulating levels of estrogen can contribute to age-related changes in hippocampal levels of NGF. These findings have important implications for consideration of estrogen replacement therapy in pre- and post-menopausal women. Further studies examining effects of different regimens of estrogen replacement as well as estrogen combined with progesterone on NGF and basal forebrain cholinergic neurons in young and aged animals are required. Prospective studies correlating aging and estrogen replacement with numbers of basal forebrain cholinergic neurons and hippocampal and cortical levels of NGF also need to be performed to better assess the potential benefits of estrogen replacement in reducing age- and disease-related cognitive decline.
Collapse
Affiliation(s)
- R B Gibbs
- Department of Pharmacy, University of Pittsburgh School of Pharmacy, Pennsylvania 15261
| |
Collapse
|
45
|
Torres EM, Perry TA, Blockland A, Wilkinson LS, Wiley RG, Lappi DA, Dunnet SB. Behavioural, histochemical and biochemical consequences of selective immunolesions in discrete regions of the basal forebrain cholinergic system. Neuroscience 1994; 63:95-122. [PMID: 7898665 DOI: 10.1016/0306-4522(94)90010-8] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effectiveness of a recently developed immunotoxin, 192 IgG-saporin, was evaluated for making selective lesions of subgroups of basal forebrain cholinergic neurons. Following a pilot series of injections into the nucleus basalis magnocellularis to establish the effective dose for intraparenchymal lesions, separate groups of rats received injections of the immunotoxin into the septum, into the diagonal band of Broca or into the nucleus basalis magnocellularis. The lesions produced extensive and effective loss of cholinergic neurons in the discrete areas of the basal forebrain, as identified by loss of cells staining for acetylcholinesterase and p75NGFr, with a parallel loss of acetylcholinesterase staining and choline acetyltransferase activity in the target areas associated with each injection site in the dorsolateral neocortex, cingulate cortex and hippocampus. The selectivity of the lesion for cholinergic neurons was supported by the lack of gliosis and sparing of small to medium-sized cells at the site of injection of the toxin, including the glutamate decarboxylase immunoreactive cells that contribute to the septohippocampal projection. In spite of the extensive disturbance in the cholinergic innervation of the neocortex and hippocampus, immunotoxin lesions produced no detectable deficit in the Morris water maze task in any of the lesion sites within the basal forebrain. By contrast small but significant deficits were seen on tests of nocturnal activity (septal and nucleus basalis magnocellularis lesions), open field activity (septal and diagonal band lesions), passive avoidance (nucleus basalis magnocellularis lesions) and delayed non-matching to position (septal lesions). The results indicate that the 192 IgG-saporin provides a powerful tool for making effective lesions of the basal forebrain cholinergic neurons, and that the behavioural sequelae of such lesions warrant further detailed investigation.
Collapse
Affiliation(s)
- E M Torres
- MRC Cambridge Centre for Brain Repair, University of Cambridge, U.K
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Nerve growth factor (NGF) is a well-characterized protein that exerts pharmacological effects on a group of cholinergic neurons known to atrophy in Alzheimer's disease (AD). Considerable evidence from animal studies suggests that NGF may be useful in reversing, halting, or at least slowing the progression of AD-related cholinergic basal forebrain atrophy, perhaps even attenuating the cognitive deficit associated with the disorder. However, many questions remain concerning the role of NGF in AD. Levels of the low-affinity receptor for NGF appear to be at least stable in AD basal forebrain, and the recent finding of AD-related increases in cortical NGF brings into question whether endogenous NGF levels are related to the observed cholinergic atrophy and whether additional NGF will be useful in treating this disorder. Evidence regarding the localization of NGF within the central nervous system and its presumed role in maintaining basal forebrain cholinergic neurons is summarized, followed by a synopsis of the relevant aspects of AD neuropathology. The available data regarding levels of NGF and its receptor in the AD brain, as well as potential roles for NGF in the pathogenesis and treatment of AD, are also reviewed. NGF and its low affinity receptor are abundantly present within the AD brain, although this does not rule out an NGF-related mechanism in the degeneration of basal forebrain neurons, nor does it eliminate the possibility that exogenous NGF may be successfully used to treat AD. Further studies of the degree and distribution of NGF within the human brain in normal aging and in AD, and of the possible relationship between target NGF levels and the status of basal forebrain neurons in vivo, are necessary before engaging in clinical trials.
Collapse
Affiliation(s)
- S A Scott
- Department of Neurosurgery, University of Cincinnati, Ohio 45267-0515
| | | |
Collapse
|
47
|
Gibbs RB, Pfaff DW. In situ hybridization detection of trkA mRNA in brain: distribution, colocalization with p75NGFR and up-regulation by nerve growth factor. J Comp Neurol 1994; 341:324-39. [PMID: 8195465 DOI: 10.1002/cne.903410304] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In situ hybridization techniques were used to examine the distribution and the nerve growth factor (NGF) regulation of trkA mRNA in the adult rat brain in order to identify neurons in discrete regions of the brain that may be NGF responsive. In agreement with previous studies, trkA mRNA was detected within cells located in the medial septum (MS), diagonal band of Broca (DBB), and caudate. trkA mRNA was also detected in many other regions of the brain, including the nucleus basalis of Meynert, substantia innominata, paraventricular nucleus of the thalamus, interpeduncular nucleus, prepositus hypoglossal nucleus, vestibular nuclei, raphe obscuris, cochlear nucleus, sensory trigeminal nuclei, and gigantocellular as well as perigigantocellular neurons in the medullary reticular formation. By combining in situ hybridization detection of trkA mRNA with immunocytochemical detection of p75NGFR, it was determined that the vast majority (> 90%) of the trkA mRNA-containing cells detected in the MS and DBB also express p75NGFR. Likewise, the vast majority of p75NGFR-IR cells detected in the MS and DBB expressed trkA mRNA. Intracerebroventricular infusions of NGF into the third ventricle adjacent to the preoptic area resulted in a 58% increase in relative cellular levels of trkA mRNA in the horizontal limb of the DBB. These data provide evidence that both p75NGFR and trkA are expressed by NGF-responsive neurons in the MS and DBB. In addition, we note that areas that contained trkA mRNA and that also have been reported to contain p75NGFR are areas where high-affinity NGF binding sites have been observed autoradiographically, whereas areas that contain either trkA or p75NGFR alone are areas where no high-affinity NGF binding has been reported. Together, these findings suggest that both trkA and p75NGFR play an important role in the formation of high-affinity NGF receptors in brain and, furthermore, suggest that NGF may have physiological effects within many regions of the brain outside of the basal forebrain.
Collapse
Affiliation(s)
- R B Gibbs
- Laboratory of Neurobiology and Behavior, Rockefeller University, New York, New York 10021
| | | |
Collapse
|
48
|
Peterson GM, Ginn SR, Lanford GW. Fibers immunoreactive for nerve growth factor receptor in adult rat cortex and hippocampus mimic the innervation pattern of AChE-positive fibers. Brain Res Bull 1994; 33:129-36. [PMID: 8275331 DOI: 10.1016/0361-9230(94)90243-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Numerous reports have indicated that nerve growth factor (NGF) exerts neurotrophic effects on the cholinergic neurons of the basal forebrain. Receptors for NGF (NGFR) have been demonstrated on cholinergic perikarya in the medial septum, diagonal band of Broca, and basal nucleus of Meynert. These neurons provide the major cholinergic innervation to the cerebral cortex and hippocampus, and previous studies have shown that their terminal plexuses also possess NGFR. However, these studies have shown only isolated examples of immunoreactive fibers. In the present paper we confirm and extend the observation of the presence of NGFR immunoreactivity in the hippocampus and cortex of adult rat by showing the entire plexus and demonstrating that the plexus is strikingly similar to the pattern of cholinergic innervation. Fibers stained for acetylcholinesterase (AChE) and NGFR immunoreactivity were found in all layers of the parietal cortex. Within the hippocampus, fibers were observed in all regions, but were most dense in the strata oriens, pyramidale, and radiatum of hippocampal subfields CA1 and CA3. Particularly intense staining was found throughout the dentate gyrus. Partial transections of the fimbria-fornix, which disrupt fibers projecting from the medial septum to the hippocampus, concomitantly abolish the innervation pattern of both NGFR and AChE. These results provide additional evidence that NGFR are associated with septohippocampal and basocortical cholinergic fibers.
Collapse
Affiliation(s)
- G M Peterson
- Department of Anatomy and Cell Biology, East Carolina University School of Medicine, Greenville, NC 27858-4354
| | | | | |
Collapse
|
49
|
Cuello AC, Garofalo L, Liberini P, Maysinger D. Cooperative effects of gangliosides on trophic factor-induced neuronal cell recovery and synaptogenesis: studies in rodents and subhuman primates. PROGRESS IN BRAIN RESEARCH 1994; 101:337-55. [PMID: 8029463 DOI: 10.1016/s0079-6123(08)61961-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- A C Cuello
- McGill University, Department of Pharmacology and Therapeutics, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
50
|
Nerve Growth Factor and Other Biological Treatments: An Overview. DEMENTIA 1994. [DOI: 10.1007/978-1-4615-6805-6_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|