1
|
Sullivan MA, Lane SD, McKenzie ADJ, Ball SR, Sunde M, Neely GG, Moreno CL, Maximova A, Werry EL, Kassiou M. iPSC-derived PSEN2 (N141I) astrocytes and microglia exhibit a primed inflammatory phenotype. J Neuroinflammation 2024; 21:7. [PMID: 38178159 PMCID: PMC10765839 DOI: 10.1186/s12974-023-02951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/07/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Widescale evidence points to the involvement of glia and immune pathways in the progression of Alzheimer's disease (AD). AD-associated iPSC-derived glial cells show a diverse range of AD-related phenotypic states encompassing cytokine/chemokine release, phagocytosis and morphological profiles, but to date studies are limited to cells derived from PSEN1, APOE and APP mutations or sporadic patients. The aim of the current study was to successfully differentiate iPSC-derived microglia and astrocytes from patients harbouring an AD-causative PSEN2 (N141I) mutation and characterise the inflammatory and morphological profile of these cells. METHODS iPSCs from three healthy control individuals and three familial AD patients harbouring a heterozygous PSEN2 (N141I) mutation were used to derive astrocytes and microglia-like cells and cell identity and morphology were characterised through immunofluorescent microscopy. Cellular characterisation involved the stimulation of these cells by LPS and Aβ42 and analysis of cytokine/chemokine release was conducted through ELISAs and multi-cytokine arrays. The phagocytic capacity of these cells was then indexed by the uptake of fluorescently-labelled fibrillar Aβ42. RESULTS AD-derived astrocytes and microglia-like cells exhibited an atrophied and less complex morphological appearance than healthy controls. AD-derived astrocytes showed increased basal expression of GFAP, S100β and increased secretion and phagocytosis of Aβ42 while AD-derived microglia-like cells showed decreased IL-8 secretion compared to healthy controls. Upon immunological challenge AD-derived astrocytes and microglia-like cells showed exaggerated secretion of the pro-inflammatory IL-6, CXCL1, ICAM-1 and IL-8 from astrocytes and IL-18 and MIF from microglia. CONCLUSION Our study showed, for the first time, the differentiation and characterisation of iPSC-derived astrocytes and microglia-like cells harbouring a PSEN2 (N141I) mutation. PSEN2 (N141I)-mutant astrocytes and microglia-like cells presented with a 'primed' phenotype characterised by reduced morphological complexity, exaggerated pro-inflammatory cytokine secretion and altered Aβ42 production and phagocytosis.
Collapse
Affiliation(s)
- Michael A Sullivan
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Samuel D Lane
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - André D J McKenzie
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Sarah R Ball
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Margaret Sunde
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - G Gregory Neely
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Cesar L Moreno
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camperdown, Australia
| | - Alexandra Maximova
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Eryn L Werry
- School of Medical Sciences, The Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
- School of Chemistry, The Faculty of Science, The University of Sydney, Camperdown, Australia.
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.
| | - Michael Kassiou
- School of Chemistry, The Faculty of Science, The University of Sydney, Camperdown, Australia.
| |
Collapse
|
2
|
Abstract
Senile plaques have been studied in postmortem brains for more than 120 years and the resultant knowledge has not only helped us understand the etiology and pathogenesis of Alzheimer disease (AD), but has also pointed to possible modes of prevention and treatment. Within the last 15 years, it has become possible to image plaques in living subjects. This is arguably the single greatest advance in AD research since the identification of the Aβ peptide as the major plaque constituent. The limitations and potentialities of amyloid imaging are still not completely clear but are perhaps best glimpsed through the perspective gained from the accumulated postmortem histological studies. The basic morphological classification of plaques into neuritic, cored and diffuse has been supplemented by sophisticated immunohistochemical and biochemical analyses and increasingly detailed mapping of plaque brain distribution. Changes in plaque classification and staging have in turn contributed to changes in the definition and diagnostic criteria for AD. All of this information continues to be tested by clinicopathological correlations and it is through the insights thereby gained that we will best be able to employ the powerful tool of amyloid imaging.
Collapse
Affiliation(s)
- Thomas G Beach
- From the Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, USA
| |
Collapse
|
3
|
Neuroimmune contributions to Alzheimer's disease: a focus on human data. Mol Psychiatry 2022; 27:3164-3181. [PMID: 35668160 PMCID: PMC9168642 DOI: 10.1038/s41380-022-01637-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022]
Abstract
The past decade has seen the convergence of a series of new insights that arose from genetic and systems analyses of Alzheimer's disease (AD) with a wealth of epidemiological data from a variety of fields; this resulted in renewed interest in immune responses as important, potentially causal components of AD. Here, we focus primarily on a review of human data which has recently yielded a set of robust, reproducible results that exist in a much larger universe of conflicting reports stemming from small studies with important limitations in their study design. Thus, we are at an important crossroads in efforts to first understand at which step of the long, multiphasic course of AD a given immune response may play a causal role and then modulate this response to slow or block the pathophysiology of AD. We have a wealth of new experimental tools, analysis methods, and capacity to sample human participants at large scale longitudinally; these resources, when coupled to a foundation of reproducible results and novel study designs, will enable us to monitor human immune function in the CNS at the level of complexity that is required while simultaneously capturing the state of the peripheral immune system. This integration of peripheral and central perturbations in immune responses results in pathologic responses in the central nervous system parenchyma where specialized cellular microenvironments composed of multiple cell subtypes respond to these immune perturbations as well as to environmental exposures, comorbidities and the impact of the advancing life course. Here, we offer an overview that seeks to illustrate the large number of interconnecting factors that ultimately yield the neuroimmune component of AD.
Collapse
|
4
|
Sugama S, Kakinuma Y. Stress and brain immunity: Microglial homeostasis through hypothalamus-pituitary-adrenal gland axis and sympathetic nervous system. Brain Behav Immun Health 2020; 7:100111. [PMID: 34589871 PMCID: PMC8474505 DOI: 10.1016/j.bbih.2020.100111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 01/03/2023] Open
Abstract
Stress has been well documented to bring about various clinical disorders, ranging from neurodegeneration, such as Parkinson’s (PD) and Alzheimer’s diseases (AD), to metabolic disorders including diabetes mellitus. Importantly, microglia, immunocompetent cells in the brain, have been shown to be involved in these clinical disorders. In the recent studies aiming to clarify the microglial responses, microglia are found to be quite responsive to stressful events, such as acute, subchronic, chronic stress, and social defeat stress. However, the mechanisms of these stress response on microglial activation have been not fully understood. In response to stress exposure, both the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS) are simultaneously activated, with the former inducing glucocorticoids (GCs) and the latter noradrenaline (NA), respectively. However, the effects of these stress-induced GCs and NA have not been consistent. The GCs, conventionally known to act on microglia as immunosuppressant, is also reported to act on it as stimulator. Similarly, the NA has been reported to act on microglia as stimulator or inhibitor depending on environmental conditions. Since any kinds of stress upregulate the HPA axis and SNS, with the levels of upregulation variable depending on the stress type, it is plausible that microglia is closely regulated by these two stress pathways. In this review, we discuss the microglial responses induced by various stresses as well as the possible mechanism by which stress induces microglial activation. The present study introduces the mechanism by which microglial activation occurs following acute stress. The present study suggests that microglial activation may be regulated through the HPA axis and sympathetic nervous system. The present study suggests that microglia may be inhibited by glucocorticoids, while activated by noradrenaline under physiological conditions. The present study suggests the hypothesis that the HPA axis may interact with sympathetic nervous system to maintain microglial homeostasis.
Collapse
|
5
|
Sanchez JJ, Sanchez JE, Noor S, Ruffaner-Hanson CD, Davies S, Wagner CR, Jantzie LL, Mellios N, Savage DD, Milligan ED. Targeting the β2-integrin LFA-1, reduces adverse neuroimmune actions in neuropathic susceptibility caused by prenatal alcohol exposure. Acta Neuropathol Commun 2019; 7:54. [PMID: 30961664 PMCID: PMC6454692 DOI: 10.1186/s40478-019-0701-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023] Open
Abstract
Recently, moderate prenatal alcohol exposure (PAE) was shown to be a risk factor for peripheral neuropathy following minor nerve injury. This effect coincides with elevated spinal cord astrocyte activation and ex vivo immune cell reactivity assessed by proinflammatory cytokine interleukin (IL) -1β protein expression. Additionally, the β2-integrin adhesion molecule, lymphocyte function-associated antigen-1 (LFA-1), a factor that influences the expression of the proinflammatory/anti-inflammatory cytokine network is upregulated. Here, we examine whether PAE increases the proinflammatory immune environment at specific anatomical sites critical in the pain pathway of chronic sciatic neuropathy; the damaged sciatic nerve (SCN), the dorsal root ganglia (DRG), and the spinal cord. Additionally, we examine whether inhibiting LFA-1 or IL-1β actions in the spinal cord (intrathecal; i.t., route) could alleviate chronic neuropathic pain and reduce spinal and DRG glial activation markers, proinflammatory cytokines, and elevate anti-inflammatory cytokines. Results show that blocking the actions of spinal LFA-1 using BIRT-377 abolishes allodynia in PAE rats with sciatic neuropathy (CCI) of a 10 or 28-day duration. This effect is observed (utilizing immunohistochemistry; IHC, with microscopy analysis and protein quantification) in parallel with reduced spinal glial activation, IL-1β and TNFα expression. DRG from PAE rats with neuropathy reveal significant increases in satellite glial activation and IL-1β, while IL-10 immunoreactivity is reduced by half in PAE rats under basal and neuropathic conditions. Further, blocking spinal IL-1β with i.t. IL-1RA transiently abolishes allodynia in PAE rats, suggesting that IL-1β is in part, necessary for the susceptibility of adult-onset peripheral neuropathy caused by PAE. Chemokine mRNA analyses from SCN, DRG and spinal cord reveal that increased CCL2 occurs following CCI injury regardless of PAE and BIRT-377 treatment. These data demonstrate that PAE creates dysregulated proinflammatory IL-1β and TNFα /IL-10 responses to minor injury in the sciatic-DRG-spinal pain pathway. PAE creates a risk for developing peripheral neuropathies, and LFA-1 may be a novel therapeutic target for controlling dysregulated neuroimmune actions as a consequence of PAE.
Collapse
Affiliation(s)
- Joshua J. Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
| | - Jacob E. Sanchez
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
| | - Shahani Noor
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
| | - Chaselyn D. Ruffaner-Hanson
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
| | - Suzy Davies
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
| | - Carston R. Wagner
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy, Minneapolis, MN 55455 USA
| | - Lauren L. Jantzie
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001 USA
| | - Nikolaos Mellios
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
| | - Daniel D. Savage
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001 USA
| | - Erin D. Milligan
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
- Department of Anesthesiology and Critical Care Medicine, University of New Mexico Health Sciences Center, MSC08 4740, Albuquerque, NM 87131-0001 USA
| |
Collapse
|
6
|
Tournier BB, Tsartsalis S, Rigaud D, Fossey C, Cailly T, Fabis F, Pham T, Grégoire MC, Kövari E, Moulin-Sallanon M, Savioz A, Millet P. TSPO and amyloid deposits in sub-regions of the hippocampus in the 3xTgAD mouse model of Alzheimer’s disease. Neurobiol Dis 2019; 121:95-105. [PMID: 30261283 DOI: 10.1016/j.nbd.2018.09.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/03/2018] [Accepted: 09/23/2018] [Indexed: 11/16/2022] Open
|
7
|
Fang Y, Wang J, Yao L, Li C, Wang J, Liu Y, Tao X, Sun H, Liao H. The adhesion and migration of microglia to β-amyloid (Aβ) is decreased with aging and inhibited by Nogo/NgR pathway. J Neuroinflammation 2018; 15:210. [PMID: 30029608 PMCID: PMC6054753 DOI: 10.1186/s12974-018-1250-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/05/2018] [Indexed: 11/10/2022] Open
Abstract
Background Alzheimer’s disease is characterized by progressive accumulation of β-amyloid (Aβ)-containing amyloid plaques, and microglia play a critical role in internalization and degradation of Aβ. Our previous research confirmed that Nogo-66 binding to Nogo receptors (NgR) expressed on microglia inhibits cell adhesion and migration in vitro. Methods The adhesion and migration of microglia isolated from WT and APP/PS1 mice from different ages were measured by adhesion assays and transwells. After NEP1-40 (a competitive antagonist of Nogo/NgR pathway) was intracerebroventricularly administered via mini-osmotic pumps for 2 months in APP/PS1 transgenic mice, microglial recruitment toward Aβ deposits and CD36 expression were determined. Results In this paper, we found that aging led to a reduction of microglia adhesion and migration to fAβ1–42 in WT and APP/PS1 mice. The adhesion and migration of microglia to fAβ1–42 were downregulated by the Nogo, which was mediated by NgR, and the increased inhibitory effects of the Nogo could be observed in aged mice. Moreover, Rho GTPases contributed to the effects of the Nogo on adhesion and migration of microglia to fAβ1–42 by regulating cytoskeleton arrangement. Furthermore, blocking the Nogo/NgR pathway enhanced recruitment of microglia toward Aβ deposits and expression of CD36 in APP/PS1 mice. Conclusion Taken together, Nogo/NgR pathway could take part in Aβ pathology in AD by modulating microglial adhesion and migration to Aβ and the Nogo/NgR pathway might be an important target for treating AD. Electronic supplementary material The online version of this article (10.1186/s12974-018-1250-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yinquan Fang
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China.,Department of Pharmacology, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianing Wang
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Lemeng Yao
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Chenhui Li
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Jing Wang
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Yuan Liu
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Xia Tao
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Hao Sun
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China
| | - Hong Liao
- Jiangsu Key laboratory of Drug Screening, China Pharmaceutical University, 24 Tongjiaxiang Street, Nanjing, 210009, China.
| |
Collapse
|
8
|
Abstract
The connection between Cannabis sativa‘s chemical compounds and their ability to treat three different inflammatory ailments including bowel diseases, (IBD, e.g., Crohn's and ulcerative colitis), neuronal diseases (IND, e.g., Parkinson and Alzheimer), and a wide range of inflammatory skin diseases (ISD, e.g., atopic dermatitis and psoriasis) is presented. We review the range of experiments conducted over the last decade using either the whole extract of cannabis or separated mono-phytocannabinoids in the attempt to decipher the lead molecules, the receptors involved, the effects on genes and proteins, and especially the therapeutic potency of cannabis-derived compounds for treating these different inflammatory diseases. Along with the specifications for its current cutting-edge potential, the drawbacks and the designated needs for additional specific information from future research are indicated.
Collapse
Affiliation(s)
- Dvory Namdar
- Department of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| | - Hinanit Koltai
- Department of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan, Israel
| |
Collapse
|
9
|
Abstract
Alzheimer's disease (AD) is the most common form of adult neurode-generation and is characterised by progressive loss of cognitive function leading to death. The neuropathological hallmarks include extracellular amyloid plaque accumulation in affected regions of the brain, formation of intraneuronal neurofibrillary tangles, chronic neuroinflammation, oxidative stress, and abnormal biometal homeostasis. Of the latter, major changes in copper (Cu) levels and localisation have been identified in AD brain, with accumulation of Cu in amyloid deposits, together with deficiency of Cu in some brain regions. The amyloid precursor protein (APP) and the amyloid beta (Aβ) peptide both have Cu binding sites, and interaction with Cu can lead to potentially neurotoxic outcomes through generation of reactive oxygen species. In addition, AD patients have systemic changes to Cu metabolism, and altered Cu may also affect neuroinflammatory outcomes in AD. Although we still have much to learn about Cu homeostasis in AD patients and its role in disease aetiopathology, therapeutic approaches for regulating Cu levels and interactions with Cu-binding proteins in the brain are currently being developed. This review will examine how Cu is associated with pathological changes in the AD brain and how these may be targeted for therapeutic intervention.
Collapse
|
10
|
Plagg B, Ehrlich D, Kniewallner KM, Marksteiner J, Humpel C. Increased Acetylation of Histone H4 at Lysine 12 (H4K12) in Monocytes of Transgenic Alzheimer's Mice and in Human Patients. Curr Alzheimer Res 2016; 12:752-60. [PMID: 26159193 DOI: 10.2174/1567205012666150710114256] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/30/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder characterized by amyloid-β (Aβ) plaque formation, tau pathology, neurodegeneration and inflammatory processes. Monocytes are involved in inflammation in AD and are recruited to the diseased brain. Recently it has been shown that aberrant epigenetic processes including acetylation are associated with the development of AD. The aim of the present study was to examine acetylation of histone H4 at lysine 12 (H4K12) in monocytes in two transgenic AD mouse models (the triple transgenic 3xTg and a model overexpressing amyloid-precursor protein APP with the Swedish-Dutch-Iowa mutations), and to compare with monocytes isolated from human patients with mild cognitive impairment (MCI) and AD. METHODS Mouse and human monocytes were selectively isolated with a positive (PluriSelect) respectively with a negative selection method (Miltenyi). Histones were extracted and acetylation of H4K12 was analyzed by a quantification fluorometric kit. Moreover, monocyte cytokine release was measured and cell death analyzed by FACS using incorporation of 7-AAD. RESULTS Our data show a significant increase of monocytic H4K12 acetylation in both transgenic AD mouse models early during development of the plaque deposition in the brain. In line with these data we found significantly elevated acetylation of H4K12 in human patients with MCI but not in patients with AD. Further we observed that the monocytes of AD mice and of AD patients were significantly more vulnerable to cell damage (as seen by 7-AAD incorporation in FACS analysis) and displayed an enhanced release of pro-inflammatory cytokines (MIP2 and TNFα). CONCLUSION Our findings indicate that epigenetic changes in peripheral monocytes are an early event in AD-pathology. Thus H4K12 acetylation may be considered as a novel biomarker for early changes in AD development.
Collapse
Affiliation(s)
| | | | | | | | - Christian Humpel
- Department of Psychiatry and Psychotherapy, Anichstr. 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
11
|
Chiappelli M, Tumini E, Porcellini E, Licastro F. Impaired regulation of immune responses in cognitive decline and Alzheimer’s disease: lessons from genetic association studies. Expert Rev Neurother 2014; 6:1327-36. [PMID: 17009920 DOI: 10.1586/14737175.6.9.1327] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Altered levels of cytokines and acute-phase proteins have been described in the blood and brain of patients with Alzheimer's disease. Microglia are resident cells of the brain and metabolic upregulation of these cells may play a crucial role in the development of the neurodegeneration associated with Alzheimer's disease. Studies focusing on gene polymorphisms of molecules with immune regulatory function have demonstrated an association with increased risk of the disease and confirmed the pivotal role of immune responses in Alzheimer's disease pathogenesis. Several gene variants may also influence the rate of the cognitive decline associated with the disease. A definite immune-related gene polymorphism profile may be a feature of a limited group of patients with early onset of the disease and fast clinical deterioration. Only this group of patients may benefit from anti-inflammatory treatment.
Collapse
Affiliation(s)
- Martina Chiappelli
- University of Bologna, Department of Experimental Pathology, School of Medicine, Via S. Giacomo 14, 40126 Bologna, Italy.
| | | | | | | |
Collapse
|
12
|
Neuroinflammation and copper in Alzheimer's disease. Int J Alzheimers Dis 2013; 2013:145345. [PMID: 24369524 PMCID: PMC3863554 DOI: 10.1155/2013/145345] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/22/2013] [Indexed: 02/06/2023] Open
Abstract
Inflammation is the innate immune response to infection or tissue damage. Initiation of proinflammatory cascades in the central nervous system (CNS) occurs through recognition of danger associated molecular patterns by cognate immune receptors expressed on inflammatory cells and leads to rapid responses to remove the danger stimulus. The presence of activated microglia and astrocytes in the vicinity of amyloid plaques in the brains of Alzheimer's disease (AD) patients and mouse models implicates inflammation as a contributor to AD pathogenesis. Activated microglia play a critical role in amyloid clearance, but chronic deregulation of CNS inflammatory pathways results in secretion of neurotoxic mediators that ultimately contribute to neurodegeneration in AD. Copper (Cu) homeostasis is profoundly affected in AD, and accumulated extracellular Cu drives Aβ aggregation, while intracellular Cu deficiency limits bioavailable Cu required for CNS functions. This review presents an overview of inflammatory events that occur in AD in response to Aβ and highlights recent advances on the role of Cu in modulation of beneficial and detrimental inflammatory responses in AD.
Collapse
|
13
|
Zotova E, Bharambe V, Cheaveau M, Morgan W, Holmes C, Harris S, Neal JW, Love S, Nicoll JAR, Boche D. Inflammatory components in human Alzheimer's disease and after active amyloid-β42 immunization. ACTA ACUST UNITED AC 2013; 136:2677-96. [PMID: 23943781 DOI: 10.1093/brain/awt210] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory processes are important in the pathogenesis of Alzheimer's disease and in response to amyloid-β immunotherapy. We investigated the expression of multiple inflammatory markers in the brains of 28 non-immunized patients with Alzheimer's disease and 11 patients with Alzheimer's disease immunized against amyloid-β42 (AN1792): microglial ionized calcium-binding adaptor Iba-1, lysosome marker CD68, macrophage scavenger receptor A, Fcγ receptors I (CD64) and II (CD32); and also immunoglobulin IgG, complement C1q and the T lymphocyte marker CD3 using immunohistochemistry. The data were analysed with regard to amyloid-β and phospho-tau pathology, severity of cerebral amyloid angiopathy and cortical microhaemorrhages. In non-immunized Alzheimer's disease cases, amyloid-β42 correlated inversely with CD32 and Iba-1, whereas phospho-tau correlated directly with all microglial markers, IgG, C1q and the number of T cells. In immunized Alzheimer's disease cases, amyloid-β42 load correlated directly with macrophage scavenger receptor A-positive clusters and inversely with C1q. The severity of cerebral amyloid angiopathy and microhaemorrhages did not relate to any of the analysed markers. Overall, the levels of CD68, macrophage scavenger receptor A, CD64, CD32 and the number of macrophage scavenger receptor A-positive plaque-related clusters were significantly lower in immunized than non-immunized cases, although there was no significant difference in Iba-1 load, number of Iba-1-positive cells, IgG load, C1q load or number of T cells. Our findings indicate that different microglial populations co-exist in the Alzheimer's disease brain, and that the local inflammatory status within the grey matter is importantly linked with tau pathology. After amyloid-β immunization, the microglial functional state is altered in association with reduced amyloid-β and tau pathology. The results suggest that, in the long term, amyloid-β immunotherapy results in downregulation of microglial activation and potentially reduces the inflammation-mediated component of the neurodegeneration of Alzheimer's disease.
Collapse
Affiliation(s)
- Elina Zotova
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Mailpoint 806, Southampton General Hospital, Southampton SO16 6YD, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ridolfi E, Barone C, Scarpini E, Galimberti D. The role of the innate immune system in Alzheimer's disease and frontotemporal lobar degeneration: an eye on microglia. Clin Dev Immunol 2013; 2013:939786. [PMID: 23970926 PMCID: PMC3732611 DOI: 10.1155/2013/939786] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/04/2013] [Indexed: 01/12/2023]
Abstract
In the last few years, genetic and biomolecular mechanisms at the basis of Alzheimer's disease (AD) and frontotemporal lobar degeneration (FTLD) have been unraveled. A key role is played by microglia, which represent the immune effector cells in the central nervous system (CNS). They are extremely sensitive to the environmental changes in the brain and are activated in response to several pathologic events within the CNS, including altered neuronal function, infection, injury, and inflammation. While short-term microglial activity has generally a neuroprotective role, chronic activation has been implicated in the pathogenesis of neurodegenerative disorders, including AD and FTLD. In this framework, the purpose of this review is to give an overview of clinical features, genetics, and novel discoveries on biomolecular pathogenic mechanisms at the basis of these two neurodegenerative diseases and to outline current evidence regarding the role played by activated microglia in their pathogenesis.
Collapse
Affiliation(s)
- Elisa Ridolfi
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122 Milan, Italy.
| | | | | | | |
Collapse
|
15
|
Moon MY, Kim HJ, Li Y, Kim JG, Jeon YJ, Won HY, Kim JS, Kwon HY, Choi IG, Ro E, Joe EH, Choe M, Kwon HJ, Kim HC, Kim YS, Park JB. Involvement of small GTPase RhoA in the regulation of superoxide production in BV2 cells in response to fibrillar Aβ peptides. Cell Signal 2013; 25:1861-9. [PMID: 23707391 DOI: 10.1016/j.cellsig.2013.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/12/2013] [Indexed: 11/16/2022]
Abstract
Fibrillar amyloid-beta (fAβ) peptide causes neuronal cell death, which is known as Alzheimer's disease. One of the mechanisms for neuronal cell death is the activation of microglia which releases toxic compounds like reactive oxygen species (ROS) in response to fAβ. We observed that fAβ rather than soluble form blocked BV2 cell proliferation of microglial cell line BV2, while N-acetyl-l-cysteine (NAC), a scavenger of superoxide, prevented the cells from death, suggesting that cell death is induced by ROS. Indeed, both fAβ1-42 and fAβ25-35 induced superoxide production in BV2 cells. fAβ25-35 produced superoxide, although fAβ25-35 is not phagocytosed into BV2 cells. Thus, superoxide production by fAβ does not seem to be dependent on phagocytosis of fAβ. Herein we studied how fAβ produces superoxide in BV2. Transfection of dominant negative (DN) RhoA (N19) cDNA plasmid, small hairpin (sh)-RhoA forming plasmid, and Y27632, an inhibitor of Rho-kinase, abrogated the superoxide formation in BV2 cells stimulated by fAβ. Furthermore, fAβ elevated GTP-RhoA level as well as Rac1 and Cdc42. Tat-C3 toxin, sh-RhoA, and Y27632 inhibited the phosphorylation of p47(PHOX). Moreover, peritoneal macrophages from p47(PHOX) (-/-) knockout mouse could not produce superoxide in response to fAβ. These results suggest that RhoA closely engages in the regulation of superoxide production induced by fAβ through phosphorylation of p47(PHOX) in microglial BV2 cells.
Collapse
Affiliation(s)
- Mi-Young Moon
- Department of Biochemistry, Hallym University, Chuncheon, Kangwon-Do 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Niranjan R. Molecular Basis of Etiological Implications in Alzheimer’s Disease: Focus on Neuroinflammation. Mol Neurobiol 2013; 48:412-28. [DOI: 10.1007/s12035-013-8428-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/06/2013] [Indexed: 12/31/2022]
|
17
|
Alzheimer's disease related markers, cellular toxicity and behavioral deficits induced six weeks after oligomeric amyloid-β peptide injection in rats. PLoS One 2013; 8:e53117. [PMID: 23301030 PMCID: PMC3534645 DOI: 10.1371/journal.pone.0053117] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 11/28/2012] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative pathology associated with aging characterized by the presence of senile plaques and neurofibrillary tangles that finally result in synaptic and neuronal loss. The major component of senile plaques is an amyloid-β protein (Aβ). Recently, we characterized the effects of a single intracerebroventricular (icv) injection of Aβ fragment (25–35) oligomers (oAβ25–35) for up to 3 weeks in rats and established a clear parallel with numerous relevant signs of AD. To clarify the long-term effects of oAβ25–35 and its potential role in the pathogenesis of AD, we determined its physiological, behavioral, biochemical and morphological impacts 6 weeks after injection in rats. oAβ25–35 was still present in the brain after 6 weeks. oAβ25–35 injection did not affect general activity and temperature rhythms after 6 weeks, but decreased body weight, induced short- and long-term memory impairments, increased corticosterone plasma levels, brain oxidative (lipid peroxidation), mitochondrial (caspase-9 levels) and reticulum stress (caspase-12 levels), astroglial and microglial activation. It provoked cholinergic neuron loss and decreased brain-derived neurotrophic factor levels. It induced cell loss in the hippocampic CA subdivisions and decreased hippocampic neurogenesis. Moreover, oAβ25–35 injection resulted in increased APP expression, Aβ1–42 generation, and increased Tau phosphorylation. In conclusion, this in vivo study evidenced that the soluble oligomeric forms of short fragments of Aβ, endogenously identified in AD patient brains, not only provoked long-lasting pathological alterations comparable to the human disease, but may also directly contribute to the progressive increase in amyloid load and Tau pathology, involved in the AD physiopathology.
Collapse
|
18
|
Schuitemaker A, Kropholler MA, Boellaard R, van der Flier WM, Kloet RW, van der Doef TF, Knol DL, Windhorst AD, Luurtsema G, Barkhof F, Jonker C, Lammertsma AA, Scheltens P, van Berckel BNM. Microglial activation in Alzheimer's disease: an (R)-[¹¹C]PK11195 positron emission tomography study. Neurobiol Aging 2012; 34:128-36. [PMID: 22840559 DOI: 10.1016/j.neurobiolaging.2012.04.021] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 04/06/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
Abstract
UNLABELLED Inflammatory mechanisms, like microglial activation, could be involved in the pathogenesis of Alzheimer's disease (AD). (R)-[(11)C]PK11195 (1-(2-chlorophenyl)-N-methyl-N-1(1-methylpropyl)-3-isoquinolinecarboxamide), a positron emission tomography (PET) ligand, can be used to quantify microglial activation in vivo. The purpose of this study was to assess whether increased (R)-[(11)C]PK11195 binding is present in AD and mild cognitive impairment (MCI), currently also known as "prodromal AD." METHODS Nineteen patients with probable AD, 10 patients with prodromal AD (MCI), and 21 healthy control subjects were analyzed. Parametric images of binding potential (BP(ND)) of (R)-[(11)C]PK11195 scans were generated using receptor parametric mapping (RPM) with supervised cluster analysis. Differences between subject groups were tested using mixed model analysis, and associations between BP(ND) and cognition were evaluated using Pearson correlation coefficients. RESULTS Voxel-wise statistical parametric mapping (SPM) analysis showed small clusters of significantly increased (R)-[(11)C]PK11195 BP(ND) in occipital lobe in AD dementia patients compared with healthy control subjects. Regions of interest (ROI)-based analyses showed no differences, with large overlap between groups. There were no differences in (R)-[(11)C]PK11195 BP(ND) between clinically stable prodromal AD patients and those who progressed to dementia, and BP(ND) did not correlate with cognitive function. CONCLUSION Microglial activation is a subtle phenomenon occurring in AD.
Collapse
Affiliation(s)
- Alie Schuitemaker
- Department of Neurology and Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wennström M, Nielsen HM. Cell adhesion molecules in Alzheimer's disease. Degener Neurol Neuromuscul Dis 2012; 2:65-77. [PMID: 30890880 DOI: 10.2147/dnnd.s19829] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell adhesion molecules (CAMs) mediate interactions between cells and their surroundings that are vital to processes controlling for cell survival, activation, migration, and plasticity. However, increasing evidence suggests that CAMs also mediate mechanisms involved in several neurological diseases. This article reviews the current knowledge on the role of CAMs in amyloid-β (Aβ) metabolism, cell plasticity, neuroinflammation, and vascular changes, all of which are considered central to the pathogenesis and progression of Alzheimer's disease (AD). This paper also outlines the possible roles of CAMs in current and novel AD treatment strategies.
Collapse
Affiliation(s)
- Malin Wennström
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden,
| | | |
Collapse
|
20
|
Lima IVDA, Bastos LFS, Limborço-Filho M, Fiebich BL, de Oliveira ACP. Role of prostaglandins in neuroinflammatory and neurodegenerative diseases. Mediators Inflamm 2012; 2012:946813. [PMID: 22778499 PMCID: PMC3385693 DOI: 10.1155/2012/946813] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/05/2012] [Indexed: 11/17/2022] Open
Abstract
Increasing data demonstrates that inflammation participates in the pathophysiology of neurodegenerative diseases. Among the different inflammatory mediators involved, prostaglandins play an important role. The effects induced by prostaglandins might be mediated by activation of their known receptors or by nonclassical mechanisms. In the present paper, we discuss the evidences that link prostaglandins, as well as the enzymes that produce them, to some neurological diseases.
Collapse
Affiliation(s)
- Isabel Vieira de Assis Lima
- Department of Pharmacology, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Leandro Francisco Silva Bastos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, 31270-901 Belo Horizonte, Brazil
- Department of Psychology and Neuroscience, Muenzinger Building, Colorado University of Colorado Boulder, Avenida, Boulder, CO 80309-0354, USA
| | - Marcelo Limborço-Filho
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, 31270-901 Belo Horizonte, Brazil
| | - Bernd L. Fiebich
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Hauptstraße 5, 79104 Freiburg, Germany
- VivaCell Biotechnology GmbH, Ferdinand-Porsche-Straße 5, 79211 Denzlingen, Germany
| | - Antonio Carlos Pinheiro de Oliveira
- Department of Pharmacology, Federal University of Minas Gerais, Avenida Antonio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical School, Hauptstraße 5, 79104 Freiburg, Germany
| |
Collapse
|
21
|
Eikelenboom P, Hoozemans JJ, Veerhuis R, van Exel E, Rozemuller AJ, van Gool WA. Whether, when and how chronic inflammation increases the risk of developing late-onset Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2012; 4:15. [PMID: 22647384 PMCID: PMC3506930 DOI: 10.1186/alzrt118] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuropathological studies have revealed the presence of a broad variety of inflammation-related proteins (complement factors, acute-phase proteins, pro-inflammatory cytokines) in Alzheimer's disease (AD) brains. These constituents of innate immunity are involved in several crucial pathogenic events of the underlying pathological cascade in AD, and recent studies have shown that innate immunity is involved in the etiology of late-onset AD. Genome-wide association studies have demonstrated gene loci that are linked to the complement system. Neuropathological and experimental studies indicate that fibrillar amyloid-β (Aβ) can activate the innate immunity-related CD14 and Toll-like receptor signaling pathways of glial cells for pro-inflammatory cytokine production. The production capacity of this pathway is under genetic control and offspring with a parental history of late-onset AD have a higher production capacity for pro-inflammatory cytokines. The activation of microglia by fibrillar Aβ deposits in the early preclinical stages of AD can make the brain susceptible later on for a second immune challenge leading to enhanced production of pro-inflammatory cytokines. An example of a second immune challenge could be systemic inflammation in patients with preclinical AD. Prospective epidemiological studies show that elevated serum levels of acute phase reactants can be considered as a risk factor for AD. Clinical studies suggest that peripheral inflammation increases the risk of dementia, especially in patients with preexistent cognitive impairment, and accelerates further deterioration in demented patients. The view that peripheral inflammation can increase the risk of dementia in older people provides scope for prevention.
Collapse
Affiliation(s)
- Piet Eikelenboom
- Valeriuskliniek, Valeriusplein 9, 1075 BG Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Lautner R, Mattsson N, Schöll M, Augutis K, Blennow K, Olsson B, Zetterberg H. Biomarkers for microglial activation in Alzheimer's disease. Int J Alzheimers Dis 2011; 2011:939426. [PMID: 22114747 PMCID: PMC3206374 DOI: 10.4061/2011/939426] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/01/2011] [Indexed: 01/21/2023] Open
Abstract
Intensive research over the last decades has provided increasing evidence for neuroinflammation as an integral part in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). Inflammatory responses in the central nervous system (CNS) are initiated by activated microglia, representing the first line of the innate immune defence of the brain. Therefore, biochemical markers of microglial activation may help us understand the underlying mechanisms of neuroinflammation in AD as well as the double-sided qualities of microglia, namely, neuroprotection and neurotoxicity. In this paper we summarize candidate biomarkers of microglial activation in AD along with a survey of recent neuroimaging techniques.
Collapse
Affiliation(s)
- Ronald Lautner
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Niklas Mattsson
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Michael Schöll
- Division of Alzheimer Neurobiology, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, 17177 Stockholm, Sweden
| | - Kristin Augutis
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Bob Olsson
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Department of Neurochemistry and Psychiatry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, 43180 Mölndal, Sweden
| |
Collapse
|
23
|
Zotova E, Holmes C, Johnston D, Neal JW, Nicoll JAR, Boche D. Microglial alterations in human Alzheimer's disease following Aβ42 immunization. Neuropathol Appl Neurobiol 2011; 37:513-24. [PMID: 21166690 DOI: 10.1111/j.1365-2990.2010.01156.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS In Alzheimer's disease (AD), microglial activation prompted by the presence of amyloid has been proposed as an important contributor to the neurodegenerative process. Conversely following Aβ immunization, phagocytic microglia have been implicated in plaque removal, potentially a beneficial effect. We have investigated the effects of Aβ42 immunization on microglial activation and the relationship with Aβ42 load in human AD. METHODS Immunostaining against Aβ42 and microglia (CD68 and HLA-DR) was performed in nine immunized AD cases (iAD - AN1792, Elan Pharmaceuticals) and eight unimmunized AD (cAD) cases. RESULTS Although the Aβ42 load (% area stained of total area examined) was lower in the iAD than the cAD cases (P=0.036), the CD68 load was higher (P=0.046). In addition, in the iAD group, the CD68 level correlated with the Aβ42 load, consistent with the immunization upregulating microglial phagocytosis when plaques are present. However, in two long-surviving iAD patients in whom plaques had been extensively cleared, the CD68 load was less than in controls. HLA-DR quantification did not show significant difference implying that the microglial activation may have related specifically to their phagocytic function. CD68 and HLA-DR loads in the pons were similar in both groups, suggesting that the differences in microglial activation in the cortex were due to the presence of AD pathology. CONCLUSION Our findings suggest that Aβ42 immunization modifies the function of microglia by increasing their phagocytic activity and when plaques have been cleared, the level of phagocytosis is decreased below that seen in unimmunized AD.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Alzheimer Disease/immunology
- Alzheimer Disease/pathology
- Alzheimer Disease/therapy
- Alzheimer Vaccines/immunology
- Amyloid beta-Peptides/immunology
- Amyloid beta-Peptides/therapeutic use
- Amyloid beta-Protein Precursor/metabolism
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/immunology
- Antigens, Differentiation, Myelomonocytic/metabolism
- Brain/immunology
- Brain/metabolism
- Brain/pathology
- Clinical Trials, Phase I as Topic
- Female
- Humans
- Immunohistochemistry
- Male
- Microglia/immunology
- Microglia/metabolism
- Microscopy, Confocal
- Middle Aged
- Plaque, Amyloid/pathology
- Plaque, Amyloid/therapy
Collapse
Affiliation(s)
- E Zotova
- Division of Clinical Neurosciences, School of Medicine, University of Southampton, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Salemi J, Obregon DF, Cobb A, Reed S, Sadic E, Jin J, Fernandez F, Tan J, Giunta B. Flipping the switches: CD40 and CD45 modulation of microglial activation states in HIV associated dementia (HAD). Mol Neurodegener 2011; 6:3. [PMID: 21223591 PMCID: PMC3030526 DOI: 10.1186/1750-1326-6-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 01/11/2011] [Indexed: 12/21/2022] Open
Abstract
Microglial dysfunction is associated with the pathogenesis and progression of a number of neurodegenerative disorders including HIV associated dementia (HAD). HIV promotion of an M1 antigen presenting cell (APC) - like microglial phenotype, through the promotion of CD40 activity, may impair endogenous mechanisms important for amyloid- beta (Aβ) protein clearance. Further, a chronic pro-inflammatory cycle is established in this manner. CD45 is a protein tyrosine phosphatase receptor which negatively regulates CD40L-CD40-induced microglial M1 activation; an effect leading to the promotion of an M2 phenotype better suited to phagocytose and clear Aβ. Moreover, this CD45 mediated activation state appears to dampen harmful cytokine production. As such, this property of microglial CD45 as a regulatory "off switch" for a CD40-promoted M1, APC-type microglia activation phenotype may represent a critical therapeutic target for the prevention and treatment of neurodegeneration, as well as microglial dysfunction, found in patients with HAD.
Collapse
Affiliation(s)
- Jon Salemi
- Department of Psychiatry and Neurosciences, Neuroimmunology Laboratory, University of South Florida, College of Medicine, Tampa, FL 33613, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
RésuméL'eorganisation anatomique et chimique du cerveau humain subit de nombreux changements au cours du vieillissement. Certains neurons meurent, d'autres s'atrophient et ily a une réduction marquée du nombre de synapses dans des régions spécifiques du cerveau. Des diminutions du métabolisme du glucose et des effets pré- et post-synaptiques des neurotransmetteurs ont aussi été rapportées. À l'exception de certaines structures sous-corticales, il existe cependant une controverse quant à la sévérité des changements dans l'ensemble du cerveau. De plus, les effets du vieillissement sont très variables d'une région du cerveau à l'autre ainsi que d'un individu à l'autre. Certains phénomènes observès dans le vieillissement normal, tels la perte des neurones dopaminergique de la substance noire et celle des neurones cholinergiques du prosencé;phale basal, apparaissent sous une forme grandement exacerbées dans diverses pathologies neurodégénératives comme les maladies de Parkinson et d'Alzeimer. Les faibles altérations qui surviennent au niveau de ces systémes lors du vieillissement normal pourraient étre responsables des troubles d'équilibre, de la pauvreté de mouvement et des pertes de mémoires que l'on observent chez les gens âgés. Cependant, l'inflammation chronique du cerveau semble être une caractéristique typique des individus atteints de maladies neurodégénératives. L'hypothèse voulant que cette inflammation puisse être ralentie par un traitement avec des agents anti-inflammatoires a été supportée par les résultats de 19 études épidémiologiques ainsi que par un essai clinique de moindre envergure. Cependant, d'Autres études cliniques devront ètre réalisées et une attention particulière devra être portée aux effets secondaires de la thérapie anti-inflammatoire conventionnelle afin d'en arriver à une conclusion définitive.
Collapse
|
26
|
Donev R, Kolev M, Millet B, Thome J. Neuronal death in Alzheimer's disease and therapeutic opportunities. J Cell Mol Med 2009; 13:4329-48. [PMID: 19725918 PMCID: PMC4515050 DOI: 10.1111/j.1582-4934.2009.00889.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disease that affects approximately 24 million people worldwide. A number of different risk factors have been implicated in AD; however, neuritic (amyloid) plaques are considered as one of the defining risk factors and pathological hallmarks of the disease. In the past decade, enormous efforts have been devoted to understand the genetics and molecular pathogenesis leading to neuronal death in AD, which has been transferred into extensive experimental approaches aimed at reversing disease progression. Modern medicine is facing an increasing number of treatments available for vascular and neurodegenerative brain diseases, but no causal or neuroprotective treatment has yet been established. Almost all neurological conditions are characterized by progressive neuronal dysfunction, which, regardless of the pathogenetic mechanism, finally leads to neuronal death. The particular emphasis of this review is on risk factors and mechanisms resulting in neuronal loss in AD and current and prospective opportunities for therapeutic interventions. This review discusses these issues with a view to inspiring the development of new agents that could be useful for the treatment of AD.
Collapse
Affiliation(s)
- Rossen Donev
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
27
|
Morel M, Couturier J, Lafay-Chebassier C, Paccalin M, Page G. PKR, the double stranded RNA-dependent protein kinase as a critical target in Alzheimer's disease. J Cell Mol Med 2009; 13:1476-88. [PMID: 19602051 PMCID: PMC3828860 DOI: 10.1111/j.1582-4934.2009.00849.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Amyloid β-peptide (Aβ) deposits and neurofibrillary tangles are key hallmarks in Alzheimer's disease (AD). Aβ stimulates many signal transducers involved in the neuronal death. However, many mechanisms remain to be elucidated because no definitive therapy of AD exists. Some studies have focused on the control of translation which involves eIF2 and eIF4E, main eukaryotic factors of initiation. The availability of these factors depends on the activation of the double-stranded RNA-dependent protein kinase (PKR) and the mammalian target of rapamycin (mTOR), respectively. mTOR positively regulates the translation while PKR results in a protein synthesis shutdown. Many studies demonstrated that the PKR signalling pathway is up-regulated in cellular and animal models of AD and in the brain of AD patients. Interestingly, our results showed that phosphorylated PKR and eIF2α levels were significantly increased in lymphocytes of AD patients. These modifications were significantly correlated with cognitive and memory test scores performed in AD patients. On the contrary, the mTOR signalling pathway is down-regulated in cellular and animal models of AD. Recently, we showed that p53, regulated protein in development and DNA damage response 1 and tuberous sclerosis complex 2 could represent molecular links between PKR and mTOR signalling pathways. PKR could be an early biomarker of the neuronal death and a critical target for a therapeutic programme in AD.
Collapse
Affiliation(s)
- Milena Morel
- Research Group on Brain Aging (EA 3808) University of Poitiers, Poitiers Cedex, France
| | | | | | | | | |
Collapse
|
28
|
Vukic V, Callaghan D, Walker D, Lue LF, Liu QY, Couraud PO, Romero IA, Weksler B, Stanimirovic DB, Zhang W. Expression of inflammatory genes induced by beta-amyloid peptides in human brain endothelial cells and in Alzheimer's brain is mediated by the JNK-AP1 signaling pathway. Neurobiol Dis 2009; 34:95-106. [PMID: 19162185 PMCID: PMC2720310 DOI: 10.1016/j.nbd.2008.12.007] [Citation(s) in RCA: 169] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/10/2008] [Accepted: 12/20/2008] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by accumulation and deposition of Abeta peptides in the brain. Abeta deposition in cerebral vessels occurs in many AD patients and results in cerebral amyloid angiopathy (AD/CAA). Abeta deposits evoke neuro- and neurovascular inflammation contributing to neurodegeneration. In this study, we found that exposure of cultured human brain endothelial cells (HBEC) to Abeta(1-40) elicited expression of inflammatory genes MCP-1, GRO, IL-1beta and IL-6. Up-regulation of these genes was confirmed in AD and AD/CAA brains by qRT-PCR. Profiling of 54 transcription factors indicated that AP-1 was strongly activated not only in Abeta-treated HBEC but also in AD and AD/CAA brains. AP-1 complex in nuclear extracts from Abeta-treated HBEC bound to AP-1 DNA-binding sequence and activated the reporter gene of a luciferase vector carrying AP-1-binding site from human MCP-1 gene. AP-1 is a dimeric protein complex and supershift assay identified c-Jun as a component of the activated AP-1 complex. Western blot analyses showed that c-Jun was activated via JNK-mediated phosphorylation, suggesting that as a result of c-Jun phosphorylation, AP-1 was activated and thus up-regulated MCP-1 expression. A JNK inhibitor SP600125 strongly inhibited Abeta-induced c-Jun phosphorylation, AP-1 activation, AP-1 reporter gene activity and MCP-1 expression in cells stimulated with Abeta peptides. The results suggested that JNK-AP1 signaling pathway is responsible for Abeta-induced neuroinflammation in HBEC and Alzheimer's brain and that this signaling pathway may serve as a therapeutic target for relieving Abeta-induced inflammation.
Collapse
Affiliation(s)
- Vanja Vukic
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Debbie Callaghan
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | | | - Lih-Fen Lue
- Sun Health Research Institute, Sun City, Arizona, USA
| | - Qing Yan Liu
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Pierre-Oliver Couraud
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- INSERM, U567, Paris, France
| | | | | | - Danica B. Stanimirovic
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Wandong Zhang
- Neurobiology Program, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
- Faculty of Medicine, University of Ottawa, Ottawa, Canada
| |
Collapse
|
29
|
|
30
|
Cochran FR, Vitek MP. Monthly Update: Pulmonary-Allergy, Dermatological, Gastrointestinal & Arthritis: Neuroinflammatory mechanisms in Alzheimer's disease: new opportunities for drug discovery. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.5.4.449] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
von Bernhardi R, Ramírez G, Toro R, Eugenín J. Pro-inflammatory conditions promote neuronal damage mediated by Amyloid Precursor Protein and decrease its phagocytosis and degradation by microglial cells in culture. Neurobiol Dis 2007; 26:153-64. [PMID: 17240154 DOI: 10.1016/j.nbd.2006.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 12/05/2006] [Accepted: 12/10/2006] [Indexed: 10/23/2022] Open
Abstract
Aberrant handling of Amyloid Precursor Protein (APP) and beta-amyloid (Abeta), glial activation and inflammation are key events in Alzheimer's disease. We set out to determine the role of inflammation on microglial reactivity against APP. We studied microglia-mediated neurotoxicity, uptake and degradation of a biotinylated APP construct (biotin-APP-C-244). APP, in contrast to Abeta, only induced mild activation of glial cells. However, under pro-inflammatory conditions, APP induced microglial-mediated cytotoxicity. Biotin-APP-C-244 or lipopolysaccharide and interferon-gamma (LPS+IFNgamma), administered separately, did not change reduction metabolism of microglia. However, biotin-APP-C-244+(LPS+IFNgamma) increased microglial reactivity and decreased reduction metabolism by 75% (P<0.001). Biotin-APP-C-244 was readily taken up by microglial cells; 80% was phagocytosed at 2 h. In the presence of LPS+IFNgamma, phagocytosis of biotin-APP-C-244 was reduced at 2 h; and cell damage was evident after 4 h. Our results support our hypothesis that, in neuroinflammation, microglial scavenger function is impaired and reactivity against APP enhanced as an initial step for neurodegeneration.
Collapse
Affiliation(s)
- Rommy von Bernhardi
- Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile Marcoleta 391, Santiago, Chile.
| | | | | | | |
Collapse
|
32
|
Frid P, Anisimov SV, Popovic N. Congo red and protein aggregation in neurodegenerative diseases. ACTA ACUST UNITED AC 2007; 53:135-60. [PMID: 16959325 DOI: 10.1016/j.brainresrev.2006.08.001] [Citation(s) in RCA: 263] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Accepted: 08/02/2006] [Indexed: 11/19/2022]
Abstract
Congo red is a commonly used histological dye for amyloid detection. The specificity of this staining results from Congo red's affinity for binding to fibril proteins enriched in beta-sheet conformation. Unexpectedly, recent investigations indicate that the dye also possesses the capacity to interfere with processes of protein misfolding and aggregation, stabilizing native protein monomers or partially folded intermediates, while reducing concentration of more toxic protein oligomers. Inhibitory effects of Congo red upon amyloid toxicity may also range from blockade of channel formation and interference with glycosaminoglycans binding or immune functions, to the modulation of gene expression. Particularly, Congo red exhibits ameliorative effect in models of neurodegenerative disorders, such as Alzheimer's, Parkinson's, Huntington's and prion diseases. Another interesting application of Congo red analogues is the development of imaging probes. Based on their small molecular size and penetrability through blood-brain barrier, Congo red congeners can be used for both antemortem and in vivo visualization and quantification of brain amyloids. Therefore, understanding mechanisms involved in dye-amyloidal fibril binding and inhibition of aggregation will provide instructive guides for the design of future compounds, potentially useful for monitoring and treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Petrea Frid
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, Sweden
| | | | | |
Collapse
|
33
|
Dinamarca MC, Cerpa W, Garrido J, Hancke JL, Inestrosa NC. Hyperforin prevents beta-amyloid neurotoxicity and spatial memory impairments by disaggregation of Alzheimer's amyloid-beta-deposits. Mol Psychiatry 2006; 11:1032-48. [PMID: 16880827 DOI: 10.1038/sj.mp.4001866] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The major protein constituent of amyloid deposits in Alzheimer's disease (AD) is the amyloid beta-peptide (Abeta). In the present work, we have determined the effect of hyperforin an acylphloroglucinol compound isolated from Hypericum perforatum (St John's Wort), on Abeta-induced spatial memory impairments and on Abeta neurotoxicity. We report here that hyperforin: (1) decreases amyloid deposit formation in rats injected with amyloid fibrils in the hippocampus; (2) decreases the neuropathological changes and behavioral impairments in a rat model of amyloidosis; (3) prevents Abeta-induced neurotoxicity in hippocampal neurons both from amyloid fibrils and Abeta oligomers, avoiding the increase in reactive oxidative species associated with amyloid toxicity. Both effects could be explained by the capacity of hyperforin to disaggregate amyloid deposits in a dose and time-dependent manner and to decrease Abeta aggregation and amyloid formation. Altogether these evidences suggest that hyperforin may be useful to decrease amyloid burden and toxicity in AD patients, and may be a putative therapeutic agent to fight the disease.
Collapse
Affiliation(s)
- M C Dinamarca
- Centro de Regulación Celular y Patología Joaquín V Luco, MIFAB, Santiago, Chile
| | | | | | | | | |
Collapse
|
34
|
Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJM, van Gool WA, Hoozemans JJM. The significance of neuroinflammation in understanding Alzheimer's disease. J Neural Transm (Vienna) 2006; 113:1685-95. [PMID: 17036175 DOI: 10.1007/s00702-006-0575-6] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 09/05/2006] [Indexed: 01/26/2023]
Abstract
The interest of scientists in the involvement of inflammation-related mechanisms in the pathogenesis of Alzheimer's disease (AD) goes back to the work of one of the pioneers of the study of this disease. About hundred years ago Oskar Fischer stated that the crucial step in the plaque formation is the extracellular deposition of a foreign substance that provokes an inflammatory reaction followed by a regenerative response of the surrounding nerve fibers. Eighty years later immunohistochemical studies revealed that amyloid plaques are indeed co-localized with a broad variety of inflammation-related proteins (complement factors, acute-phase proteins, pro-inflammatory cytokines) and clusters of activated microglia. These findings have led to the view that the amyloid plaque is the nidus of a non-immune mediated chronic inflammatory response locally induced by fibrillar A beta deposits. Recent neuropathological studies show a close relationship between fibrillar A beta deposits, inflammation and neuroregeneration in relatively early stages of AD pathology preceding late AD stages characterized by extensive tau-related neurofibrillary changes. In the present work we will review the role of inflammation in the early stage of AD pathology and particularly the role of inflammation in A beta metabolism and deposition. We also discuss the possibilities of inflammation-based therapeutic strategies in AD.
Collapse
Affiliation(s)
- P Eikelenboom
- Department of Neurology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
35
|
Yan XD, Kumar B, Nahreini P, Hanson AJ, Prasad JE, Prasad KN. Prostaglandin-induced neurodegeneration is associated with increased levels of oxidative markers and reduced by a mixture of antioxidants. J Neurosci Res 2005; 81:85-90. [PMID: 15920743 DOI: 10.1002/jnr.20545] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Prostaglandin E2 (PGE2), one product of inflammatory reactions, and PGA1, which is formed during PGE2 extraction, induce degeneration in adenosine 3',5'-cyclic monophosphate (cAMP)-induced differentiated neuroblastoma (NB) cells in culture. The mechanisms of action of PGE2 on neurodegeneration are not well understood. To investigate this, we have utilized PGA(1), which mimics the effect of PGE2 and is very stable in solution. We have assayed selected markers of oxidative stress such as heme oxygenase-1 (HO-1), catalase, glutathione peroxidase (GPx1), mitochondrial superoxide dismutase (Mn-SOD-2) and cytosolic superoxide dismutase (Cu/Zn-SOD-1). The results showed that the treatment of differentiated NB cells with PGA1 for a period of 48 hr increased the expression of HO-1 and catalase, decreased the expression of GPx1 and Mn-SOD-2, and did not change the expression of Cu/Zn-SOD-1 as measured by gene array and confirmed by real-time PCR. The protein levels of HO-1 and GPx1 increased; however, the protein level of Mn-SOD-2 decreased and the levels of catalase and Cu/Zn-SOD-1 did not change as determined by Western blot. The increases in the levels of HO-1 and GPx1 reflected an adaptive response to increased oxidative stress, whereas decrease in the level of Mn-SOD-2 may make cells more sensitive to oxidative damage. These data suggest that one of the mechanisms of action of PGA1 on neurodegeneration may involve increased oxidative stress. This was supported further by the fact that a mixture of antioxidants (alpha-tocopherol, vitamin C, selenomethionine, and reduced glutathione), but not the individual antioxidants, reduced the level of PGA1-induced degeneration in differentiated NB cells. The addition of a single antioxidant at two or four times the concentration used in the mixture was toxic.
Collapse
Affiliation(s)
- Xiang-Dong Yan
- Center for Vitamins and Cancer Research, Department of Radiology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | | | |
Collapse
|
36
|
Sebastiani G, Morissette C, Lagacé C, Boulé M, Ouellette MJ, McLaughlin RW, Lacombe D, Gervais F, Tremblay P. The cAMP-specific phosphodiesterase 4B mediates Abeta-induced microglial activation. Neurobiol Aging 2005; 27:691-701. [PMID: 15993984 DOI: 10.1016/j.neurobiolaging.2005.03.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 02/08/2005] [Accepted: 03/30/2005] [Indexed: 01/09/2023]
Abstract
Microglial activation is a key player in the degenerative process that accompanies the deposition of amyloid-beta (Abeta) peptide into senile plaques in Alzheimer's disease (AD) patients. The goal of this study is to identify novel genes involved in microglial activation in response to Abeta peptide. Prompted by the fact that soluble Abeta(1-42) (sAbeta(1-42))-stimulated primary rat microglia produce more tumor necrosis factor-alpha (TNF-alpha) than fibrillar Abeta(1-42) (fAbeta(1-42))-stimulated microglia, we examined gene expression in these cells following stimulation using cDNA arrays. This analysis confirms the upregulation caused by both sAbeta(1-42) and fAbeta(1-42) of pro-inflammatory molecules such as TNF-alpha, interleukin-1beta and macrophage inflammatory protein-1alpha. In addition, other transcripts not previously described in the context of Abeta-induced microglial activation were identified. The modulation of some of these genes within microglial cells seems to be specific to sAbeta(1-42) as compared to fAbeta(1-42) suggesting that different forms of Abeta may activate distinct pathways during the progression of AD. Importantly, we demonstrate that Pde4B, a cAMP-specific phosphodiesterase, is upregulated by Abeta and results in an increased production of TNF-alpha. Inhibition of Pde4B reduces by up to 70% the release of TNF-alpha from sAbeta-stimulated microglial cells, implicating cAMP as an important mediator of Abeta-induced microglial activation.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- 3',5'-Cyclic-AMP Phosphodiesterases/physiology
- Amyloid beta-Peptides/metabolism
- Amyloid beta-Peptides/pharmacology
- Animals
- Cell Separation
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Cytokines/metabolism
- DNA, Complementary/biosynthesis
- Dose-Response Relationship, Drug
- Gene Expression/drug effects
- Isoenzymes/metabolism
- Isoenzymes/physiology
- Microglia/drug effects
- Microglia/enzymology
- Microglia/metabolism
- Microscopy, Electron, Transmission
- Nucleic Acid Hybridization
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Phosphodiesterase Inhibitors/pharmacology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Rolipram/pharmacology
Collapse
|
37
|
Alarcón R, Fuenzalida C, Santibáñez M, von Bernhardi R. Expression of scavenger receptors in glial cells. Comparing the adhesion of astrocytes and microglia from neonatal rats to surface-bound beta-amyloid. J Biol Chem 2005; 280:30406-15. [PMID: 15987691 DOI: 10.1074/jbc.m414686200] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Astrocytes and microglia associate to amyloid plaques, a pathological hallmark of Alzheimer disease. Microglia are activated by and can phagocytose beta-amyloid (Abeta). Scavenger receptors (SRs) are among the receptors mediating the uptake of fibrillar Abeta in vitro. However, little is known about the function of the astrocytes surrounding the plaques or the nature of their interaction with Abeta. It is unknown whether glial cells bind to nonfibrillar Abeta and if binding of astrocytes to Abeta depends on the same Scavenger receptors described for microglia. We determined the binding of glia to Abeta by an adhesion assay and evaluated the presence of scavenger receptors in glial cells by immunocytochemistry, immunohistochemistry of brain sections, and immunoblot. We found that astrocytes and microglia from neonatal rats adhered in a concentration-dependent manner to surfaces coated with fibrillar Abeta or nonfibrillar Abeta. Fucoidan and poly(I), known ligands for SR-type A, inhibited adhesion of microglia and astrocytes to Abeta and also inhibited Abeta phagocytosis. In contrast, a ligand for SR-type B like low density lipoprotein, did not compete glial adhesion to Abeta. Microglia presented immunodetectable SR-BI, SR-AI/AII, RAGE, and SR-MARCO (macrophage receptor with collagenous structure, a member of the SR-A family). Astrocytes presented SR-BI and SR-MARCO. To our knowledge, this is the first description of the presence of SR-MARCO in astrocytes. Our results indicate that both microglia and astrocytes adhere to fibrillar and nonfibrillar Abeta. Adhesion was mediated by a fucoidan-sensitive receptor. We propose that SR-MARCO could be the Scavenger receptor responsible for the adhesion of astrocytes and microglia to Abeta.
Collapse
MESH Headings
- Adenosine Triphosphate/chemistry
- Amyloid beta-Peptides/chemistry
- Animals
- Animals, Newborn
- Astrocytes/cytology
- Astrocytes/metabolism
- Binding, Competitive
- CD36 Antigens
- Cell Adhesion
- Cell Line, Tumor
- Cell Membrane/metabolism
- Cell Survival
- Dose-Response Relationship, Drug
- Humans
- Immunoblotting
- Immunohistochemistry
- Keratins/metabolism
- Ligands
- Microglia/metabolism
- Microscopy, Fluorescence
- Neuroglia/metabolism
- Peptides/chemistry
- Phagocytosis
- Phosphorylation
- Protein Kinase C/metabolism
- Rats
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/metabolism
- Receptors, Scavenger
- Scavenger Receptors, Class A
- Scavenger Receptors, Class B
- Stress, Mechanical
Collapse
Affiliation(s)
- Rodrigo Alarcón
- Department of Neurology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | | | | | | |
Collapse
|
38
|
Abstract
The most visible and, until very recently, the only hypothesis regarding the involvement of microglial cells in Alzheimer's disease (AD) pathogenesis is centered around the notion that activated microglia are neurotoxin-producing immune effector cells actively involved in causing the neurodegeneration that is the cause for AD dementia. The concept of detrimental neuroinflammation has gained a strong foothold in the AD arena and is being expanded to other neurodegenerative diseases. This review takes a comprehensive and critical look at the overall evidence supporting the neuroinflammation hypothesis and points out some weaknesses. The current work also reviews evidence for an alternative theory, the microglial dysfunction hypothesis, which, although eliminating some of the shortcomings, does not necessarily negate the amyloid/neuroinflammation theory. The microglial dysfunction theory offers a different perspective on the identity of activated microglia and their role in AD pathogenesis taking into account the most recent insights gained from studying basic microglial biology.
Collapse
Affiliation(s)
- Wolfgang J Streit
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida 32610-0244, USA.
| |
Collapse
|
39
|
Hanson AJ, Prasad JE, Nahreini P, Andreatta C, Kumar B, Yan XD, Prasad KN. Overexpression of amyloid precursor protein is associated with degeneration, decreased viability, and increased damage caused by neurotoxins (prostaglandins A1 and E2, hydrogen peroxide, and nitric oxide) in differentiated neuroblastoma cells. J Neurosci Res 2003; 74:148-59. [PMID: 13130517 DOI: 10.1002/jnr.10726] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Inflammatory reactions are considered one of the important etiologic factors in the pathogenesis of Alzheimer's disease (AD). Prostaglandins such as PGE2 and PGA1 and free radicals are some of the agents released during inflammatory reactions, and they are neurotoxic. The mechanisms of their action are not well understood. Increased levels of beta-amyloid fragments (Abeta40 and Abeta42), generated through cleavage of amyloid precursor protein (APP), oxidative stress, and proteasome inhibition, are also associated with neurodegeneration in AD brains. Therefore, we investigated the effect of PGs and oxidative stress on the degeneration and viability of cyclic AMP-induced differentiated NB cells overexpressing wild-type APP (NBP2-PN46) under the control of the CMV promotor in comparison with differentiated vector (NBP2-PN1) or parent (NBP2) control cells. Results showed that differentiated NBP2-PN46 cells exhibited enhanced spontaneous degeneration and decreased viability in comparison with differentiated control cells, without changing the level of Abeta40 and Abeta42. PGA1 or PGE2 treatment of differentiated cells caused increased degeneration and reduced viability in all three cell lines. These effects of PGs are not due to alterations in the levels of vector-derived APP mRNA or human APP holoprotein, secreted levels of Abeta40 and Abeta42, or proteasome activity. H2O2 or SIN-1 (an NO donor) treatment did not change vector-derived APP mRNA levels, but H2O2 reduced the level of human APP protein more than SIN-1. Furthermore, SIN-1 increased the secreted level of Abeta40, but not of Abeta42, whereas H2O2 had no effect on the level of secreted Abeta fragments. Both H2O2 and SIN-1 inhibited proteasome activity in the intact cells. The failure of neurotoxins to alter APP mRNA levels could be due to the fact that they do not affect CMV promoter activity. These results suggest that the mechanisms of action of PGs on neurodegeneration are different from those of H2O2 and SIN-1 and that the mechanisms of neurotoxicity of H2O2 and SIN-1 are, at least in part, different from each other.
Collapse
Affiliation(s)
- Amy J Hanson
- Center for Vitamins and Cancer Research, Department of Radiology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Prasad KN, Cole WC, Prasad KC. Risk factors for Alzheimer's disease: role of multiple antioxidants, non-steroidal anti-inflammatory and cholinergic agents alone or in combination in prevention and treatment. J Am Coll Nutr 2002; 21:506-22. [PMID: 12480796 DOI: 10.1080/07315724.2002.10719249] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The etiology of Alzheimer's disease (AD) is not well understood. Etiologic factors, chronic inflammatory reactions, oxidative and nitrosylative stresses and high cholesterol levels are thought to be important for initiating and promoting neurodegenerative changes commonly found in AD brains. Even in familial AD, oxidative stress plays an important role in the early onset of the disease. Mitochondrial damage and proteasome inhibition represent early events in the pathogenesis of AD, whereas increased processing of amyloid precursor protein (APP) to beta-amyloid (Abeta) fragments (Abeta(40) and Abeta(42)) and formation of senile plaques and neurofibrillary tangles (NFTs) represent late events. We propose a hypothesis that in idiopathic AD, epigenetic components of neurons such as mitochondria, proteasomes and post-translation protein modifications (processing of amyloid precursor protein to beta-amyloid and hyperphosphorylation of tau), rather than nuclear genes, are the primary targets for the action of diverse groups of neurotoxins. Based on epidemiologic, laboratory and limited clinical studies, we propose that a combination of non steroidal anti-inflammatory drugs (NSAIDs) and appropriate levels and types of multiple micronutrients, including antioxidants, may be more effective than the individual agents in the prevention, and they, in combination with a cholinergic agent, may be more effective in the treatment of AD than the individual agents alone. In addition, agents, which can prevent formation of plaques or dissolve these plaques may further enhance the efficacy of our proposed treatment strategy.
Collapse
Affiliation(s)
- Kedar N Prasad
- Center for Vitamins and Cancer Research, Department of Radiology, School of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | |
Collapse
|
41
|
Eikelenboom P, Bate C, Van Gool WA, Hoozemans JJM, Rozemuller JM, Veerhuis R, Williams A. Neuroinflammation in Alzheimer's disease and prion disease. Glia 2002; 40:232-239. [PMID: 12379910 DOI: 10.1002/glia.10146] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD) and prion disease are characterized neuropathologically by extracellular deposits of Abeta and PrP amyloid fibrils, respectively. In both disorders, these cerebral amyloid deposits are co-localized with a broad variety of inflammation-related proteins (complement factors, acute-phase protein, pro-inflammatory cytokines) and clusters of activated microglia. The present data suggest that the cerebral Abeta and PrP deposits are closely associated with a locally induced, non-immune-mediated chronic inflammatory response. Epidemiological studies indicate that polymorphisms of certain cytokines and acute-phase proteins, which are associated with Abeta plaques, are genetic risk factors for AD. Transgenic mice studies have established the role of amyloid associated acute-phase proteins in Alzheimer amyloid formation. In contrast to AD, there is a lack of evidence that cytokines and acute-phase proteins can influence disease progression in prion disease. Clinicopathological and neuroradiological studies have shown that activation of microglia is a relatively early pathogenetic event that precedes the process of neuropil destruction in AD patients. It has also been found that the onset of microglial activation coincided in mouse models of prion disease with the earliest changes in neuronal morphology, many weeks before neuronal loss and subsequent clinical signs of disease. In the present work, we review the similarities and differences between the involvement of inflammatory mechanisms in AD and prion disease. We also discuss the concept that the demonstration of a chronic inflammatory-like process relatively early in the pathological cascade of both diseases suggests potential therapeutic strategies to prevent or to retard these chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- P Eikelenboom
- Department of Psychiatry, Graduate School of Neurosciences, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
- Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands
| | - C Bate
- Department of Veterinary Pathology, Institute of Comparative Medicine, Glasgow University Veterinary School,. Glasgow, Scotland
| | - W A Van Gool
- Department of Neurology, Academic Medical Center, Amsterdam, The Netherlands
| | - J J M Hoozemans
- Department of Pathology, Graduate School of Neurosciences, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - J M Rozemuller
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
| | - R Veerhuis
- Department of Pathology, Graduate School of Neurosciences, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | - A Williams
- Department of Veterinary Pathology, Institute of Comparative Medicine, Glasgow University Veterinary School,. Glasgow, Scotland
| |
Collapse
|
42
|
Feinstein DL, Heneka MT, Gavrilyuk V, Dello Russo C, Weinberg G, Galea E. Noradrenergic regulation of inflammatory gene expression in brain. Neurochem Int 2002; 41:357-65. [PMID: 12176079 DOI: 10.1016/s0197-0186(02)00049-9] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is now well accepted that inflammatory events contribute to the pathogenesis of numerous neurological disorders, including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease, and AID's dementia. Whereas inflammation in the periphery is subject to rapid down regulation by increases in anti-inflammatory molecules and the presence of scavenging soluble cytokine receptors, the presence of an intact blood-brain barrier may limit a similar autoregulation from occurring in brain. Mechanisms intrinsic to the brain may provide additional immunomodulatory functions, and whose dysregulation could contribute to increased inflammation in disease. The findings that noradrenaline (NA) reduces cytokine expression in microglial, astroglial, and brain endothelial cells in vitro, and that modification of the noradrenergic signaling system occurs in some brain diseases having an inflammatory component, suggests that NA could act as an endogenous immunomodulator in brain. Furthermore, accumulating studies indicate that modification of the noradrenergic signaling system occurs in some neurodiseases. In this article, we will briefly review the evidence that NA can modulate inflammatory gene expression in vitro, summarize data supporting a similar immunomodulatory role in brain, and present recent data implicating a role for NA in attenuating the cortical inflammatory response to beta amyloid protein.
Collapse
|
43
|
Rogers J, Strohmeyer R, Kovelowski CJ, Li R. Microglia and inflammatory mechanisms in the clearance of amyloid beta peptide. Glia 2002; 40:260-269. [PMID: 12379913 DOI: 10.1002/glia.10153] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is now abundant evidence that brain microglia, when activated, have the lineage, receptors, and synthetic capacity to participate in both potentially neurotoxic inflammatory responses and potentially beneficial phagocytic responses. Amyloid beta peptide (Abeta) forms highly insoluble, beta-pleated aggregates that are widely deposited in the Alzheimer's disease (AD) cortex and limbic system. Aggregated Abeta also activates the classical and alternative complement cascades. These properties make Abeta an excellent target for microglial phagocytosis, a view supported by multiple reports, through well established mechanisms of phagocyte clearance.
Collapse
Affiliation(s)
| | | | | | - Rena Li
- Sun Health Research Institute, Sun City, Arisona
| |
Collapse
|
44
|
Minagar A, Shapshak P, Fujimura R, Ownby R, Heyes M, Eisdorfer C. The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 2002; 202:13-23. [PMID: 12220687 DOI: 10.1016/s0022-510x(02)00207-1] [Citation(s) in RCA: 413] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Macrophage/microglia (M phi) are the principal immune cells in the central nervous system (CNS) concomitant with inflammatory brain disease and play a significant role in the host defense against invading microorganisms. Astrocytes, as a significant component of the blood-brain barrier, behave as one of the immune effector cells in the CNS as well. However, both cell types may play a dual role, amplifying the effects of inflammation and mediating cellular damage as well as protecting the CNS. Interactions of the immune system, M phi, and astrocytes result in altered production of neurotoxins and neurotrophins by these cells. These effects alter the neuronal structure and function during pathogenesis of HIV-1-associated dementia (HAD), Alzheimer disease (AD), and multiple sclerosis (MS). HAD primarily involves subcortical gray matter, and both HAD and MS affect sub-cortical white matter. AD is a cortical disease. The process of M phi and astrocytes activation leading to neurotoxicity share similarities among the three diseases. Human Immunodeficiency Virus (HIV)-1-infected M phi are involved in the pathogenesis of HAD and produce toxic molecules including cytokines, chemokines, and nitric oxide (NO). In AD, M phis produce these molecules and are activated by beta-amyloid proteins and related oligopeptides. Demyelination in MS involves M phi that become lipid laden, spurred by several possible antigens. In these three diseases, cytokine/chemokine communications between M phi and astrocytes occur and are involved in the balance of protective and destructive actions by these cells. This review describes the role of M phi and astrocytes in the pathogenesis of these three progressive neurological diseases, examining both beneficent and deleterious effects in each disease.
Collapse
Affiliation(s)
- Alireza Minagar
- Department of Neurology, Louisiana State University School of Medicine, Shreveport, LA 71130, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Apelt J, Lessig J, Schliebs R. Beta-amyloid-associated expression of intercellular adhesion molecule-1 in brain cortical tissue of transgenic Tg2576 mice. Neurosci Lett 2002; 329:111-5. [PMID: 12161274 DOI: 10.1016/s0304-3940(02)00589-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
To study the relationship of beta-amyloid-mediated micro- and astrogliosis and inflammation-induced proteins including intercellular adhesion molecule (ICAM-1), brain tissue from transgenic Tg2576 mice expressing the Swedish mutation of the human amyloid precursor protein were examined for ICAM-1 expression. Immunocytochemistry demonstrated a diffuse immunostaining of ICAM-1 in the corona around fibrillary beta-amyloid plaques and an upregulation of ICAM-1 in activated microglial cells located in close proximity to the plaques, an ICAM-1 distribution pattern that partly mimics the situation in the brain of Alzheimer patients. The developmental time course revealed that the rate of cortical ICAM-1 induction was somewhat behind that of the progression of beta-amyloid plaque deposition. The microglial expression of ICAM-1 is a further indicator of the presence of inflammatory reactions in aged transgenic Tg2576 mouse brain, and may be a result of plaque-mediated astrocytic interleukin-1beta upregulation.
Collapse
Affiliation(s)
- Jenny Apelt
- Paul Flechsig Institute for Brain Research, Department of Neurochemistry, University of Leipzig, Jahnallee 59, 04109 Leipzig, Germany
| | | | | |
Collapse
|
46
|
von Bernhardi R, Ramírez G, Matile H, Döbeli H. Immobilized amyloid precursor protein constructs: a tool for the in vitro screening of glial cell reactivity. Eur J Neurosci 2001; 14:946-56. [PMID: 11595033 DOI: 10.1046/j.0953-816x.2001.01715.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Astrocytes and microglia are closely associated with amyloid plaques in Alzheimer's disease (AD). Microglia constitute the first barrier surrounding plaques, although they seem to be unable to remove them efficiently. We evaluated the reaction of microglial cells from neonatal rats and mice to plaque mimetics. The C-terminal part of the amyloid precursor protein (APP) or amyloid peptide (A beta) was immobilized to either 60-microm or 2.8-microm beads and incubated with microglial cells. Beads of 60 microm, having approximately the size of senile plaques, were not phagocytosed, in contrast to 2.8-microm beads, which were phagocytosed by microglia but not by astrocytes. Once taken up by the cells, proteins immobilized to the beads were degraded rapidly, as confirmed by mass spectrometry and immunofluorescence with an antibody against beta-amyloid. On the other hand, no protein degradation was observed with 60-microm beads. Also, probably as a reaction to its incapability to phagocytose the beads, glia organized around the beads and started to proliferate. Cell proliferation was more pronounced when the beads contained the A beta epitope compared with the beads with an inert surface. This in vitro effect could be exploited to set up a screening assay for compounds that ameliorate the adverse reaction of microglia supposed to contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- R von Bernhardi
- Faculty of Medicine, Universidad de los Andes, San Carlos de Apoquindo 2200, Las Condes, Santiago, Chile.
| | | | | | | |
Collapse
|
47
|
Hoozemans JJ, Rozemuller AJ, Veerhuis R, Eikelenboom P. Immunological aspects of alzheimer's disease: therapeutic implications. BioDrugs 2001; 15:325-37. [PMID: 11437695 DOI: 10.2165/00063030-200115050-00004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease causing progressive impairment of memory and cognitive function. The amyloid cascade hypothesis suggests that mismetabolism of the beta-amyloid (A beta) precursor protein (APP) followed by subsequent formation of non-fibrillar and fibrillar A beta deposits leads to glial activation and eventually to neurotoxicity, causing cognitive impairment. Several lines of evidence indicate that an inflammatory process contributes to the pathology of AD. First, inflammatory proteins have been identified as being associated with neuritic plaques and in glial cells surrounding these plaques. Second, certain polymorphisms of acute-phase proteins and cytokines associated with AD plaques increase the risk or predispose for earlier onset of developing AD. Third, epidemiological studies indicate that anti-inflammatory drugs can retard the development of AD. Several steps in the pathological cascade of AD have been identified as possible targets for actions of nonsteroidal anti-inflammatory drugs. For instance, microglia are considered a target because this cell type is closely involved in AD pathology through secretion of neurotoxic substances and by modulating a positive feedback loop of the inflammatory mechanism that may be involved in the pathological cascade in AD. On the basis of studies in APP transgenic mice, immunisation with A beta was recently suggested as a novel immunological approach for the treatment of AD. Immunisation elicits A beta-specific antibodies that could affect several early steps of the amyloid-driven cascade. Antibodies could prevent A beta from aggregating into fibrils and accelerate clearance of A beta by stimulating its removal by microglial cells. This review outlines the pathological and genetic evidence that an inflammatory mechanism is involved in AD and the therapeutic approaches based on inhibition or mediation of inflammation.
Collapse
Affiliation(s)
- J J Hoozemans
- Department of Psychiatry, Vrije Universiteit Medical Center, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
48
|
Smits HA, van Beelen AJ, de Vos NM, Rijsmus A, van der Bruggen T, Verhoef J, van Muiswinkel FL, Nottet HS. Activation of human macrophages by amyloid-beta is attenuated by astrocytes. THE JOURNAL OF IMMUNOLOGY 2001; 166:6869-76. [PMID: 11359847 DOI: 10.4049/jimmunol.166.11.6869] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In Alzheimer's disease, neuritic amyloid-beta plaques along with surrounding activated microglia and astrocytes are thought to play an important role in the inflammatory events leading to neurodegeneration. Studies have indicated that amyloid-beta can be directly neurotoxic by activating these glial cells to produce oxygen radicals and proinflammatory cytokines. This report shows that, using primary human monocyte-derived macrophages as model cells for microglia, amyloid-beta(1-42) stimulate these macrophages to the production of superoxide anions and TNF-alpha. In contrast, astrocytes do not produce both inflammatory mediators when stimulated with amyloid-beta(1-42). In cocultures with astrocytes and amyloid-beta(1-42)-stimulated macrophages, decreased levels of both superoxide anion and TNF-alpha were detected. These decreased levels of potential neurotoxins were due to binding of amyloid-beta(1-42) to astrocytes since FACScan analysis demonstrated binding of FITC-labeled amyloid-beta(1-42) to astrocytoma cells and pretreatment of astrocytes with amyloid-beta(1-16) prevented the decrease of superoxide anion in cocultures of human astrocytes and amyloid-beta(1-42)-stimulated macrophages. To elucidate an intracellular pathway involved in TNF-alpha secretion, the activation state of NF-kappaB was investigated in macrophages and astrocytoma cells after amyloid-beta(1-42) treatment. Interestingly, although activation of NF-kappaB could not be detected in amyloid-beta-stimulated macrophages, it was readily detected in astrocytoma cells. These results not only demonstrate that amyloid-beta stimulation of astrocytes and macrophages result in different intracellular pathway activation but also indicate that astrocytes attenuate the immune response of macrophages to amyloid-beta(1-42) by interfering with amyloid-beta(1-42) binding to macrophages.
Collapse
Affiliation(s)
- H A Smits
- Eijkman-Winkler Institute for Microbiology, Infectious Diseases and Inflammation, Section of Neuroimmunology, University Medical Center Utrecht, Room G04.614, Heidelberglaan 100, NL-3584 CX Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Qiao X, Cummins DJ, Paul SM. Neuroinflammation-induced acceleration of amyloid deposition in the APPV717F transgenic mouse. Eur J Neurosci 2001; 14:474-82. [PMID: 11553297 DOI: 10.1046/j.0953-816x.2001.01666.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been postulated that neuroinflammation plays a critical role in the pathogenesis of Alzheimer's disease (AD). To directly test whether an inflammatory stimulus can accelerate amyloid deposition in vivo, we chronically administered the bacterial endotoxin, lipopolysaccharide (LPS), intracerebroventricularly (i.c.v.) to 2-month-old APPV717F+/+ transgenic (TG) mice, which overexpress a mutant human amyloid precursor protein (APP 717V-F) with or without apolipoprotein E (apoE) for 2 weeks. Two weeks following central LPS administration a striking global reactive astrocytosis with increased GFAP immunoreactivity was found throughout the brains of all LPS-treated wild-type and transgenic mice including the contralateral brain hemisphere. Localized microglial activation was also evident from lectin immunostaining adjacent to the cannula track of LPS-treated mice. Quantification of thioflavine-S-positive Abeta deposits revealed a marked acceleration of amyloid deposition in LPS-treated APPV717F+/+-apoE+/+ mice compared to nontreated or vehicle-treated APPV717F+/+-apoE+/+ mice (P = 0.005). By contrast, no amyloid deposits were detected by thioflavine-S staining in LPS or vehicle-treated apoE-deficient APPV717F TG mice. Our data suggest that neuroinflammation can accelerate amyloid deposition in the APPV717F+/+ mouse model of AD and that this process requires the expression of apoE.
Collapse
Affiliation(s)
- X Qiao
- Department of Cellular Biology & Anatomy, Louisiana State University Medical Center, Shreveport, LA 71130, USA
| | | | | |
Collapse
|
50
|
Smits HA, de Vos NM, Wat JW, van der Bruggen T, Verhoef J, Nottet HS. Intracellular pathways involved in TNF-alpha and superoxide anion release by Abeta(1-42)-stimulated primary human macrophages. J Neuroimmunol 2001; 115:144-51. [PMID: 11282164 DOI: 10.1016/s0165-5728(01)00254-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, the intracellular signal transduction pathways leading to the production of TNF-alpha and superoxide anions by amyloid-beta-stimulated primary human monocyte-derived macrophages was investigated. Using Western blotting and specific inhibitors it is shown that both ERK 1/2 and p38 MAPK signal transduction pathways as well as PKC are involved in the amyloid-beta-stimulated superoxide anion production. In contrast, only ERK 1/2 MAPK seems to be involved in TNF-alpha production: questioning the connection between PKC and ERK 1/2 activation. Our results suggest the use of ERK 1/2 MAPK inhibitors in the prevention of macrophage activation in the context of Alzheimer's disease.
Collapse
Affiliation(s)
- H A Smits
- Section Neuroimmunology, Room G04.614, Eijkman-Winkler Institute, University Medical Center Utrecht, Heidelberglaan 100, NL-3584 CX, Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|