1
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins II: Intercellular Transfer of Matter (Inheritance?) That Matters. Biomolecules 2023; 13:994. [PMID: 37371574 DOI: 10.3390/biom13060994] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of the plasma membrane (PM) bilayer by covalent linkage to a typical glycolipid and expressed in all eukaryotic organisms so far studied. Lipolytic release from PMs into extracellular compartments and intercellular transfer are regarded as the main (patho)physiological roles exerted by GPI-APs. The intercellular transfer of GPI-APs relies on the complete GPI anchor and is mediated by extracellular vesicles such as microvesicles and exosomes and lipid-free homo- or heteromeric aggregates, and lipoprotein-like particles such as prostasomes and surfactant-like particles, or lipid-containing micelle-like complexes. In mammalian organisms, non-vesicular transfer is controlled by the distance between donor and acceptor cells/tissues; intrinsic conditions such as age, metabolic state, and stress; extrinsic factors such as GPI-binding proteins; hormones such as insulin; and drugs such as anti-diabetic sulfonylureas. It proceeds either "directly" upon close neighborhood or contact of donor and acceptor cells or "indirectly" as a consequence of the induced lipolytic release of GPI-APs from PMs. Those displace from the serum GPI-binding proteins GPI-APs, which have retained the complete anchor, and become assembled in aggregates or micelle-like complexes. Importantly, intercellular transfer of GPI-APs has been shown to induce specific phenotypes such as stimulation of lipid and glycogen synthesis, in cultured human adipocytes, blood cells, and induced pluripotent stem cells. As a consequence, intercellular transfer of GPI-APs should be regarded as non-genetic inheritance of (acquired) features between somatic cells which is based on the biogenesis and transmission of matter such as GPI-APs and "membrane landscapes", rather than the replication and transmission of information such as DNA. Its operation in mammalian organisms remains to be clarified.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) and German Center for Diabetes Research (DZD) at the Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
2
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules 2023; 13:biom13050855. [PMID: 37238725 DOI: 10.3390/biom13050855] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of plasma membranes (PMs) of all eukaryotic organisms studied so far by covalent linkage to a highly conserved glycolipid rather than a transmembrane domain. Since their first description, experimental data have been accumulating for the capability of GPI-APs to be released from PMs into the surrounding milieu. It became evident that this release results in distinct arrangements of GPI-APs which are compatible with the aqueous milieu upon loss of their GPI anchor by (proteolytic or lipolytic) cleavage or in the course of shielding of the full-length GPI anchor by incorporation into extracellular vesicles, lipoprotein-like particles and (lyso)phospholipid- and cholesterol-harboring micelle-like complexes or by association with GPI-binding proteins or/and other full-length GPI-APs. In mammalian organisms, the (patho)physiological roles of the released GPI-APs in the extracellular environment, such as blood and tissue cells, depend on the molecular mechanisms of their release as well as the cell types and tissues involved, and are controlled by their removal from circulation. This is accomplished by endocytic uptake by liver cells and/or degradation by GPI-specific phospholipase D in order to bypass potential unwanted effects of the released GPI-APs or their transfer from the releasing donor to acceptor cells (which will be reviewed in a forthcoming manuscript).
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| |
Collapse
|
3
|
Transfer of Proteins from Cultured Human Adipose to Blood Cells and Induction of Anabolic Phenotype Are Controlled by Serum, Insulin and Sulfonylurea Drugs. Int J Mol Sci 2023; 24:ijms24054825. [PMID: 36902257 PMCID: PMC10003403 DOI: 10.3390/ijms24054825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are anchored at the outer leaflet of eukaryotic plasma membranes (PMs) only by carboxy-terminal covalently coupled GPI. GPI-APs are known to be released from the surface of donor cells in response to insulin and antidiabetic sulfonylureas (SUs) by lipolytic cleavage of the GPI or upon metabolic derangement as full-length GPI-APs with the complete GPI attached. Full-length GPI-APs become removed from extracellular compartments by binding to serum proteins, such as GPI-specific phospholipase D (GPLD1), or insertion into the PMs of acceptor cells. Here, the interplay between the lipolytic release and intercellular transfer of GPI-APs and its potential functional impact was studied using transwell co-culture with human adipocytes as insulin-/SU-responsive donor cells and GPI-deficient erythroleukemia as acceptor cells (ELCs). Measurement of the transfer as the expression of full-length GPI-APs at the ELC PMs by their microfluidic chip-based sensing with GPI-binding α-toxin and GPI-APs antibodies and of the ELC anabolic state as glycogen synthesis upon incubation with insulin, SUs and serum yielded the following results: (i) Loss of GPI-APs from the PM upon termination of their transfer and decline of glycogen synthesis in ELCs, as well as prolongation of the PM expression of transferred GPI-APs upon inhibition of their endocytosis and upregulated glycogen synthesis follow similar time courses. (ii) Insulin and SUs inhibit both GPI-AP transfer and glycogen synthesis upregulation in a concentration-dependent fashion, with the efficacies of the SUs increasing with their blood glucose-lowering activity. (iii) Serum from rats eliminates insulin- and SU-inhibition of both GPI-APs' transfer and glycogen synthesis in a volume-dependent fashion, with the potency increasing with their metabolic derangement. (iv) In rat serum, full-length GPI-APs bind to proteins, among them (inhibited) GPLD1, with the efficacy increasing with the metabolic derangement. (v) GPI-APs are displaced from serum proteins by synthetic phosphoinositolglycans and then transferred to ELCs with accompanying stimulation of glycogen synthesis, each with efficacies increasing with their structural similarity to the GPI glycan core. Thus, both insulin and SUs either block or foster transfer when serum proteins are depleted of or loaded with full-length GPI-APs, respectively, i.e., in the normal or metabolically deranged state. The transfer of the anabolic state from somatic to blood cells over long distance and its "indirect" complex control by insulin, SUs and serum proteins support the (patho)physiological relevance of the intercellular transfer of GPI-APs.
Collapse
|
4
|
Watkins OC, Selvam P, Pillai RA, Cracknell-Hazra VKB, Yong HEJ, Sharma N, Cazenave-Gassiot A, Bendt AK, Godfrey KM, Lewis RM, Wenk MR, Chan SY. Myo-inositol moderates maternal BMI and glycemia related variations in in-vitro placental 13C-DHA-metabolism, altering their relationships with birthweight. Sci Rep 2022; 12:14895. [PMID: 36050341 PMCID: PMC9437079 DOI: 10.1038/s41598-022-18309-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
Transplacental docosahexaenoic-acid (DHA) supply for fetal development is regulated by placental DHA-lipid metabolism. Both maternal diabetes and obesity are linked to possible decreased fetal circulating DHA and increased placental DHA-lipids. Since myo-inositol is a promising intervention for gestational diabetes (GDM), we aimed to determine whether myo-inositol could rectify perturbations in placental DHA metabolism associated with maternal increasing glycemia and obesity and examine links with birthweight. Term placental villous explants from 17 women representing a range of BMIs and mid-gestational glycemia, were incubated with 13C-labeled-DHA for 48 h, in 0.3 µmol/L (control) or 60 µmol/L myo-inositol. Individual newly synthesized 13C-DHA-labeled lipid species were quantified by liquid-chromatography-mass-spectrometry. Compared with controls, incubation with myo-inositol decreased most 13C-DHA-lipids in placental explants from women with higher BMI or higher glycemia, but increased 13C-DHA-lipids with normal BMI or lower glycemia. Myo-inositol also increased 13C-DHA-labeled lipids in cases of lower birthweight centile, but induced decreases at higher centiles. Myo-inositol therefore lowered DHA-lipids in placenta with high basal placental DHA-lipid production (higher BMI and glycemia) but increased DHA-lipids where basal processing capacity is low. Myo-inositol thus moderates placental DHA metabolism towards a physiological mean which may in turn moderate birthweight.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Preben Selvam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Reshma Appukuttan Pillai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Victoria K B Cracknell-Hazra
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Faculty of Medicine, University of Southampton, Southampton, UK
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Anne K Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Keith M Godfrey
- Faculty of Medicine, University of Southampton, Southampton, UK.,MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Rohan M Lewis
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore. .,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
5
|
Watkins OC, Yong HEJ, Sharma N, Chan SY. A review of the role of inositols in conditions of insulin dysregulation and in uncomplicated and pathological pregnancy. Crit Rev Food Sci Nutr 2020; 62:1626-1673. [PMID: 33280430 DOI: 10.1080/10408398.2020.1845604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Inositols, a group of 6-carbon polyols, are highly bioactive molecules derived from diet and endogenous synthesis. Inositols and their derivatives are involved in glucose and lipid metabolism and participate in insulin-signaling, with perturbations in inositol processing being associated with conditions involving insulin resistance, dysglycemia and dyslipidemia such as polycystic ovary syndrome and diabetes. Pregnancy is similarly characterized by substantial and complex changes in glycemic and lipidomic regulation as part of maternal adaptation and is also associated with physiological alterations in inositol processing. Disruptions in maternal adaptation are postulated to have a critical pathophysiological role in pregnancy complications such as gestational diabetes and pre-eclampsia. Inositol supplementation has shown promise as an intervention for the alleviation of symptoms in conditions of insulin resistance and for gestational diabetes prevention. However, the mechanisms behind these affects are not fully understood. In this review, we explore the role of inositols in conditions of insulin dysregulation and in pregnancy, and identify priority areas for research. We particularly examine the role and function of inositols within the maternal-placental-fetal axis in both uncomplicated and pathological pregnancies. We also discuss how inositols may mediate maternal-placental-fetal cross-talk, and regulate fetal growth and development, and suggest that inositols play a vital role in promoting healthy pregnancy.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
6
|
Müller GA. Insulin-like and mimetic molecules from non-mammalian organisms: potential relevance for drug discovery. Arch Physiol Biochem 2020; 126:420-429. [PMID: 30633571 DOI: 10.1080/13813455.2018.1551906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Insulin was first discovered in extracts of vertebrate pancreas during a focused search for a therapy for diabetes. Subsequent efforts to discover and isolate a similar active principle from yeast and plants driven by the hope to identify insulin-like/mimetic molecules with critical advantages in the pharmacokinetic profile and expenditure of production compared to authentic human insulin were not successful. As a consequence, it has generally been assumed that hormones evolved exclusively during course of the evolution of vertebrate endocrine organs, implying a rather recent origin. Concomitantly, the existence and physiological role of vertebrate hormones in lower multi- and unicellular eukaryotes have remained a rather controversial subject over decades, albeit there is some evidence that hormones and hormone-binding proteins resembling those of vertebrates are expressed in fungi and yeast. Past and recent findings on the existence of insulin-like and mimetic materials, such as the glucose tolerance factor, in lower eukaryotes, in particular Neurospora crassa and yeast, will be presented. These data provide further evidence for the provocative view that the evolutionary roots of the vertebrate endocrine system may be far more ancient than is generally believed and that the identification and characterisation of insulin-like/mimetic molecules from lower eukaryotes may be useful for future drug discovery efforts.
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center (HDC), Helmholtz Center München, Oberschleissheim, Germany
- Department Biology I, Genetics, Ludwig-Maximilians-University München, Planegg-Martinsried, Germany
| |
Collapse
|
7
|
Scioscia M. D-chiro inositol phosphoglycans in preeclampsia: Where are we, where are we going? J Reprod Immunol 2017; 124:1-7. [DOI: 10.1016/j.jri.2017.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/15/2017] [Accepted: 09/27/2017] [Indexed: 12/24/2022]
|
8
|
D'Oria R, Laviola L, Giorgino F, Unfer V, Bettocchi S, Scioscia M. PKB/Akt and MAPK/ERK phosphorylation is highly induced by inositols: Novel potential insights in endothelial dysfunction in preeclampsia. Pregnancy Hypertens 2017; 10:107-112. [PMID: 29153661 DOI: 10.1016/j.preghy.2017.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/06/2017] [Accepted: 07/08/2017] [Indexed: 02/01/2023]
Abstract
PKB/Akt and MAP/ERK are intracellular kinases regulating cell survival, proliferation and metabolism and as such hold a strategical role in preeclampsia. In fact intracellular pathways related to immunological alterations, endothelial dysfunction and insulin resistance in preeclampsia converge on these molecules. Inositol second messengers are involved in metabolic and cell signaling pathways and are highly expressed during preeclampsia. To evaluate the pathophysiological significance of this response, the effect of myo-inositol and d-chiro inositol on the activation of PKB/Akt and MAPK/ERK was assessed in human endothelial cells in vitro. Time-course and dose-response analyses of phosphorylation following incubation with inositols showed an approximately 6-fold and 15-fold increase for myo-inositol and d-chiro inositol (p<0.05), respectively. Both inositols promoted a significantly higher PKB/Akt and MAPK/ERK phosphorylation than insulin. Thus, exogenously administered inositols can activate PKB/Akt and MAPK/ERK in human endothelial cells in vitro. The increased production of d-chiro inositol phosphoglycans (IPG-P) during preeclampsia may thus represent a compensatory response, potentially promoting cell survival and metabolism.
Collapse
Affiliation(s)
- Rossella D'Oria
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Luigi Laviola
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari "Aldo Moro", Bari, Italy
| | - Vittorio Unfer
- Department of Medical Sciences, IPUS-Institute of Higher Education, Chiasso, Switzerland
| | - Stefano Bettocchi
- Department of Gynecology, Obstetrics and Neonatology (DIGON), I Clinic, Medical University Policlinico of Bari, Bari, Italy
| | - Marco Scioscia
- Department of Obstetrics and Gynecology, Sacro Cuore Don Calabria, Negrar, Verona, Italy.
| |
Collapse
|
9
|
Kunjara S, McLean P, Rademacher L, Rademacher TW, Fascilla F, Bettocchi S, Scioscia M. Putative Key Role of Inositol Messengers in Endothelial Cells in Preeclampsia. Int J Endocrinol 2016; 2016:7695648. [PMID: 27738431 PMCID: PMC5050364 DOI: 10.1155/2016/7695648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/26/2016] [Accepted: 08/04/2016] [Indexed: 02/01/2023] Open
Abstract
Immunological alterations, endothelial dysfunction, and insulin resistance characterize preeclampsia. Endothelial cells hold the key role in the pathogenesis of this disease. The signaling pathways mediating these biological abnormalities converge on PKB/Akt, an intracellular kinase regulating cell survival, proliferation, and metabolism. Inositol second messengers are involved in metabolic and cell signaling pathways and are highly expressed during preeclampsia. Intracellular action of these molecules is deeply affected by zinc, manganese, and calcium. To evaluate the pathophysiological significance, we present the response of the intracellular pathways of inositol phosphoglycans involved in cellular metabolism and propose a link with the disease.
Collapse
Affiliation(s)
- Sirilaksana Kunjara
- Division of Biosciences, Research Department of Cell and Developmental Biology, University College London, London, UK
| | - Patricia McLean
- Division of Biosciences, Research Department of Cell and Developmental Biology, University College London, London, UK
| | | | | | - Fabiana Fascilla
- Department of Biomedical Sciences and Human Oncology (DIMO), II Unit of Obstetrics and Gynecology, University of Bari Aldo Moro, Bari, Italy
| | - Stefano Bettocchi
- Department of Biomedical Sciences and Human Oncology (DIMO), II Unit of Obstetrics and Gynecology, University of Bari Aldo Moro, Bari, Italy
| | - Marco Scioscia
- Department of Obstetrics and Gynecology, Sacro Cuore Don Calabria, Negrar, Verona, Italy
- *Marco Scioscia:
| |
Collapse
|
10
|
Scioscia M, Nigro M, Montagnani M. The putative metabolic role of d -chiro inositol phosphoglycan in human pregnancy and preeclampsia. J Reprod Immunol 2014; 101-102:140-147. [DOI: 10.1016/j.jri.2013.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 05/11/2013] [Accepted: 05/23/2013] [Indexed: 02/01/2023]
|
11
|
Placental expression of D-chiro-inositol phosphoglycans in preeclampsia. Placenta 2012; 33:882-4. [PMID: 22835680 DOI: 10.1016/j.placenta.2012.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 01/08/2023]
Abstract
Abnormalities in glucose metabolism linked to D-chiro-inostol phosphoglycans (IPGs) have been described in human placentas of preeclamptic women. In this study, a semi-quantitative approach to assess the histological assessment of IPGs revealed no significant differences between early and late onset preeclampsia and gestational age matched controls. However, there was a tendency towards higher values in early onset preeclampsia for villous stroma and placental vessels. Moreover, in control cases staining of plasma in placental vessels was present only in one part of vessels of mature intermediate villi while in preeclamptic specimens all placental vessels showed a similar staining. The tendencies of more staining in villous stroma associated with a differential staining of placental vessels only in preeclamptic specimens support a vectoral movement of D-chiro-inositol phosphoglycans from the fetus to the placenta.
Collapse
|
12
|
Kim HJ, Park KS, Lee SK, Min KW, Han KA, Kim YK, Ku BJ. Effects of Pinitol on Glycemic Control, Insulin Resistance and Adipocytokine Levels in Patients with Type 2 Diabetes Mellitus. ANNALS OF NUTRITION AND METABOLISM 2012; 60:1-5. [DOI: 10.1159/000334834] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 11/04/2011] [Indexed: 02/04/2023]
|
13
|
Scioscia M, Williams PJ, Gumaa K, Fratelli N, Zorzi C, Rademacher TW. Inositol phosphoglycans and preeclampsia: from bench to bedside. J Reprod Immunol 2011; 89:173-7. [DOI: 10.1016/j.jri.2011.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/09/2011] [Accepted: 03/07/2011] [Indexed: 12/24/2022]
|
14
|
Paine MA, Scioscia M, Williams PJ, Gumaa K, Rodeck CH, Rademacher TW. Urinary Inositol Phosphoglycan P-Type as A Marker for Prediction of Preeclampsia and Novel Implications for the Pathophysiology of This Disorder. Hypertens Pregnancy 2010; 29:375-84. [DOI: 10.3109/10641950903242667] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Kunjara S, Greenbaum AL, Rademacher TW, McLean P. Age-related changes in the response of rat adipocytes to insulin: evidence for a critical role for inositol phosphoglycans and cAMP. Biogerontology 2010; 11:483-93. [PMID: 20336370 DOI: 10.1007/s10522-010-9271-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/08/2010] [Indexed: 10/19/2022]
Abstract
Adipose tissue plays a pivotal role in ageing and longevity; many studies, both human and animal, have focussed on the effects of food limitation. Here we present a new model based on striking differences between two 'normal' inbred strains of albino Wistar rats the Charles River (CR) and Harlan Olac (HO) that have marked differences in age-related accumulation of fat and insulin-stimulated rates of glucose incorporation into lipid in the epididymal fat pads (EFP). The incorporation [U-(14)C]glucose into lipid by adipocytes showed that the CR group had a twofold higher basal rate of lipogenesis and a greater response to insulin in vitro, exceptionally, adipocytes from CR group maintained the high response to insulin to late adulthood while retaining the lower EFP weight/100 g body weight. Inositol phosphoglycan A-type (IPG-A), a putative insulin second messenger, was 3.5-fold higher and cAMP significantly lower per EFP in the CR versus HO groups. Plasma insulin levels were similar and plasma leptin higher in CR versus HO groups. The anomaly of a higher rate of lipogenesis and response to insulin and lower EFP weight in the CR group is interpreted as the resultant effect of a faster turnover of lipid and stimulating effect of leptin in raising fatty acid oxidation by muscle, potentially key to the lower accumulation of visceral fat. The metabolic profile of the CR strain provides a template that could be central to therapies that may lead to the lowering of both adipose and non-adipocyte lipid accumulation in humans in ageing.
Collapse
Affiliation(s)
- Sirilaksana Kunjara
- Department of Immunology and Molecular Pathology, University College London Medical School, UK
| | | | | | | |
Collapse
|
16
|
Scioscia M, Gumaa K, Rademacher TW. The link between insulin resistance and preeclampsia: new perspectives. J Reprod Immunol 2009; 82:100-5. [DOI: 10.1016/j.jri.2009.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 04/06/2009] [Accepted: 04/20/2009] [Indexed: 12/24/2022]
|
17
|
Is there a link between insulin resistance and inflammatory activation in preeclampsia? Med Hypotheses 2009; 73:813-7. [DOI: 10.1016/j.mehy.2009.01.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 01/27/2009] [Accepted: 01/28/2009] [Indexed: 12/24/2022]
|
18
|
Scioscia M, Paine MA, Gumaa K, Rodeck CH, Rademacher TW. Release of inositol phosphoglycan P-type by the human placenta following insulin stimulus: A multiple comparison between preeclampsia, intrauterine growth restriction, and gestational hypertension. J Matern Fetal Neonatal Med 2009; 21:581-5. [DOI: 10.1080/14767050802199934] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Scioscia M, Vimercati A, Selvaggi LE, Rodeck CH, Rademacher TW. Inositol phosphoglycan putative insulin mediator in human amniotic fluid. J Matern Fetal Neonatal Med 2009; 19:9-12. [PMID: 16492584 DOI: 10.1080/14767050500362321] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Many hormones such as insulin, insulin-like growth factors, and the glucocorticoids are involved in regulating fetal growth. Inositol phosphoglycans (IPGs), a family of putative second messengers of insulin, are reported to exert several of insulin's metabolic effects. METHODS A prospective cross-sectional study was carried out to investigate IPG P-type (P-IPG) in human amniotic fluid and in adult urine under physiological conditions. An amniotic fluid sample was taken from 78 women undergoing early amniocentesis and a mid-stream urine specimen was collected from 109 healthy pregnant and 66 non-pregnant women. All samples were assessed using a polyclonal antibody-based ELISA. RESULTS The P-IPG content was a thousand times higher in the amniotic fluid than in the urine (p < 0.0001). Urinary specimens showed a four-fold higher P-IPG content during pregnancy than in healthy non-pregnant women (p < 0.001). CONCLUSIONS Under physiological conditions, human amniotic fluid was found to be enriched in P-IPG compared with maternal urine, suggesting a possible fetal origin. Therefore, IPGs may play a role in insulin sensitivity and fetal growth and, perhaps, be involved in some of its abnormalities such as macrosomia and intrauterine growth restriction.
Collapse
Affiliation(s)
- Marco Scioscia
- Department of Molecular Pathology, Molecular Medicine Unit, Royal Free and University College Medical School, London, UK.
| | | | | | | | | |
Collapse
|
20
|
Goel M, Azev VN, d’Alarcao M. The biological activity of structurally defined inositol glycans. Future Med Chem 2009; 1:95-118. [PMID: 20390053 PMCID: PMC2853056 DOI: 10.4155/fmc.09.6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND: The inositol glycans (IGs) are glycolipid-derived carbohydrates produced by insulin-sensitive cells in response to insulin treatment. IGs exhibit an array of insulin-like activities including stimulation of lipogenesis, glucose transport and glycogen synthesis, suggesting that they may be involved in insulin signal transduction. However, because the natural IGs are structurally heterogeneous and difficult to purify to homogeneity, an understanding of the relationship between structure and biological activity has relied principally on synthetic IGs of defined structure. DISCUSSION: This article briefly describes what is known about the role of IGs in signal transduction and reviews the specific biological activities of the structurally defined IGs synthesized and tested to date. CONCLUSION: A pharmacophore for IG activity begins to emerge from the reviewed data and the structural elements necessary for activity are summarized.
Collapse
Affiliation(s)
- Meenakshi Goel
- Department of Chemistry, San José State University, One Washington Square, San José, CA 95192-90101, USA
| | - Viatcheslav N Azev
- AN Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova Str. 28, 119991, Moscow, Russia
| | - Marc d’Alarcao
- Department of Chemistry, San José State University, One Washington Square, San José, CA 95192-90101, USA
| |
Collapse
|
21
|
McLean P, Kunjara S, Greenbaum AL, Gumaa K, López-Prados J, Martin-Lomas M, Rademacher TW. Reciprocal control of pyruvate dehydrogenase kinase and phosphatase by inositol phosphoglycans. Dynamic state set by "push-pull" system. J Biol Chem 2008; 283:33428-36. [PMID: 18768479 DOI: 10.1074/jbc.m801781200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reversible phosphorylation of proteins regulates numerous aspects of cell function, and abnormal phosphorylation is causal in many diseases. Pyruvate dehydrogenase complex (PDC) is central to the regulation of glucose homeostasis. PDC exists in a dynamic equilibrium between de-phospho-(active) and phosphorylated (inactive) forms controlled by pyruvate dehydrogenase phosphatases (PDP1,2) and pyruvate dehydrogenase kinases (PDK1-4). In contrast to the reciprocal regulation of the phospho-/de-phospho cycle of PDC and at the level of expression of the isoforms of PDK and PDP regulated by hormones and diet, there is scant evidence for regulatory factors acting in vivo as reciprocal "on-off" switches. Here we show that the putative insulin mediator inositol phosphoglycan P-type (IPG-P) has a sigmoidal inhibitory action on PDK in addition to its known linear stimulation of PDP. Thus, at critical levels of IPG-P, this sigmoidal/linear model markedly enhances the switchover from the inactive to the active form of PDC, a "push-pull" system that, combined with the developmental and hormonal control of IPG-P, indicates their powerful regulatory function. The release of IPGs from cell membranes by insulin is significant in relation to diabetes. The chelation of IPGs with Mn2+ and Zn2+ suggests a role as "catalytic chelators" coordinating the traffic of metal ions in cells. Synthetic inositol hexosamine analogues are shown here to have a similar linear/sigmoidal reciprocal action on PDC exerting push-pull effects, suggesting their potential for treatment of metabolic disorders, including diabetes.
Collapse
Affiliation(s)
- Patricia McLean
- Division of Infection and Immunity, University College London Medical School, London W1T 4JF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
22
|
Kunjara S, McLean P, Greenbaum AL, Rademacher TW. Insight into the role of inositol phosphoglycans in insulin response and the regulation of glucose and lipid metabolism illustrated by the response of adipocytes from two strains of rats. Mol Genet Metab 2008; 94:263-6. [PMID: 18359258 DOI: 10.1016/j.ymgme.2008.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 02/12/2008] [Indexed: 11/28/2022]
Abstract
Differences in biochemical and hormone profiles between two strains of rats provide insights into the relationships between insulin response, inositol phosphoglycans and lipid metabolism in adipose tissue. The results suggest the apparent anomaly of a higher rate of lipogenesis and response to insulin with a lower fat pad weight in the Charles River vs. Harlan Olac group relates to: (i) enzyme pre-programming with IPG-A, (ii) faster turnover of lipid, (iii) effects of leptin and cAMP.
Collapse
Affiliation(s)
- S Kunjara
- University College London Medical School, Department of Immunology and Molecular Pathology, Molecular Medicine Unit, London W1T 4JF, UK
| | | | | | | |
Collapse
|
23
|
Scioscia M, Gumaa K, Whitten M, Selvaggi LE, Rodeck CH, Rademacher TW. Inositol phosphoglycan P-type in healthy and preeclamptic pregnancies. J Reprod Immunol 2007; 76:85-90. [PMID: 17493685 DOI: 10.1016/j.jri.2007.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/26/2007] [Accepted: 03/28/2007] [Indexed: 10/23/2022]
Abstract
An association between inositol phosphoglycan P-type (P-IPG) and preeclampsia has been demonstrated over recent years. This molecule can mediate many of the metabolic and growth promoting effects of insulin. Dysregulation of the mediator family is associated with insulin resistance. An increased concentration of P-IPG has been reported in preeclamptic placenta, although its precursor (GPI) was undetectable in those placental samples. Insulin administration, that induces P-IPG release in normal human placenta, was shown not to cause production/release of the mediator from preeclamptic placental tissue as a consequence of a disturbed insulin signalling. Amniotic fluid is enriched of this mediator, with further increase during preeclampsia. We have found that the fetus released increasing amounts of P-IPG in the urine between 13 and 18 weeks of gestation, reaching a plateau beyond 20 weeks. Cord blood of infants of preeclamptic mothers showed an increased content of soluble P-IPG compared to controls and to the mother.
Collapse
Affiliation(s)
- Marco Scioscia
- Department of Immunology and Molecular Pathology, Molecular Medicine Unit, Royal Free and University College London Medical School, London, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Rademacher TW, Gumaa K, Scioscia M. Preeclampsia, insulin signalling and immunological dysfunction: a fetal, maternal or placental disorder? J Reprod Immunol 2007; 76:78-84. [PMID: 17537518 DOI: 10.1016/j.jri.2007.03.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/14/2007] [Accepted: 03/14/2007] [Indexed: 11/18/2022]
Abstract
An inappropriate glycogen accumulation in preeclamptic placentas was described as secondary to biochemical alterations. Insulin resistance is widely accepted to be associated with preeclampsia, although its basis remain unclear. A family of putative insulin mediators, namely inositol phosphoglycans, were described to exert many insulin-like effects on lipid and glucose metabolism. A definite association between the P-type mediator (P-IPG) and preeclampsia was reported, being increased in placenta, urine, amniotic fluid and cord blood from human preeclamptic pregnancies. A strong link exists between insulin resistance and inflammation. Clear features of insulin resistance and systemic inflammatory activation were described in preeclampsia. It may be a consequence of the immunological dysfunction that occurs in preeclampsia that is temporized during sperm exposure and co-habitation which confuses the maternal immune network to perceive 'danger'. The over-expression of P-IPG during preeclampsia may be a counter-regulatory mechanism to insulin resistance since these molecules mimic insulin action. Besides, the lipidic form of P-IPG was reported to be similar to endotoxins, and may represent the 'danger signa'. We propose here a novel working theory on insulin resistance and preeclampsia.
Collapse
Affiliation(s)
- Thomas W Rademacher
- Department of Immunology and Molecular Pathology, Molecular Medicine Unit, Royal Free and University College London Medical School, London, UK
| | | | | |
Collapse
|
25
|
Scioscia M, Kunjara S, Gumaa K, McLean P, Rodeck CH, Rademacher TW. Urinary excretion of inositol phosphoglycan P-type in gestational diabetes mellitus. Diabet Med 2007; 24:1300-4. [PMID: 17956457 DOI: 10.1111/j.1464-5491.2007.02267.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The mechanisms underlying insulin resistance during normal pregnancy, and its further exacerbation in pregnancies complicated by gestational diabetes mellitus (GDM), are generally unknown. Inositolphosphoglycan P-type (P-IPG), a putative second messenger of insulin, correlates with the degree of insulin resistance in diabetic subjects. An increase during normal pregnancy, in maternal and fetal compartments, has recently been reported. METHODS A cross-sectional study was carried out in 48 women with GDM and 23 healthy pregnant women. Urinary levels of P-IPG were assessed spectrophotometrically by the activation of pyruvate dehydrogenase phosphatase in urinary specimens and correlated with clinical parameters. RESULTS Urinary excretion of P-IPG was higher in GDM than in control women (312.1 +/- 151.0 vs. 210.6 +/- 82.7 nmol NADH/min/mg creatinine, P < 0.01) with values increasing throughout pregnancy in control subjects (r2 = 0.34, P < 0.01). P-IPG correlated with blood glucose levels (r(2) = 0.39, P < 0.01 for postprandial glycaemia and r2 = 0.18 P < 0.01 for mean glycaemia) and birthweight in the diabetic group (r2 = 0.14, P < 0.01). CONCLUSIONS Increased P-IPG urinary excretion occurs in GDM and positively correlates with blood glucose levels. P-IPG may play a role in maternal glycaemic control and, possibly, fetal growth in GDM.
Collapse
Affiliation(s)
- M Scioscia
- Department of Immunology and Molecular Pathology, Molecular Medicine Unit, Royal Free and University College Medical School, London, UK.
| | | | | | | | | | | |
Collapse
|
26
|
XIA TAO, WANG QIN. D-CHIRO-INOSITOL FOUND IN MOMORDICA CHARANTIA FRUIT EXTRACT PLAYS A ROLE IN REDUCING BLOOD GLUCOSE IN STREPTOZOTOCIN-DIABETIC RATS. J Food Biochem 2007. [DOI: 10.1111/j.1745-4514.2007.00129.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Xia T, Wang Q. D-chiro-inositol found in Cucurbita ficifolia (Cucurbitaceae) fruit extracts plays the hypoglycaemic role in streptozocin-diabetic rats. J Pharm Pharmacol 2007; 58:1527-32. [PMID: 17132216 DOI: 10.1211/jpp.58.10.0014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cucurbita ficifolia is commonly used as an antihyperglycaemic agent in Asia. However, the mechanism of its action is unknown. Chemically synthesized D-chiro-inositol (D-CI), a component of an insulin mediator, has been demonstrated to have antihyperglycaemic effects in rats. In this study, we found that C. ficifolia contained fairly high levels of D-CI, thus, C. ficifolia may be a natural source of D-CI for reducing blood glucose concentrations in diabetics. We evaluated C. ficifolia fruit extract, containing D-CI, for its antihyperglycaemic effect in streptozotocin-induced diabetic rats. Oral administration of C. ficifolia fruit extract containing 10 or 20 mg D-CI kg(-1) body weight for 30 days resulted in significantly lowered levels of blood glucose, and increased levels of hepatic glycogen, total haemoglobin and plasma insulin. An oral glucose tolerance test was performed in fasted diabetic and normal rats, in which there was a significant improvement in blood glucose tolerance in the diabetic rats treated with C. ficifolia fruit extract. The effects were compared with 20 mg kg(-1) body weight chemically synthesized D-CI. Findings from this study demonstrated that C. ficifolia fruit extract was an effective source of D-CI for its hypoglycaemic effects in rats, and therefore may be useful in the treatment of diabetes.
Collapse
Affiliation(s)
- Tao Xia
- College of Life Science, East China Normal University, Shanghai, PR China.
| | | |
Collapse
|
28
|
Abstract
A state of insulin resistance has been demonstrated in active preeclampsia, and women with clinical evidence of insulin resistance are at higher risk to develop this syndrome during pregnancy. Recently, inositol phosphoglycan P-type, a putative second messenger of insulin action, has been implicated in the pathophysiology of preeclampsia and is increased in the placenta, amniotic fluid, and maternal urine of preeclamptic women compared with normal pregnant women. We report here a case–control study to assess the potential of urinary levels of inositol phosphoglycan P-type as a screening test for preeclampsia. Twenty-seven preeclamptic women and 47 healthy pregnant women were recruited. A polyclonal antibody-based ELISA was developed to detect levels of inositol phosphoglycan P-type in urine. Its content in urinary specimens was found to be 30-fold higher in preeclamptic subjects than control subjects (329.1±21.8 versus 9.2±1.5;
P
<0.001), with a higher level in all of the preeclamptic cases. For 6 women who developed preeclampsia, >1 gestational date sample of urine was available, and retrospective analysis showed a significant time-related increase of the urinary level of inositol phosphoglycan P-type ≤7 weeks before clinical diagnosis of preeclampsia. Urinary level of inositol phosphoglycan P-type increased after diagnosis indicating a possible pathophysiological threshold level and steeply decreased after delivery.
Collapse
Affiliation(s)
- Philip J Williams
- Department of Molecular Pathology, Molecular Medicine Unit, Royal Free and University College Medical School, London, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Yoshida KI, Yamaguchi M, Morinaga T, Ikeuchi M, Kinehara M, Ashida H. Genetic modification of Bacillus subtilis for production of D-chiro-inositol, an investigational drug candidate for treatment of type 2 diabetes and polycystic ovary syndrome. Appl Environ Microbiol 2006; 72:1310-5. [PMID: 16461681 PMCID: PMC1392952 DOI: 10.1128/aem.72.2.1310-1315.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
D-chiro-inositol (DCI) is a drug candidate for the treatment of type 2 diabetes and polycystic ovary syndrome, since it improves the efficiency with which the body uses insulin and also promotes ovulation. Here, we report genetic modification of Bacillus subtilis for production of DCI from myo-inositol (MI). The B. subtilis iolABCDEFGHIJ operon encodes enzymes for the multiple steps of the MI catabolic pathway. In the first and second steps, MI is converted to 2-keto-MI (2KMI) by IolG and then to 3D-(3,5/4)-trihydroxycyclohexane-1,2-dione by IolE. In this study, we identified iolI encoding inosose isomerase, which converts 2KMI to 1-keto-D-chiro-inositol (1KDCI), and found that IolG reduces 1KDCI to DCI. Inactivation of iolE in a mutant constitutively expressing the iol operon blocked the MI catabolic pathway to accumulate 2KMI, which was converted to DCI via the activity of IolI and IolG. The mutant was able to convert at least 6% of input MI in the culture medium to DCI.
Collapse
Affiliation(s)
- Ken-ichi Yoshida
- Department of Biofunctional Chemistry, Faculty of Agriculture, Kobe University, 1-1 Rokkodai, Kobe, Hyogo 657-8501, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Bonilla JB, Cid MB, Contreras FX, Goñi FM, Martín-Lomas M. Phospholipase cleavage of D- and L-chiro-glycosylphosphoinositides asymmetrically incorporated into liposomal membranes. Chemistry 2006; 12:1513-28. [PMID: 16315198 DOI: 10.1002/chem.200500833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The nature of chiro-inositol-containing inositolphosphoglycans (IPGs), reported to be putative insulin mediators, was studied by examination of the substrate specificities of the phosphatidylinositol-specific phospholipase C (PI-PLC) and the glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) by using a series of synthetic D- and L-chiro-glycosylphosphoinositides. 3-O-alpha-D-Glucosaminyl- (3) and -galactosaminyl-2-phosphatidyl-L-chiro-inositol (4), which show the maximum stereochemical similarity to the 6-O-alpha-D-glucosaminylphosphatidylinositol pseudodisaccharide motifs of GPI anchors, were synthesized and asymmetrically incorporated into phospholipid bilayers in the form of large unilamellar vesicles (LUVs). Similarly, 2-O-alpha-D-glucosaminyl- (5) and -galactosaminyl-1-phosphatidyl-D-chiro-inositol (6), which differ from the corresponding pseudodisaccharide motif of the GPI anchors only in the axial orientation of the phosphatidyl moiety, were also synthesized and asymmetrically inserted into LUVs. The cleavage of these synthetic molecules in the liposomal constructs by PI-PLC from Bacillus cereus and by GPI-PLD from bovine serum was studied with the use of 6-O-alpha-D-glucosaminylphosphatidylinositol (7) and the conserved GPI anchor structure (8) as positive controls. Although PI-PLC cleaved 3 and 4 with about the same efficiency as 7 and 8, this enzyme did not accept 5 or 6. GPI-PLD accepted both the L-chiro- (3 and 4) and the D-chiro- (5 and 6) glycosylinositolphosphoinositides. Therefore, IPGs containing L-chiro-inositol only are expected to be released from chiro-inositol-containing GPIs if the cleavage is effected by a PI-PLC, whereas GPI-PLD cleavage could result in both L-chiro- and D-chiro-inositol-containing IPGs.
Collapse
Affiliation(s)
- Julia B Bonilla
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| | | | | | | | | |
Collapse
|
31
|
Scioscia M, Gumaa K, Kunjara S, Paine MA, Selvaggi LE, Rodeck CH, Rademacher TW. Insulin resistance in human preeclamptic placenta is mediated by serine phosphorylation of insulin receptor substrate-1 and -2. J Clin Endocrinol Metab 2006; 91:709-17. [PMID: 16332940 DOI: 10.1210/jc.2005-1965] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Preeclampsia is a severe complication of human pregnancy often associated with maternal risk factors. Insulin resistance represents a major risk for developing preeclampsia during pregnancy. OBJECTIVE A putative second messenger of insulin, inositol phosphoglycan P type (P-IPG), was previously shown to be highly increased during active preeclampsia. Its association with insulin resistance was investigated. DESIGN AND SETTING A cross-sectional study was carried out in a referral center. PATIENTS Nine preeclamptic (PE) and 18 healthy women were recruited and matched for maternal age, body mass index, parity, and ethnicity in a 1:2 ratio. Placental specimens were collected immediately after delivery. INTERVENTION Placental tissue was incubated with insulin and P-IPG production assessed. Insulin signaling proteins were subsequently studied by immunoblotting. RESULTS P-IPG extracted from human term placentas upon incubation with insulin was found to be far lower in those with preeclampsia than controls (P < 0.001). Immunoblotting studies revealed serine phosphorylation of insulin receptor substrate-1 and -2 in PE placentas (P < 0.001) with downstream impairment of insulin signaling. The activation of the p85 regulatory subunit of phosphatidylinositol 3- kinase was markedly decreased in PE samples (P < 0.001). CONCLUSIONS These findings highlight the importance of P-IPG in active preeclampsia and demonstrate a substantially different response to the insulin stimulus of human PE placentas. Acquired alterations in activation of proteins involved in insulin signaling may play a role in the complex pathogenesis of preeclampsia, probably as a consequence of the immunological dysfunction that occurs in this syndrome. These results seem to confirm an insulin-resistant state in PE placenta and shed a different light on its role in the pathogenesis of this disease with potential therapeutic implications.
Collapse
Affiliation(s)
- Marco Scioscia
- Department of Obstetrics and Gynaecology, University of Bari, Policlinico di Bari, Piazza Giulio Cesare 11, 70125 Bari, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Kang MJ, Kim JI, Yoon SY, Kim JC, Cha IJ. Pinitol from soybeans reduces postprandial blood glucose in patients with type 2 diabetes mellitus. J Med Food 2006; 9:182-6. [PMID: 16822203 DOI: 10.1089/jmf.2006.9.182] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The effect of 3-O-methyl-D-chiro-inositol (D-pinitol), purified from soybean, on the postprandial blood glucose response in patients with type 2 diabetes mellitus was examined. Fifteen Korean subjects with type 2 diabetes mellitus (seven men, eight women; 60.3 +/- 3.1 years old) ingested cooked white rice containing 50 g of available carbohydrate with or without prior ingestion of soy pinitol. Pinitol was given either as a 1.2 g dose at 0, 60, 120, or 180 minutes prior to rice ingestion, or as a 0.6 g dose at 60 minutes prior to rice ingestion. Capillary blood glucose levels were monitored for 4 hours after rice consumption. The ingestion of 1.2 g of pinitol 60 minutes prior to rice consumption controlled postprandial capillary blood glucose most effectively, significantly diminishing the postprandial increase in plasma glucose levels measured at 90 and 120 minutes after rice consumption (P < .05). The incremental area under the plasma glucose response curve for subjects who consumed both pinitol and rice was significantly lower than that for subjects who consumed only rice (P < .05), but pinitol had no apparent effect on postprandial insulin levels. Therefore, soybean-derived pinitol may be useful in controlling postprandial increases in blood glucose in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Min-Jung Kang
- Biohealth Product Research Center, Inje University, Gimhae, Korea
| | | | | | | | | |
Collapse
|
33
|
Chakraborty N, d'Alarcao M. An anionic inositol phosphate glycan pseudotetrasaccharide exhibits high insulin-mimetic activity in rat adipocytes. Bioorg Med Chem 2005; 13:6732-41. [PMID: 16115771 DOI: 10.1016/j.bmc.2005.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 07/20/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
Inositol phosphate glycan pseudotetrasaccharides consisting of man-(alpha1-6)-man-(alpha1-4)-glcN-(alpha,beta1-6)-myo-inositol-1,2-cyclic phosphate possessing a sulfate group at either O-6 (compounds 3alpha,beta) or O-2 (compounds 4alpha,beta) of the terminal mannose have been prepared. Compound 4alpha was able to stimulate lipogenesis in native rat adipocytes to 78% of the maximal insulin response (MIR) with an EC50 of 1.1 microM. The other compounds exhibited lower maximal stimulations (47-63% MIR) and higher EC50 values (9.5-10.6 microM).
Collapse
Affiliation(s)
- Nilanjana Chakraborty
- Michael Chemistry Laboratory, Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
34
|
Turner DI, Chakraborty N, d'Alarcao M. A fluorescent inositol phosphate glycan stimulates lipogenesis in rat adipocytes by extracellular activation alone. Bioorg Med Chem Lett 2005; 15:2023-5. [PMID: 15808461 DOI: 10.1016/j.bmcl.2005.02.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 02/17/2005] [Accepted: 02/18/2005] [Indexed: 11/25/2022]
Abstract
The chemical synthesis of 2,6-dideoxy-2-amino-6-mercaptoglucopyranosyl-(alpha1-6)-myo-inositol 1,2-cyclic phosphate and its conjugation with a lucifer yellow derivative are reported. The resulting fluorescent IPG analogue was able to stimulate lipogenesis in rat adipocytes despite the fact that it was not internalized into the cell. The results demonstrate that internalization of the IPG is not required for manifestation of its insulin-like effects.
Collapse
Affiliation(s)
- David I Turner
- Michael Chemistry Laboratory, Department of Chemistry, Tufts University, Medford, MA 02155, USA
| | | | | |
Collapse
|
35
|
Kim JI, Kim JC, Kang MJ, Lee MS, Kim JJ, Cha IJ. Effects of pinitol isolated from soybeans on glycaemic control and cardiovascular risk factors in Korean patients with type II diabetes mellitus: a randomized controlled study. Eur J Clin Nutr 2005; 59:456-8. [PMID: 15536472 DOI: 10.1038/sj.ejcn.1602081] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 07/27/2004] [Accepted: 09/20/2004] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To assess the effects of soybean-derived pinitol on glycaemic control and cardiovascular risk factors in Korean patients with type II diabetes mellitus. DESIGN Randomized, double-blind, placebo-controlled, parallel-group trial. SETTING Pusan Paik Hospital, Pusan, Republic of Korea. INTERVENTIONS A total of 30 patients with type II diabetes received an oral dose of 600 mg soybean-derived pinitol or placebo twice daily for 13 weeks. RESULTS Pinitol significantly decreased mean fasting plasma glucose, insulin, fructosamine, HbA1c, and the homeostatic model assessment insulin resistance index (HOMA-IR, P<0.001). Pinitol significantly decreased total cholesterol, LDL-cholesterol, the LDL/HDL-cholesterol ratio, and systolic and diastolic blood pressure and increased HDL-cholesterol (P<0.05). CONCLUSIONS These data suggest that soybean-derived pinitol may be beneficial in reducing cardiovascular risk in Korean type II diabetes.
Collapse
Affiliation(s)
- J-I Kim
- Biohealth Product Research Center, School of Food and Life Science, Institute for Food Sciences, Institute of Basic Sciences, Inje University, Gimhae, Republic of Korea
| | | | | | | | | | | |
Collapse
|
36
|
Jones DR, Pañeda C, Villar AV, Alonso A, Goñi FM, Bütikofer P, Brodbeck U, Shepherd PR, Varela-Nieto I. Phosphorylation of glycosyl-phosphatidylinositol by phosphatidylinositol 3-kinase changes its properties as a substrate for phospholipases. FEBS Lett 2004; 579:59-65. [PMID: 15620691 DOI: 10.1016/j.febslet.2004.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 11/08/2004] [Accepted: 11/09/2004] [Indexed: 11/27/2022]
Abstract
Phosphatidylinositol 3-kinases (PI3K) phosphorylate the 3-position of the inositol ring of phosphatidylinositol-4,5-bisphosphate to produce phosphatidylinositol-3,4,5-trisphosphate. It is not clear whether PI3K can phosphorylate the inositol group in other biomolecules. We sought to determine whether PI3K was able to use glycosyl-phosphatidylinositol (GPI) as a substrate. This phospholipid may exist either in free form (GPIfree) or forming a lipid anchor (GPIanchor) for the attachment of extracellular proteins to the plasma membrane. We demonstrate the specific PI3K-mediated phosphorylation of the inositol 3-hydroxyl group within both types of GPI by incubating this phospholipid with immunoprecipitated PI3K. The phosphorylated product behaves in HPLC as a derivative of a PI3K lipid product. To our knowledge, this is the first demonstration that PI3K uses lipid substrates other than phosphoinositides. Further, we show that this has potential functional consequences. When GPIfree is phosphorylated, it becomes a poorer substrate for GPI-specific phospholipase D, but a better substrate for phosphatidylinositol-specific phospholipase C. These phosphorylation events may constitute the basis of a previously undescribed signal transduction mechanism.
Collapse
Affiliation(s)
- David R Jones
- Department of Cell Signalling, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Arturo Duperier 4, 28029 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Elased KM, Gumaa KA, de Souza JB, Playfair JHL, Rademacher TW. Improvement of glucose homeostasis in obese diabetic db/db mice given Plasmodium yoelii glycosylphosphatidylinositols. Metabolism 2004; 53:1048-53. [PMID: 15281017 DOI: 10.1016/j.metabol.2004.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have previously reported that infection with Plasmodium yoelii, Plasmodium chabaudi, or injection of extracts from malaria-parasitized red blood cells induces hypoglycemia in normal mice and normalizes the hyperglycemia in streptozotocin (STZ)-diabetic mice. P yoelii glycosylphosphatidylinositols (GPIs) were extracted in chloroform:methanol:water (CMW) (10:10:3), purified by high-performance thin layer chromatography (HPTLC) and tested for their insulin-mimetic activities. The effects of P yoelii GPIs on blood glucose were investigated in insulin-resistant C57BL/ks-db/db diabetic mice. A single intravenous injection of GPIs (9 and 30 nmol/mouse) induced a significant dose-related decrease in blood glucose (P < .001), but insignificantly increased plasma insulin concentrations. A single oral dose of 2.7 micromol GPIs per db/db mouse significantly lowered blood glucose (P < .01). P yoelii GPIs in vitro (0.062 to 1 micromol/L) significantly stimulated lipogenesis in rat adipocytes in a dose-dependent manner both in the presence and absence of 10(-8) mol/L insulin (P < .01). P yoelii GPIs stimulated pyruvate dehydrogenase phosphatase (PDH-Pase) and inhibited both cyclic adenosine monophosphate (cAMP)-dependent protein kinase A and glucose-6-phosphatase (G6Pase). P yoelii GPIs had no effect on the activity of the gluconeogenic enzymes fructose-1,6-bisphosphatase (FBPase) and phosphoenolpyruvate carboxykinase (PEPCK). This is the first report of the hypoglycemic effect of P yoelii GPIs in murine models of type 2 diabetes. In conclusion, P yoelii GPIs demonstrated acute antidiabetic effects in db/db mice and in vitro. We suggest that P yoelii GPIs, when fully characterized, may provide structural information for the synthesis of new drugs for the management of diabetes.
Collapse
Affiliation(s)
- K M Elased
- Department of Immunology and Molecular Pathology, Royal Free and University College London Medical School, Windeyer Institute of Medical Sciences, UK
| | | | | | | | | |
Collapse
|
38
|
Krawiec L, Pizarro RA, Aphalo P, de Cavanagh EMV, Pisarev MA, Juvenal GJ, Policastro L, Bocanera LV. Role of peroxidase inhibition by insulin in the bovine thyroid cell proliferation mechanism. ACTA ACUST UNITED AC 2004; 271:2607-14. [PMID: 15206926 DOI: 10.1111/j.1432-1033.2004.04189.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monolayer primary cultures of thyroid cells produce, in the presence of insulin, a cytosolic inhibitor of thyroid peroxidase (TPO), lacto peroxidase (LPO), horseradish peroxidase (HRPO) and glutathione peroxidase (GPX). The inhibitor, localized in the cytosol, is thermostable and hydrophylic. Its molecular mass is less than 2 kDa. The inhibitory activity, resistant to proteolytic and nucleolytic enzymes, disappears with sodium metaperiodate treatment, as an oxidant of carbohydrates, supporting its oligosaccharide structure. The presence of inositol, mannose, glucose, the specific inhibition of cyclic AMP-dependent protein kinase and the disappearance of peroxidase inhibition by alkaline phosphatase and alpha-mannosidase in purified samples confirms its chemical structure as inositol phosphoglycan-like. Purification by anionic interchange shows that the peroxidase inhibitor elutes like the two subtypes of inositol phosphoglycans (IPG)P and A, characterized as signal transducers of insulin action. Insulin significantly increases the concentration of the peroxidase inhibitor in a thyroid cell culture at 48 h. The addition of both isolated substances to a primary thyroid culture produces, after 30 min, a significant increase in hydrogen peroxide (H2O2) concentration in the medium, concomitantly with the disappearance of the GPX activity in the same conditions. The presence of insulin or anyone of both products, during 48 h, induces cell proliferation of the thyroid cell culture. In conclusion, insulin stimulates thyroid cell division through the effect of a peroxidase inhibitor, as its second messenger. The inhibition of GPX by its action positively modulates the H2O2 level, which would produce, as was demonstrated by other authors, the signal for cell proliferation.
Collapse
Affiliation(s)
- León Krawiec
- Argentine National Research Council (CONICET), Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The structure of covalently-linked glycosylphosphatidylinositol (GPI) anchors of membrane proteins displayed on the cell surface is described. Evidence of how the GPI-anchors are sorted into membrane rafts in the plasma membrane is reviewed. Proteins are released by hydrolysis of the linkage to the GPI anchor and phospholipases from different sources involved in this process are characterised. The regulation of protein conformation and function resulting from phospholipase cleavage of the GPI anchor is discussed in the context of its role in signal transduction by insulin. In this signalling system, re-distribution of critical membrane components, including GPI-anchored proteins and non-receptor tyrosine kinases, between different raft domains appears to play a central role in the signal transduction pathway.
Collapse
Affiliation(s)
- Frances J Sharom
- Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| | | |
Collapse
|
40
|
Kawa JM, Taylor CG, Przybylski R. Buckwheat concentrate reduces serum glucose in streptozotocin-diabetic rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2003; 51:7287-7291. [PMID: 14640572 DOI: 10.1021/jf0302153] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The antihyperglycemic effects of chemically synthesized d-chiro-inositol (d-CI), a component of an insulin mediator, have been demonstrated in rats. Buckwheat contains relatively high levels of d-CI: thus, it has been proposed as a source of d-CI for reducing serum glucose concentrations in diabetics. The present study evaluates the effects of a buckwheat concentrate, containing d-CI, on hyperglycemia and glucose tolerance in streptozotocin (STZ) rats. In fed STZ rats, both doses of the buckwheat concentrate (containing 10 and 20 mg of d-CI/kg of body weight) were effective for lowering serum glucose concentrations by 12-19% at 90 and 120 min after administration. Findings from this study demonstrate that a buckwheat concentrate is an effective source of d-CI for lowering serum glucose concentrations in rats and therefore may be useful in the treatment of diabetes.
Collapse
Affiliation(s)
- Julianne M Kawa
- Department of Human Nutritional Sciences, University of Manitoba, H505 Duff Roblin Building, 190 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2
| | | | | |
Collapse
|
41
|
Kawa JM, Przybylski R, Taylor CG. Urinary chiro-inositol and myo-inositol excretion is elevated in the diabetic db/db mouse and streptozotocin diabetic rat. Exp Biol Med (Maywood) 2003; 228:907-14. [PMID: 12968062 DOI: 10.1177/153537020322800806] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Inositol phosphoglycan molecules containing either D-chiro-inositol or myo-inositol have been isolated from various mammalian tissues and are putative mediators of insulin action. Urinary excretion of inositols appears to be altered in diabetes mellitus; however, the relationships with different types of diabetes are unclear. The objective of this study was to determine the urinary excretion of chiro- and myo-inositol in diabetic animal models, including streptozotocin (STZ) rats, db/db mice, and fa/fa Zucker rats. In STZ rats (type 1 diabetes), 12-hr urinary excretion of chiro-inositol was elevated 336-fold and myo-inositol excretion was elevated 47-fold compared with their nondiabetic counterparts. When corrected for creatinine, chiro-inositol excretion was 259-fold higher and myo-inositol excretion was 36-fold higher in STZ rats than in normal rats. The same pattern was observed in db/db mice (type 2 diabetes), where 12-hr urinary chiro-inositol excretion was elevated 247-fold compared with normal mice. When corrected for creatinine, chiro-inositol excretion was 2455-fold higher and urinary myo-inositol excretion was elevated 8.5-fold in db/db mice compared with normal mice. The fa/fa Zucker rats (impaired glucose tolerance) had a pattern of urinary inositol excretion that was similar to the nondiabetic animals (lean Zucker rats, C57BL/6 mice, and Sprague-Dawley rats). In summary, urinary chiro-inositol and myo-inositol excretion was elevated in animal models of type 1 and type 2 diabetes mellitus, concomitant with hyperglycemia and glucosuria.
Collapse
Affiliation(s)
- Julianne M Kawa
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | | | | |
Collapse
|
42
|
Johnson SA, Denton RM. Insulin stimulation of pyruvate dehydrogenase in adipocytes involves two distinct signalling pathways. Biochem J 2003; 369:351-6. [PMID: 12374570 PMCID: PMC1223089 DOI: 10.1042/bj20020920] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Revised: 09/05/2002] [Accepted: 10/09/2002] [Indexed: 11/17/2022]
Abstract
In isolated rat adipocytes, the insulin stimulation of pyruvate dehydrogenase can be partially inhibited by inhibitors of PI3K (phosphoinositide 3-kinase) and MEK1/2 (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase). In combination, U0126 and wortmannin completely block the insulin stimulation of pyruvate dehydrogenase. It is concluded that the effect of insulin on pyruvate dehydrogenase in rat adipocytes involves two distinct signalling pathways: one is sensitive to wortmannin and the other to U0126. The synthetic phosphoinositolglycan PIG41 can activate pyruvate dehydrogenase but the activation is only approx. 30% of the maximal effect of insulin. This modest activation can be completely blocked by wortmannin alone, suggesting that PIG41 acts through only one of the pathways leading to the activation of pyruvate dehydrogenase.
Collapse
Affiliation(s)
- Sam A Johnson
- Department of Biochemistry, University of Bristol, University Walk, Clifton, Bristol BS8 1TD, U.K
| | | |
Collapse
|
43
|
Boudot C, Kadri Z, Petitfrère E, Lambert E, Chrétien S, Mayeux P, Haye B, Billat C. Phosphatidylinositol 3-kinase regulates glycosylphosphatidylinositol hydrolysis through PLC-gamma(2) activation in erythropoietin-stimulated cells. Cell Signal 2002; 14:869-78. [PMID: 12135708 DOI: 10.1016/s0898-6568(02)00036-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Erythropoietin (Epo)-induced glycosylphosphatidylinositol (GPI) hydrolysis was previously described to be correlated with phospholipase C-gamma 2 (PLC-gamma2) activation. Here, we analyzed the involvement of phosphatidylinositol (PtdIns) 3-kinase in GPI hydrolysis through PLC-gamma2 tyrosine phosphorylation in response to Epo in FDC-P1 cells transfected with a wild type (WT) erythropoietin-receptor (Epo-R). We showed that phosphatidylinositol 3-kinase (PtdIns 3-kinase) inhibitor LY294002 inhibits Epo-induced hydrolysis of endogenous GPI and Epo-induced PLC-gamma2 tyrosine phosphorylation in a dose-dependent manner. Wortmannin, another PtdIns 3-kinase inhibitor, also suppressed Epo-induced PLC-gamma2 tyrosine phosphorylation. We also present evidence that PLC-gamma2 translocation to the membrane fraction on Epo stimulation is completely inhibited by LY294002. Upon Epo stimulation, the tyrosine-phosphorylated PLC-gamma2 was found to be associated with the tyrosine-phosphorylated Grb2-associated binder (GAB)2, SHC and SHP2 proteins. LY294002 cell preincubation did not affect GAB2, SHC and SHP2 tyrosine phosphorylation but inhibited the binding of PLC-gamma2 to GAB2 and SHP2. Taken together, these results show that PtdIns 3-kinase controls Epo-induced GPI hydrolysis through PLC-gamma2.
Collapse
Affiliation(s)
- Cédric Boudot
- Laboratoire de Biochimie, CNRS, FRE 2534, IFR 53 Biomolécules, UFR Sciences Exactes et Naturelles, BP 1039, Université de Reims Champagne-Ardenne, 51687 Reims Cedex 2, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cid M, Bonilla J, Dumarçay S, Alfonso F, Martín-Lomas M. New Synthesis of 1-D-O-(2-Amino-2-deoxy-D-gluco- and -galactopyranosyl)-chiro-inositols. European J Org Chem 2002. [DOI: 10.1002/1099-0690(200203)2002:5<881::aid-ejoc881>3.0.co;2-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Schofield JN, Stephens JW, Hurel SJ, Bell KM, deSouza JB, Rademacher TW. Insulin reduces serum glycosylphosphatidylinositol phospholipase D levels in human type I diabetic patients and streptozotocin diabetic rats. Mol Genet Metab 2002; 75:154-61. [PMID: 11855934 DOI: 10.1006/mgme.2001.3287] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enzyme glycosylphosphatidylinositol phospholipase D has a postulated role in the insulin-mimetic signaling pathway of glycosylphosphatidylinositol compounds. We have investigated enzyme activity in the serum of human type I diabetic patients and plasma and tissues of streptozotocin-induced diabetic rats following insulin administration. In the human diabetic patients serum enzyme activity fell by an average of 10.6% (SEM = 2.7; P = 0.008; n = 20) following administration of insulin. In addition serum enzyme activity appeared to be depleted by 27% (SEM = 8.8; P = 0.011; n = 10) compared to nondiabetic controls. In untreated diabetic rats plasma enzyme activity gradually increased 0.3-fold over a 6-week period (P < 0.001; n = 8), this increase was reversed and activity normalized when these animals were treated with insulin. Cloning of the rat glycosylphosphatidylinositol phospholipase D cDNA enabled confirmation of the liver as the principal organ of synthesis. Analysis of mRNA levels in the livers of the diabetic rats showed that gene expression was reduced in the insulin-treated animals compared to the noninsulin-treated controls by 0.7-fold (P = 0.004; n = 4). Tissue enzyme activity was also reduced in the insulin-treated rats; in skeletal muscle enzyme activity was 0.3-fold lower (P = 0.001; n = 4). Insulin therefore decreases glycosylphosphatidylinositol phospholipase D synthesis in diabetic animals resulting in decreased serum enzyme levels, suggesting a relationship between this enzyme and the function of insulin.
Collapse
Affiliation(s)
- J N Schofield
- Department of Immunology and Molecular Pathology, University College, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
46
|
Pañeda C, Villar AV, Alonso A, Goñi FM, Varela F, Brodbeck U, León Y, Varela-Nieto I, Jones DR. Purification and Characterization of Insulin-Mimetic Inositol Phosphoglycan-Like Molecules From Grass Pea (Lathyrus sativus) Seeds. Mol Med 2001. [DOI: 10.1007/bf03401850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
47
|
Elased KM, Gumaa KA, de Souza JB, Rahmoune H, Playfair JH, Rademacher TW. Reversal of type 2 diabetes in mice by products of malaria parasites. II. Role of inositol phosphoglycans (IPGs). Mol Genet Metab 2001; 73:248-58. [PMID: 11461192 DOI: 10.1006/mgme.2001.3186] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have previously shown that infection with Plasmodium yoelii malaria or injection of extracts from malaria-parasitized red cells induces hypoglycemia in normal mice and normalizes the hyperglycemia in mice made moderately diabetic with streptozotocin. Inositol phosphoglycans (IPGs) are released outside cells by hydrolysis of membrane-bound glycosylphosphatidylinositols (GPIs), and act as second messengers mediating insulin action. The C57BL/Ks-db/db and C57BL/6J-ob/ob mice offer good models for studies on human obesity and Type 2 diabetes. In the present study, we show that a single iv injection of IPG-A or IPG-P extracted from P. yoelii significantly (P < 0.02) lowers the blood glucose in STZ-diabetic, db/db, and in ob/ob mice for at least 4--6 h. Using rat white adipocytes, IPG-P increased lipogenesis by 20--30% in the presence and absence of maximal concentrations of insulin (10(-8) M) (P < 0.01) and stimulated pyruvate dehydrogenase (PDH) phosphatase in a dose-related manner. Both IPG-A and IPG-P inhibited c-AMP-dependent protein kinase (PKA) in a dose-related manner. Compositional analysis of IPGs after 24 h hydrolysis revealed the presence of myo-inositol, phosphorus, galactosamine, glucosamine, and glucose in both IPG-A and IPG-P. However, hydrolysis of IPGs for 4 h highlighted differences between IPG-A and IPG-P. There are some functional similarities between P. yoelii IPGs and those previously described for mammalian liver. However, this is the first report of the hypoglycemic effect of IPGs in murine models of Type 2 diabetes. We suggest that IPGs isolated from P. yoelii, when fully characterized, may provide structural information for the synthesis of new drugs for the management of diabetes mellitus.
Collapse
Affiliation(s)
- K M Elased
- Rademacher Group Ltd, Arthur Stanley House, 6th Floor, 40-50 Tottenham Street, London W1P 9PG, United Kingdom.
| | | | | | | | | | | |
Collapse
|
48
|
Müller G, Wied S, Frick W. Cross talk of pp125(FAK) and pp59(Lyn) non-receptor tyrosine kinases to insulin-mimetic signaling in adipocytes. Mol Cell Biol 2000; 20:4708-23. [PMID: 10848597 PMCID: PMC85892 DOI: 10.1128/mcb.20.13.4708-4723.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Signaling molecules downstream from the insulin receptor, such as the insulin receptor substrate protein 1 (IRS-1), are also activated by other receptor tyrosine kinases. Here we demonstrate that the non-receptor tyrosine kinases, focal adhesion kinase pp125(FAK) and Src-class kinase pp59(Lyn), after insulin-independent activation by phosphoinositolglycans (PIG), can cross talk to metabolic insulin signaling in rat and 3T3-L1 adipocytes. Introduction by electroporation of neutralizing antibodies against pp59(Lyn) and pp125(FAK) into isolated rat adipocytes blocked IRS-1 tyrosine phosphorylation in response to PIG but not insulin. Introduction of peptides encompassing either the major autophosphorylation site of pp125(FAK), tyrosine 397, or its regulatory loop with the twin tyrosines 576 and 577 inhibited PIG-induced IRS-1 tyrosine phosphorylation and glucose transport. PIG-induced pp59(Lyn) kinase activation and pp125(FAK) tyrosine phosphorylation were impaired by the former and latter peptide, respectively. Up-regulation of pp125(FAK) by integrin clustering diminished PIG-induced IRS-1 tyrosine phosphorylation and glucose transport in nonadherent but not adherent adipocytes. In conclusion, PIG induced IRS-1 tyrosine phosphorylation by causing (integrin antagonized) recruitment of IRS-1 and pp59(Lyn) to the common signaling platform molecule pp125(FAK), where cross talk of PIG-like structures and extracellular matrix proteins to metabolic insulin signaling may converge, possibly for the integration of the demands of glucose metabolism and cell architecture.
Collapse
Affiliation(s)
- G Müller
- Aventis Pharma Deutschland GmbH, 65926 Frankfurt am Main, Germany.
| | | | | |
Collapse
|
49
|
Kunjara S, Wang DY, McLean P, Greenbaum AL, Rademacher TW. Inositol phosphoglycans and the regulation of the secretion of leptin: in vitro effects on leptin release from adipocytes and the relationship to obesity. Mol Genet Metab 2000; 70:61-8. [PMID: 10833332 DOI: 10.1006/mgme.2000.2988] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The ratio of two families of inositol phosphoglycans (IPG-A:IPG-P), insulin second messengers, is raised in non-insulin-dependent diabetes mellitus (NIDDM) and obesity. It is shown here that IPG A type inhibits leptin release from adipocytes, contrasting with the action of insulin (stimulation) and IPG P type (no effect). The significance of inhibitory effects of IPG A type on leptin release is important in relation to obesity and NIDDM in view of the action of leptin in promoting Lep expression and fat oxidation in muscle, in addition to its effects on satiety. Energy conservation and oxidation via interorgan regulation by leptin could be compromised by a rise in the IPG-A:IPG-P ratio.
Collapse
Affiliation(s)
- S Kunjara
- Department of Molecular Pathology, University College London Medical School, UK
| | | | | | | | | |
Collapse
|
50
|
Bogdanowicz P, Pujol JP. Glycosylphosphatidylinositol (GPI) hydrolysis by transforming growth factor-beta1 (TGF-beta1) as a potential early step in the inhibition of epithelial cell proliferation. Mol Cell Biochem 2000; 208:143-50. [PMID: 10939638 DOI: 10.1023/a:1007064211120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glycosylphosphatidylinositol (GPI) was previously identified in rabbit articular chondrocytes as being a precursor of inositolphosphate glycan (IPG), released upon (Transforming Growth Factor-beta) (TGF-beta) exposure, and capable of mimicking the proliferative effects of the growth factor. Here, using mink lung epithelial cells (CCL 64), which are known to be growth-inhibited by TGF-beta, we studied the potential role of GPI-derived molecules in the antiproliferative effect of TGF-beta1. We first identified an endogenous pool of GPI material and three different anionic forms of IPG in epithelial cells pre-labeled with [3H]glucosamine. Shortly (8 min) after TGF-beta1 addition, the cells responded by a rapid and transient hydrolysis of GPI, accompanied by the release of the most anionic form of IPG. This TGF-beta-released IPG, after partial purification, was shown to decrease the proliferation of CCL 64 cells. Moreover, anti-IPG antibodies reduced the effects of TGF-beta and blocked the effects of partially purified IPG. These data strongly suggest that GPI hydrolysis may be an early step of the TGF-beta signalling pathway involved in growth inhibition of epithelial cells.
Collapse
Affiliation(s)
- P Bogdanowicz
- Laboratoire de Biochimie du Tissu Conjonctif, Faculté de Médecine, CHU Côte de Nacre, Caen, France
| | | |
Collapse
|