1
|
García-Domínguez M. Enkephalins and Pain Modulation: Mechanisms of Action and Therapeutic Perspectives. Biomolecules 2024; 14:926. [PMID: 39199314 PMCID: PMC11353043 DOI: 10.3390/biom14080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Enkephalins, a subclass of endogenous opioid peptides, play a pivotal role in pain modulation. Enkephalins primarily exert their effects through opioid receptors located widely throughout both the central and peripheral nervous systems. This review will explore the mechanisms by which enkephalins produce analgesia, emotional regulation, neuroprotection, and other physiological effects. Furthermore, this review will analyze the involvement of enkephalins in the modulation of different pathologies characterized by severe pain. Understanding the complex role of enkephalins in pain processing provides valuable insight into potential therapeutic strategies for managing pain disorders.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Faculty of Education and Psychology, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain
| |
Collapse
|
2
|
Nementzik LR, Thumbadoo KM, Murray HC, Gordon D, Yang S, Blair IP, Turner C, Faull RLM, Curtis MA, McLean C, Nicholson GA, Swanson MEV, Scotter EL. Distribution of ubiquilin 2 and TDP-43 aggregates throughout the CNS in UBQLN2 p.T487I-linked amyotrophic lateral sclerosis and frontotemporal dementia. Brain Pathol 2024; 34:e13230. [PMID: 38115557 PMCID: PMC11007053 DOI: 10.1111/bpa.13230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023] Open
Abstract
Mutations in the UBQLN2 gene cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The neuropathology of such UBQLN2-linked cases of ALS/FTD is characterised by aggregates of the ubiquilin 2 protein in addition to aggregates of the transactive response DNA-binding protein of 43 kDa (TDP-43). ALS and FTD without UBQLN2 mutations are also characterised by TDP-43 aggregates, that may or may not colocalise with wildtype ubiquilin 2. Despite this, the relative contributions of TDP-43 and ubiquilin 2 to disease pathogenesis remain largely under-characterised, as does their relative deposition as aggregates across the central nervous system (CNS). Here we conducted multiplex immunohistochemistry of three UBQLN2 p.T487I-linked ALS/FTD cases, three non-UBQLN2-linked (sporadic) ALS cases, and 8 non-neurodegenerative disease controls, covering 40 CNS regions. We then quantified ubiquilin 2 aggregates, TDP-43 aggregates and aggregates containing both proteins in regions of interest to determine how UBQLN2-linked and non-UBQLN2-linked proteinopathy differ. We find that ubiquilin 2 aggregates that are negative for TDP-43 are predominantly small and punctate and are abundant in the hippocampal formation, spinal cord, all tested regions of neocortex, medulla and substantia nigra in UBQLN2-linked ALS/FTD but not sporadic ALS. Curiously, the striatum harboured small punctate ubiquilin 2 aggregates in all cases examined, while large diffuse striatal ubiquilin 2 aggregates were specific to UBQLN2-linked ALS/FTD. Overall, ubiquilin 2 is mainly deposited in clinically unaffected regions throughout the CNS such that symptomology in UBQLN2-linked cases maps best to the aggregation of TDP-43.
Collapse
Affiliation(s)
- Laura R. Nementzik
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| | - Kyrah M. Thumbadoo
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| | - Helen C. Murray
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
- Department of Anatomy and Medical ImagingUniversity of AucklandAucklandNew Zealand
| | - David Gordon
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| | - Shu Yang
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Ian P. Blair
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Clinton Turner
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
- Department of Anatomy and Medical ImagingUniversity of AucklandAucklandNew Zealand
- Department of Anatomical Pathology, LabPlusAuckland City HospitalAucklandNew Zealand
| | - Richard L. M. Faull
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
- Department of Anatomy and Medical ImagingUniversity of AucklandAucklandNew Zealand
| | - Maurice A. Curtis
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
- Department of Anatomy and Medical ImagingUniversity of AucklandAucklandNew Zealand
| | - Catriona McLean
- Department of Anatomical PathologyAlfred HealthMelbourneVictoriaAustralia
| | - Garth A. Nicholson
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine, Health, and Human SciencesMacquarie UniversityNorth RydeNew South WalesAustralia
- Northcott Neuroscience LaboratoryANZAC Research InstituteSydneyAustralia
- Molecular Medicine LaboratoryConcord Repatriation General HospitalSydneyAustralia
| | - Molly E. V. Swanson
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| | - Emma L. Scotter
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
- Centre for Brain ResearchUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
3
|
Oh YM, Karube F, Takahashi S, Kobayashi K, Takada M, Uchigashima M, Watanabe M, Nishizawa K, Kobayashi K, Fujiyama F. Using a novel PV-Cre rat model to characterize pallidonigral cells and their terminations. Brain Struct Funct 2016; 222:2359-2378. [PMID: 27995326 DOI: 10.1007/s00429-016-1346-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/25/2016] [Indexed: 10/20/2022]
Abstract
In the present study, we generated a novel parvalbumin (PV)-Cre rat model and conducted detailed morphological and electrophysiological investigations of axons from PV neurons in globus pallidus (GP). The GP is considered as a relay nucleus in the indirect pathway of the basal ganglia (BG). Previous studies have used molecular profiling and projection patterns to demonstrate cellular heterogeneity in the GP; for example, PV-expressing neurons are known to comprise approximately 50% of GP neurons and represent majority of prototypic neurons that project to the subthalamic nucleus and/or output nuclei of BG, entopeduncular nucleus and substantia nigra (SN). The present study aimed to identify the characteristic projection patterns of PV neurons in the GP (PV-GP neurons) and determine whether these neurons target dopaminergic or GABAergic neurons in SN pars compacta (SNc) or reticulata (SNr), respectively. We initially found that (1) 57% of PV neurons co-expressed Lim-homeobox 6, (2) the PV-GP terminals were preferentially distributed in the ventral part of dorsal tier of SNc, (3) PV-GP neurons formed basket-like appositions with the somata of tyrosine hydroxylase, PV, calretinin and cholecystokinin immunoreactive neurons in the SN, and (4) in vitro whole-cell recording during optogenetic photo-stimulation of PV-GP terminals in SNc demonstrated that PV-GP neurons strongly inhibited dopamine neurons via GABAA receptors. These results suggest that dopamine neurons receive direct focal inputs from PV-GP prototypic neurons. The identification of high-contrast inhibitory systems on dopamine neurons might represent a key step toward understanding the BG function.
Collapse
Affiliation(s)
- Yoon-Mi Oh
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Fuyuki Karube
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Susumu Takahashi
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, 610-0394, Japan
| | - Kenta Kobayashi
- Section of Viral Vector Development, National Institute for Physiological Sciences, Okazaki, 444-8585, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, 484-8506, Japan
| | - Motokazu Uchigashima
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, 060-8638, Japan
| | - Kayo Nishizawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Fumino Fujiyama
- Laboratory of Neural Circuitry, Graduate School of Brain Science, Doshisha University, Kyotanabe, 610-0394, Japan.
| |
Collapse
|
4
|
Singh‐Bains MK, Waldvogel HJ, Faull RLM. The role of the human globus pallidus in Huntington's disease. Brain Pathol 2016; 26:741-751. [PMID: 27529459 PMCID: PMC8029019 DOI: 10.1111/bpa.12429] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/01/2016] [Indexed: 11/27/2022] Open
Abstract
Huntington's disease (HD) is characterized by pronounced pathology of the basal ganglia, with numerous studies documenting the pattern of striatal neurodegeneration in the human brain. However, a principle target of striatal outflow, the globus pallidus (GP), has received limited attention in comparison, despite being a core component of the basal ganglia. The external segment (GPe) is a major output of the dorsal striatum, connecting widely to other basal ganglia nuclei via the indirect motor pathway. The internal segment (GPi) is a final output station of both the direct and indirect motor pathways of the basal ganglia. The ventral pallidum (VP), in contrast, is a primary output of the limbic ventral striatum. Currently, there is a lack of consensus in the literature regarding the extent of GPe and GPi neurodegeneration in HD, with a conflict between pallidal neurons being preserved, and pallidal neurons being lost. In addition, no current evidence considers the fate of the VP in HD, despite it being a key structure involved in reward and motivation. Understanding the involvement of these structures in HD will help to determine their involvement in basal ganglia pathway dysfunction in the disease. A clear understanding of the impact of striatal projection loss on the main neurons that receive striatal input, the pallidal neurons, will aid in the understanding of disease pathogenesis. In addition, a clearer picture of pallidal involvement in HD may contribute to providing a morphological basis to the considerable variability in the types of motor, behavioral, and cognitive symptoms in HD. This review aims to highlight the importance of the globus pallidus, a critical component of the cortical-basal ganglia circuits, and its role in the pathogenesis of HD. This review also summarizes the current literature relating to human studies of the globus pallidus in HD.
Collapse
Affiliation(s)
- Malvindar K. Singh‐Bains
- Centre for Brain Research, University of AucklandAucklandNew Zealand
- Department of Anatomy with Medical ImagingUniversity of AucklandAucklandNew Zealand
| | - Henry J. Waldvogel
- Centre for Brain Research, University of AucklandAucklandNew Zealand
- Department of Anatomy with Medical ImagingUniversity of AucklandAucklandNew Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, University of AucklandAucklandNew Zealand
- Department of Anatomy with Medical ImagingUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
5
|
Singh-Bains MK, Tippett LJ, Hogg VM, Synek BJ, Roxburgh RH, Waldvogel HJ, Faull RLM. Globus pallidus degeneration and clinicopathological features of Huntington disease. Ann Neurol 2016; 80:185-201. [PMID: 27255697 DOI: 10.1002/ana.24694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Numerous studies have focused on striatal neurodegeneration in Huntington disease (HD). In comparison, the globus pallidus (GP), a main striatal output nucleus, has received less focus in HD research. This study characterizes the pattern of neurodegeneration in 3 subdivisions of the human GP, and its relation to clinical symptomatology. METHODS Stereology was used to measure regional atrophy, neuronal loss, and soma neuronal atrophy in 3 components of the GP-the external segment (GPe), internal segment (GPi), and ventral pallidum (VP)-in 8 HD cases compared with 7 matched control cases. The findings in the HD patients were compared with HD striatal neuropathological grade, and symptom scores of motor impairment, chorea, cognition, and mood. RESULTS Relative to controls, in the HD patients the GPe showed a 54% overall volume decline, 60% neuron loss, and 34% reduced soma volume. Similarly, the VP was reduced in volume by 31%, with 48% neuron loss and 64% reduced soma volume. In contrast, the GPi was less affected, with a 38% reduction in overall volume only. The extent of GP neurodegeneration correlated with increasing striatal neuropathological grade. Decreasing GPe and VP volumes were associated with poorer cognition and increasing motor impairments, but not chorea. In contrast, decreasing GPi volumes were associated with decreasing levels of irritability. INTERPRETATION The HD gene mutation produces variable degrees of GP segment degeneration, highlighting the differential vulnerability of striato-GP target projections. The relationship established between clinical symptom scores and pallidal degeneration provides a novel contribution to understanding the clinicopathological associations in HD. Ann Neurol 2016;80:185-201.
Collapse
Affiliation(s)
- Malvindar K Singh-Bains
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| | - Lynette J Tippett
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Psychology, University of Auckland, Auckland, New Zealand
| | - Virginia M Hogg
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Psychology, University of Auckland, Auckland, New Zealand
| | - Beth J Synek
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Forensic Pathology, Auckland City Hospital, Auckland, New Zealand
| | - Richard H Roxburgh
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Henry J Waldvogel
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy with Radiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Mapping of enkephalins and adrenocorticotropic hormone in the squirrel monkey brainstem. Anat Sci Int 2016; 92:275-292. [DOI: 10.1007/s12565-016-0333-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/10/2016] [Indexed: 10/22/2022]
|
7
|
Bastías-Candia S, Di Benedetto M, D'Addario C, Candeletti S, Romualdi P. Combined exposure to agriculture pesticides, paraquat and maneb, induces alterations in the N/OFQ-NOPr and PDYN/KOPr systems in rats: Relevance to sporadic Parkinson's disease. ENVIRONMENTAL TOXICOLOGY 2015; 30:656-63. [PMID: 24376148 DOI: 10.1002/tox.21943] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
Despite several years of research, the aetiology of Parkinson's disease (PD) is quite far from being solved. In PD, as well as in other neurodegenerative disorders, it has been proposed that the combination of multiple factors might contribute to the onset of the disease. Indeed, several authors have suggested that environmental factors, such as pollutants and chemicals, might be associated with the onset of several neurodegenerative disorders. On the other hand, several studies have described that the nociceptin/orphanin-NOP and prodynorphin-KOP opioid systems are implicated in the pathology of Parkinson's disease. Considering the nonrestricted commercial availability and common use of several pesticides, such as paraquat and maneb, in agriculture of less developed countries, the aim of our study was to investigate the involvement of nociceptin/orphanin-NOP and prodynorphin-KOP systems in a chronic paraquat and maneb animal model of Parkinson's disease. Our results showed that after paraquat/maneb (5/15 mg kg(-1) ) treatment, a significant reduction in tyrosine hydroxylase (TH) levels, the rate-limiting enzyme for dopamine synthesis, was observed. Also, the association of paraquat and maneb (5/15 mg kg(-1) ) induced an increase in nociceptin/orphanin and a decrease of prodynorphin gene expression levels in the substantia nigra with a down-regulation of NOP and KOP receptors after both treatments in the substantia nigra and caudate putamen. These data further confirm that paraquat and maneb toxicity can modulate gene expression of the nociceptin/orphanin-NOP receptor and prodynorphin-KOP receptor systems in the substantia nigra and caudate putamen, offering further support to the hypothesis that chronic exposure to these agrochemicals might be implicated in the mechanisms underlying sporadic Parkinson's disease. © 2013 Wiley Periodicals, Inc. Environ Toxicol 30: 656-663, 2015.
Collapse
Affiliation(s)
| | - Manuela Di Benedetto
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126, Bologna, Italy
| | - Claudio D'Addario
- Department of Biomedical Sciences, University of Teramo, Piazza Aldo Moro 45, 64100 Teramo, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126, Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Irnerio 48, 40126, Bologna, Italy
| |
Collapse
|
8
|
Schiffmann SN, Mailleux P, Przedborski S, Halleux P, Lotstra F, Vanderhaeghen JJ. Cholecystokinin distribution in the human striatum and related subcortical structures. Neurochem Int 2012; 14:167-73. [PMID: 20504414 DOI: 10.1016/0197-0186(89)90118-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/1988] [Indexed: 11/19/2022]
Abstract
The distribution of cholecystokinin immunoreactive nerve cell bodies and processes is reported in the human striatum and adjacent structures such as the claustrum, the pallidum, the bed nucleus of the stria terminalis and the substantia innominata. Cholecystokinin-positive terminals are present in the striatum where they are arranged in a patchy pattern. Cholecystokinin-positive somata are observed in the claustrum and in the bed nucleus of the stria terminalis but not in the striatum, the pallidum or the substantia innominata. Dense networks of cholecystokinin-positive woolly fibres are present in the bed nucleus of the stria terminalis and the substantia innominata. These results suggested that cholecystokinin is involved in the compartmental organization of the human striatum. This compartmentalization has functional and pathological implications. Involvement of the cholecystokinin system in some basal ganglia diseases is therefore expected. Presence of neuronal cholecystokinin in the accumbens nucleus, bed nucleus of the stria terminalis and substantia innominata also suggests that this peptide may interact at different levels in the human limbic system.
Collapse
Affiliation(s)
- S N Schiffmann
- Laboratories of Neuropathology and Neuropeptide Research and Pathology and Electron Microscopy, Faculty of Medicine, Erasme and Brugmann Hospitals, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
9
|
Kuenzel WJ, Medina L, Csillag A, Perkel DJ, Reiner A. The avian subpallium: new insights into structural and functional subdivisions occupying the lateral subpallial wall and their embryological origins. Brain Res 2011; 1424:67-101. [PMID: 22015350 PMCID: PMC3378669 DOI: 10.1016/j.brainres.2011.09.037] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/16/2011] [Accepted: 09/17/2011] [Indexed: 12/18/2022]
Abstract
The subpallial region of the avian telencephalon contains neural systems whose functions are critical to the survival of individual vertebrates and their species. The subpallial neural structures can be grouped into five major functional systems, namely the dorsal somatomotor basal ganglia; ventral viscerolimbic basal ganglia; subpallial extended amygdala including the central and medial extended amygdala and bed nuclei of the stria terminalis; basal telencephalic cholinergic and non-cholinergic corticopetal systems; and septum. The paper provides an overview of the major developmental, neuroanatomical and functional characteristics of the first four of these neural systems, all of which belong to the lateral telencephalic wall. The review particularly focuses on new findings that have emerged since the identity, extent and terminology for the regions were considered by the Avian Brain Nomenclature Forum. New terminology is introduced as appropriate based on the new findings. The paper also addresses regional similarities and differences between birds and mammals, and notes areas where gaps in knowledge occur for birds.
Collapse
Affiliation(s)
- Wayne J Kuenzel
- Department of Poultry Science, Poultry Science Center, University of Arkansas, Fayetteville, Arkansas 72701, USA.
| | | | | | | | | |
Collapse
|
10
|
|
11
|
|
12
|
Dopamine, schizophrenia, mania, and depression: Toward a unified hypothesis of cortico-striatopallido-thalamic function. Behav Brain Sci 2010. [DOI: 10.1017/s0140525x00047488] [Citation(s) in RCA: 490] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AbstractConsiderable evidence from preclinical and clinical investigations implicates disturbances of brain dopamine (DA) function in the pathophysiology of several psychiatric and neurologic disorders. We describe a neural model that may help organize theseindependent experimental observations. Cortical regions classically associated with the limbic system interact with infracortical structures, including the nucleus accumbens, ventral pallidum, and dorsomedial nucleus of the thalamus. In our model, overactivity in forebrain DA systems results in the loss of lateral inhibitory interactions in the nucleus accumbens, causing disinhibition of pallidothalamic efferents; this in turn causes rapid changes and a loss of focused corticothalamic activity in cortical regions controlling cognitive and emotional processes. These effects might be manifested clinically by some symptoms of psychoses. Underactivity of forebrain DA results in excess lateral inhibition in the nucleus accumbens, causing tonic inhibition of pallidothalamic efferents; this perpetuates tonic corticothalamic activity and prevents the initiation of new activity in other critical cortical regions. These effects might be manifested clinically by some symptoms of depression. This model parallels existing explanations for the etiology of several movement disorders, and may lead to testable inferences regarding the neural substrates of specific psychopathologies.
Collapse
|
13
|
|
14
|
|
15
|
|
16
|
|
17
|
|
18
|
|
19
|
|
20
|
|
21
|
|
22
|
Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 2010; 35:4-26. [PMID: 19812543 PMCID: PMC3055449 DOI: 10.1038/npp.2009.129] [Citation(s) in RCA: 2540] [Impact Index Per Article: 169.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 08/01/2009] [Accepted: 08/04/2009] [Indexed: 11/09/2022]
Abstract
Although cells in many brain regions respond to reward, the cortical-basal ganglia circuit is at the heart of the reward system. The key structures in this network are the anterior cingulate cortex, the orbital prefrontal cortex, the ventral striatum, the ventral pallidum, and the midbrain dopamine neurons. In addition, other structures, including the dorsal prefrontal cortex, amygdala, hippocampus, thalamus, and lateral habenular nucleus, and specific brainstem structures such as the pedunculopontine nucleus, and the raphe nucleus, are key components in regulating the reward circuit. Connectivity between these areas forms a complex neural network that mediates different aspects of reward processing. Advances in neuroimaging techniques allow better spatial and temporal resolution. These studies now demonstrate that human functional and structural imaging results map increasingly close to primate anatomy.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | |
Collapse
|
23
|
van Kuyck K, Gabriëls L, Nuttin B. Electrical Brain Stimulation in Treatment-Resistant Obsessive–Compulsive Disorder. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00056-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
24
|
Abstract
In vivo functional imaging by means of positron emission tomography (PET) is the sole method for providing a quantitative measurement of mu-, kappa and delta-opioid receptor-mediated signalling in the central nervous system. During the last two decades, measurements of changes to the regional brain opioidergic neuronal activation--mediated by endogenously produced opioid peptides, or exogenously administered opioid drugs--have been conducted in numerous chronic pain conditions, in epilepsy, as well as by stimulant- and opioidergic drugs. Although several PET-tracers have been used clinically for depiction and quantification of the opioid receptors changes, the underlying mechanisms for regulation of changes to the availability of opioid receptors are still unclear. After a presentation of the general signalling mechanisms of the opioid receptor system relevant for PET, a critical survey of the pharmacological properties of some currently available PET-tracers is presented. Clinical studies performed with different PET ligands are also reviewed and the compound-dependent findings are summarized. An outlook is given concluding with the tailoring of tracer properties, in order to facilitate for a selective addressment of dynamic changes to the availability of a single subclass, in combination with an optimization of the quantification framework are essentials for further progress in the field of in vivo opioid receptor imaging.
Collapse
Affiliation(s)
- Gjermund Henriksen
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 22, D-81675 München, Germany
| | | |
Collapse
|
25
|
Marchant NJ, Densmore VS, Osborne PB. Coexpression of prodynorphin and corticotrophin-releasing hormone in the rat central amygdala: Evidence of two distinct endogenous opioid systems in the lateral division. J Comp Neurol 2007; 504:702-15. [PMID: 17722034 DOI: 10.1002/cne.21464] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The lateral subdivision of the central nucleus of the amygdala (CeA) comprises two groups of gamma-aminobutyric acid (GABA) neurons that express corticotrophin-releasing hormone (CRH) and enkephalin. Regulation of the expression and release of these neuropeptides by glucocorticoids and other factors has been suggested to have a regulatory function on the diverse somatic, autonomic, and neuroendocrine responses that are coordinated by the CeA. Because another opioid peptide, dynorphin, has been reported to be also expressed by neurons in the lateral CeA, this study examined the neuronal expression of this kappa-opioid (KOP) receptor-preferring ligand by using immunohistochemistry for the precursor peptide prodynorphin. Prodynorphin neurons in the extended amygdala were observed mostly in the medial and central regions of the lateral CeA and the oval of the bed nucleus of the stria terminalis (BST). About one-third of the prodynorphin neurons in the CeA coexpressed CRH, whereas no coexpression with CRH was detected in the BST. Prodynorphin was not expressed by calbindin neurons in the medial part of the lateral CeA, and indirect evidence suggested that it was not expressed by enkephalin neurons. Coexpression of prodynorphin in extrahypothalamic CRH neurons in the CeA could provide an anatomical basis for regulation of the stress responses and other CRH-related functions by the brain dynorphin/KOP receptor system.
Collapse
Affiliation(s)
- Nathan J Marchant
- Pain Management Research Institute (Kolling Institute), The University of Sydney at Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | | | | |
Collapse
|
26
|
Li J, Zeng SJ, Zhang XW, Zuo MX. The distribution of substance P and met-enkephalin in vocal control nuclei among oscine species and its relation to song complexity. Behav Brain Res 2006; 172:202-11. [PMID: 16806516 DOI: 10.1016/j.bbr.2006.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 04/14/2006] [Accepted: 04/21/2006] [Indexed: 10/24/2022]
Abstract
Substance P (SP) and methionine-enkephalin (ENK) have been reported to appear in song control nuclei of oscine species. However, it remains unknown whether or not SP and ENK location in song control nuclei is correlated with song behavior. To address this issue, the present study first measured two variables for song complexity, i.e., song repertoire sizes, and syllable repertoire sizes in 11 oscine species. Then, we examined the distribution of SP and ENK in four control nuclei, two in the motor pathway, i.e., HVC and the robust nucleus of arcopallium (RA), and the other two in the forebrain pathway, i.e., Area X and the lateral magnocellular nucleus of the anterior nidopallium (LMAN). Finally, we measured the relative amounts of immunoreactivity for SP and ENK in song control nuclei, and tested whether they were correlated with song complexity. Our results showed that: (1) SP and ENK were broadly distributed in the song control nuclei of studied species. However, SP immunohistochemistry was more robust in comparison with ENK, and SP is generally more abundant in the two song learning nuclei than those in the two song producing ones; (2) SP and ENK staining patterns in song control nuclei did not show any obvious phylogenetic relationship among studied oscine species; (3) there was a significant correlation between the relative amounts of immunoreactivity for SP and the song and syllable repertoire sizes. Our results suggest that SP or ENK might be involved in song behavior, such as birdsong learning or memory.
Collapse
Affiliation(s)
- Jia Li
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | | | | | | |
Collapse
|
27
|
Kalanithi PSA, Zheng W, Kataoka Y, DiFiglia M, Grantz H, Saper CB, Schwartz ML, Leckman JF, Vaccarino FM. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proc Natl Acad Sci U S A 2005; 102:13307-12. [PMID: 16131542 PMCID: PMC1201574 DOI: 10.1073/pnas.0502624102] [Citation(s) in RCA: 385] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 07/20/2005] [Indexed: 11/18/2022] Open
Abstract
Tourette syndrome (TS) is a childhood neuropsychiatric disorder characterized by motor and vocal tics. Imaging studies found alterations in caudate (Cd) and putamen volumes. To investigate possible alterations in cell populations, postmortem basal ganglia tissue from individuals with TS and normal controls was analyzed by using unbiased stereological techniques. A markedly higher total neuron number was found in the globus pallidus pars interna (GPi) of TS. In contrast, a lower neuron number and density was observed in the globus pallidus pars externa and in the Cd. An increased number and proportion of the GPi neurons were positive for the calcium-binding protein parvalbumin in tissue from TS subjects, whereas lower densities of parvalbumin-positive interneurons were observed in both the Cd and putamen of TS subjects. This change is consistent with a developmental defect in tangential migration of some GABAergic neurons. The imbalance in striatal and GPi inhibitory neuron distribution suggests that the functional dynamics of cortico-striato-thalamic circuitry are fundamentally altered in severe, persistent TS.
Collapse
Affiliation(s)
- Paul S A Kalanithi
- Child Study Center and Department of Neurobiology, Yale University, New Haven, CT 06520
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Whone AL, Von Spiczak S, Edwards M, Valente EM, Hammers A, Bhatia KP, Brooks DJ. Opioid binding in DYT1 primary torsion dystonia: An11C-diprenorphine PET study. Mov Disord 2004; 19:1498-503. [PMID: 15390064 DOI: 10.1002/mds.20238] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The opioid transmitters enkephalin and dynorphin are known to regulate pallidal output and consequently cortical excitability. Indeed, abnormal basal ganglia opioid transmission has been reported in several involuntary movement disorders, including levodopa-induced dyskinesias in Parkinson's disease (PD), tardive dyskinesias/dystonia, Huntington's disease, and Tourette's syndrome. Moreover, a previous 11C-diprenorphine PET study investigating levodopa-induced dyskinesias found reduced opioid receptor availability in PD with but not without dyskinesias. We wished to investigate if a similar alteration in basal ganglia opioid binding was present in DYT1 primary torsion dystonia (PTD). Regional cerebral 11C-diprenorphine binding was investigated in 7 manifesting carriers of the DYT1 gene and 15 age-matched normal controls using a region-of-interest (ROI) approach and statistical parametric mapping (SPM). No difference in regional mean 11C-diprenorphine binding was found between DYT1-PTD and controls, and no correlation between the severity of dystonia and opioid binding was seen. We conclude that aberrant opioid transmission is unlikely to be present in DYT1-PTD and altered opioid transmission is not a common mechanism underlying all disorders of involuntary movement.
Collapse
Affiliation(s)
- Alan L Whone
- Division of Neuroscience and MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College, Hammersmith Hospital, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
29
|
Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST. Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J Chem Neuroanat 2003; 26:233-42. [PMID: 14729126 DOI: 10.1016/s0891-0618(03)00068-1] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The human cholinergic basal forebrain (CBF) is comprised of magnocellular hyperchromic neurons within the septal/diagonal band complex and nucleus basalis (NB) of Meynert. CBF neurons provide the major cholinergic innervation to the hippocampus, amygdala and neocortex. They play a role in cognition and attentional behaviors, and are dysfunctional in Alzheimer's disease (AD). The human CBF displays a continuum of large cells that contain various cholinergic markers, nerve growth factor (NGF) and its cognate receptors, calbindin, glutamate receptors, and the estrogen receptors, ERalpha and ERbeta. Admixed with these cholinergic neuronal phenotypes are smaller interneurons containing the m2 muscarinic acetylcholine receptor (mAChRs), NADPH-diaphorase, GABA, calcium binding proteins and several inhibitory neuropeptides including galanin (GAL), which is over expressed in AD. Studies using human autopsy material indicate an age-related dissociation of calbindin and the glutamate receptor GluR2 within CBF neurons, suggesting that these molecules act synergistically to induce excitotoxic cell death during aging, and possibly during AD. Choline acetyltrasnferease (ChAT) activity and CBF neuron number is preserved in the cholinergic basocortical system and up regulated in the septohippocampal system during prodromal as compared with end stage AD. In contrast, the number of CBF neurons containing NGF receptors is reduced early in the disease process suggesting a phenotypic silence and not a frank loss of neurons. In end stage AD, there is a selective reduction in trkA mRNA but not p75(NTR) in single CBF cells suggesting a neurotrophic defect throughout the progression of AD. These observations indicate the complexity of the chemoanatomy of the human CBF and suggest that multiple factors play different roles in its dysfunction in aging and AD.
Collapse
Affiliation(s)
- Elliott J Mufson
- Department of Neurological Sciences and Alzheimer's Disease Center, Rush Presbyterian-St. Luke's Medical Center, Tech 2000, 2242 West Harrison St., Suite 200, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
30
|
Skoubis PD, Maidment NT. Blockade of ventral pallidal opioid receptors induces a conditioned place aversion and attenuates acquisition of cocaine place preference in the rat. Neuroscience 2003; 119:241-9. [PMID: 12763085 DOI: 10.1016/s0306-4522(03)00121-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Peripheral administration of naloxone is known to produce a conditioned place aversion and to block cocaine-induced conditioned place preference. The ventral pallidum receives a dense enkephalinergic projection from the nucleus accumbens and is implicated as a locus mediating the rewarding and reinforcing effects of psychostimulant and opiate drugs. We sought to provide evidence for the involvement of pallidal opioid receptors in modulating affective state using the place-conditioning paradigm. Microinjection of naloxone (0.01-10 microg) into the ventral pallidum once a day for 3 days dose-dependently produced a conditioned place aversion when tested in the drug-free state 24 h after the last naloxone injection. This effect was reproduced using the mu-opioid receptor selective agonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP, 1 microg). Locomotor activity was reduced following injection of the highest dose of naloxone (10 microg) but elevated following CTOP (1 microg). Daily injection of cocaine (10 mg/kg) for 3 days produced a conditioned place preference 24 h later. This effect of cocaine was attenuated by concomitant intra-ventral pallidal injection of naloxone at a dose (0.01 microg) that had no significant aversive property when injected alone. In contrast, the locomotor activation induced by peripheral cocaine injection was unaffected by naloxone injection into the ventral pallidum. The data implicate endogenous opioid peptide systems within the ventral pallidum as regulators of hedonic status.
Collapse
Affiliation(s)
- P D Skoubis
- Department of Psychiatry and Biobehavioral Sciences, Neuropsychiatric Institute, University of California at Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | | |
Collapse
|
31
|
Heimer L. The legacy of the silver methods and the new anatomy of the basal forebrain: implications for neuropsychiatry and drug abuse. Scand J Psychol 2003; 44:189-201. [PMID: 12914582 DOI: 10.1111/1467-9450.00336] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The first part of the paper highlights the remarkable legacy of the silver methods, with special emphasis on the travails and opportunities offered by the various Nauta methods and their modifications. When the tracer methods based on axoplasmic flow were introduced in the early 1970s, they were exploited on a backdrop of a basic anatomical framework, which had already been established through the tracing of the major CNS pathways by the aid of the silver methods, especially the widely used Nauta-Gygax methods and their modifications. Some of the silver methods that were developed in the late 1960s for the staining of degenerating boutons (e.g. the Fink-Heimer method and de Olmos cupric silver method) provided the necessary technical improvements that eventually led to a new and more productive way to look at the basal forebrain functional/anatomical organization; if it was not for the silver methods, we would in all likelihood still be promoting the nebulous notion of the substantia innominata rather than the concepts of the ventral striatopallidal system and the extended amygdala. The discovery and elaboration of these two macroanatomical systems symbolize what might deservedly be called the "new anatomy" of the basal forebrain. Following a review of the critical experiments which led to the development of the new anatomy of the basal forebrain, its topography in the human is reviewed in drawings of an abbreviated series of coronal sections. The discovery of the ventral striatopallidal system and its thalamic projection to the mediodorsal thalamus rather than to the ventral anterior-ventral lateral thalamic complex ushered in the idea of parallel cortico-subcortical reentrant circuits, which to a large extent has replaced the limbic system as a theoretical framework for neuropsychiatric disorders. The extended amygdala, which appears as a large ring formation around the internal capsule, is still controversial in some quarters, although it is slowly but surely making its way into the general neuroscience literature, especially in the field of addictive disorders. The ventral striatopallidal system and the extended amygdala are interwoven in a complex fashion with the basal nucleus of Meynert within the basal forebrain. Together, these three systems represent important output channels for so-called "limbic" forebrain regions, especially orbitomedial prefrontal cortex and medial temporal lobe structures, which are increasingly implicated in major neuropsychiatric disorders.
Collapse
Affiliation(s)
- Lennart Heimer
- Departments of Neurosurgery and Neuroscience, University of Virginia, Charlottesville, Virginia 22908, USA.
| |
Collapse
|
32
|
Roberts TF, Hall WS, Brauth SE. Organization of the avian basal forebrain: chemical anatomy in the parrot (Melopsittacus undulatus). J Comp Neurol 2002; 454:383-408. [PMID: 12455005 DOI: 10.1002/cne.10456] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hodological, electrophysiological, and ablation studies indicate a role for the basal forebrain in telencephalic vocal control; however, to date the organization of the basal forebrain has not been extensively studied in any nonmammal or nonhuman vocal learning species. To this end the chemical anatomy of the avian basal forebrain was investigated in a vocal learning parrot, the budgerigar (Melopsittacus undulatus). Immunological and histological stains, including choline acetyltransferase, acetylcholinesterase, tyrosine hydroxylase, dopamine and cAMP-regulated phosphoprotein (DARPP)-32, the calcium binding proteins calbindin D-28k and parvalbumin, calcitonin gene-related peptide, iron, substance P, methionine enkephalin, nicotinamide adenine dinucleotide phosphotase diaphorase, and arginine vasotocin were used in the present study. We conclude that the ventral paleostriatum (cf. Kitt and Brauth [1981] Neuroscience 6:1551-1566) and adjacent archistriatal regions can be subdivided into several distinct subareas that are chemically comparable to mammalian basal forebrain structures. The nucleus accumbens is histochemically separable into core and shell regions. The nucleus taeniae (TN) is theorized to be homologous to the medial amygdaloid nucleus. The archistriatum pars ventrolateralis (Avl; comparable to the pigeon archistriatum pars dorsalis) is theorized to be a possible homologue of the central amygdaloid nucleus. The TN and Avl are histochemically continuous with the medial aspects of the bed nucleus of the stria terminalis and the ventromedial striatum, forming an avian analogue of the extended amygdala. The apparent counterpart in budgerigars of the mammalian nucleus basalis of Meynert consists of a field of cholinergic neurons spanning the basal forebrain. The budgerigar septal region is theorized to be homologous as a field to the mammalian septum. Our results are discussed with regard to both the evolution of the basal forebrain and its role in vocal learning processes.
Collapse
Affiliation(s)
- Todd Freeman Roberts
- Department of Psychology, University of Maryland, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
33
|
Mounir S, Parent A. The expression of neurokinin-1 receptor at striatal and pallidal levels in normal human brain. Neurosci Res 2002; 44:71-81. [PMID: 12204295 DOI: 10.1016/s0168-0102(02)00087-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To further our knowledge of the site of action of substance P (SP) in the human basal ganglia, we applied single- and double-antigen localization methods to human postmortem tissue to compare the distribution of SP and its high affinity receptor neurokinin-1 (NK1R) at striatal and pallidal levels. The human striatum was found to harbor numerous heterogeneously distributed aspiny neurons that expressed NK1R. Most of them were of small size, but a moderate number of large-sized neurons and a small number of medium-sized neurons also expressed NK1R. The medium-sized NK1R-positive neurons coexpressed parvalbumin and appear to represent a hitherto unknown striatal interneuron. The three types of striatal NK1R-positive neurons were preferentially localized in the peripheral region of the striosomes, which were identified by their intense immunostaining for the limbic system-associated membrane protein. Numerous NK1R expressing neurons also occurred in both external (GPe) and internal (GPi) segments of the globus pallidus, as well as in the ventral pallidum (GPv). There was a marked decreasing rostrocaudal gradient in the number of these neurons in the GPe, but not in the GPi. A multitude of smooth and highly branched SP-immunoreactive fibers pervaded the entire pallidal complex and some of these fibers were in close contact with NK1R-positive neurons in the GPi, as well as in the rostral portion of the GPe. The latter result reveals that the so-called 'direct' striatofugal pathway provides SP-immunoreactive collaterals to the GPe, a finding that is at odd with the current model of basal ganglia organization.
Collapse
Affiliation(s)
- Seloua Mounir
- Centre de recherche Université Laval Robert-Giffard, 2601, Chemin de la Canardière, Local F-6500 Beauport, Que., Canada G1J 2G3
| | | |
Collapse
|
34
|
Pompei P, Cavazzuti E, Martarelli D, Pediconi D, Arletti R, Lucas L, Massi M. Preprotachykinin A gene expression after administration of 3,4-methylene dioxymethamphetamine (Ecstasy). Eur J Pharmacol 2002; 450:245-51. [PMID: 12208316 DOI: 10.1016/s0014-2999(02)02158-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study tested the effects of 8 days of subchronic administration of 3,4-methylene dioxymethamphetamine (MDMA) (5 mg/kg b.w.) on preprotachykinin A mRNA levels in discrete rat brain regions. In situ hybridization examined preprotachykinin A mRNA levels in the core and shell of the nucleus accumbens, the islands of Calleja, the olfactory tubercle, the dorsal and ventral caudate-putamen, the bed nucleus of the stria terminalis, the medial preoptic area, the medial habenular nucleus and in the postero-dorsal part of the medial amygdala. Higher levels of preprotachykinin A mRNA were found in the core and shell of the nucleus accumbens, in the islands of calleja, in the olfactory tubercle, in the bed nucleus of the stria terminalis, in the medial habenular nucleus and the postero-dorsal part of the medial amygdala, compared to control animals. Conversely, increased preprotachykinin A mRNA levels were observed in the dorsal and ventral caudate-putamen in MDMA treated when compared to control rats. In the social memory test, MDMA significantly impaired rats' short-term working memory. These results show that chronic exposure to MDMA strongly affects preprotachykinin A mRNA levels in discrete rat brain regions. These changes occur in experimental conditions in which working memory is markedly reduced, suggesting that changes in gene expression of tachykinin mechanisms may contribute to the effects of MDMA on memory function.
Collapse
Affiliation(s)
- Pierluigi Pompei
- Department of Pharmacological Sciences and Experimental Medicine, University of Camerino, Via Scalzino 3, 62032 Camerino (MC), Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Morel A, Loup F, Magnin M, Jeanmonod D. Neurochemical organization of the human basal ganglia: anatomofunctional territories defined by the distributions of calcium-binding proteins and SMI-32. J Comp Neurol 2002; 443:86-103. [PMID: 11793349 DOI: 10.1002/cne.10096] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The distribution of the calcium-binding proteins calbindin-D28K (CB), parvalbumin (PV) and calretinin (CR), and of the nonphosphorylated neurofilament protein (with SMI-32) was investigated in the human basal ganglia to identify anatomofunctional territories. In the striatum, gradients of neuropil immunostaining define four major territories: The first (T1) includes all but the rostroventral half of the putamen and is characterized by enhanced matriceal PV and SMI-32 immunoreactivity (-ir). The second territory (T2) encompasses most part of the caudate nucleus (Cd) and rostral putamen (PuT), which show enhanced matriceal CB-ir. The third and fourth territories (T3 and T4) comprise rostroventral parts of Cd and PuT characterized by complementary patch/matrix distributions of CB- and CR-ir, and the accumbens nucleus (Acb), respectively. The latter is separated into lateral (prominently enhanced in CB-ir) and medial (prominently enhanced in CR-ir) subdivisions. In the pallidum, parallel gradients also delimit four territories, T1 in the caudal half of external (GPe) and internal (GPi) divisions, characterized by enhanced PV- and SMI-32-ir; T2 in their rostral half, characterized by enhanced CB-ir; and T3 and T4 in their rostroventral pole and in the subpallidal area, respectively, both expressing CB- and CR-ir but with different intensities. The subthalamic nucleus (STh) shows contrasting patterns of dense PV-ir (sparing only the most medial part) and low CB-ir. Expression of CR-ir is relatively low, except in the medial, low PV-ir, part of the nucleus, whereas SMI-32-ir is moderate across the whole nucleus. The substantia nigra is characterized by complementary patterns of high neuropil CB- and SMI-32-ir in pars reticulata (SNr) and high CR-ir in pars compacta (SNc) and in the ventral tegmental area (VTA). The compartmentalization of calcium-binding proteins and SMI-32 in the human basal ganglia, in particular in the striatum and pallidum, delimits anatomofunctional territories that are of significance for functional imaging studies and target selection in stereotactic neurosurgery.
Collapse
Affiliation(s)
- Anne Morel
- Laboratory for Functional Neurosurgery, Neurosurgery Clinic, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
36
|
Fudge JL, Haber SN. Bed nucleus of the stria terminalis and extended amygdala inputs to dopamine subpopulations in primates. Neuroscience 2001; 104:807-27. [PMID: 11440812 DOI: 10.1016/s0306-4522(01)00112-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 'extended amygdala', a forebrain continuum implicated in complex motivational responses, is comprised of the bed nucleus of the stria terminalis and its sublenticular extension into the centromedial amygdala. Dopamine is also involved in motivated behavior, and is increased in several brain regions by emotionally relevant stimuli. To examine how the extended amygdala influences the dopamine cells, we determined the organization of inputs from subdivisions of the bed nucleus of the stria terminalis and sublenticular extended amygdala to the dopamine subpopulations in monkeys. Inputs from the bed nucleus of the stria terminalis and corresponding regions of the sublenticular extended amygdala are differentially organized. The medial bed nucleus of the stria terminalis and its medial sublenticular extension have a mediolateral organization with the densest inputs to the medial substantia nigra, pars compacta, and relatively few inputs to the central and lateral substantia nigra. In contrast, the lateral bed nucleus of the stria terminalis (and its continuation into the sublenticular extended amygdala) projects across the mediolateral extent of the substantia nigra. The subnuclei of the lateral bed nucleus of the stria terminalis also have differential projections to the dopamine cells. While the central core of the lateral bed nucleus of the stria terminalis has restricted inputs, the surrounding dorsolateral, capsular and juxtacapsular subdivisions project strongly to the dorsal tier dopamine neurons. The posterior subdivision of the lateral bed nucleus of the stria terminalis and its continuation into the central sublenticular extended amygdala project more broadly to both the dorsal tier and densocellular region of the ventral tier. From these results we suggest that specific subdivisions of the bed nucleus of the stria terminalis have differential influences on the dopamine subpopulations, influencing dopamine responses in diverse brain regions.
Collapse
Affiliation(s)
- J L Fudge
- Department of Psychiatry, University of Rochester School of Medicine, NY 14642, USA
| | | |
Collapse
|
37
|
Abstract
The striatum is a key component of the basal ganglia and there is considerable evidence that it has an important role in motor, cognitive and limbic functions. However, very little is known about how this forebrain structure develops. This review considers the role of cellular and molecular mechanisms involved in the development of the striatum, and the potential application of this knowledge to the understanding of the pathology and treatment of primary disease of this structure.
Collapse
Affiliation(s)
- M Jain
- Cambridge Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK.
| | | | | | | |
Collapse
|
38
|
Dallvechia-Adams S, Smith Y, Kuhar MJ. CART peptide-immunoreactive projection from the nucleus accumbens targets substantia nigra pars reticulata neurons in the rat. J Comp Neurol 2001; 434:29-39. [PMID: 11329127 DOI: 10.1002/cne.1162] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cocaine and amphetamine regulated transcript (CART) was originally identified as a mRNA which increases in the striatum after acute cocaine or amphetamine administration in rats. In addition, intra-ventral tegmental (VTA) area injections of CART peptides produce psychostimulant-like behavioral effects. CART peptide immunoreactivity (CARTir) has been localized in discrete nuclei throughout the brain, and, within the striatum, it is located only ventrally in a subpopulation of medium spiny projection neurons in the shell and core of the nucleus accumbens. To better understand the potential role of CART peptides in the mechanism of action of psychomotor stimulants, we analyzed the distribution and synaptic connectivity of CARTir terminals in the ventral midbrain. CARTir terminal-like varicosities were located throughout the rostrocaudal extent of the substantia nigra (SN), VTA, and retrorubral field (RRF). They were particularly abundant in the dorsomedial SN where they overlapped with non-dopaminergic substantia nigra pars reticulata (SNr) neurons and proximal dendrites of dopaminergic substantia nigra pars compacta (SNc) neurons. CARTir terminals were also in register with dopaminergic perikarya in the ventromedial part of the rostral SNc. In many instances, CARTir terminals ensheathed dendrites of SNr neurons. To characterize the postsynaptic targets and potential sources of CARTir terminals in the SN, electron microscopic observations were conducted. Ninety percent of the CARTir terminals examined displayed the ultrastructural features of boutons of striatal origin and 80% of them formed symmetric synapses with distal dendrites of SNr neurons. To further elucidate the source of CARTir terminals in the SN, unilateral excitotoxic lesions directed to the core of the nucleus accumbens (Acc) were produced; this led to a dramatic, almost complete loss of CARTir terminal staining in the ipsilateral SN, whereas the density of CARTir terminals was relatively unchanged in the VTA. In conclusion, this study demonstrates the presence of CART peptides in a direct pathway from the accumbens to the SNr, thus illustrating a unique feature of CART peptides in that they delineate a specific anatomical circuit of the basal ganglia.
Collapse
Affiliation(s)
- S Dallvechia-Adams
- Division of Neuroscience, Yerkes Regional Primate Research Center, Atlanta, Georgia 30329, USA
| | | | | |
Collapse
|
39
|
Abstract
Parkinson's disease (PD) patients with motor complications show a greater reduction in putamen [18F]dopa uptake on positron emission tomography (PET) compared with sustained responders to L-dopa, although individual ranges overlap considerably. This implies that, although loss of putamen dopamine storage predisposes motor complications in PD, it cannot be the only factor determining timing of onset. Additional PET studies suggest that loss of striatal dopamine storage capacity along with pulsatile exposure to exogenous L-dopa results in pathologically raised synaptic dopamine levels and deranged basal ganglia opioid transmission.This, rather than altered dopamine receptor binding, then causes inappropriate overactivity of basal ganglia-frontal projections, resulting in breakthrough involuntary movements.
Collapse
Affiliation(s)
- D J Brooks
- MRC Clinical Sciences Centre, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| |
Collapse
|
40
|
Waldvogel HJ, Kubota Y, Fritschy J, Mohler H, Faull RL. Regional and cellular localisation of GABA(A) receptor subunits in the human basal ganglia: An autoradiographic and immunohistochemical study. J Comp Neurol 1999; 415:313-40. [PMID: 10553118 DOI: 10.1002/(sici)1096-9861(19991220)415:3<313::aid-cne2>3.0.co;2-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The regional and cellular localisation of gamma-aminobutyric acid(A) (GABA(A)) receptors was investigated in the human basal ganglia using receptor autoradiography and immunohistochemical staining for five GABA(A) receptor subunits (alpha(1), alpha(2), alpha(3), beta(2, 3), and gamma(2)) and other neurochemical markers. The results demonstrated that GABA(A) receptors in the striatum showed considerable subunit heterogeneity in their regional distribution and cellular localisation. High densities of GABA(A) receptors in the striosome compartment contained the alpha(2), alpha(3), beta(2, 3), and gamma(2) subunits, and lower densities of receptors in the matrix compartment contained the alpha(1), alpha(2), alpha(3), beta(2,3), and gamma(2) subunits. Also, six different types of neurons were identified in the striatum on the basis of GABA(A) receptor subunit configuration, cellular and dendritic morphology, and chemical neuroanatomy. Three types of alpha(1) subunit immunoreactive neurons were identified: type 1, the most numerous (60%), were medium-sized aspiny neurons that were immunoreactive for parvalbumin and alpha(1), beta(2,3), and gamma(2) subunits; type 2 (38%) were medium-sized to large aspiny neurons immunoreactive for calretinin and alpha(1), alpha(3), beta(2,3), and gamma(2) subunits; and type 3 (2%) were large sparsely spiny neurons immunoreactive for alpha(1), alpha(3), beta(2,3), and gamma(2) subunits. Type 4 neurons were calbindin-positive and immunoreactive for alpha(2), alpha(3), beta(2,3), and gamma(2) subunits. The remaining neurons were immunoreactive for choline acetyltransferase (ChAT) and alpha(3) subunit (type 5) or were neuropeptide Y-positive with no GABA(A) receptor subunit immunoreactivity (type 6). The globus pallidus contained three types of neurons: types 1 and 2 were large neurons and were immunoreactive for alpha(1), alpha(3), beta(2,3), and gamma(2) subunits and for parvalbumin alone (type 1) or for both parvalbumin and calretinin (type 2); type 3 neurons were medium-sized and immunoreactive for calretinin and alpha(1), beta(2, 3), and gamma(2) subunits. These results show that the subunit composition of GABA(A) receptors displays considerable regional and cellular variation in the human striatum but are more homogeneous in the globus pallidus.
Collapse
Affiliation(s)
- H J Waldvogel
- Department of Anatomy with Radiology, Faculty of Medicine and Health Science, University of Auckland, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
41
|
Hurd YL, Keller E, Sotonyi P, Sedvall G. Preprotachykinin-A mRNA expression in the human and monkey brain: An in situ hybridization study. J Comp Neurol 1999; 411:56-72. [PMID: 10404107 DOI: 10.1002/(sici)1096-9861(19990816)411:1<56::aid-cne5>3.0.co;2-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mRNA expression for preprotachykinin-A (PPT-A) was studied throughout the human and cynomolgus monkey brain to assess the neuroanatomical expression pattern of the PPT-A gene in primates. In situ hybridization showed that the PPT-A mRNA is expressed highly in specific regions of the postmortem human brain, including the striatum, islands of Calleja, hypothalamus (posterior, premammillary, medial mammillary, and ventromedial nuclei), superior and inferior colliculi, periaqueductal gray, and oculomotor nuclear complex. PPT-A mRNA-expressing neurons also were present in the paranigralis (ventral tegmental area) and were scattered in the bed nucleus stria terminalis throughout the sublenticular substantia innominata region, including the diagonal band of Broca and the nucleus basalis of Meynert. In the hippocampus, high PPT-A mRNA expression was localized predominantly to the polymorphic layer of the dentate gyrus; no labeled cells were present in the granular layer. Positively labeled cells also were found scattered in the CA regions as well as in the amygdaloid complex. Neocortical expression of PPT-A mRNA was localized mainly to the deep laminae (layers V/VI), except for the striate cortex (labeling was seen also in superficial layers). The subiculum, thalamus, globus pallidus, ventral pallidum, substantia nigra pars compacta, red nucleus, pontine nuclei, and cerebellum were characterized by very weak to undetectable expression of PPT-A mRNA. An expression pattern was evident in the monkey forebrain similar to that observed in the human, except for the absence of PPT mRNA-expressing cells in the medial mammillary nucleus despite intense expression in supramammillary, lateral mammillary, and premammillary nuclei. Overall, more similarities than differences are apparent between primate species in the expression pattern of the PPT-A gene. J. Comp. Neurol. 411;56-72, 1999.
Collapse
Affiliation(s)
- Y L Hurd
- Psychiatry Section, Department of Clinical Neuroscience, Karolinska Institute, S-171 76 Stockholm, Sweden.
| | | | | | | |
Collapse
|
42
|
Joyce JN, Gurevich EV. D3 receptors and the actions of neuroleptics in the ventral striatopallidal system of schizophrenics. Ann N Y Acad Sci 1999; 877:595-613. [PMID: 10415673 DOI: 10.1111/j.1749-6632.1999.tb09291.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mesolimbic dopamine (DA) system and an important target receptor, the D3 receptor, have been implicated in schizophrenia. We have identified, using non-radioactive in situ hybridization histochemistry, that D3 mRNA-positive neurons are highly concentrated in the ventral striatum, efferents of the ventral striatum (globus pallidus internal, ventral palladium, substantia nigra pars reticulata), and in regions projecting to the ventral striatum (medial dorsal thalamus, nucleus basalis, extended amygdala). D3 receptors are also highly enriched in the "limbic" striatal-pallidal-thalamic loop, exhibiting segregation from the D2 receptor-enriched "motor loop." This supports data developed in rats showing that the D3 receptor is a target of the mesolimbic DA system that can modulate the limbic striatal-palladial-thalamic loop. However, D2 and D3 receptors and their mRNAs are co-localized in many sensory regions (lateral and medial geniculate nuclei, basolateral and basomedial amygdala, regions of thalamus), suggesting mechanisms of cross-talk. We have also demonstrated that there are 45% elevations in D3 receptor number in ventral striatal neurons and their striatopalladial targets in schizophrenics that is reduced by concurrent antipsychotic treatment. Chronic haloperidol treatment to rats for 6 months with a 2-month withdrawal does not result in elevated D3 receptor number. We hypothesize that antipsychotic treatment via D3 receptors returns balance to limbic efferents of the ventral striatum. We established that early neonatal damage to the nigrostriatal DA system in rats produces characteristic adaptations in the pre- and post-synaptic components of the mesolimbic DA system that can provide a model to explore regulation by antipsychotics. This includes elevated release of DA from the mesolimbic DA terminals, elevated D3 receptor mRNA in the Islands of Calleja and nucleus accumbens, and enhanced behavioral response to psychostimulants.
Collapse
Affiliation(s)
- J N Joyce
- Christopher Center for Parkinson's Disease Research, Sun Health Research Institute, Sun City, Arizona 85351, USA.
| | | |
Collapse
|
43
|
Reiner A, Medina L, Haber SN. The distribution of dynorphinergic terminals in striatal target regions in comparison to the distribution of substance P-containing and enkephalinergic terminals in monkeys and humans. Neuroscience 1999; 88:775-93. [PMID: 10363817 DOI: 10.1016/s0306-4522(98)00254-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Single- and double-label immunohistochemical techniques using several different highly specific antisera against dynorphin peptides were used to examine the distribution of dynorphinergic terminals in globus pallidus and substantia nigra in rhesus monkeys and humans in comparison to substance P-containing and enkephalinergic terminals in these same regions. Similar results were observed in monkey and human tissue. Dynorphinergic fibers were very abundant in the medial half of the internal pallidal segment, but scarce in the external pallidal segment and the lateral half of the internal pallidal segment. In substantia nigra, dynorphinergic fibers were present in both the pars compacta and reticulata. Labeling of adjacent sections for enkephalin or substance P showed that the dynorphinergic terminals overlapped those for substance P in the medial half of the internal pallidal segment, but showed only slight overlap with enkephalinergic terminals in the external pallidal segment. The substance P-containing fibers were moderately abundant along the borders of the external pallidal segment, and enkephalinergic fibers were moderately abundant in parts of the internal pallidal segment. Dynorphinergic and substance P-containing terminals overlapped extensively in the nigra, and both extensively overlapped enkephalinergic fibers in medial nigra. Immunofluorescence double-labeling studies revealed that dynorphin co-localized extensively with substance P in individual fibers and terminals in the medial half of the internal pallidal segment and in substantia nigra. Thus, as has been found in non-primates, dynorphin within the striatum and its projection systems appears to be extensively localized to substance P-containing striatopallidal and striatonigral projection neurons. Nonetheless, our results also raise the possibility that a population of substance P-containing neurons that projects to the internal pallidal segment and does not contain dynorphin is present in primate striatum. Our results also suggest the possible existence of populations of striatopallidal and striatonigral projection neurons in which substance P and enkephalin or dynorphin and enkephalin, or all three, are co-localized. Thus, striatal projection neurons in primates may not consist of merely two types, one containing substance P and dynorphin and the other enkephalin.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Sciences Center, Memphis, 38163, USA
| | | | | |
Collapse
|
44
|
Heimer L, de Olmos J, Alheid G, Pearson J, Sakamoto N, Shinoda K, Marksteiner J, Switzer R. The human basal forebrain. Part II. HANDBOOK OF CHEMICAL NEUROANATOMY 1999. [DOI: 10.1016/s0924-8196(99)80024-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Smiley JF, Mesulam MM. Cholinergic neurons of the nucleus basalis of Meynert receive cholinergic, catecholaminergic and GABAergic synapses: an electron microscopic investigation in the monkey. Neuroscience 1999; 88:241-55. [PMID: 10051204 DOI: 10.1016/s0306-4522(98)00202-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
An electron microscopic analysis of the nucleus basalis in the macaque monkey was carried out following the immunohistochemical labeling of choline acetyltransferase, either by itself or in conjunction with glutamate decarboxylase or tyrosine hydroxylase. Cholinergic axon varicosities were frequently encountered, and formed large, usually asymmetric, synapses on both choline acetyltransferase-immunopositive and -immunonegative dendrites of nucleus basalis neurons. Catecholaminergic (tyrosine hydroxylase-immunoreactive) axon varicosities formed synapses which in most cases were classified as asymmetric, and glutamate decarboxylase-immunoreactive (GABAergic) axons formed clearly symmetric synapses, each on to choline acetyltransferase-immunopositive or -immunonegative dendrites. These findings indicate that cholinergic cells in the nucleus basalis of the monkey, also known as Ch4 neurons, receive numerous synaptic inputs from cholinergic, catecholaminergic and GABAergic axons.
Collapse
Affiliation(s)
- J F Smiley
- The Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Medical School, Chicago, IL 60611, USA
| | | |
Collapse
|
46
|
Waldvogel HJ, Fritschy JM, Mohler H, Faull RL. GABA(A) receptors in the primate basal ganglia: an autoradiographic and a light and electron microscopic immunohistochemical study of the alpha1 and beta2,3 subunits in the baboon brain. J Comp Neurol 1998; 397:297-325. [PMID: 9674559 DOI: 10.1002/(sici)1096-9861(19980803)397:3<297::aid-cne1>3.0.co;2-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The distribution of gamma-aminobutyric acid(A) (GABA(A)) receptors was investigated in the basal ganglia in the baboon brain by using receptor autoradiography and the immunohistochemical localisation of the alpha1 and beta2,3 subunits of the GABA(A) receptor by light and electron microscopy. In the caudate-putamen, the alpha1 subunit was distributed in high densities in the matrix compartment, and the beta2,3 subunits were more homogeneously distributed; the globus pallidus showed lower levels of the alpha1 and beta2,3 subunits. Four types of alpha1 subunit immunoreactive neurons were identified in the baboon striatum: the most numerous (75%) were type 1 medium-sized aspiny neurons; type 2 (2%) were large aspiny neurons with an indented nuclear membrane located in the ventral striatum; type 3 neurons were the least numerous (1%) and were comprised of large neurons in the ventromedial regions of the striatum; and type 4 (22%) neurons were medium to large aspiny neurons located in striosomes. At the ultrastructural level, alpha1 and beta2,3 subunit immunoreactivity was localised in the neuropil of the striatum in both symmetrical and asymmetrical synaptic contacts. In the globus pallidus, alpha1 and beta2,3 subunits were localised on large neurons and were found in three types of synaptic terminals: type 1 terminals were small and established symmetrical synapses; type 2 terminals were large; and type 3 terminals formed small synaptic terminals with subjunctional dense bodies. These results show that the subunit composition of GABA(A) receptors varies between the striosome and the matrix compartments in the striatum and that there is receptor subunit homogeneity in the globus pallidus.
Collapse
Affiliation(s)
- H J Waldvogel
- Department of Anatomy with Radiology, Faculty of Medicine and Health Science, University of Auckland, New Zealand.
| | | | | | | |
Collapse
|
47
|
Lu XY, Ghasemzadeh MB, Kalivas PW. Expression of D1 receptor, D2 receptor, substance P and enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens. Neuroscience 1998; 82:767-80. [PMID: 9483534 DOI: 10.1016/s0306-4522(97)00327-8] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In situ hybridization was combined with FluoroGold retrograde labelling to determine the distribution of messenger RNAs for the D1 dopamine receptor, D2 dopamine receptor, beta-preprotachykinin or preproenkephalin in the neurons projecting from the nucleus accumbens to the ventral pallidum and the ventral tegmental area. Neurons were quantified in both the core and the shell of the nucleus accumbens to estimate the proportion of neurons projecting to the ventral pallidum or ventral tegmental area that contain transcripts for D1 receptors, D2 receptors, beta-preprotachykinin or preproenkephalin. Following the deposition of FluoroGold into the central ventral pallidum, both the core and the shell of the nucleus accumbens were retrogradely labelled, while deposits into the ventral tegmental area selectively labelled cells in the shell. A high percentage of nucleus accumbens neurons innervating the ventral tegmental area expressed messenger RNAs for D1 receptors (72%) and beta-preprotachykinin (62%), while less than 3% of the neurons contained messenger RNAs for preproenkephalin or D2 receptors. The neurons projecting to the ventral pallidum did not show the discrete distribution of transcripts as was observed in the accumbens-ventral tegmental area projection. Preproenkephalin messenger RNA was identified in 46% of the neurons innervating the ventral pallidum, and D2 receptor messenger RNA was found in approximately 40% of the cells. A large minority of neurons projecting from the nucleus accumbens to the ventral pallidum also expressed messenger RNAs for D1 receptors (37%) and beta-preprotachykinin (35%). While a higher percentage of D1 receptor, and beta-preprotachykinin messenger RNA expressing cells were located in the shell than in the core of the nucleus accumbens, the percentage tended to be higher in the core for cells expressing D2 receptors or preproenkephalin messenger RNA. These data indicate that messenger RNAs for D2 receptors and enkephalin are selectively expressed in the accumbens-pallidal projection while transcripts encoding D1 receptors and substance P are contained in the efferent projections to both the ventral pallidum and ventral tegmental area. The presence of D1 receptor and beta-preprotachykinin messenger RNAs in both mesencephalic and pallidal projections contrasts output from the striatum where the expression of D1 receptor and beta-preprotachykinin messenger RNAs is primarily restricted to the mesencephalic projection.
Collapse
Affiliation(s)
- X Y Lu
- Alcohol and Drug Abuse Program, Washington State University, Pullman 99164-6520, USA
| | | | | |
Collapse
|
48
|
Piccini P, Weeks RA, Brooks DJ. Alterations in opioid receptor binding in Parkinson's disease patients with levodopa-induced dyskinesias. Ann Neurol 1997; 42:720-6. [PMID: 9392571 DOI: 10.1002/ana.410420508] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Levodopa-induced dyskinesias remain a major challenge in the therapeutic management of Parkinson's disease (PD). Their etiology is unknown although dysfunction of striatal opioid transmission has been implicated in experimental models of PD. To determine whether the opioid system is involved in human dyskinetic PD, we measured in vivo opioid receptor binding in PD patients with and without levodopa-induced dyskinesias, using positron emission tomography (PET) and the opioid receptor ligand [11C]diprenorphine. Striatal and thalamic/occipital uptake ratios were calculated using a region of interest (ROI) approach. In addition, we used statistical parametric mapping (SPM) and images reflecting the volume of distribution of [11C]diprenorphine to assess changes in cerebral receptor binding on a voxel-by-voxel basis. By using the ROI approach, we found significantly reduced striatal and thalamic opioid binding in dyskinetic, but not in nondyskinetic, PD patients. The SPM approach confirmed reduced availability in these areas and, in addition, showed decreased cingulate and increased prefrontal opioid receptor binding in the dyskinetic patients. Our findings confirm that altered opioid transmission is part of the pathophysiology of levodopa-induced dyskinesias in PD and support further investigation into the role of opioid agents in the management of these involuntary movements.
Collapse
Affiliation(s)
- P Piccini
- MRC Cyclotron Unit, Hammersmith Hospital, London, UK
| | | | | |
Collapse
|
49
|
Kaufmann WA, Barnas U, Maier J, Saria A, Alheid GF, Marksteiner J. Neurochemical compartments in the human forebrain: evidence for a high density of secretoneurin-like immunoreactivity in the extended amygdala. Synapse 1997; 26:114-30. [PMID: 9131771 DOI: 10.1002/(sici)1098-2396(199706)26:2<114::aid-syn3>3.0.co;2-b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Secretoneurin is a 33-amino acid neuropeptide produced by endoproteolytic processing from secretogranin II, which is a member of the chromogranin/ secretogranin family. In this immunocytochemical study we investigated the localization of secretoneurin-like immunoreactivity in the human substantia innominata in relation to the ventral striatopallidal system, the bed nucleus-amygdala complex and the basal nucleus of Meynert. A high density of secretoneurin immunostaining was found in the medial part of the nucleus accumbens. All subdivisions of the bed nucleus of the stria terminalis displayed a very prominent immunostaining for secretoneurin, whereas substance P and enkephalin showed a more restricted distribution. A high concentration of secretoneurin immunoreactivity was also observed in the central and medial amygdaloid nuclei. In the lateral bed nucleus of the stria terminalis and the sublenticular substantia innominata, the appearance of secretoneurin immunoreactivity was very similar to that of enkephalin-like immunoreactivity, exhibiting mostly peridendritic and perisomatic staining. The ventral pallidum and the inner pallidal segment displayed strong secretoneurin immunostaining. Secretoneurin did not label cholinergic neurons in the basal forebrain. This study demonstrates that secretoneurin-like immunoreactivity is prominent in the bed nucleus-amygdala complex, referred to as extended amygdala. The distribution of secretoneurin-like immunoreactivity in comparison with that of other neuroanatomical markers suggests that this forebrain system is a discret compartment in the human forebrain.
Collapse
Affiliation(s)
- W A Kaufmann
- Clinic of Psychiatry, University of Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
50
|
Henderson Z. The projection from the striatum to the nucleus basalis in the rat: an electron microscopic study. Neuroscience 1997; 78:943-55. [PMID: 9174063 DOI: 10.1016/s0306-4522(96)00636-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Previous studies have shown that the striatum provides synaptic inputs to the globus pallidus and entopeduncular nucleus in which GABA is co-localized with the peptides enkephalin and substance P. The aim of this study in the rat was to determine whether the striatal projections also make synaptic contact with the cholinergic neurons of the nucleus basalis, which lie near to the pallidal areas in the rat brain. The anterograde tracer biocytin was injected into different parts of the striatum, and brain sections were stained for biocytin and choline acetyltransferase immunoreactivity by using a dual colour method. Terminals labelled with biocytin by anterograde transport and which made synaptic contact with choline acetyltransferase-positive soma and dendrites were identified by light-electron microscopic correlation methods. In the cases where the biocytin injections had been made in the dorsal or lateral striatum, biocytin-labelled terminals made synaptic contact with cholinergic cells in the region between the main termination zones in the globus pallidus and the entopeduncular nucleus. In the cases where the injections had been made in the ventromedial and posterior striatum, there was greater overlap between choline acetyltransferase-positive structures and biocytin-labelled terminals in the main termination zones in the globus pallidus or entopeduncular nucleus, but relatively few of these terminals made synaptic contacts on to the cholinergic neurons. The results therefore indicate that the cholinergic nucleus basalis cells receive a relatively sparse synaptic input from all parts of the striatum. It has recently been shown that the cholinergic cells of the nucleus basalis selectively express high levels of substance P and opioid receptor messenger RNAs, while the non-cholinergic pallidal cells have much higher levels of GABA(A) receptor subunit messenger RNAs. It is concluded that the cholinergic neurons of the nucleus basalis in the rat may be selectively responsive to the peptidergic components of the striatal outputs, and that they are most likely to be influenced by both the limbic and sensorimotor parts of the striatum.
Collapse
Affiliation(s)
- Z Henderson
- Department of Physiology, University of Leeds, U.K
| |
Collapse
|