1
|
Pelidou SH, Schultzberg M, Iverfeldt K. Increased sensitivity to N-methyl-D-aspartate receptor-induced excitotoxicity in cerebellar granule cells from interleukin-1 receptor type I-deficient mice. J Neuroimmunol 2002; 133:108-15. [PMID: 12446013 DOI: 10.1016/s0165-5728(02)00369-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effects of chronic exposure to excitatory amino acids (EAAs) were examined in cultured cerebellar granule cells (CGCs) from wild type (WT) and interleukin-1 receptor type I (IL-1RI)-deficient mice. After 8 days in culture, the cells were exposed to 100 microM glutamate or 300 microM N-methyl-D-aspartate (NMDA) for 24 h. Analysis of cell viability, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay and phase-contrast microscopy revealed that CGCs from IL-1RI-deficient mice were more vulnerable to EAAs as compared to the WT controls. The results indicate that IL-1RI signalling is important for neuronal survival. The effect of glutamate on the CGCs from IL-1RI-deficient mice was decreased by the non-competitive NMDA-receptor antagonist MK-801, supporting the involvement of NMDA receptors in the glutamate-induced excitotoxicity.
Collapse
Affiliation(s)
- Sigliti Henrietta Pelidou
- Department of Neurochemistry and Neurotoxicology, The Arrhenius Laboratories for Natural Sciences, Stockholm University, SE-106 91, Stockholm, Sweden
| | | | | |
Collapse
|
2
|
Ha BK, Vicini S, Rogers RC, Bresnahan JC, Burry RW, Beattie MS. Kainate-induced excitotoxicity is dependent upon extracellular potassium concentrations that regulate the activity of AMPA/KA type glutamate receptors. J Neurochem 2002; 83:934-45. [PMID: 12421366 DOI: 10.1046/j.1471-4159.2002.01203.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In addition to well-known N-methyl-d-aspartate (NMDA) receptor-mediated excitotoxicity, recent studies suggest that non-NMDA type ionotropic glutamate receptors are also important mediators of excitotoxic neuronal death, and that their functional expression can be regulated by the cellular environment. In this study, we used cerebellar granule cells (CGCs) in culture to investigate kainate (KA)-induced excitotoxicity. Although previous reports indicated that KA induces apoptosis of CGCs in culture, no KA-induced excitotoxic cell death was observed in CGCs treated with KA when cells were maintained in high potassium media (24 mm K+). In contrast, when mature CGCs were shifted into low potassium media (3 mm K+), KA produced significant excitotoxicity. In electrophysiological studies, the KA-induced inward current density was significantly elevated in CGCs shifted into low K+ media compared with those maintained in high K+ media. Non-desensitizing aspects of KA currents observed in this study suggest that these responses were mediated by AMPA rather than KA receptors. In immunofluorescence studies, the surface expression of GluR1 subunits increased when mature CGCs were shifted into a low K+ environment. This study suggests that KA-induced excitotoxicity in mature CGCs is dependent upon the extracellular potassium concentration, which modulates functional expression and excitability of AMPA/KA receptors.
Collapse
Affiliation(s)
- Byeong Keun Ha
- Department of Neuroscience, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
3
|
Garthwaite G, Garthwaite J. AMPA Neurotoxicity in Rat Cerebellar and Hippocampal Slices: Histological Evidence for Three Mechanisms. Eur J Neurosci 2002; 3:715-728. [PMID: 12106458 DOI: 10.1111/j.1460-9568.1991.tb01668.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Excitatory amino acid-induced death of central neurons may be mediated by at least two receptor types, the so-called NMDA (N-methyl-d-aspartate) and AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionate) receptors. We have studied the neurodegenerative mechanisms set in motion by AMPA receptor activation using incubated slices of 8-day-old rat cerebellum and hippocampus. In both preparations, AMPA induced a pattern of degeneration that differed markedly from the one previously shown to be elicited by NMDA. In cerebellar slices, AMPA induced the degeneration of most Purkinje cells together with a population of Golgi cells; in hippocampal slices the neurons were affected in the order CA3 > CA1 > dentate granule cells. Three mechanisms could be discerned: an acute one in which neurons (e.g. cerebellar Golgi cells) underwent a rapid degeneration; a delayed one in which the neurons (Purkinje cells and hippocampal neurons) appeared to be only mildly affected immediately after a 30 min exposure but then underwent a protracted degeneration during the postincubation period (1.5 - 3 h); and finally a slow toxicity, which took place during long (2 h) exposures to AMPA (3 - 30 microM). Although Purkinje cells were vulnerable in both cases, the efficacy of AMPA was higher for the delayed mechanism than for the slow one. The pathology displayed by the acutely destroyed Golgi neurons was a classical oedematous necrosis, whereas most neurons vulnerable to the delayed and slow mechanisms displayed a 'dark cell degeneration', whose cytological features bore a close resemblance to those of neurons irreversibly damaged by ischaemia, hypoglycaemia or status epilepticus in vivo.
Collapse
Affiliation(s)
- Giti Garthwaite
- Department of Physiology, University of Liverpool, Brownlow Hill, P.O. Box 147, Liverpool L69 3BX, UK
| | | |
Collapse
|
4
|
Abstract
Mitochondria play a central role in the survival and death of neurons. The detailed bioenergetic mechanisms by which isolated mitochondria generate ATP, sequester Ca(2+), generate reactive oxygen species, and undergo Ca(2+)-dependent permeabilization of their inner membrane are currently being applied to the function of mitochondria in situ within neurons under physiological and pathophysiological conditions. Here we review the functional bioenergetics of isolated mitochondria, with emphasis on the chemiosmotic proton circuit and the application (and occasional misapplication) of these principles to intact neurons. Mitochondria play an integral role in both necrotic and apoptotic neuronal cell death, and the bioenergetic principles underlying current studies are reviewed.
Collapse
Affiliation(s)
- D G Nicholls
- Department of Pharmacology, University of Dundee, Dundee, Scotland.
| | | |
Collapse
|
5
|
Young MM, Smith ME, Coote JH. Effect of sympathectomy on the expression of NMDA receptors in the spinal cord. J Neurol Sci 1999; 169:156-60. [PMID: 10540025 DOI: 10.1016/s0022-510x(99)00239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The expression of NMDA receptors in the intermediolateral (IML) region of the upper thoracic spinal cord, was studied in 3 week old rats. The effect of section of the cervical sympathetic nerve on neuronal cell number and receptor expression was examined up to two weeks after the operation. Age-matched sham-operated and unoperated animals were used as controls. It was shown using quantitative autoradiography with the NMDA receptor antagonist [(3)H]MK-801 (dizocilpine maleate), that there was a marked downregulation of receptors in all groups of animals, beginning at approximately 4 weeks of age. However after sympathectomy, which resulted in the death of 44% of neurones in the IML by 7 days, there was a significant increase in receptor density per neurone compared to sham-operated controls. In the control animals there was a significant increase in the Kd value of the binding between 21 and 24 days after birth indicating an increased expression of a low affinity receptor, but no such increase was seen after axotomy. The results are consistent with two populations of NMDA receptors being transiently expressed in the IML in developing animals, and the higher affinity receptor being down-regulated between 4 and 5 weeks of age. The presence of the high affinity receptor subtype may predispose neurones to die after axotomy.
Collapse
Affiliation(s)
- M M Young
- Department of Physiology, The Medical School, University of Birmingham, Birmingham, UK
| | | | | |
Collapse
|
6
|
Abstract
The weaver mutation results in the extensive death of midline cerebellar granule cells. The mutation consists of a single base pair substitution of the gene encoding the G-protein-activated inwardly rectifying potassium channel protein, GIRK2. The functional consequences of this mutation are still in dispute. In this study we demonstrate the in vivo and in vitro rescue of weaver granule cells when NR1 NMDA subunits are eliminated in weaver NR1 double mutants. This rescue of weaver granule cells provides evidence that wvGIRK2 alone is not sufficient to cause granule cell death.
Collapse
|
7
|
Nicoletti F, Bruno V, Catania MV, Battaglia G, Copani A, Barbagallo G, Ceña V, Sanchez-Prieto J, Spano PF, Pizzi M. Group-I metabotropic glutamate receptors: hypotheses to explain their dual role in neurotoxicity and neuroprotection. Neuropharmacology 1999; 38:1477-84. [PMID: 10530809 DOI: 10.1016/s0028-3908(99)00102-1] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The role of group-I metabotropic glutamate receptors (mGlu1 and 5) in neurodegeneration is still controversial. While antagonists of these receptors are consistently neuroprotective, agonists have been found to either amplify or attenuate excitotoxic neuronal death. At least three variables affect responses to agonists: (i) the presence of the NR2C subunit in the NMDA receptor complex; (ii) the existence of an activity-dependent functional switch of group-I mGlu receptors, similar to that described for the regulation of glutamate release; and (iii) the presence of astrocytes expressing mGlu5 receptors. Thus, a number of factors, including the heteromeric composition of NMDA receptors, the exposure time to drugs or to ambient glutamate, and the function of astrocytes clearing extracellular glutamate and producing neurotoxic or neuroprotective factors, must be taken into account when examining the role of group-I mGlu receptors in neurodegeneration/neuroprotection.
Collapse
Affiliation(s)
- F Nicoletti
- Department of Pharmaceutical Sciences, University of Catania, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Mitochondria within cultured rat cerebellar granule cells have a complex influence on cytoplasmic free Ca2+ ([Ca2+]c) responses to glutamate. A decreased initial [Ca2+]c elevation in cells whose mitochondria are depolarized by inhibition of the ATP synthase and respiratory chain (conditions which avoid ATP depletion) was attributed to enhanced Ca2+ extrusion from the cell rather than inhibited Ca2+ entry via the NMDA receptor. Even in the presence of elevated extracellular Ca2+, when [Ca2+]c responses were restored to control values, such cells showed resistance to acute excitotoxicity, defined as a delayed cytoplasmic Ca2+ deregulation (DCD) during glutamate exposure. DCD was a function of the duration of mitochondrial polarization in the presence of glutamate rather than the total period of glutamate exposure. Once initiated, DCD could not be reversed by NMDA receptor inhibition. In the absence of ATP synthase inhibition, respiratory chain inhibitors produced an immediate Ca2+ deregulation (ICD), ascribed to an ATP deficit. In contrast to DCD, ICD could be reversed by subsequent ATP synthase inhibition with or without additional NMDA receptor blockade. DCD could not be ascribed to the failure of an ATP yielding metabolic pathway. It is concluded that mitochondria can control Ca2+ extrusion from glutamate-exposed granule cells by the plasma membrane in three ways: by competing with efflux pathways for Ca2+, by restricting ATP supply, and by inducing a delayed failure of Ca2+ extrusion. Inhibitors of the mitochondrial permeability transition only marginally delayed the onset of DCD.
Collapse
|
9
|
Small DL, Murray CL, Mealing GA, Poulter MO, Buchan AM, Morley P. Brain derived neurotrophic factor induction of N-methyl-D-aspartate receptor subunit NR2A expression in cultured rat cortical neurons. Neurosci Lett 1998; 252:211-4. [PMID: 9739998 DOI: 10.1016/s0304-3940(98)00587-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptor subunit expression changes during development and following injury in several brain regions. These changes may be mediated by neurotrophic factors, such as brain derived neurotrophic factor (BDNF). Exposure of cultured cortical neurons to BDNF (100 ng/ml) for 24 h produced a significant decrease in the NMDA-induced whole-cell currents sensitive to the NR2B subunit selective NMDA receptor antagonist, CP-101,606, suggesting a relative decrease in NR2B subunit expression. There was a significant increase in NR2A by Western blot analysis. Consistent with the electrophysiology and Western blot analysis, reverse transcriptase-polymerase chain reaction (RT-PCR) amplification revealed that BDNF caused a significant increase in relative NR2A subunit expression, a significant decrease in relative NR2B subunit expression and no change in relative NR2C subunit expression. These results suggest that BDNF enhances NMDA receptor maturation, warranting further study of the mechanism of BDNF effects on NMDA receptor subunit expression and the role these effects play in development and neuronal injury.
Collapse
Affiliation(s)
- D L Small
- Cellular Neurobiology Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario.
| | | | | | | | | | | |
Collapse
|
10
|
Peng TI, Jou MJ, Sheu SS, Greenamyre JT. Visualization of NMDA receptor-induced mitochondrial calcium accumulation in striatal neurons. Exp Neurol 1998; 149:1-12. [PMID: 9454610 DOI: 10.1006/exnr.1997.6599] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ influx through NMDA receptor-gated channels and the subsequent rise in intracellular Ca2+ concentration ([Ca2+]i) have been implicated in cytotoxic processes that lead to irreversible neuronal injury. While many studies have focused on cytosolic Ca2+ homeostasis, much less is known about Ca2+ fluxes in subcellular organelles, such as mitochondria. The mitochondria play an important role in Ca2+ homeostasis by sequestering cytosolic Ca2+ loads. However, mitochondrial Ca2+ overload can impair ATP synthesis, induce free radical formation, and lead to lipid peroxidation. Thus, it is also important to understand the mitochondrial Ca2+ fluxes induced by NMDA. In this study, changes in mitochondrial Ca2+ concentration ([Ca2+]m) in cultured striatal neurons were monitored with a Ca(2+)-binding fluorescent probe, rhod-2, and laser scanning confocal microscopy. The rhod-2 fluorescence signal was highly localized in mitochondrial areas of confocal images. A rapid increase of [Ca2+]m was observed when neurons were treated with 100 microM NMDA. The increased [Ca2+]m induced by NMDA could not be observed in the presence of ruthenium red, an inhibitor of the mitochondrial Ca2+ uniporter, or CCCP, a protonophore that breaks down the mitochondrial membrane potential necessary for Ca2+ uptake. The magnitude and reversibility of changes in [Ca2+]m induced by NMDA were variable. In neurons receiving multiple pulses of NMDA, [Ca2+]m did not return to baseline. The elevated [Ca2+]m may persist indefinitely and may rise further after successive NMDA exposures. These data demonstrate that Ca2+ accumulates in mitochondria in response to NMDA receptor activation. This Ca2+ accumulation may play a role in the excitotoxic mitochondrial dysfunction induced by NMDA.
Collapse
Affiliation(s)
- T I Peng
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
11
|
Hafidi A, Hillman DE. Distribution of glutamate receptors GluR 2/3 and NR1 in the developing rat cerebellum. Neuroscience 1997; 81:427-36. [PMID: 9300432 DOI: 10.1016/s0306-4522(97)00140-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The distribution of glutamate receptors GluR2/3 and NR1 was analysed immunohistochemically during development of the rat cerebellum. GluR2/3 immunoreactivity appeared by postnatal day P0 in somata of Purkinje cells. Throughout P7, P15, P20 and adulthood, GluR2/3 immunoreactivity was found in the entire Purkinje cell dendritic arbor reaching to the external granular layer and, by P15, the surface of the cerebellum. By P7, the granular layer revealed scattered, mildly reactive, cells. NR-1 immunoreactivity first gained prominence about P7 in the region of the multi-layered Purkinje cell somata. By P15, NR1 was prominent in Purkinje cell somata and Golgi cells. The reaction product extended into the primary main dendrite of Purkinje cells. By P21, stellate and basket cells had intense reactivity throughout the molecular layer and reactive large-diameter dendrites of Golgi cells projected toward the molecular layer. Granule cells remained very weak among strongly reactive Golgi cell somata and dendrites. Ultrastructural immunohistochemistry revealed NR1 reaction product in Purkinje cell somata, in stellate cell somata and dendrites and on postsynaptic membranes of scattered spines throughout the molecular layer. The later appearance and restricted location of NR1 in somata and proximal dendrites of Purkinje cells contrasted markedly with GluR2/3 which appeared before birth and remained prominent throughout Purkinje cell dendritic arbors of adults. The time of NR1 expression correlated with the generation of granule cells, their synaptogenesis on Purkinje cells, the formation of stellate/baske cells and the shift of climbing fibre synapses from distal to proximal dendrites. The developmental appearance of stellate/basket cells and Golgi cells as well as their high reactivity remaining into adulthood suggest that these inhibitory molecular and granular layer interneurons are the principal targets of glutamate axons serving NR1 synaptic properties while Purkinje cells and brush type granule cells are targets for glutamate connections with GluR2/3 characteristics.
Collapse
Affiliation(s)
- A Hafidi
- Laboratoire de Neurobiologie, Universite Blaise-Pascal, Aubiere, France
| | | |
Collapse
|
12
|
Small DL, Poulter MO, Buchan AM, Morley P. Alteration in NMDA receptor subunit mRNA expression in vulnerable and resistant regions of in vitro ischemic rat hippocampal slices. Neurosci Lett 1997; 232:87-90. [PMID: 9302093 DOI: 10.1016/s0304-3940(97)00592-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Brain insults, including cerebral ischemia, can alter glutamate receptor subunit expression in vulnerable neurons. Understanding these post-ischemic changes in glutamate receptors could enhance our ability to identify specific, novel neuroprotective compounds. Reverse transcription-polymerase chain reaction (RT-PCR) amplification was used to quantify the altered expression of the N-methyl-D-aspartate (NMDA) NR2A, NR2B and NR2C subunits relative to one another in rat hippocampal slices in resistant and vulnerable regions following in vitro oxygen-glucose deprivation. Ninety minutes after re-oxygenation and return to 10 mM glucose, there was a significant increase in the expression of NR2C relative to NR2B and NR2A in the slice as a whole, as well as in the selectively vulnerable CA1 region and the resistant CA3 and dentate gyrus regions.
Collapse
Affiliation(s)
- D L Small
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario.
| | | | | | | |
Collapse
|
13
|
Wood AM, Tiwari P, Bristow DR. Media composition modulates excitatory amino acid-induced death of rat cerebellar granule cells. Hum Exp Toxicol 1997; 16:350-5. [PMID: 9257158 DOI: 10.1177/096032719701600702] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study examined the effects of maintaining cells in different media and the role of serum in glutamate and NMDA-induced neurotoxicity in rat cerebellar granule cells. Glutamate stimulated a concentration-dependent cell death with similar potency in cerebellar granule cells grown in BME and Neurobasal media without serum. However, the maximal cell death to glutamate and N-methyl-D-aspartate (NMDA) varied in the different media compositions. In the presence of serum, glutamate and NMDA-induced excitotoxicity was abolished, suggesting a factor(s) in serum which influences glutamate-receptor mediated death. The protective effect of serum could be overcome by chronic stimulation with high doses of glutamate. The glutamate-stimulated increase in intracellular calcium load was attenuated in the presence of serum, resulting from an elevated basal calcium level, suggesting an association between raised basal calcium and neuroprotection.
Collapse
Affiliation(s)
- A M Wood
- Division of Neuroscience, School of Biological Sciences, University of Manchester, UK
| | | | | |
Collapse
|
14
|
Vicious cycle involving Na+ channels, glutamate release, and NMDA receptors mediates delayed neurodegeneration through nitric oxide formation. J Neurosci 1996. [PMID: 8756431 DOI: 10.1523/jneurosci.16-16-05004.1996] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mechanisms by which neurons die after cerebral ischemia and related conditions in vivo are unclear, but they are thought to involve voltage-dependent Na+ channels, glutamate receptors, and nitric oxide (NO) formation because selective inhibition of each provides neuroprotection. It is not known precisely what their roles are, nor whether they interact within a single cascade or in parallel pathways. These questions were investigated using an in vitro primary cell culture model in which striatal neurons undergo a gradual and delayed neurodegeneration after a brief (5 min) challenge with the glutamate receptor agonist NMDA. Unexpectedly, NO was generated continuously by the cultures for up to 16 hr after the NMDA exposure. Neuronal death followed the same general time course except that its start was delayed by approximately 4 hr. Application of the NO synthase inhibitor nitroarginine after, but not during, the NMDA exposure inhibited NO formation and protected against delayed neuronal death. Blockade of NMDA receptors or of voltage-sensitive Na+ channels [with tetrodotoxin (TTX)] during the postexposure period also inhibited both NO formation and cell death. The NMDA exposure resulted in a selective accumulation of glutamate in the culture medium during the period preceding cell death. This glutamate release could be inhibited by NMDA antagonism or by TTX, but not by nitroarginine. These data suggest that Na+ channels, glutamate receptors, and NO operate interdependently and sequentially to cause neurodegeneration. At the core of the mechanism is a vicious cycle in which NMDA receptor stimulation causes activation of TTX-sensitive Na+ channels, leading to glutamate release and further NMDA receptor stimulation. The output of the cycle is an enduring production of NO from neuronal sources, and this is responsible for delayed neuronal death. The same neurons, however, could be induced to undergo more rapid NMDA receptor-dependent death that required neither TTX-sensitive Na+ channels nor NO.
Collapse
|
15
|
Brasko J, Rai P, Sabol MK, Patrikios P, Ross DT. The AMPA antagonist NBQX provides partial protection of rat cerebellar Purkinje cells after cardiac arrest and resuscitation. Brain Res 1995; 699:133-8. [PMID: 8616603 DOI: 10.1016/0006-8993(95)01015-n] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Purkinje cell loss in adult rats resuscitated following cardiac arrest is analogous to that seen following human cardiac arrest. Administration of the competitive AMPA antagonist NBQX to rats resuscitated after 10 min duration cardiac arrest rescued 21.5% of the vulnerable Purkinje cell population. These results support the hypothesis that sustained postischemic overexcitation of AMPA receptors may be a driving force in the process of Purkinje cell degeneration.
Collapse
Affiliation(s)
- J Brasko
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
16
|
Greensmith L, Vrbová G. Possible strategies for treatment of SMA patients: a neurobiologist's view. Neuromuscul Disord 1995; 5:359-69. [PMID: 7496170 DOI: 10.1016/0960-8966(94)00090-v] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This paper discusses possible strategies that might prevent or alleviate muscle weakness of SMA patients and hence improve their condition. The strategies discussed are as follows. (1) Prevention of motoneurone death. To achieve this two main approaches have been applied. Firstly, trophic factors have been used to prevent motoneurone death after nerve injury and clinically in diseases such as motoneurone disease. The results of these attempts will be described. Secondly, the possibility that injured motoneurones die as a result of the excitotoxic effects of the excitatory transmitter glutamate will be explored. Evidence will be presented which indicates that blocking glutamate receptors can rescue injured motoneurones from death. (2) Replacement of lost motoneurones by embryonic grafts. Motoneurones from grafts of embryonic spinal cord have been shown to survive in the adult spinal cord and are able to reinnervate skeletal muscles. The potential and practical problems of this approach will be discussed. (3) Expansion or motor unit territory of surviving motoneurones. Such an expansion of the territory occupied by individual motor units can be achieved by encouraging sprouting and ensuring that the newly formed connections between the motoneurone and muscle fibres are maintained, so that individual motor units are capable of developing more force. Strategies to achieve such an expansion of motor unit territory will be described. Finally, combinations of some of these approaches are considered.
Collapse
Affiliation(s)
- L Greensmith
- Department of Anatomy and Developmental Biology, University College London, U.K
| | | |
Collapse
|
17
|
Hack NJ, Sluiter AA, Balázs R. AMPA receptors in cerebellar granule cells during development in culture. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 87:55-61. [PMID: 7554232 DOI: 10.1016/0165-3806(95)00054-h] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The survival and maturation of differentiating cerebellar granule cells in culture are known to be promoted by excitatory amino acids (EAAs) which, however, compromise the survival of mature cells. In contrast to the trophic effect, the toxic effect of alpha-amino-3-hydroxy-5-methyl-4-isoxasolepropiate (AMPA) could only be elicited when the desensitisation of AMPA receptors was blocked, cyclothiazide being used in this study. Nevertheless, even under these conditions, toxicity induced by AMPA in contrast to kainate was, at 9 DIV, only half of the maximal toxicity attained by 13-16 DIV. Since cellular responses to AMPA depend so dramatically on the maturational stage of granule cells, we examined here whether this characteristic is related to developmental changes in AMPA receptor properties, which may result from changes in the subunit composition of the receptor. In contrast to toxicity, AMPA-induced 45Ca2+ influx (determined in the presence of cyclothiazide and the NMDA receptor blocker MK-801) reached a maximum already at 9 DIV. This also applied to a fraction of the 45Ca2+ uptake which persisted either after Cd2+ application or under Na(+)-free conditions and therefore presumably was mediated directly through AMPA receptor channels. Quantitative analysis of Western blots showed that the amounts of GluR4 and to a lesser extent GluR2/3/4c are substantial already at 2 DIV, remaining fairly constant until 9 DIV, followed by an increase by 16 DIV. However GluR1, which is hardly detectable in granule cells in vivo and is also low early in vitro, increased almost linearly with cultivation time.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N J Hack
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, The Netherlands
| | | | | |
Collapse
|
18
|
Witt ED. Mechanisms of alcohol abuse and alcoholism in adolescents: a case for developing animal models. BEHAVIORAL AND NEURAL BIOLOGY 1994; 62:168-77. [PMID: 7857239 DOI: 10.1016/s0163-1047(05)80015-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This paper reviews the ontogeny of neurotransmitter systems and neuropharmacological challenge within transmitter systems and discusses the actions of alcohol on such systems during the juvenile through adolescent periods. To place the animal research within the context of human development, an attempt is made to first examine some fundamental principles of developmental research as they relate to the adolescent period. Evidence presented from animal studies indicates that unique neurochemical and behavioral changes are occurring during postnatal development, including adolescence, that could mediate the response to alcohol. The limited number of studies on the neurochemical and behavioral response to alcohol during adolescence has employed rats and has been restricted by the relatively brief adolescent period in that species. While one alternative is to use primates, it is suggested that innovative behavioral paradigms be developed for adolescent animals in other species to study behaviors such as alcohol self-administration or alcohol stimulus discrimination. It is also suggested that existing behavioral models that are more easily adapted to younger age ranges (e.g., conditioned place preference, conditioned taste aversion, thermal response to ethanol) be extended to make ontogenetic comparisons through adolescence and adulthood. This may further our understanding of alcohol's immediate consequences during each maturational stage and, more important, the contribution of early alcohol exposure to excessive drinking and abnormal cognitive and social functioning during subsequent stages of development.
Collapse
Affiliation(s)
- E D Witt
- National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland 20892
| |
Collapse
|
19
|
Leahy JC, Chen Q, Vallano ML. Chronic mild acidosis specifically reduces functional expression of N-methyl-D-aspartate receptors and increases long-term survival in primary cultures of cerebellar granule cells. Neuroscience 1994; 63:457-70. [PMID: 7891858 DOI: 10.1016/0306-4522(94)90543-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous studies suggest that chronic depolarization by addition of 25 mM KCl or N-methyl-D-aspartate to primary cultures of cerebellar granule cells promotes expression of the N-methyl-D-aspartate subtype of glutamate receptor, as determined by electrophysiological responsiveness and susceptibility to excitotoxicity. Recent studies have demonstrated that acute mild acidosis reduces N-methyl-D-aspartate receptor channel activity by a non-competitive action of H+ on an extracellular site of the receptor channel complex. Since the level of N-methyl-D-aspartate receptor expression in granule cell cultures is activity-dependent, we examined whether chronic mildly acidotic culture conditions would selectively diminish the level of N-methyl-D-aspartate responsiveness in granule cells, in effect producing a functional level of expression more comparable to that observed in vivo. To test this, cerebellar granule cells from eight-day neonatal rats were grown in an HCO3-buffered medium containing elevated K+ (25 mM KCl) either under standard conditions (95% air/5% CO2, pH 7.4), or under chronic mildly acidotic conditions (90% air/10% CO2, estimated pH of 7.1). Glutamate receptor subtype expression was subsequently assessed using standard neurotoxicity assays, a quantitative immunoblotting assay for N-methyl-D-aspartate receptors and whole cell patch clamp recordings. Cells grown in the 10% CO2 environment exhibited a significant reduction in susceptibility to L-glutamate neurotoxicity (at least 10-fold), but not kainate-induced neurotoxicity, relative to cells grown in 5% CO2. In both culture conditions, L-glutamate- and kainate-induced toxicity were mediated by activation of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors, respectively, as determined by the sensitivity of agonist-induced toxicity to specific receptor antagonists. Using polyclonal antibodies generated against a peptide sequence recognizing five of eight splice variants in the common "R1" subunit of N-methyl-D-aspartate receptors, a 31% reduction in the amount of immunoreactive protein was observed in membrane preparations from cells grown in 10% CO2, relative to the amount detected in cells grown in 5% CO2. Moreover, perfusion of cells with glutamate (50 microM) in a nominally Mg(2+)-free solution containing glycine (2 microM) elicited N-methyl-D-aspartate antagonist-sensitive inward currents in proportionately fewer cells cultured in 10% CO2, relative to cells cultured in 5% CO2. Long-term survival was also significantly enhanced in cells exposed chronically to mild acidotic culture conditions, relative to cells grown under standard pH conditions (22 days, 10% CO2 vs 16 days, 5% CO2).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J C Leahy
- Department of Pharmacology, SUNY Health Science Center at Syracuse 13210
| | | | | |
Collapse
|
20
|
Betaine attenuates glutamate-induced neurotoxicity in primary cultured brain cells. Arch Pharm Res 1994. [DOI: 10.1007/bf02974174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Liu D. An experimental model combining microdialysis with electrophysiology, histology, and neurochemistry for studying excitotoxicity in spinal cord injury. Effect of NMDA and kainate. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1994; 23:77-92. [PMID: 7702709 DOI: 10.1007/bf02815402] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We used an experimental model that we previously developed to characterize the damage caused by the agonists of glutamate receptors, N-methyl-D-aspartate (NMDA) and kainate, in the spinal cord in vivo, thereby testing further the utility of this model. Microdialysis was used to administer the toxins and to sample the release of other substances in response to these agents. The blockage of electrical conduction was monitored by recording the amplitudes of evoked potentials during administration of the damaging substances, and damage was assessed by postmortem histological examination. The released amino acids in microdialysates were measured by HPLC. Administration of 5 mM NMDA + 5 mM kainate into the gray matter blocked most postsynaptic responses and caused the release of amino acids. Administration of 10 mM NMDA and 10 mM kainate significantly destroyed cell bodies near the fiber. The advantage of this model is that histological, neurochemical, and electrophysiological parameters were obtained in the same experiment.
Collapse
Affiliation(s)
- D Liu
- Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77555-0843
| |
Collapse
|
22
|
Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol 1994; 347:150-60. [PMID: 7798379 DOI: 10.1002/cne.903470112] [Citation(s) in RCA: 351] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Five N-methyl-D-aspartate (NMDA) receptor subunits have been identified thus far: NR1, NR2A, NR2B, NR2C, and NR2D. Here, we have analyzed the expression patterns of mRNAs for the NMDA receptor subunits in the developing and adult rats by in situ hybridization. The developmental changes of the expression patterns were most salient in the cerebellum. In the external granular layer, hybridization signals of mRNAs for NR1, NR2A, NR2B, and NR2C appeared by postnatal day 3, but no NR2D mRNA was expressed at any developmental stage examined. The NR1 mRNA was expressed in all cerebellar neurons at all developmental stage examined. The NR1 mRNA was expressed in all cerebellar neurons at all developmental stages examined. The signals for the NR2A mRNA appeared in Purkinje cells and granule cells during the second postnatal week. The signals for the NR2B mRNA in granule cells were seen transiently during the first 2 weeks after birth. The signals for NR2C mRNA appeared in granule cells and glial cells during the second postnatal week. The signals for NR2D mRNA appeared transiently in Purkinje cells during the first 8 postnatal days; in adult rats, these were seen in stellate and Golgi cells. In the cerebellar nuclei, mRNAs for NR1, NR2A, NR2B, and NR2D were more or less expressed on postnatal day 0, while expression signals for the NR2C mRNA were first detected in postnatal day 14. Thus, the most conspicuous changes of expression patterns were observed in the cerebellar cortex during the first 2 weeks after birth, when development and maturation of the cerebellum proceed most rapidly.
Collapse
Affiliation(s)
- C Akazawa
- Department of Morphological Brain Science, Kyoto University, Japan
| | | | | | | | | |
Collapse
|
23
|
Resink A, Hack N, Boer GJ, Balázs R. Growth conditions differentially modulate the vulnerability of developing cerebellar granule cells to excitatory amino acids. Brain Res 1994; 655:222-32. [PMID: 7812776 DOI: 10.1016/0006-8993(94)91617-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The survival of immature nerve cells in a cerebellar culture, predominantly excitatory granule cells, is known to be promoted by chronic exposure to high K+ (> 20 mM) or glutamate (Glu) receptor agonists. These treatments are believed to mimic the in vivo effect of the incoming glutamatergic afferents, the mossy fibres. Here we report that with maturation the cells become vulnerable to excitatory amino acids (EAAs) and that the characteristics of EAA sensitivity are dependent on the environmental influences being either "trophic" (25 mM K+ or 140 microM NMDA, K25 or K10 + NMDA) or "non-trophic" (10 mM K+, K10). Toxicity was assayed routinely at 9 days in vitro (DIV) after 24 h exposure to EAAs. Under all the tested conditions, the effect of Glu was mediated exclusively through NMDA receptors. However, the efficacy and potency of Glu were high in K25- and K10 + NMDA-grown cells compared with K10-grown cells. Growth conditions had the same influence on NMDA as on Glu-induced toxicity, but with the following special features: (1) in comparison with K25 cells, the potency of NMDA was significantly lower in K10 + NMDA cells. The K10 + NMDA cultures behaved as if they were completely insensitive to the NMDA which is present in their growth medium. (2) The K10-grown cells were not vulnerable to NMDA, unless the cell membrane was depolarised by shifting the cells into K25 medium. The efficacy of NMDA became then similar to that in K25 cultures, although the potency was about 7-fold less. Thus NMDA receptors can be activated by the depolarisation of K10 cells, implying the operation of Mg2+ blockade of the channel at normal resting membrane potential. Although non-NMDA receptors did not seem to be involved in Glu toxicity, cells were vulnerable to kainate, which killed significantly more cells than Glu (about 80% vs 70%). This was partly due to the resistance of GABAergic interneurons present in the cultures to Glu- or NMDA-induced toxicity. In contrast to the effects of Glu or NMDA, KA vulnerability was lower in cells grown in K25 or K40 than K10 medium (rank order K10 > K25 > K40). Under our experimental conditions, cultured cells were resistant to AMPA, quisqualate and the selective metabotropic Glu receptor agonist 1S,3R-ACPD. Collectively, the observations indicated that EAA sensitivity of cultured cerebellar interneurons is significantly and differentially influenced by environmental factors, believed to mimic in vivo trophic influences on these cells.
Collapse
Affiliation(s)
- A Resink
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Amsterdam
| | | | | | | |
Collapse
|
24
|
Lerma J, Morales M, Ibarz JM, Somohano F. Rectification properties and Ca2+ permeability of glutamate receptor channels in hippocampal cells. Eur J Neurosci 1994; 6:1080-8. [PMID: 7524964 DOI: 10.1111/j.1460-9568.1994.tb00605.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Excitatory amino acids exert a depolarizing action on central nervous system cells through an increase in cationic conductances. Non-NMDA receptors have been considered to be selectively permeable to Na+ and K+, while Ca2+ influx has been thought to occur through the NMDA receptor subtype. Recently, however, the expression of cloned non-NMDA receptor subunits has shown that alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are permeable to Ca2+ whenever the receptor lacks a particular subunit (edited GluR-B). The behaviour of recombinant glutamate receptor channels predicts that Ca2+ would only permeate through receptors that show strong inward rectification and vice versa, i.e. AMPA receptors with linear current-voltage relationships would be impermeable to Ca2+. Using the whole-cell configuration of the patch-clamp technique, we have studied the Ca2+ permeability and the rectifying properties of AMPA receptors, when activated by kainate, in hippocampal neurons kept in culture or acutely dissociated from differentiated hippocampus. Cells were classified according to whether they showed outward rectifying (type I), inward rectifying (type II) or almost linear (type III) current-voltage relationships for kainate-activated responses. AMPA receptors of type I cells (52.2%) were mostly Ca(2+)-impermeable (PCa/PCs = 0.1), while type II cells (6.5%) expressed Ca(2+)-permeable receptors (PCa/PCs = 0.9). Type III cells (41.3%) showed responses with low but not negligible Ca2+ permeability (PCa/PCs = 0.18). The degree of Ca2+ permeability and inward rectification were well correlated in cultured cells, i.e. more inward rectification corresponded to higher Ca2+ permeability.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Lerma
- Departamento de Plasticidad Neural, Instituto Cajal, Madrid, Spain
| | | | | | | |
Collapse
|
25
|
Lafon-Cazal M, Culcasi M, Gaven F, Pietri S, Bockaert J. Nitric oxide, superoxide and peroxynitrite: putative mediators of NMDA-induced cell death in cerebellar granule cells. Neuropharmacology 1993; 32:1259-66. [PMID: 7509050 DOI: 10.1016/0028-3908(93)90020-4] [Citation(s) in RCA: 159] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study, we analysed the implication of superoxide (O2-.) and nitric oxide (NO.) free radicals and their resulting product peroxynitrite (ONOO-) in the neuronal death induced by the activation of the glutamatergic receptor of the N-methyl-D-aspartate (NMDA) subtype using cultured cerebellar granule cells. The NOl donor SIN-1 (3-morpholinosydnonimine N-ethylcarbamide), at concentrations which produced a much higher guanylate cyclase activation (i.e. NO. concentration) than NMDA, was not neurotoxic and did not increase the NMDA-induced neuronal death. The absence of involvement of NO. in NMDA-induced neuronal death was confirmed by the ineffectiveness of L-NG-nitroarginine (L-Narg) as a neuroprotective compound. Electron paramagnetic resonance (EPR) experiments, using 5,5-dimethyl pyrroline 1-oxide (DMPO) as a spin trap, indicated that NMDA receptor stimulation led to the generation of O2-. from at least 15-30 min. The generation of O2-. by xanthine (XA)-xanthine oxidase (XO) induced a neuronal death similar to that of NMDA. XA-XO-induced neuronal death was suppressed by addition of either superoxide dismutase (SOD) plus catalase (CAT), or DMPO in the incubation medium. In contrast, NMDA-induced neuronal death was widely blocked by DMPO and other spin trap compounds, but not by SOD +/- CAT. XA-XO-induced neuronal death was not potentiated by SIN-1 indicating that ONOO- is not more toxic than O2-. in our neuronal model.
Collapse
|
26
|
Johnson M, Perry EK, Ince PG, Shaw PJ, Perry RH. Autoradiographic comparison of the distribution of [3H]MK801 and [3H]CNQX in the human cerebellum during development and aging. Brain Res 1993; 615:259-66. [PMID: 8103415 DOI: 10.1016/0006-8993(93)90036-m] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The autoradiographic distribution of N-methyl-D-aspartate (NMDA) and D,L-a-amino-3-hydroxyl-5-methyl-4-isoxazoleproprionic acid/quisqualate (AMPA/QUIS) receptors was determined in cerebellum obtained at autopsy from 37 human individuals, aged from 24 weeks gestation to 95 years. [3H]MK801 was used to label the NMDA receptor and [3H]CNQX to label the AMPA/QUIS receptor. AMPA/QUIS receptors were concentrated in the cerebellar molecular layer, and NMDA receptors in the granular layer. Significant (3- to 4-fold) increases in binding were seen for both ligands from the fetal to neonatal periods in the molecular layer (CNQX) and in both molecular and granular layers (MK801). MK801 binding in the molecular layer continued to increase with age up to the tenth decade and together with binding in the granular layer, increased 2-fold between 10-40 years. The Purkinje cell layer was negative for MK801 binding until the 6-7th decade when it became positive. [3H]CNQX binding in the molecular layer increased significantly with age between the fetal period and the tenth decade, whereas in the granular layer binding increased from neonate to 40 years, but then decreased significantly from 60 years to the tenth decade. Lamination of the molecular and granular layers was absent during the fetal period and appeared with both ligands during the neonatal period. These marked differences in age-related expression of ligand binding sites in the granular layer during development and aging are of potential significance in relation both to selective vulnerability to ischemia, and synaptic plasticity and remodelling related to neuronal loss in senescence.
Collapse
Affiliation(s)
- M Johnson
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, Newcastle upon Tyne, UK
| | | | | | | | | |
Collapse
|
27
|
Ramnath RR, Strange K, Rosenberg PA. Neuronal injury evoked by depolarizing agents in rat cortical cultures. Neuroscience 1993; 51:931-9. [PMID: 1362603 DOI: 10.1016/0306-4522(92)90530-f] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chemical depolarization is often used to study neurotransmitter release. Three commonly used depolarizing agents, veratridine, potassium, and glutamate, were evaluated for neurotoxicity. Neuronal survival and lactate dehydrogenase efflux were measured to assay irreversible injury. In addition, video-enhanced differential interference contrast microscopy was used to measure acute neuronal swelling. We found that lactate dehydrogenase efflux and cell death associated with exposure to potassium and glutamate could be blocked by the competitive N-methyl-D-aspartate antagonist amino-phosphonovaleric acid. Neuronal swelling was observed with all three agents, and could not be blocked by amino-phosphonovaleric acid. These results suggest multiple mechanisms of neuronal injury accompanying chemical depolarization. A 60-min exposure to 100 microM veratridine increased lactate dehydrogenase appearing in the medium at the end of this exposure to 615% of control and produced a 62% loss of neurons after 20-24 h. These effects could not be blocked by amino-phosphonovaleric acid at 500 microM. Differential interference contrast imaging revealed acute neuronal swelling in response to veratridine within 5 min of exposure, and this swelling could not be blocked by amino-phosphonovaleric acid. A 60-min exposure to medium supplemented with 50 mM KCl caused a lactate dehydrogenase efflux of 204% of control and produced a 48% loss of neurons. Amino-phosphonovaleric acid blocked both the neuronal loss and the excess lactate dehydrogenase efflux. In addition, differential interference contrast monitoring showed no KCl-evoked swelling. In contrast, isotonic substitution of 50 mM KCl for NaCl resulted in acute swelling which could not be blocked by amino-phosphonovaleric acid, in addition to neuronal death and lactate dehydrogenase release. Glutamate was, as expected, neurotoxic, and as has been shown before, this toxicity could be blocked by amino-phosphonovaleric acid. Observation of neurons exposed to 300 microM glutamate revealed that this treatment was invariably associated with neuronal swelling. In the presence of amino-phosphonovaleric acid, 81% of neurons swelled to greater than 110% by 30 min exposure to glutamate. These results suggest that experimental paradigms which investigate the effects of chemical depolarization upon central neurons are likely to be associated with reversible and irreversible forms of injury. This is of special importance to any study of the mechanisms of release of substances from central neurons.
Collapse
Affiliation(s)
- R R Ramnath
- Department of Neurology, Children's Hospital, Boston, MA 02115
| | | | | |
Collapse
|
28
|
Hampson DR, Huang XP, Oberdorfer MD, Goh JW, Auyeung A, Wenthold RJ. Localization of AMPA receptors in the hippocampus and cerebellum of the rat using an anti-receptor monoclonal antibody. Neuroscience 1992; 50:11-22. [PMID: 1328932 DOI: 10.1016/0306-4522(92)90378-f] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The primary amino acid sequences of the kainate binding proteins from the amphibian and avian central nervous systems are homologous with the functional alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-propionate receptors that have been cloned from rat brain. In this study, we have analysed the anatomical and subcellular distribution of the alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-propionate receptors in the rat hippocampus and cerebellum, using a monoclonal antibody that was raised against a kainate binding protein purified from frog brain. Immunoblots of rat hippocampus and cerebellum, and membranes from COS cells transfected with rat brain alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-propionate receptor cDNAs (GluR1, GluR2, or GluR3) showed a major immunoreactive band migrating at a relative molecular weight of 107,000. In the cerebellum, an additional immunoreactive protein of approximately 128,000 mol. wt was also seen on immunoblots probed with the antibody. The distribution of this protein is apparently restricted to the cerebellum since the 128,000 mol. wt band was not present in other brain areas examined. The identity of the 128,000 mol. wt cerebellar protein is not known. Immunocytochemical analyses of the hippocampus demonstrated that alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate receptor subunits are present in the cell bodies and dendrites of pyramidal cells. The granule cells were also immunostained. All of the pyramidal cell subfields were heavily labeled. In the pyramidal cell bodies, a high level of immunoreactivity was observed throughout the cytoplasm. In the cerebellum, the Purkinje cell bodies and dendrites also displayed very high levels of immunoreactivity. In addition to the Purkinje neurons, the Bergmann glia and some Golgi neurons were clearly immunostained. Subcellular fractionation and lesioning experiments using the excitotoxin domoic acid indicated that the alpha-amino-3-hydroxyl-5-methyl-isoxazole-4-propionate receptor subunits were associated with postsynaptic membranes. Direct visualization of the immunoreactivity using electron microscopy confirmed the postsynaptic localization of the staining in the dendritic areas in both the hippocampus and the cerebellum. Thus, unlike the kainate binding proteins, which are found primarily extrasynaptically in the frog and on glial cells in the chicken cerebellum, the GluR1, GluR2, and GluR3 receptor subunits are localized to the postsynaptic membrane in the dendrites of neurons in the rat central nervous system.
Collapse
Affiliation(s)
- D R Hampson
- Faculty of Pharmacy, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Stone EA, John SM, Bing G, Zhang Y. Studies on the cellular localization of biochemical responses to catecholamines in the brain. Brain Res Bull 1992; 29:285-8. [PMID: 1327419 DOI: 10.1016/0361-9230(92)90058-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Studies were undertaken to determine the cellular localization of the cyclic adenosine monophosphate (cAMP) response of various forebrain regions to beta-adrenoceptor stimulation. Using brain slices, it was found that the gliotoxin, fluorocitrate (FC), which blocks metabolism selectively in glial cells, virtually abolished the cAMP response to beta-receptor stimulation whereas the neurotoxin, kainic acid (KA), was without effect. FC was confirmed by electrophysiological recording to be selective for glial cells in the brain slices. Similar results were found for these agents on in vivo brain cAMP responses to beta-receptor stimulation using a new microdialysis technique to measure in vivo responses. It is concluded that the cAMP response to beta-adrenoceptor stimulation in various regions of the forebrain occurs predominantly in glia. To determine if this could be correlated with a second biochemical response to beta-receptor stimulation, preliminary studies were undertaken on the localization of the immediate early gene, c-fos, produced in the brain after in vivo stimulation of beta-receptors. It was found that unlike the cAMP responses the c-fos response to beta-receptor stimulation occurs predominantly in neurons. The possible relationship of these two responses is discussed.
Collapse
Affiliation(s)
- E A Stone
- Department of Psychiatry, New York University Medical Center, New York 10016
| | | | | | | |
Collapse
|
30
|
Zhou N, Parks TN. Developmental changes in the effects of drugs acting at NMDA or non-NMDA receptors on synaptic transmission in the chick cochlear nucleus (nuc. magnocellularis). BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 67:145-52. [PMID: 1380899 DOI: 10.1016/0165-3806(92)90215-i] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The developmental pharmacology of excitatory amino acid (EAA) receptors in the chick cochlear nucleus (nucleus magnocellularis, NM) was studied by means of bath application of drugs and recording of synaptically-evoked field potentials in brain slices taken from chicks aged embryonic day (E) 14 through hatching (E21). The abilities of various EAA agonists (N-methyl-D-aspartate [NMDA], kainic acid, and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA]) to suppress postsynaptic responses by depolarization block and of EAA antagonists ((3-[RS]-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid [CCP], dizocilpine [MK-801], 6-nitro-7-sulfamoyl-benzo(F)quinoxaline-2,3 dione [NBQX], 6-cyano-7-nitroquinoxaline-2,3-dione [CNQX] and 6,7-dinitroquinoxaline-2,3-dione [DNQX]) to suppress these responses directly were assessed quantitatively. The results support the existence of NMDA receptors in NM and suggest that the ability of these receptors to influence synaptically-evoked responses declines dramatically during the last week of embryonic life. The results similarly suggest that the non-NMDA receptors in NM undergo changes in density and/or function during a period of development when the cochlear nucleus is undergoing a variety of morphological and functional transformations.
Collapse
Affiliation(s)
- N Zhou
- Department of Anatomy, University of Utah School of Medicine, Salt Lake City 84132
| | | |
Collapse
|
31
|
Stone EA, John SM. Further evidence for a glial localization of rat cortical beta-adrenoceptors: studies of in vivo cyclic AMP responses to catecholamines. Brain Res 1991; 549:78-82. [PMID: 1654173 DOI: 10.1016/0006-8993(91)90601-q] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present experiments were designed to clarify the cellular localization of postsynaptic beta-receptors in the rat cortex by studying the cellular source and pharmacological characteristics of in vivo cAMP responses to catecholamines. The method used to study in vivo cAMP responses in the brain involved microdialysis both to deliver catecholamines to cerebral tissue and to sample cAMP released in response to local beta-receptor activation. It was found that selective blockade of the metabolism of glial cells by fluorocitrate infusion produced a virtually complete (90%) inhibition of the cortical cAMP response to norepinephrine (NE). Selective damage of neurons by kainic acid infusion had little effect on the response. Pharmacological experiments showed that the response was selectively antagonized by a beta 1-receptor blocker which also selectively antagonized the cAMP response to NE in brain slices known to be localized in glial cells. These results support the hypothesis that beta-adrenoceptors of the rat cortex are predominantly localized on glial cells and therefore strongly suggest that these cells are an important target of the locus coeruleus noradrenergic system.
Collapse
Affiliation(s)
- E A Stone
- Department of Psychiatry, New York University Medical Center, NY 10016
| | | |
Collapse
|
32
|
Pellegrini-Giampietro DE, Bennett MV, Zukin RS. Differential expression of three glutamate receptor genes in developing rat brain: an in situ hybridization study. Proc Natl Acad Sci U S A 1991; 88:4157-61. [PMID: 1851996 PMCID: PMC51617 DOI: 10.1073/pnas.88.10.4157] [Citation(s) in RCA: 177] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Non-N-methyl-D-aspartate glutamate receptors (GluRs) are encoded by a gene family, known members of which are designated GluR-1, -2, -3, -4, and -5. The present study examined the developmental pattern of GluR-1, -2, and -3 gene expression in rat brain. In situ hybridization revealed different spatial patterns throughout the brain for the cognate mRNAs at all ages examined, as well as different temporal patterns during development. In the adult all three mRNAs were expressed prominently in the pyramidal and granule layers of the hippocampus and in the Purkinje cell layer of the cerebellum, where detailed differences were apparent at the cellular level. In neocortex, GluR-2 mRNA exhibited prominent lamination and regional differences, which were less marked for GluR-1 and -3 mRNAs. In caudate-putamen GluR-2 mRNA was at high levels, but GluR-1 and -3 mRNAs were not. At early ages transcripts were transiently elevated relative to adult levels. GluR-1 mRNA reached peak expression in cortex at postnatal day 14 (P14) (225% of adult), in striatum at P4 (255% of adult), in hippocampus at P14 (195% of adult), and in cerebellum at P21 (150% of adult). GluR-3 exhibited more modest peaks in neocortex and hippocampus. In contrast, GluR-2 mRNA was at near adult levels throughout the first days of postnatal life and exhibited a peak only in cerebellum at P14 (168% of adult). The finding of differential developmental regulation of the GluR-1, -2, and -3 genes indicates that the receptors they encode may have different influences on synaptic plasticity, neuronal survival, and susceptibility to excitatory amino acid toxicity.
Collapse
|
33
|
Di Stasi AM, Gallo V, Ceccarini M, Petrucci TC. Neuronal fodrin proteolysis occurs independently of excitatory amino acid-induced neurotoxicity. Neuron 1991; 6:445-54. [PMID: 1848081 DOI: 10.1016/0896-6273(91)90252-u] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In cultured cerebellar granule cells, the total amount of fodrin alpha subunit increased 3-fold between 0 and 10 days in vitro and fodrin mRNA increased 5-fold. The exposure of cerebellar neurons to NMDA induced the accumulation of a 150 kd proteolytic fragment of fodrin. The NMDA-induced breakdown of fodrin was time-, concentration-, and Ca2(+)-dependent and was inhibited by APV, Mg2+, or the calpain I inhibitor N-acetyl-Leu-Leu-norleucinal. Kainate caused fodrin proteolysis through indirect activation of NMDA receptors. Quisqualate was ineffective. The NMDA-induced degradation of fodrin occurred under conditions that did not cause degeneration of cultured cerebellar neurons. These results show that Ca2+/calpain I-dependent proteolysis of fodrin is selectively associated with NMDA receptor activation; however, fodrin proteolysis per se does not play a causal role in NMDA-induced toxicity in cerebellar granule cells.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Calcium/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/physiology
- Calpain/pharmacology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cattle
- Cells, Cultured
- Cerebellum/cytology
- Cerebellum/drug effects
- Cerebellum/metabolism
- Dose-Response Relationship, Drug
- Fluorescent Antibody Technique
- Kainic Acid/pharmacology
- Leupeptins/pharmacology
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- N-Methylaspartate/toxicity
- Neurons/drug effects
- Neurons/metabolism
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Glutamate
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/physiology
- Receptors, Neurotransmitter/drug effects
- Receptors, Neurotransmitter/physiology
- Time Factors
Collapse
Affiliation(s)
- A M Di Stasi
- Laboratory of Cell Biology, Istituto Superiore di Sanitá, Rome, Italy
| | | | | | | |
Collapse
|
34
|
Andreeva NA, Erin AN, Viktorov IV. Vitamin E depresses the neurocytotoxic action of kainic acid in cerebellar granule-cell cultures. Bull Exp Biol Med 1991. [DOI: 10.1007/bf00842690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Garcia-Ladona FJ, Palacios JM, Girard C, Gombos G. Autoradiographic characterization of [3H]L-glutamate binding sites in developing mouse cerebellar cortex. Neuroscience 1991; 41:243-55. [PMID: 1676139 DOI: 10.1016/0306-4522(91)90213-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Postnatal changes of [3H]L-glutamate binding sites in mouse cerebellum were studied by in vitro autoradiography. These sites were already present at birth, their density globally increased until postnatal day 25, and at all ages it was higher when Cl- and Ca2+ were present in the incubation buffer. At birth, these binding sites were diffused through the whole cerebellar mass, but became distinctly concentrated in the molecular and the internal granular layers by postnatal day 10. From this age on, binding site sensitivity to ions and glutamate analogues takes a different course in each layer. The external granular layer and the white matter never displayed significant amounts of binding. In the molecular layer the Cl-/Ca2+ effect increased during ontogeny until, in adults, the ion-dependent binding was threefold higher than the ion-independent binding. Quisqualate-sensitive sites accounted for 80% of the total binding sites already at postnatal day 15, while displacement by alpha-amino-3-hydroxy-methyl-4-isoxazolepropionic and ibotenic acids attained the maximum (68%) at postnatal day 60. N-Methyl-D-aspartate displaced glutamate binding (50%) only in the presence of Cl- and Ca2+. Starting from postnatal day 15, binding site density in the molecular layer of lobules VIb and VII of the vermis was lower than in other lobules. In the internal granular layer, the Cl-/Ca2+ effect observed in young animals decreased during development. These transient binding sites were sensitive to quisqualic and ibotenic acid. In adults, the majority of glutamate binding sites were ion-independent and mainly sensitive to D,L-amino-5-phospho-valeric acid and N-methyl-D-aspartate. Throughout development and in both layers, sites displaced by kainate were present at low density and sites displaced by D,L-2-amino-4-phosphonobutyric acid were not detected. The localized postnatal changes of the [3H]L-glutamate binding sites were correlated with the events occurring during growth and maturation of cerebellar structures. The increase of the Cl-/Ca(2+)-dependent binding in the molecular layer is simultaneous with the growth of Purkinje cell dendrites and of parallel fibres and with the formation of the synapses between them. This suggests that these binding sites are localized in these synapses. The changing pattern of sensitivity to different agonists during development might correspond to the maturation of these synapses. The low density of [3H]L-glutamate binding in the molecular layer of lobules VIb and VII probably indicates the presence of specific nerve projections to these areas.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
36
|
Rosenberg PA. Accumulation of extracellular glutamate and neuronal death in astrocyte-poor cortical cultures exposed to glutamine. Glia 1991; 4:91-100. [PMID: 1675625 DOI: 10.1002/glia.440040111] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The function of astrocytes in cerebral cortex may be studied by comparing the properties of conventional, astrocyte-rich cultures with astrocyte-poor cultures in which astrocyte proliferation has been stringently suppressed. Exposure of astrocyte-poor, but not astrocyte-rich, cultures to fresh medium containing 2 mM glutamine resulted in the death of most neurons within 24 h. This study was undertaken to understand the basis for the apparent toxicity of glutamine in astrocyte-poor cultures. The toxicity of glutamine was found to be mediated by glutamate, which demonstrated an LD50 as a neurotoxin in astrocyte-poor cultures of 2 microM. Exposure of astrocyte-poor (but not astrocyte-rich) cultures to fresh medium containing glutamine for 17.5-24 h resulted in the accumulation of substantial quantities of glutamate (255 +/- 158 microM; mean +/- standard deviation) coincident with the death of neurons in the cultures. Exposure of astrocyte-poor cultures to glutamate in the absence of glutamine did not result in the accumulation of extracellular glutamate. Both the neuronal death and the extracellular glutamate accumulation in astrocyte-poor cultures exposed to glutamine could be blocked by N-methyl-D-aspartate (NMDA) antagonists. These observations suggest that astrocytes as well as glutamine may play an important role in the pathogenesis of glutamate neurotoxicity in the central nervous system.
Collapse
Affiliation(s)
- P A Rosenberg
- Department of Neurology, Children's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
37
|
Stone EA, Sessler FM, Liu WM. Glial localization of adenylate-cyclase-coupled beta-adrenoceptors in rat forebrain slices. Brain Res 1990; 530:295-300. [PMID: 2176116 DOI: 10.1016/0006-8993(90)91298-u] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fluorocitrate (FC), a selective inhibitor of glial cell respiration, was used to estimate the extent to which glial cells contain adenylate cyclase-coupled beta-adrenoceptors in rat brain slices. The drug blocked 75-95% of the elevation of cyclic AMP caused by the beta-agonist, isoproterenol, in the 4 forebrain regions sampled (frontal and parietal cortex, caudate nucleus, olfactory tubercle). Intracellular recording of neurons in the treated slices confirmed that they were unaffected by FC. Treatment with the neurotoxin, kainic acid, eliminated all electrophysiological activity but did not affect the cAMP response. The results indicate that glial cells contain the preponderance of adenylate-cyclase-coupled beta-adrenoceptors in slices of the rat forebrain and may constitute an important target of the central noradrenergic system in vivo.
Collapse
Affiliation(s)
- E A Stone
- Department of Psychiatry, New York University School of Medicine, NY 10016
| | | | | |
Collapse
|
38
|
Urca G, Urca R. Neurotoxic effects of excitatory amino acids in the mouse spinal cord: quisqualate and kainate but not N-methyl-D-aspartate induce permanent neural damage. Brain Res 1990; 529:7-15. [PMID: 1980847 DOI: 10.1016/0006-8993(90)90805-l] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite extensive evidence for the neurotoxic effects of excitatory amino acids (EAA) in the brain little is known about their neurotoxic action in the spinal cord. In this study we attempted to produce differential lesions of spinal neurons by pretreating mice, intrathecally, with high concentrations of the EAA: N-methyl-D-aspartate (NMDA), quisqualate and kainate. Pharmacological, behavioral and histological consequences were examined 1, 3, 7 and, in some cases, 30 days after pretreatment. A single, intrathecal, injection of high concentrations of quisqualate and kainate but not NMDA, resulted in damage to spinal cord neurons. The highest concentrations of these agonists produced, in some animals, a massive, non-selective destruction of neurons within the lumbar spinal cord, accompanied by complete paralysis of the hindlimbs. Pretreatment with lower concentrations of intrathecal kainate or quisqualate produced damage to spinal interneurons, as well as more limited damage to motor neurons. No detectable motor deficit could be detected but a decrease in responsiveness to noxious stimuli was observed. Such damage also manifest as a permanent decrease in the sensitivity of the spinal interneurons, as well as more limited damage to motor neurons. No detectable motor deficit could be detected but a decrease in responsiveness to noxious stimuli was observed. Such damage also manifest as a permanent decrease in the sensitivity of the spinal cord to EAA, as seen from the decrease in biting behavior elicited by intrathecal EAA. The neurotoxic effects of quisqualate were completely blocked by the quisqualate/kainate receptor antagonist glutamylaminomethylsulphonate (GAMS), but not the NMDA antagonist 2-amino-5-phosphovalerate. GAMS attenuated the effects of kainate only partially.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G Urca
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
39
|
Abstract
The progress over the last 30 years in defining the role of excitatory amino acids in normal physiological function and in the abnormal neuronal activity of epilepsy has been reviewed in earlier articles in this series. In the last five years it has become clear that excitatory amino acids also play a role in a wide range of neurodegenerative processes. The evidence is clearest where the degenerative process is acute, but is more controversial for slow degenerative processes. In this article Brian Meldrum and John Garthwaite review in vivo and in vitro studies of the cytotoxicity of amino acids and summarize the contribution of such toxicity to acute and chronic neurodegenerative disorders.
Collapse
Affiliation(s)
- B Meldrum
- Institute of Psychiatry, De Crespigny Park, UK
| | | |
Collapse
|
40
|
The expression of excitatory amino acid binding sites during neuritogenesis in the developing rat cerebellum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1990; 54:265-71. [PMID: 1975776 DOI: 10.1016/0165-3806(90)90149-s] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study has examined excitatory amino acid transmitter binding sites as measured autoradiographically in cryostat sections prepared from developing rat cerebella during the period of granule cell neuritogenesis. The external germinal layer (EGL) and molecular layer (ML), which during development contain granule cells at early stages of axon growth, contained only low levels of NMDA-displaceable L-[3H]glutamate binding sites. Similarly, [3H]glycine binding to the NMDA receptor linked binding site was not enriched in the EGL. Radioligand binding to the NMDA receptor was always greater in the granular layer (GL) than in the ML. The developmental increases in NMDA-displaceable L-[3H]glutamate and in [3H]glycine binding to the GL were similar but NMDA displaceable L-[3H]glutamate binding density increased before [3H]glycine binding sites. Glycine increased NMDA-displaceable L-[3H]glutamate binding only in the adult cerebellum. These results suggest that NMDA stimulation of neuritogenesis in granule cell cultures may reflect stimulation of dendritogenesis in the developing glomerulus rather than a stimulation of axon growth in the EGL. Also, NMDA receptors may be present in an immature form during cerebellar development and have different properties to the adult receptor. Binding sites for [3H]kainate and [3H]AMPA were present in both the GL and ML and increased during development. At all times the amount of binding sites for [3H]kainate were highest in the GL whereas those for [3H]alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate were highest in the ML.
Collapse
|
41
|
Cambray-Deakin MA, Adu J, Burgoyne RD. Neuritogenesis in cerebellar granule cells in vitro: a role for protein kinase C. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1990; 53:40-6. [PMID: 2190715 DOI: 10.1016/0165-3806(90)90122-f] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have used short-term (8 h) cultures of week-old rat cerebellar granule cells to examine the effects on neuritogenesis of activation and down-regulation of protein kinase C by phorbol esters. We have previously demonstrated that endogenously released glutamate promoted neurite outgrowth in the same system acting via N-methyl-D-aspartate receptors. Low levels (0.1-1 nM) of the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) evoked increases in the number of granule cells which extended neurites; higher levels (10-250 nM) which caused a down-regulation of total protein kinase C, inhibited outgrowth in a dose-dependent manner. N-Methyl-D-aspartate by itself also stimulated process outgrowth but could not reverse the inhibition evoked by either TPA or the protein kinase C inhibitor sphingosine. Stimulation of protein kinase C with 0.1 nM TPA resulted in a general increase in the incorporation of 32P-labelled inorganic orthophosphate into granule cell polypeptides. The results indicate that the activation of protein kinase C is involved in neuritogenesis in granule cells and are consistent with the idea that N-methyl-D-aspartate receptor activation may exert its effect on neuritogenesis through protein kinase C.
Collapse
|
42
|
Garcia-Ladona FJ, Palacios JM, de Barry J, Gombos G. Developmentally regulated changes of glutamate binding sites in mouse deep cerebellar nuclei. Neurosci Lett 1990; 110:256-60. [PMID: 2158022 DOI: 10.1016/0304-3940(90)90856-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The expression of L-[3H]glutamate binding sites of different ionic and pharmacological sensitivities was studied in mouse deep cerebellar nuclei during early postnatal development by means of in vitro autoradiography. Ca2+/Cl(-)-dependent, quisqualate/AMPA/ibotenate-sensitive, and APB-insensitive binding sites are present at high density in the deep cerebellar nuclei of young animals, but greatly decrease between the 10th and 25th postnatal day and remain low in the adult. The density of Ca2+/Cl(-)-independent binding sites remains low and constant during the whole of postnatal development. The possible involvement of the Ca2+/Cl(-)-dependent binding sites in brain development is discussed.
Collapse
|
43
|
Gil-Loyzaga P, Pujol R. Neurotoxicity of kainic acid in the rat cochlea during early developmental stages. Eur Arch Otorhinolaryngol 1990; 248:40-8. [PMID: 2083073 DOI: 10.1007/bf00634780] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The neurotoxic effect of kainic acid (KA) was investigated by electron microscopy in rat cochleas at two developmental stages: 17 days of gestation (17 G) and postnatal day 1 (PN 1). In each animal, one cochlea was injected with 1 nmol KA diluted into 2 ml artificial perilymph, while the other cochlea was only injected with artificial perilymph as a control. Ten minutes later, the cochleas were perfused with fixative, removed and processed for electron microscopy. The KA injection resulted in marked swelling of the majority of afferent fibers, i.e. the peripheral processes of spiral ganglion neurons. In the 17 G cochlea, swollen fibers were traced from the perikarya to the undifferentiated otocyst epithelium. Following birth, swollen afferents in the PN 1 cochlea were in contact with both inner (IHCs) and outer hair cells (OHCs), which were now differentiated. At both stages of development, a subclass of small afferent nerves were unaffected. At PN 1, the KA-insensitive afferents only contacted the OHCs. These fibers probably belong to the spiral system of afferents and are related to type II spiral ganglion cells. Conversely, KA-sensitive afferents probably belong to the radial system, related to type I spiral ganglion cells. This system is specific for IHCs in adult cochleas and appears to innervate both IHCs and OHCs at early developmental stages. These findings also indicate that KA neurotoxicity appears very early in the cochlea, at a prenatal time (17 G) before the presynaptic partners of afferent terminals (namely the IHCs) are differentiated.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P Gil-Loyzaga
- Laboratoire Neurobiologie de l'Audition, INSERM - U. 254 et Université de Montpellier II, Hôpital St. Charles, France
| | | |
Collapse
|
44
|
Balázs R, Hack N. Trophic effects of excitatory amino acids in the developing nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 268:221-8. [PMID: 1963740 DOI: 10.1007/978-1-4684-5769-8_25] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- R Balázs
- Netherlands Institute for Brain Research, Amsterdam
| | | |
Collapse
|
45
|
McDonald JW, Johnston MV. Physiological and pathophysiological roles of excitatory amino acids during central nervous system development. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1990; 15:41-70. [PMID: 2163714 DOI: 10.1016/0165-0173(90)90011-c] [Citation(s) in RCA: 1050] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent studies suggest that excitatory amino acids (EAAs) have a wide variety of physiological and pathophysiological roles during central nervous system (CNS) development. In addition to participating in neuronal signal transduction, EAAs also exert trophic influences affecting neuronal survival, growth and differentiation during restricted developmental periods. EAAs also participate in the development and maintenance of neuronal circuitry and regulate several forms of activity-dependent synaptic plasticity such as LTP and segregation of converging retinal inputs to tectum and visual cortex. Pre- and post-synaptic markers of EAA pathways in brain undergo marked ontogenic changes. These markers are commonly overexpressed during development; periods of overproduction often coincide with times when synaptic plasticity is great and when appropriate neuronal connections are consolidated. The electrophysiological and biochemical properties of EAA receptors also undergo marked ontogenic changes. In addition to these physiological roles of EAAs, overactivation of EAA receptors may initiate a cascade of cellular events which produce neuronal injury and death. There is a unique developmental profile of susceptibility of the brain to excitotoxic injury mediated by activation of each of the EAA receptor subtypes. Overactivation of EAA receptors is implicated in the pathophysiology of brain injury in several clinical disorders to which the developing brain is susceptible, including hypoxia-ischemia, epilepsy, physical trauma and some rare genetic abnormalities of amino acid metabolism. Potential therapeutic approaches may be rationally devised based on recent information about the developmental regulation of EAA receptors and their involvement in the pathogenesis of these disorders.
Collapse
Affiliation(s)
- J W McDonald
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | |
Collapse
|
46
|
Balázs R, Hack N, Jørgensen OS. Interactive effects involving different classes of excitatory amino acid receptors and the survival of cerebellar granule cells in culture. Int J Dev Neurosci 1990; 8:347-59. [PMID: 2174632 DOI: 10.1016/0736-5748(90)90068-d] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Differentiating granule cells develop survival requirements in culture which can be met by treatment with high K+ or N-methyl-D-aspartate (NMDA) and, according to our recent findings, also with low concentrations of kainic acid (KA, 50 microM). We have now attempted to elucidate the mechanism(s) underlying the trophic effect of KA. KA rescue of cells was completely suppressed by blockers of voltage-sensitive calcium channels, such as nifedipine in low concentrations (5 x 10(-7) M), indicating that the promotion of cell survival is mediated through the activation of these channels by membrane depolarization. Thus the trophic influences of KA and NMDA share a common mechanism, increased Ca2+ influx (albeit through different routes), a conclusion that is supported by the observation that the effects of these agonists at concentrations causing maximal promotion of cell survival were not additive. Interactive effects involving different classes of excitatory amino acid receptors were revealed by the potentiation of the KA rescue of cells by the NMDA receptor antagonists, 2-amino 5-phosphonovalerate (APV) or (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohept-5,10-imine hydrogen maleate (MK-801), which on their own failed to promote, but rather reduced cell survival. The potentiation of the KA effect by the competitive NMDA antagonist APV was counteracted by the weak NMDA agonist, quinolinic acid. These observations suggest that KA alone has both trophic and toxic effects, the latter being mediated secondarily through an NMDA-like glutamate receptor, which is distinct from the conventional NMDA, KA and quisqualate preferring subtypes.
Collapse
Affiliation(s)
- R Balázs
- Netherlands Institute for Brain Research, Amsterdam
| | | | | |
Collapse
|
47
|
Ikeda H, Robbins J, Kay CD. Excitatory amino acid receptors on sustained retinal ganglion cells in the kitten during the critical period of development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1990; 51:85-91. [PMID: 2153481 DOI: 10.1016/0165-3806(90)90260-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Effects of iontophoretically applied excitatory amino acid analogues, kainate, quisqualate and N-methyl-D-aspartate (NMDA) and their receptor antagonists on the sustained class of retinal ganglion cells were studied in the optically intact eye of pentobarbitone-anaesthetized kittens (7-9 weeks of age). These results were compared with the effects obtained in adult cats. All 3 excitatory amino acid agonists had excitatory actions on the majority of On- and Off-sustained ganglion cells in the kitten but at higher current levels than those required for adult cells, suggesting all 3 types of receptors of weaker sensitivity are present on the kitten cells. Whilst the relative potency of kainate, quisqualate and NMDA was 15:3:1 in the adult cells, it was 5:2:1 in the kitten cells. As for other neurones in the CNS, an increase in the potency of kainate receptors and a decrease in that of NMDA receptors appear, therefore, to characterize the postnatal development of the excitatory amino acid receptors on the retinal ganglion cells. In accordance with the agonist results, a broadband receptor antagonist, kynurenate, powerfully antagonised responses of kitten cells as well as those of adult cells. The pure NMDA receptor antagonist, 3((+-)-2-carboxypiperazin-4-yl)propyl-1-phosphonate (CPP), however, only suppressed spontaneous firing of kitten cells. Furthermore, in kitten cells, the visually-driven firing was depressed while the level of firing was raised by these excitatory amino acid analogous, and a long period of inhibition of firing followed the agonist-induced excitation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Ikeda
- Vision Research Unit of Sherrington School, Rayne Institute, St. Thomas' Hospital, London, U.K
| | | | | |
Collapse
|
48
|
Garthwaite J, Garthwaite G. Mechanisms of excitatory amino acid neurotoxicity in rat brain slices. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 268:505-18. [PMID: 1963753 DOI: 10.1007/978-1-4684-5769-8_56] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J Garthwaite
- Department of Physiology, University of Liverpool, Brownlow Hill, U.K
| | | |
Collapse
|
49
|
Leprince P, Lefebvre PP, Rigo JM, Delrée P, Rogister B, Moonen G. Cultured astroglia release a neuronotoxic activity that is not related to the excitotoxins. Brain Res 1989; 502:21-7. [PMID: 2573409 DOI: 10.1016/0006-8993(89)90457-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Neuronal death after brain injury is thought to be in part the result of the activity of the excitotoxins, a family of excitatory amino acids which are released by neurones. We have also described an astroglial cell-derived neuronotoxic activity of low molecular weight whose release can be induced by depolarizing events such as an increase in extracellular potassium concentration. We study here the relationship between this astroglia-derived neuronotoxic activity present in astroglia-conditioned medium (ACM) and the excitotoxins. Using a colorimetric assay of neuronal survival, we show that the ACM neuronotoxic activity, is able to induce the death of all types of neurones tested, including those which are insensitive to excitotoxins. Furthermore, the ACM neuronotoxic activity does not require for its action the extracellular ionic composition which is needed for the activity of excitotoxins. Finally, the ACM neuronotoxic activity is not blocked by competitive or non-competitive antagonists of the various classes of excitotoxin receptors. Those data demonstrate that the astroglia-derived neuronotoxic activity is not related to the excitotoxins. Still, because astrocytes can also be depolarized by members of the excitotoxin family, the possibility exists that the release of astroglia-derived neuronotoxic activity would follow the rise in extracellular excitatory amino acid concentration during nervous system injury.
Collapse
Affiliation(s)
- P Leprince
- Service de Physiologie humaine et de Physiopathologie, Université de Liège, Belgium
| | | | | | | | | | | |
Collapse
|
50
|
Garthwaite G, Garthwaite J. Neurotoxicity of excitatory amino acid receptor agonists in young rat hippocampal slices. J Neurosci Methods 1989; 29:33-42. [PMID: 2548045 DOI: 10.1016/0165-0270(89)90106-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hippocampal slices from young (8-day-old) rats were evaluated as a model for investigating the mechanisms underlying the neurotoxic action of excitatory amino acid receptor agonists. The slices were exposed to the agonists for up to 30 min and were then postincubated for 90 min in order to allow irreversibly damaged cells to become visibly necrotic. Under control conditions (greater than or equal to 3 h incubation) all regions of the hippocampus and dentate gyrus displayed good preservation. Exposure of the slices to N-methyl-D-aspartate (NMDA) resulted in widespread, oedematous necrosis of all neuronal types (except undifferentiated granule cells) which was maximal after 20 min exposure to a concentration of 100 microM. With 30 min exposure, the EC50 for NMDA was 30 microM; 10 min exposure to NMDA at a concentration of 100 microM was sufficient to destroy 50% of the neurones. Quisqualate produced a degeneration of most (98%) of the CA3 neurones, a proportion (65%) of CA1 neurons and some (25%) of the dentate granule cells. The occurrence of "dark cell degeneration" was prevalent. Half maximal effects on CA3 neurones were estimated to be produced by a concentration of 15 microM (with 30 min exposure) or by 8 min exposure (at 100 microM concentration). Incubation of the slices with kainate (100 microM for 30 min) did not cause widespread damage but led to the necrosis of a small population of cells scattered in all regions of the hippocampus and dentate gyrus. The patterns of toxicity of the different agonists resemble closely those found after their administration in vivo. It is suggested that the hippocampal slices provide a valuable new model system for studying excitatory amino acid toxicity.
Collapse
Affiliation(s)
- G Garthwaite
- Department of Physiology, University of Liverpool, U.K
| | | |
Collapse
|