1
|
Dellal S, Zurita H, Valero M, Abad-Perez P, Kruglikov I, Meng J, Prönneke A, Hanson JL, Mir E, Ongaro M, Wang XJ, Buzsáki G, Machold R, Rudy B. Inhibitory and disinhibitory VIP IN-mediated circuits in neocortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.640383. [PMID: 40060562 PMCID: PMC11888407 DOI: 10.1101/2025.02.26.640383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Cortical GABAergic interneurons (INs) are comprised of distinct types that provide tailored inhibition to pyramidal cells (PCs) and other INs, thereby enabling precise control of cortical circuit activity. INs expressing the neuropeptide vasoactive-intestinal peptide (VIP) have attracted attention recently following the discovery that they predominantly function by inhibiting dendritic-targeting somatostatin (SST) expressing INs, thereby disinhibiting PCs. This VIP-SST disinhibitory circuit motif is observed throughout the neocortex from mice to humans, and serves as a key mechanism for top-down (feedback) and context-dependent information processing. Thus, VIP IN-mediated disinhibition has been found to play an important role in sensory processing, control of executive functions, attention, sensorimotor integration and other cortico-cortical and thalamocortical feedback interactions. Furthermore, VIP INs have been implicated in mediating the effects of reinforcement signals, both reward and aversive, via their responsiveness to neuromodulators such as acetylcholine (ACh), and in facilitating synaptic plasticity and learning. While it is evident from transcriptomic analyses that VIP INs are a molecularly heterogeneous group, the physiological significance of this diversity is unclear at present. Here, we have characterized the functional diversity of VIP INs in the primary somatosensory cortex by leveraging intersectional genetic approaches to study distinct VIP IN subtypes. We found that VIP INs can be divided into four different populations: a group that expresses the Ca2+-binding protein calretinin (CR), two distinct groups that express the neuropeptide cholecystokinin (CCK), and a group that does not express either CR or CCK (non-CCK non-CR; or nCCK nCR). VIP neurons in each group exhibit different laminar distributions, axonal and dendritic arbors, intrinsic electrophysiological properties, and efferent connectivity, VIP/CR INs target almost exclusively SST INs, VIP/nCCK nCR INs also mainly target SST INs but also have connections to parvalbumin (PV) expressing INs. These two groups have essentially no connectivity to pyramidal cells (PCs). On the other hand, the two types of VIP/CCK INs target PCs, but differ in the degree to which synaptic release from each type is modulated by endocannabinoids. We also found that long-range inputs differentially recruit distinct VIP IN groups. Intriguingly, we find that distinct VIP IN populations target distinct SST INs subtypes in turn, indicating the presence of specialized VIP-SST disinhibitory subcircuits. Activation of distinct VIP IN subpopulations in vivo results in differential effects on the cortical network, thus providing evidence for modularity in VIP IN-mediated actions during cortical information processing.
Collapse
Affiliation(s)
- Shlomo Dellal
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
| | - Hector Zurita
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
| | - Manuel Valero
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
- Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Pablo Abad-Perez
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
- Universidad Cardenal Herrera-CEU, CEU Universities, Spain
| | - Ilya Kruglikov
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
| | - John Meng
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
- Center for Neural Science, NYU, New York, NY, 10003
| | - Alvar Prönneke
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
| | - Jessica L. Hanson
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
| | - Ema Mir
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
| | - Marina Ongaro
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
| | - Xiao-Jing Wang
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
- Center for Neural Science, NYU, New York, NY, 10003
| | - György Buzsáki
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
- Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016
| | - Robert Machold
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
| | - Bernardo Rudy
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, 10016
- Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, 10016
- Department of Anesthesiology, Perioperative Care and Pain Medicine, NYU School of Medicine, New York, NY, 10016
| |
Collapse
|
2
|
Somogyi P, Horie S, Lukacs I, Hunter E, Sarkany B, Viney T, Livermore J, Plaha P, Stacey R, Ansorge O, El Mestikawy S, Zhao Q. Synaptic Targets and Cellular Sources of CB1 Cannabinoid Receptor and Vesicular Glutamate Transporter-3 Expressing Nerve Terminals in Relation to GABAergic Neurons in the Human Cerebral Cortex. Eur J Neurosci 2025; 61:e16652. [PMID: 39810425 PMCID: PMC11733414 DOI: 10.1111/ejn.16652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/03/2024] [Accepted: 12/07/2024] [Indexed: 01/16/2025]
Abstract
Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3. Of the CB1-immunopositive GABAergic terminals, 25% were vesicular-glutamate-transporter-3 (VGLUT3)-immunoreactive, suggesting GABAergic/glutamatergic co-transmission on dendritic shafts. In vitro recorded and labelled VGLUT3 or CB1-positive GABAergic interneurons expressed cholecystokinin, vasoactive-intestinal-polypeptide and calretinin, had diverse firing, axons and dendrites, and included rosehip, neurogliaform and basket cells, but not double bouquet or axo-axonic cells. CB1-positive interneurons innervated pyramidal cells and GABAergic interneurons. Glutamatergic synaptic terminals formed type-1 synapses and some were positive for CB1 receptor with a distribution that appeared different from that in GABAergic terminals. From the sampled VGLUT3-positive terminals, 60% formed type-1 synapses with dendritic spines (80%) or shafts (20%) and 52% were also positive for VGLUT1, suggesting intracortical origin. Some VGLUT3-positive terminals were immunopositive for vesicular-monoamine-transporter-2, suggesting 5-HT/glutamate co-transmission. Overall, the results show that CB1 regulates GABA release mainly to dendritic shafts of both pyramidal cells and interneurons and predict CB1-regulated co-release of GABA and glutamate from single cortical interneurons. We also demonstrate the co-existence of multiple vesicular glutamate transporters in a select population of terminals probably originating from cortical neurons and innervating dendritic spines in the human cerebral cortex.
Collapse
Affiliation(s)
- Peter Somogyi
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Sawa Horie
- Department of PharmacologyUniversity of OxfordOxfordUK
- Kawasaki Medical SchoolOkayamaJapan
- Department of Anatomy and NeurobiologyNational Defense Medical CollegeSaitamaJapan
| | - Istvan Lukacs
- Department of PharmacologyUniversity of OxfordOxfordUK
- Institute of Experimental MedicineBudapestHungary
| | - Emily Hunter
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | | | - James Livermore
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
- Department of NeurosurgeryLeeds General InfirmaryLeedsUK
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
| | - Richard Stacey
- Department of Neurosurgery, John Radcliffe HospitalOUH NHS Foundation TrustOxfordUK
| | - Olaf Ansorge
- Nuffield Department of Clinical NeurosciencesUniv. OxfordOxfordUK
| | - Salah El Mestikawy
- Douglas Research CentreMcGill University and the Montreal West Island IUHSSCMontréalCanada
| | - Qianru Zhao
- Department of PharmacologyUniversity of OxfordOxfordUK
- Department of Chemical Biology, School of Pharmaceutical SciencesSouth‐Central Minzu UniversityWuhanChina
| |
Collapse
|
3
|
Castelli V, Lavanco G, Tringali G, D'Amico C, Feo S, Di Bartolomeo M, D'Addario C, Kuchar M, Brancato A, Cannizzaro C. Prenatal THC exposure drives sex-specific alterations in spatial memory and hippocampal excitatory/inhibitory balance in adolescent rats. Biomed Pharmacother 2024; 181:117699. [PMID: 39571245 DOI: 10.1016/j.biopha.2024.117699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
The interaction between the main psychotropic ingredient of Cannabis, Δ⁹- tetrahydrocannabinol (THC), with the endogenous cannabinoid system (ECS) is a critical and underrated issue that deserves utmost attention. The ECS, indeed, contributes to the formation and regulation of excitatory and inhibitory (E/I) neuronal networks that in the hippocampus underly spatial memory. This study explored sex-specific consequences of prenatal exposure to THC in hippocampus-dependent memory and the underlying cellular and molecular contributors of synaptic plasticity and E/I homeostasis. Sprague Dawley dams were exposed to THC (2 mg/kg) or vehicle, from gestational day 5-20. The adolescent progeny of both sexes was tested for: spatial memory retrieval and flexibility in the Barnes Maze; mRNA expression of relevant players of hippocampal synaptic plasticity; density of cholecystokinin-positive basket cells (CCK+BCs) - a major subtype of hippocampal inhibitory interneurons; mRNA expression of the excitatory and inhibitory synaptic proteins neuroligins (Nlgns), as a proxy of synaptic efficiency. Our results show a sex-specific disruption in spatial memory retrieval and flexibility, a male-specific decrease in CCK+BCs density and increase in the expression of markers of neuroplasticity, and consistent changes in the expression of Nlgn-1 and 3 isoforms. Despite a delay in memory retrieval, flexibility of memory was spared in prenatally-THC-exposed female offspring as well as most of the markers of neuroplasticity; a sex-specific increase in CCK+BCs density, and a consistent expression of Nlgn-3 was observed. The current results highlight a major vulnerability to prenatal exposure to THC on memory processing in the male progeny, and sex-specific alterations in the E/I balance and synaptic plasticity.
Collapse
Affiliation(s)
- Valentina Castelli
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, Palermo 90127, Italy
| | - Gianluca Lavanco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Giuseppe Tringali
- Pharmacology Section, Department of Healthcare Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, Rome, Italy
| | - Cesare D'Amico
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, Palermo 90127, Italy
| | - Salvatore Feo
- Department of Biological, Chemical and Pharmaceutical Sciences Technologies, University of Palermo, Palermo, Italy; ATEN Center, University of Palermo, Palermo, Italy
| | - Martina Di Bartolomeo
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy
| | - Claudio D'Addario
- Department of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo 64100, Italy; Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martin Kuchar
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague, Czechia; Psychedelics Research Centre, National Institute of Mental Health, Prague, Czechia
| | - Anna Brancato
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", University of Palermo, Palermo, Italy.
| | - Carla Cannizzaro
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, Palermo 90127, Italy
| |
Collapse
|
4
|
Thompson SM, Fabian CB, Ferranti AS, Joffe ME. Acute alcohol and chronic drinking bidirectionally regulate the excitability of prefrontal cortex vasoactive intestinal peptide interneurons. Neuropharmacology 2023; 238:109638. [PMID: 37482180 PMCID: PMC10529784 DOI: 10.1016/j.neuropharm.2023.109638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023]
Abstract
The prefrontal cortex (PFC) regulates drinking behaviors and affective changes following chronic alcohol use. PFC activity is dynamically modulated by local inhibitory interneurons (INs), which can be divided into non-overlapping groups with distinct functional roles. Within deeper layers of neocortex, INs that express either parvalbumin or somatostatin directly inhibit pyramidal cells. By contrast, the plurality of all remaining INs express vasoactive intestinal peptide (VIP), reside within superficial layers, and preferentially target other types of INs. While recent studies have described adaptations to PFC parvalbumin-INs and somatostatin-INs in alcohol use models, whether ethanol or drinking affect the physiology of PFC VIP-INs has not been reported. To address this gap, we used genetically engineered female and male mice to target VIP-INs in layers 1-3 of prelimbic PFC for whole-cell patch-clamp electrophysiology. We found that ethanol (20 mM, ∼0.09 BEC/90 mg/dL) application to PFC brain slices enhances VIP-IN excitability. We next examined effects following chronic drinking by providing mice with 4 weeks of intermittent access (IA) ethanol two-bottle choice in the home cage. In these studies, VIP-INs from female and male IA ethanol mice displayed reduced excitability relative to cells from water-only controls. Finally, we assessed whether these effects continue into abstinence. After 7-13 days without ethanol, the hypo-excitability of VIP-INs from male IA ethanol mice persisted, whereas cells from female IA ethanol mice were not different from their controls. Together, these findings illustrate that acute ethanol enhances VIP-IN excitability and suggest these cells undergo pronounced homeostatic changes following long-term drinking.
Collapse
Affiliation(s)
- Shannon M Thompson
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carly B Fabian
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony S Ferranti
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Thompson SM, Ferranti AS, Joffe ME. Acute alcohol and chronic drinking bidirectionally regulate the excitability of prefrontal cortex vasoactive intestinal peptide interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531614. [PMID: 36945582 PMCID: PMC10028880 DOI: 10.1101/2023.03.07.531614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
The prefrontal cortex (PFC) regulates drinking behaviors and affective changes following chronic alcohol use. PFC activity is dynamically modulated by local inhibitory interneurons (INs), which can be divided into non-overlapping groups with distinct functional roles. Within deeper layers of neocortex, INs that express either parvalbumin or somatostatin directly inhibit pyramidal cells. By contrast, the plurality of all remaining INs express vasoactive intestinal peptide (VIP), reside within superficial layers, and preferentially target other types of INs. While recent studies have described adaptations to PFC parvalbumin-INs and somatostatin-INs in alcohol use models, whether ethanol or drinking affect the physiology of PFC VIP-INs has not been reported. To address this gap, we used genetically engineered female and male mice to target VIP-INs in layers 1-3 of prelimbic PFC for whole-cell patch-clamp electrophysiology. We found that ethanol (20 mM, ∼0.09 BEC) application to PFC brain slices enhances VIP-IN excitability. We next examined effects following chronic drinking by providing mice with 4 weeks of intermittent access (IA) ethanol two-bottle choice in the home cage. In these studies, VIP-INs from female and male IA ethanol mice displayed reduced excitability relative to cells from water-only controls. Finally, we assessed whether these effects continue into abstinence. After 7-11 days without ethanol, the hypo-excitability of VIP-INs from male IA ethanol mice persisted, whereas cells from female IA ethanol mice were not different from their controls. Together, these findings illustrate that acute ethanol enhances VIP-IN excitability and suggest these cells undergo pronounced homeostatic changes following long-term drinking.
Collapse
|
6
|
Lukacs IP, Francavilla R, Field M, Hunter E, Howarth M, Horie S, Plaha P, Stacey R, Livermore L, Ansorge O, Tamas G, Somogyi P. Differential effects of group III metabotropic glutamate receptors on spontaneous inhibitory synaptic currents in spine-innervating double bouquet and parvalbumin-expressing dendrite-targeting GABAergic interneurons in human neocortex. Cereb Cortex 2023; 33:2101-2142. [PMID: 35667019 PMCID: PMC9977385 DOI: 10.1093/cercor/bhac195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/12/2022] Open
Abstract
Diverse neocortical GABAergic neurons specialize in synaptic targeting and their effects are modulated by presynaptic metabotropic glutamate receptors (mGluRs) suppressing neurotransmitter release in rodents, but their effects in human neocortex are unknown. We tested whether activation of group III mGluRs by L-AP4 changes GABAA receptor-mediated spontaneous inhibitory postsynaptic currents (sIPSCs) in 2 distinct dendritic spine-innervating GABAergic interneurons recorded in vitro in human neocortex. Calbindin-positive double bouquet cells (DBCs) had columnar "horsetail" axons descending through layers II-V innervating dendritic spines (48%) and shafts, but not somata of pyramidal and nonpyramidal neurons. Parvalbumin-expressing dendrite-targeting cell (PV-DTC) axons extended in all directions innervating dendritic spines (22%), shafts (65%), and somata (13%). As measured, 20% of GABAergic neuropil synapses innervate spines, hence DBCs, but not PV-DTCs, preferentially select spine targets. Group III mGluR activation paradoxically increased the frequency of sIPSCs in DBCs (to median 137% of baseline) but suppressed it in PV-DTCs (median 92%), leaving the amplitude unchanged. The facilitation of sIPSCs in DBCs may result from their unique GABAergic input being disinhibited via network effect. We conclude that dendritic spines receive specialized, diverse GABAergic inputs, and group III mGluRs differentially regulate GABAergic synaptic transmission to distinct GABAergic cell types in human cortex.
Collapse
Affiliation(s)
- Istvan P Lukacs
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | | | - Martin Field
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Emily Hunter
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Michael Howarth
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Sawa Horie
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| | - Puneet Plaha
- Department of Neurosurgery, John Radcliffe Hospital, OUH NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Richard Stacey
- Department of Neurosurgery, John Radcliffe Hospital, OUH NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Laurent Livermore
- Department of Neurosurgery, John Radcliffe Hospital, OUH NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Gabor Tamas
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK
| |
Collapse
|
7
|
Miczán V, Kelemen K, Glavinics JR, László ZI, Barti B, Kenesei K, Kisfali M, Katona I. NECAB1 and NECAB2 are Prevalent Calcium-Binding Proteins of CB1/CCK-Positive GABAergic Interneurons. Cereb Cortex 2021; 31:1786-1806. [PMID: 33230531 PMCID: PMC7869086 DOI: 10.1093/cercor/bhaa326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The molecular repertoire of the "Ca2+-signaling toolkit" supports the specific kinetic requirements of Ca2+-dependent processes in different neuronal types. A well-known example is the unique expression pattern of calcium-binding proteins, such as parvalbumin, calbindin, and calretinin. These cytosolic Ca2+-buffers control presynaptic and somatodendritic processes in a cell-type-specific manner and have been used as neurochemical markers of GABAergic interneuron types for decades. Surprisingly, to date no typifying calcium-binding proteins have been found in CB1 cannabinoid receptor/cholecystokinin (CB1/CCK)-positive interneurons that represent a large population of GABAergic cells in cortical circuits. Because CB1/CCK-positive interneurons display disparate presynaptic and somatodendritic Ca2+-transients compared with other interneurons, we tested the hypothesis that they express alternative calcium-binding proteins. By in silico data mining in mouse single-cell RNA-seq databases, we identified high expression of Necab1 and Necab2 genes encoding N-terminal EF-hand calcium-binding proteins 1 and 2, respectively, in CB1/CCK-positive interneurons. Fluorescent in situ hybridization and immunostaining revealed cell-type-specific distribution of NECAB1 and NECAB2 throughout the isocortex, hippocampal formation, and basolateral amygdala complex. Combination of patch-clamp electrophysiology, confocal, and STORM super-resolution microscopy uncovered subcellular nanoscale differences indicating functional division of labor between the two calcium-binding proteins. These findings highlight NECAB1 and NECAB2 as predominant calcium-binding proteins in CB1/CCK-positive interneurons.
Collapse
Affiliation(s)
- Vivien Miczán
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest 1083, Hungary
- Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest 1083, Hungary
| | - Krisztina Kelemen
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest 1083, Hungary
- Department of Physiology, Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș 540142, Romania
| | - Judit R Glavinics
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Zsófia I László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest 1083, Hungary
- Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest 1083, Hungary
| | - Benjámin Barti
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest 1083, Hungary
- Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest 1083, Hungary
| | - Kata Kenesei
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Máté Kisfali
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest 1083, Hungary
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest 1083, Hungary
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
8
|
Neymotin SA, Daniels DS, Caldwell B, McDougal RA, Carnevale NT, Jas M, Moore CI, Hines ML, Hämäläinen M, Jones SR. Human Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and network origin of human MEG/EEG data. eLife 2020; 9:e51214. [PMID: 31967544 PMCID: PMC7018509 DOI: 10.7554/elife.51214] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
Magneto- and electro-encephalography (MEG/EEG) non-invasively record human brain activity with millisecond resolution providing reliable markers of healthy and disease states. Relating these macroscopic signals to underlying cellular- and circuit-level generators is a limitation that constrains using MEG/EEG to reveal novel principles of information processing or to translate findings into new therapies for neuropathology. To address this problem, we built Human Neocortical Neurosolver (HNN, https://hnn.brown.edu) software. HNN has a graphical user interface designed to help researchers and clinicians interpret the neural origins of MEG/EEG. HNN's core is a neocortical circuit model that accounts for biophysical origins of electrical currents generating MEG/EEG. Data can be directly compared to simulated signals and parameters easily manipulated to develop/test hypotheses on a signal's origin. Tutorials teach users to simulate commonly measured signals, including event related potentials and brain rhythms. HNN's ability to associate signals across scales makes it a unique tool for translational neuroscience research.
Collapse
Affiliation(s)
- Samuel A Neymotin
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
- Center for Biomedical Imaging and NeuromodulationNathan S. Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Dylan S Daniels
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
| | - Blake Caldwell
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
| | - Robert A McDougal
- Department NeuroscienceYale UniversityNew HavenUnited States
- Department of BiostatisticsYale UniversityNew HavenUnited States
| | | | - Mainak Jas
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownUnited States
- Harvard Medical SchoolBostonUnited States
| | - Christopher I Moore
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
| | - Michael L Hines
- Department NeuroscienceYale UniversityNew HavenUnited States
| | - Matti Hämäläinen
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownUnited States
- Harvard Medical SchoolBostonUnited States
| | - Stephanie R Jones
- Department Neuroscience, Carney Institute for Brain SciencesBrown UniversityProvidenceUnited States
- Center for Neurorestoration and NeurotechnologyProvidence VAMCProvidenceUnited States
| |
Collapse
|
9
|
Mitchell DE, Martineau É, Tazerart S, Araya R. Probing Single Synapses via the Photolytic Release of Neurotransmitters. Front Synaptic Neurosci 2019; 11:19. [PMID: 31354469 PMCID: PMC6640007 DOI: 10.3389/fnsyn.2019.00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
The development of two-photon microscopy has revolutionized our understanding of how synapses are formed and how they transform synaptic inputs in dendritic spines-tiny protrusions that cover the dendrites of pyramidal neurons that receive most excitatory synaptic information in the brain. These discoveries have led us to better comprehend the neuronal computations that take place at the level of dendritic spines as well as within neuronal circuits with unprecedented resolution. Here, we describe a method that uses a two-photon (2P) microscope and 2P uncaging of caged neurotransmitters for the activation of single and multiple spines in the dendrites of cortical pyramidal neurons. In addition, we propose a cost-effective description of the components necessary for the construction of a one laser source-2P microscope capable of nearly simultaneous 2P uncaging of neurotransmitters and 2P calcium imaging of the activated spines and nearby dendrites. We provide a brief overview on how the use of these techniques have helped researchers in the last 15 years unravel the function of spines in: (a) information processing; (b) storage; and (c) integration of excitatory synaptic inputs.
Collapse
Affiliation(s)
- Diana E. Mitchell
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Éric Martineau
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Sabrina Tazerart
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Roberto Araya
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC, Canada
- The CHU Sainte-Justine Research Center, Montreal, QC, Canada
| |
Collapse
|
10
|
Preferential inputs from cholecystokinin-positive neurons to the somatic compartment of parvalbumin-expressing neurons in the mouse primary somatosensory cortex. Brain Res 2018; 1695:18-30. [DOI: 10.1016/j.brainres.2018.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 05/10/2018] [Accepted: 05/19/2018] [Indexed: 12/22/2022]
|
11
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 PMCID: PMC6151493 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 563] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
12
|
Abstract
Cortical networks are composed of glutamatergic excitatory projection neurons and local GABAergic inhibitory interneurons that gate signal flow and sculpt network dynamics. Although they represent a minority of the total neocortical neuronal population, GABAergic interneurons are highly heterogeneous, forming functional classes based on their morphological, electrophysiological, and molecular features, as well as connectivity and in vivo patterns of activity. Here we review our current understanding of neocortical interneuron diversity and the properties that distinguish cell types. We then discuss how the involvement of multiple cell types, each with a specific set of cellular properties, plays a crucial role in diversifying and increasing the computational power of a relatively small number of simple circuit motifs forming cortical networks. We illustrate how recent advances in the field have shed light onto the mechanisms by which GABAergic inhibition contributes to network operations.
Collapse
|
13
|
Barsy B, Szabó GG, Andrási T, Vikór A, Hájos N. Different output properties of perisomatic region-targeting interneurons in the basal amygdala. Eur J Neurosci 2017; 45:548-558. [PMID: 27977063 DOI: 10.1111/ejn.13498] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 01/06/2023]
Abstract
The perisomatic region of principal neurons in cortical regions is innervated by three types of GABAergic interneuron, including parvalbumin-containing basket cells (PVBCs) and axo-axonic cells (AACs), as well as cholecystokinin and type 1 cannabinoid receptor-expressing basket cells (CCK/CB1BCs). These perisomatic inhibitory cell types can also be found in the basal nucleus of the amygdala, however, their output properties are largely unknown. Here, we performed whole-cell recordings in morphologically identified interneurons in slices prepared from transgenic mice, in which the GABAergic cells could be selectively targeted. Investigating the passive and active membrane properties of interneurons located within the basal amygdala revealed that the three interneuron types have distinct single-cell properties. For instance, the input resistance, spike rate, accommodation in discharge rate, or after-hyperpolarization width at the half maximal amplitude separated the three interneuron types. Furthermore, we performed paired recordings from interneurons and principal neurons to uncover the basic features of unitary inhibitory postsynaptic currents (uIPSCs). Although we found no difference in the magnitude of responses measured in the principal neurons, the uIPSCs originating from the distinct interneuron types differed in rise time, failure rate, latency, and short-term dynamics. Moreover, the asynchronous transmitter release induced by a train of action potentials was typical for the output synapses of CCK/CB1BCs. Our results suggest that, despite the similar uIPSC magnitudes originating from the three perisomatic inhibitory cell types, their distinct release properties together with the marked differences in their spiking characteristics may contribute to accomplish specific functions in amygdala network operation.
Collapse
Affiliation(s)
- Boglárka Barsy
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1450, Hungary
| | - Gergely G Szabó
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1450, Hungary
| | - Tibor Andrási
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1450, Hungary.,János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Attila Vikór
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1450, Hungary
| | - Norbert Hájos
- 'Lendület' Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, H-1450, Hungary
| |
Collapse
|
14
|
Varga C, Tamas G, Barzo P, Olah S, Somogyi P. Molecular and Electrophysiological Characterization of GABAergic Interneurons Expressing the Transcription Factor COUP-TFII in the Adult Human Temporal Cortex. Cereb Cortex 2015; 25:4430-49. [PMID: 25787832 PMCID: PMC4768361 DOI: 10.1093/cercor/bhv045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factors contribute to the differentiation of cortical neurons, orchestrate specific interneuronal circuits, and define synaptic relationships. We have investigated neurons expressing chicken ovalbumin upstream promoter transcription factor II (COUP-TFII), which plays a role in the migration of GABAergic neurons. Whole-cell, patch-clamp recording in vitro combined with colocalization of molecular cell markers in the adult cortex differentiates distinct interneurons. The majority of strongly COUP-TFII-expressing neurons were in layers I–III. Most calretinin (CR) and/or cholecystokinin- (CCK) and/or reelin-positive interneurons were also COUP-TFII-positive. CR-, CCK-, or reelin-positive neurons formed 80%, 20%, or 17% of COUP-TFII-positive interneurons, respectively. About half of COUP-TFII-/CCK-positive interneurons were CR-positive, a quarter of them reelin-positive, but none expressed both. Interneurons positive for COUP-TFII fired irregular, accommodating and adapting trains of action potentials (APs) and innervated mostly small dendritic shafts and rarely spines or somata. Paired recording showed that a calretinin-/COUP-TFII-positive interneuron elicited inhibitory postsynaptic potentials (IPSPs) in a reciprocally connected pyramidal cell. Calbindin, somatostatin, or parvalbumin-immunoreactive interneurons and most pyramidal cells express no immunohistochemically detectable COUP-TFII. In layers V and VI, some pyramidal cells expressed a low level of COUP-TFII in the nucleus. In conclusion, COUP-TFII is expressed in a diverse subset of GABAergic interneurons predominantly innervating small dendritic shafts originating from both interneurons and pyramidal cells.
Collapse
Affiliation(s)
- Csaba Varga
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience MRC, Brain Networks Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK Current address: Szentágothai Research Centre, Department of Physiology, University of Pécs, Pécs, Hungary
| | - Gabor Tamas
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience
| | - Pal Barzo
- Department of Neurosurgery, University of Szeged, Szeged, Hungary
| | - Szabolcs Olah
- Research Group for Cortical Microcircuits of the Hungarian Academy of Science, Department of Physiology, Anatomy and Neuroscience
| | - Peter Somogyi
- MRC, Brain Networks Dynamics Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, UK Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
15
|
Araya R. Input transformation by dendritic spines of pyramidal neurons. Front Neuroanat 2014; 8:141. [PMID: 25520626 PMCID: PMC4251451 DOI: 10.3389/fnana.2014.00141] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/11/2014] [Indexed: 11/13/2022] Open
Abstract
In the mammalian brain, most inputs received by a neuron are formed on the dendritic tree. In the neocortex, the dendrites of pyramidal neurons are covered by thousands of tiny protrusions known as dendritic spines, which are the major recipient sites for excitatory synaptic information in the brain. Their peculiar morphology, with a small head connected to the dendritic shaft by a slender neck, has inspired decades of theoretical and more recently experimental work in an attempt to understand how excitatory synaptic inputs are processed, stored and integrated in pyramidal neurons. Advances in electrophysiological, optical and genetic tools are now enabling us to unravel the biophysical and molecular mechanisms controlling spine function in health and disease. Here I highlight relevant findings, challenges and hypotheses on spine function, with an emphasis on the electrical properties of spines and on how these affect the storage and integration of excitatory synaptic inputs in pyramidal neurons. In an attempt to make sense of the published data, I propose that the raison d'etre for dendritic spines lies in their ability to undergo activity-dependent structural and molecular changes that can modify synaptic strength, and hence alter the gain of the linearly integrated sub-threshold depolarizations in pyramidal neuron dendrites before the generation of a dendritic spike.
Collapse
Affiliation(s)
- Roberto Araya
- Department of Neurosciences, Faculty of Medicine, University of Montreal Montreal, QC, Canada
| |
Collapse
|
16
|
Modulation of behavioral networks by selective interneuronal inactivation. Mol Psychiatry 2014; 19:580-7. [PMID: 24322205 PMCID: PMC4179403 DOI: 10.1038/mp.2013.167] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/04/2013] [Accepted: 10/17/2013] [Indexed: 12/15/2022]
Abstract
Gamma-aminobutyric acid (GABA)-ergic disturbances are hallmark features of schizophrenia and other neuropsychiatric disorders and encompass multiple interneuronal cell types. Using bacterial artificial chromosome-driven, miRNA silencing technology we generated transgenic mouse lines that suppress glutamic acid decarboxylase 1 (GAD1) in either cholecystokinin (CCK)- or neuropeptide Y (NPY)-expressing interneurons. In situ lipidomic and proteomic analyses on brain tissue sections revealed distinct, brain region-specific profiles in each transgenic line. Behavioral analyses revealed that suppression of GAD1 in CCK+ interneurons resulted in locomotor and olfactory sensory changes, whereas suppression in NPY+ interneurons affected anxiety-related behaviors and social interaction. Both transgenic mouse lines had altered sensitivity to amphetamine albeit in opposite directions. Together, these data argue that reduced GAD1 expression leads to altered molecular and behavioral profiles in a cell type-dependent manner, and that these subpopulations of interneurons are strong and opposing modulators of dopamine system function. Furthermore, our findings also support the hypothesis that neuronal networks are differentially controlled by diverse inhibitory subnetworks.
Collapse
|
17
|
Courtin J, Bienvenu T, Einarsson E, Herry C. Medial prefrontal cortex neuronal circuits in fear behavior. Neuroscience 2013; 240:219-42. [DOI: 10.1016/j.neuroscience.2013.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 01/01/2023]
|
18
|
Wyeth MS, Zhang N, Houser CR. Increased cholecystokinin labeling in the hippocampus of a mouse model of epilepsy maps to spines and glutamatergic terminals. Neuroscience 2011; 202:371-83. [PMID: 22155653 DOI: 10.1016/j.neuroscience.2011.11.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/24/2011] [Indexed: 12/01/2022]
Abstract
The neuropeptide cholecystokinin (CCK) is abundant in the CNS and is expressed in a subset of inhibitory interneurons, particularly in their axon terminals. The expression profile of CCK undergoes numerous changes in several models of temporal lobe epilepsy. Previous studies in the pilocarpine model of epilepsy have shown that CCK immunohistochemical labeling is substantially reduced in several regions of the hippocampal formation, consistent with decreased CCK expression as well as selective neuronal degeneration. However, in a mouse pilocarpine model of recurrent seizures, increases in CCK-labeling also occur and are especially striking in the hippocampal dendritic layers of strata oriens and radiatum. Characterizing these changes and determining the cellular basis of the increased labeling were the major goals of the current study. One possibility was that the enhanced CCK labeling could be associated with an increase in GABAergic terminals within these regions. However, in contrast to the marked increase in CCK-labeled structures, labeling of GABAergic axon terminals was decreased in the dendritic layers. Likewise, cannabinoid receptor 1-labeled axon terminals, many of which are CCK-containing GABAergic terminals, were also decreased. These findings suggested that the enhanced CCK labeling was not due to an increase in GABAergic axon terminals. The subcellular localization of CCK immunoreactivity was then examined using electron microscopy, and the identities of the structures that formed synaptic contacts were determined. In pilocarpine-treated mice, CCK was observed in dendritic spines and these were proportionally increased relative to controls, whereas the proportion of CCK-labeled terminals forming symmetric synapses was decreased. In addition, CCK-positive axon terminals forming asymmetric synapses were readily observed in these mice. Double labeling with vesicular glutamate transporter 1 and CCK revealed colocalization in numerous terminals forming asymmetric synapses, confirming the glutamatergic identity of these terminals. These data raise the possibility that expression of CCK is increased in hippocampal pyramidal cells in mice with recurrent, spontaneous seizures.
Collapse
Affiliation(s)
- M S Wyeth
- Department of Neurobiology, CHS 73-235, David Geffen School of Medicine at the University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-1763, USA
| | | | | |
Collapse
|
19
|
Blazquez-Llorca L, García-Marín V, DeFelipe J. GABAergic complex basket formations in the human neocortex. J Comp Neurol 2011; 518:4917-37. [PMID: 21031559 DOI: 10.1002/cne.22496] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Certain GABAergic interneurons in the cerebral cortex, basket cells, establish multiple connections with cell bodies that typically outline the somata and proximal dendrites of pyramidal cells. During studies into the distribution of the vesicular GABA transporter (VGAT) in the human cerebral cortex, we were struck by the presence of a very dense, pericellular arrangement of multiple VGAT-immunoreactive (-ir) terminals in certain cortical areas. We called these terminals "Complex basket formations" (Cbk-formations) to distinguish them from the simpler and more typical pericellular GABAergic innervations of most cortical neurons. Here we examined the distribution of these VGAT-ir Cbk-formations in various cortical areas, including the somatosensory (area 3b), visual (areas 17 and 18), motor (area 4), associative frontal (dorsolateral areas 9, 10, 45, 46, and orbital areas 11, 12, 13, 14, 47), associative temporal (areas 20, 21, 22, and 38), and limbic cingulate areas (areas 24, 32). Furthermore, we used dual or triple staining techniques to study the chemical nature of the innervated cells. We found that VGAT-ir Cbk-formations were most frequently found in area 4 followed by areas 3b, 13, and 18. In addition, they were mostly observed in layer III, except in area 17, where they were most dense in layer IV. We also found that 70% of the innervated neurons were pyramidal cells, while the remaining 30% were multipolar cells. Most of these multipolar cells expressed the calcium-binding protein parvalbumin and the lectin Vicia villosa agglutinin.
Collapse
|
20
|
Distinct endocannabinoid control of GABA release at perisomatic and dendritic synapses in the hippocampus. J Neurosci 2010; 30:7993-8000. [PMID: 20534847 DOI: 10.1523/jneurosci.6238-09.2010] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endocannabinoid-mediated retrograde synaptic signaling is a key regulator of GABA release at synapses formed on the perisomatic region of pyramidal cells by basket cells that coexpress the cannabinoid type 1 receptor (CB(1)R) and cholecystokinin (CCK). However, CB(1)R and CCK-positive GABAergic terminals are present on pyramidal cell dendrites as well, but the principles of endocannabinoid control of GABA release in dendrites are not understood. We performed paired recordings from CCK-positive perisomatically (basket cells) or dendritically projecting (Schaffer collateral-associated cells) interneurons and postsynaptic CA1 pyramidal cells to determine the properties of endocannabinoid signaling at GABAergic synapses along the somato-dendritic axis. Although several key elements of the currently known molecular machinery for endocannabinoid synthesis are thought be primarily localized in dendrites, our results revealed that the depolarization-induced suppression of inhibition, the endocannabinoid-mediated tonic inhibition of GABA release, and the metabotropic glutamate receptor activation-induced, CB(1)R-mediated depression of GABA release were all significantly less effective at dendritic compared with perisomatic synapses. In addition, low concentration of exogenous CB(1) receptor agonist inhibited GABA release to a lesser extent at dendritic compared with perisomatic synapses, indicating that presynaptic differences are partly responsible for the differential control of GABA release by endocannabinoids in dendrites. Together, these data demonstrate a novel domain-specific regulation of GABA release by endocannabinoid signaling in the hippocampus.
Collapse
|
21
|
Kosaka T, Kosaka K. Heterogeneity of calbindin-containing neurons in the mouse main olfactory bulb: I. General description. Neurosci Res 2010; 67:275-92. [PMID: 20406658 DOI: 10.1016/j.neures.2010.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/11/2010] [Accepted: 04/13/2010] [Indexed: 11/19/2022]
Abstract
The structural features of calbindin-positive neurons were studied in the mouse main olfactory bulb (MOB). Calbindin-positive neurons were heterogeneous, including numerous periglomerular cells, a few granule cells, small to medium-sized interneurons in the external plexiform layer, and large short-axon cells located in the external plexiform layer, internal plexiform layer, granule cell layer and ependymal/subependymal layer. These large short-axon cells were also heterogeneous; some corresponded to classically identified short-axon cells such as Blanes cells, Golgi cells, horizontal cells and vertical cells, but some others appeared to be previously unidentified. A few faintly calbindin-positive presumed tufted cells were also encountered. Near the ependymal/subependymal layer of the MOB some calbindin-positive short-axon cells extended their dendritic processes more or less parallel to the sagittal plane, presumably corresponding to medullary cells named recently. In addition we encountered a few calbindin-positive horizontal cells in the internal plexiform layer extending their axons toward the lateral olfactory tract, one of which was confirmed to extend its axon into the lateral olfactory tract, indicating that they were presumed to be one of projection neurons. The present study revealed the diversity of calbindin-positive neurons in the mouse MOB and their particular structural properties hitherto unknown.
Collapse
Affiliation(s)
- Toshio Kosaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
22
|
CCK as a modulator of cardiovascular function. J Chem Neuroanat 2009; 38:176-84. [DOI: 10.1016/j.jchemneu.2009.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/22/2009] [Accepted: 06/19/2009] [Indexed: 02/07/2023]
|
23
|
Thomson AM, Lamy C. Functional maps of neocortical local circuitry. Front Neurosci 2007; 1:19-42. [PMID: 18982117 PMCID: PMC2518047 DOI: 10.3389/neuro.01.1.1.002.2007] [Citation(s) in RCA: 294] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 09/01/2007] [Indexed: 11/13/2022] Open
Abstract
This review aims to summarize data obtained with different techniques to provide a functional map of the local circuit connections made by neocortical neurones, a reference for those interested in cortical circuitry and the numerical information required by those wishing to model the circuit. A brief description of the main techniques used to study circuitry is followed by outline descriptions of the major classes of neocortical excitatory and inhibitory neurones and the connections that each layer makes with other cortical and subcortical regions. Maps summarizing the projection patterns of each class of neurone within the local circuit and tables of the properties of these local circuit connections are provided.This review relies primarily on anatomical studies that have identified the classes of neurones and their local and long distance connections and on paired intracellular and whole-cell recordings which have documented the properties of the connections between them. A large number of different types of synaptic connections have been described, but for some there are only a few published examples and for others the details that can only be obtained with paired recordings and dye-filling are lacking. A further complication is provided by the range of species, technical approaches and age groups used in these studies. Wherever possible the range of available data are summarised and compared. To fill some of the more obvious gaps for the less well-documented cases, data obtained with other methods are also summarized.
Collapse
Affiliation(s)
- Alex M Thomson
- The Department of Pharmacology, The School of Pharmacy, University of London, London UK.
| | | |
Collapse
|
24
|
Jones SR, Pritchett DL, Stufflebeam SM, Hämäläinen M, Moore CI. Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study. J Neurosci 2007; 27:10751-64. [PMID: 17913909 PMCID: PMC2867095 DOI: 10.1523/jneurosci.0482-07.2007] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 08/16/2007] [Accepted: 08/19/2007] [Indexed: 11/21/2022] Open
Abstract
Previous reports conflict as to the role of primary somatosensory neocortex (SI) in tactile detection. We addressed this question in normal human subjects using whole-head magnetoencephalography (MEG) recording. We found that the evoked signal (0-175 ms) showed a prominent equivalent current dipole that localized to the anterior bank of the postcentral gyrus, area 3b of SI. The magnitude and timing of peaks in the SI waveform were stimulus amplitude dependent and predicted perception beginning at approximately 70 ms after stimulus. To make a direct and principled connection between the SI waveform and underlying neural dynamics, we developed a biophysically realistic computational SI model that contained excitatory and inhibitory neurons in supragranular and infragranular layers. The SI evoked response was successfully reproduced from the intracellular currents in pyramidal neurons driven by a sequence of lamina-specific excitatory input, consisting of output from the granular layer (approximately 25 ms), exogenous input to the supragranular layers (approximately 70 ms), and a second wave of granular output (approximately 135 ms). The model also predicted that SI correlates of perception reflect stronger and shorter-latency supragranular and late granular drive during perceived trials. These findings strongly support the view that signatures of tactile detection are present in human SI and are mediated by local neural dynamics induced by lamina-specific synaptic drive. Furthermore, our model provides a biophysically realistic solution to the MEG signal and can predict the electrophysiological correlates of human perception.
Collapse
Affiliation(s)
- Stephanie R Jones
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | |
Collapse
|
25
|
Ali AB. Presynaptic Inhibition of GABAA Receptor-Mediated Unitary IPSPs by Cannabinoid Receptors at Synapses Between CCK-Positive Interneurons in Rat Hippocampus. J Neurophysiol 2007; 98:861-9. [PMID: 17567776 DOI: 10.1152/jn.00156.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is growing evidence to link cholecystokinin (CCK)-positive interneurons and anxiety disorders. Despite this, little is known about the physiology and pharmacology of synaptic interactions between CCK-positive interneurons. This study aims to investigate the local circuit connections among CCK-positive Schaffer collateral associated (SCA) interneurons in stratum radiatum (SR) and their modulatory interactions using paired whole cell recordings combined with biocytin and double immunofluorescence labeling in slices of rat hippocampus. The cell bodies of SCA interneurons were located in SR, and their sparsely spiny dendrites projected toward s. pyramidale (SP) and along SR. Their axons innervated SR, SP, and s. oriens (SO) with predominant ramification in SR. These cells were immunopositive for CCK and immunonegative for parvalbumin (PV). SCA interneurons often displayed an accommodating firing pattern with or without a “sag” in response to hyperpolarizing current injection. Pairs of these cells exhibited electrical coupling and reciprocal chemical connections in which inhibitory postsynaptic potentials (IPSPs) displayed powerful frequency-dependent facilitation and augmentation. The synaptic connections were modulated by the endogenous cannabinoid receptor (CB) agonist, anandamide and by depolarization-induced suppression of inhibition (DSI), both of which reduced the amplitude of unitary IPSPs to 50% of control and increased the number of apparent failures of transmission. These effects were blocked by the CB1 receptor antagonist, AM-251. I suggest that synaptic facilitation between CCK-positive SCA interneurons may modify the onset of CB1 receptor-mediated regulation of inhibition, thereby affecting spike timing, and that this process could influence the expression of anxiety.
Collapse
Affiliation(s)
- Afia B Ali
- Department of Pharmacology, University of London, School of Pharmacy, London, United Kingdom.
| |
Collapse
|
26
|
Jang IS, Ito Y, Akaike N. Feed-forward facilitation of glutamate release by presynaptic GABA(A) receptors. Neuroscience 2005; 135:737-48. [PMID: 16154278 DOI: 10.1016/j.neuroscience.2005.06.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 05/31/2005] [Accepted: 06/14/2005] [Indexed: 11/21/2022]
Abstract
Disynaptic GABAergic inputs from Schaffer collateral (SC) afferents on to the soma of glutamatergic CA1 pyramidal neurons are involved in feed-forward inhibition in the hippocampal neural circuits. Here we report the functional roles of presynaptic GABA(A) receptors on SC afferents projecting to CA1 pyramidal neurons. Muscimol (0.5 microM), a selective GABA(A) receptor agonist, increased SC-evoked EPSC amplitude and decreased paired-pulse ratio in the slice preparation, in addition, it facilitated spontaneous glutamate release on to mechanically dissociated CA1 pyramidal neurons in an external Ca2+-dependent manner. In field recordings, muscimol at low concentrations (< or = 0.5 microM) increased not only the excitability of SC afferents but glutamate release, however, it at high concentrations (> or = 1 microM) changed bidirectionally. These results suggest that the moderate activation of presynaptic GABA(A) receptors depolarizes SC afferents and enhances SC-mediated glutamatergic transmission. When endogenous GABA was disynaptically released by brief trains of stimulation of SC afferents, the axonal excitability in addition to glutamate release was increased. The effects of endogenous GABA on the excitability of SC afferents were blocked by either SR95531 or AMPA receptor blockers, which would be expected to block disynaptic feed-forward neural circuits. The present results provide a novel form of presynaptic modulation (feed-forward facilitation) of glutamatergic transmission by presynaptic GABA(A) receptors within the intrinsic hippocampal neural circuits.
Collapse
Affiliation(s)
- I-S Jang
- Department of Pharmacology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
27
|
Abstract
We developed a quantitative description of the circuits formed in cat area 17 by estimating the "weight" of the projections between different neuronal types. To achieve this, we made three-dimensional reconstructions of 39 single neurons and thalamic afferents labeled with horseradish peroxidase during intracellular recordings in vivo. These neurons served as representatives of the different types and provided the morphometrical data about the laminar distribution of the dendritic trees and synaptic boutons and the number of synapses formed by a given type of neuron. Extensive searches of the literature provided the estimates of numbers of the different neuronal types and their distribution across the cortical layers. Applying the simplification that synapses between different cell types are made in proportion to the boutons and dendrites that those cell types contribute to the neuropil in a given layer, we were able to estimate the probable source and number of synapses made between neurons in the six layers. The predicted synaptic maps were quantitatively close to the estimates derived from the experimental electron microscopic studies for the case of the main sources of excitatory and inhibitory input to the spiny stellate cells, which form a major target of layer 4 afferents. The map of the whole cortical circuit shows that there are very few "strong" but many "weak" excitatory projections, each of which may involve only a few percentage of the total complement of excitatory synapses of a single neuron.
Collapse
Affiliation(s)
- Tom Binzegger
- Institute of Neuroinformatics, University of Zürich, and Eidgenössische Technische Hochschule Zürich, CH-8057 Zürich, Switzerland.
| | | | | |
Collapse
|
28
|
Abstract
Recent experimental and theoretical investigations have made considerable advances in three major areas relating to the structural basis of quantitative cortical microcircuit theory. The first concerns the nature of the cellular units, encompassing the increasingly precise identification and progressively more complete listing of the individual cellular species that constitute the various cortical networks. The second element addresses the problem of heterogeneity, including the demonstration of the importance of cell to cell variability within defined interneuronal populations and the application of the Shannon-Wiener diversity index for the quantitative assessment of the number and relative abundance of interneuronal species. The third component relates to the discovery of basic topological principles underlying the circuit wiring, revealing a surprising order in the architectural design of networks. These new advances deepen our understanding of the computational principles embedded in cortical microcircuits, and they also provide novel opportunities for building realistic models of mammalian cortical microcircuits.
Collapse
Affiliation(s)
- Csaba Földy
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1280, USA
| | | | | |
Collapse
|
29
|
Mátyás F, Freund TF, Gulyás AI. Convergence of excitatory and inhibitory inputs onto CCK-containing basket cells in the CA1 area of the rat hippocampus. Eur J Neurosci 2004; 19:1243-56. [PMID: 15016082 DOI: 10.1111/j.1460-9568.2004.03225.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The number and distribution of excitatory and inhibitory inputs affect the integrative properties of neurons. These parameters have been studied recently for several hippocampal neuron populations. Besides parvalbumin- (PV) containing cells that include basket and axo-axonic cells, cholecystokinin (CCK)-containing interneurons also form a basket cell population with several properties distinct from PV cells. Here, at the light microscopic level, we reconstructed the entire dendritic tree of CCK-immunoreactive (IR) basket cells to describe their geometry, the total length and laminar distribution of their dendrites. This was followed by an electron microscopic analysis of serial ultrathin sections immunostained against gamma-aminobutyric acid, to estimate the density of excitatory and inhibitory synapses on their somata, axon initial segments and different subclasses of dendrites. The dendritic tree of CCK-IR basket cells has an average length of 6300 microm and penetrates all layers. At the electron microscopic level, CCK basket cells receive dendritic inputs with a density of 80-230 per 100 microm. The ratio of inhibitory inputs is relatively high (35%) and increases towards the soma (83%). The total numbers of excitatory and inhibitory synapses converging onto CCK-IR cells are approximately 8200. Comparison of the two, neurochemically distinct basket cells reveals that CCK-containing basket cells receive much less synaptic input than PV cells; however, the relative weight of inhibition is higher on CCK cells. Additional differences in their anatomical and physiological properties predict that CCK basket cells are under a more diverse, elaborate control than PV basket cells, and thus the function of the two populations must be different.
Collapse
Affiliation(s)
- Ferenc Mátyás
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, PO Box 67, H-1450, Hungary
| | | | | |
Collapse
|
30
|
Jinno S, Kosaka T. Heterogeneous expression of the cholecystokinin-like immunoreactivity in the mouse hippocampus, with special reference to the dorsoventral difference. Neuroscience 2004; 122:869-84. [PMID: 14643757 DOI: 10.1016/j.neuroscience.2003.08.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The neuropeptide cholecystokinin (CCK) is widely distributed in the CNS. We herein investigated the immunocytochemical localization of CCK in the glutamatergic excitatory pathways in the mouse hippocampus, with particular reference to the dorsoventral difference. The intense CCK-like immunoreactivity (CCK-LI) was found in the mossy fiber pathway (stratum lucidum and dentate hilus) and in the inner molecular layer of the dentate gyrus. In the mossy fiber pathway, the CCK-LI was more intense at the ventral level than at the dorsal level. On the other hand, the CCK-LI in the stratum lucidum was more intense in the distal portion than in the proximal portion, both at the dorsal and ventral levels. High-resolution three-dimensional image analysis revealed the coexpression of CCK and synaptoporin (SPO) in the single mossy terminal, where they were spatially segregated but adjacent to each other. Quantitative image analysis indicated the difference in the amount of CCK within the mossy terminals along the dorsoventral and transverse axes of the hippocampus. On the other hand, in the inner molecular layer, CCK- and SPO-positive elements appeared to have little relation to each other. We also examined the postnatal development of the CCK-LI in the mouse hippocampus. The CCK-LI was detected in the inner molecular layer of the ventral dentate gyrus at postnatal day (P) 7. In the mossy fiber pathway, the CCK-LI was first evident at P 14, but it was restricted to the distal portion of the stratum lucidum in the ventral hippocampus. Interestingly, the distributions of the SPO immunoreactivity at P 7 were already similar to those of adult mice. The patterns of expression of CCK-LI at P 28 were almost similar to those of adult mice. The present data demonstrate the heterogeneous expression of CCK-LI in the mouse hippocampus, and provide a baseline to understand the role of CCK in the mouse brain.
Collapse
Affiliation(s)
- S Jinno
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
31
|
Somogyi J, Baude A, Omori Y, Shimizu H, El Mestikawy S, Fukaya M, Shigemoto R, Watanabe M, Somogyi P. GABAergic basket cells expressing cholecystokinin contain vesicular glutamate transporter type 3 (VGLUT3) in their synaptic terminals in hippocampus and isocortex of the rat. Eur J Neurosci 2004; 19:552-69. [PMID: 14984406 DOI: 10.1111/j.0953-816x.2003.03091.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vesicular glutamate transporter type 3 (VGLUT3) containing neuronal elements were characterized using antibodies to VGLUT3 and molecular cell markers. All VGLUT3-positive somata were immunoreactive for CCK, and very rarely, also for calbindin; none was positive for parvalbumin, calretinin, VIP or somatostatin. In the CA1 area, 26.8 +/- 0.7% of CCK-positive interneuron somata were VGLUT3-positive, a nonoverlapping 22.8 +/- 1.9% were calbindin-positive, 10.7 +/- 2.5% VIP-positive and the rest were only CCK-positive. The patterns of coexpression were similar in the CA3 area, the dentate gyrus and the isocortex. Immunoreactivity for VGLUT3 was undetectable in pyramidal and dentate granule cells. Boutons colabelled for VGLUT3, CCK and GAD were most abundant in the cellular layers of the hippocampus and in layers II-III of the isocortex. Large VGLUT3-labelled boutons at the border of strata radiatum and lacunosum-moleculare in the CA1 area were negative for GAD, but were labelled for vesicular monoamine transporter type 2, plasmalemmal serotonin transporter or serotonin. No colocalization was found in terminals between VGLUT3 and parvalbumin, vesicular acetylcholine transporter and group III (mGluR7a,b; mGluR8a,b) metabotropic glutamate receptors. In stratum radiatum and the isocortex, VGLUT3-positive but GAD-negative boutons heavily innervated the soma and proximal dendrites of some VGLUT3- or calbindin-positive interneurons. The results suggest that boutons coexpressing VGLUT3, CCK and GAD originate from CCK-positive basket cells, which are VIP-immunonegative. Other VGLUT3-positive boutons immunopositive for serotonergic markers but negative for GAD probably originate from the median raphe nucleus and innervate select interneurons. The presumed amino acid substrate of VGLUT3 may act on presynaptic kainate or group II metabotropic glutamate receptors.
Collapse
Affiliation(s)
- Jozsef Somogyi
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford University, Oxford OX1 3TH, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Okhotin VE, Kalinichenko SG. The histophysiology of neocortical basket cells. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2002; 32:455-70. [PMID: 12402997 DOI: 10.1023/a:1019899903876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- V E Okhotin
- Laboratory for Neurogenetics and Developmental Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow
| | | |
Collapse
|
33
|
Beaulieu C, Somogyi P. Targets and Quantitative Distribution of GABAergic Synapses in the Visual Cortex of the Cat. Eur J Neurosci 2002; 2:296-303. [PMID: 12106036 DOI: 10.1111/j.1460-9568.1990.tb00421.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The morphology and postsynaptic targets of GABA-containing boutons were determined in the striate cortex of cat, using a postembedding immunocytochemical technique at the electron microscopic level. Two types of terminals, both making symmetrical synaptic contacts, were GABA-positive. The first type (95% of all GABA-positive boutons) contained small pleomorphic vesicles, the second type (5%) contained larger ovoid vesicles. Furthermore, 99% of all cortical boutons containing pleomorphic vesicles were GABA positive, and all boutons with pleomorphic vesicles made symmetrical synaptic contacts. These results together with previously published stereological data (Beaulieu and Colonnier, 1985, 1987) were used to estimate the density of GABA-containing synapses, which is about 48 million/mm3 in the striate cortex. The postsynaptic targets of GABA positive boutons were also identified and the distribution was calculated to be as follows: 58% dendritic shafts, 26.4% dendritic spines, 13.1% somata and 2.5% axon initial segments. A total of 11% of the postsynaptic targets were GABA immunoreactive and therefore originated from GABAergic neurons. The results demonstrate that the majority of GABAergic synapses exert their action on the membrane of dendrites and spines rather than on the somata and axons of neurons.
Collapse
Affiliation(s)
- C. Beaulieu
- Medical Research Council, Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford University, South Parks Road, Oxford OX1 3QT, UK
| | | |
Collapse
|
34
|
Cope DW, Maccaferri G, Márton LF, Roberts JDB, Cobden PM, Somogyi P. Cholecystokinin-immunopositive basket and Schaffer collateral-associated interneurones target different domains of pyramidal cells in the CA1 area of the rat hippocampus. Neuroscience 2002; 109:63-80. [PMID: 11784700 DOI: 10.1016/s0306-4522(01)00440-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two types of GABAergic interneurone are known to express cholecystokinin-related peptides in the isocortex: basket cells, which preferentially innervate the somata and proximal dendrites of pyramidal cells; and double bouquet cells, which innervate distal dendrites and dendritic spines. In the hippocampus, cholecystokinin immunoreactivity has only been reported in basket cells. However, at least eight distinct GABAergic interneurone types terminate in the dendritic domain of CA1 pyramidal cells, some of them with as yet undetermined neurochemical characteristics. In order to establish whether more than one population of cholecystokinin-expressing interneurone exist in the hippocampus, we have performed whole-cell current clamp recordings from interneurones located in the stratum radiatum of the hippocampal CA1 region of developing rats. Recorded neurones were filled with biocytin to reveal their axonal targets, and were tested for the presence of pro-cholecystokinin immunoreactivity. The results show that two populations of cholecystokinin-immunoreactive interneurones exist in the CA1 area (n=15 positive cells). Cholecystokinin-positive basket cells (53%) preferentially innervate stratum pyramidale and adjacent strata oriens and radiatum. A second population of cholecystokinin-positive cells, previously described as Schaffer collateral-associated interneurones [Vida et al. (1998) J. Physiol. 506, 755-773], have axons that ramify almost exclusively in strata radiatum and oriens, overlapping with the Schaffer collateral/commissural pathway originating from CA3 pyramidal cells. Two of seven of the Schaffer collateral-associated cells were also immunopositive for calbindin. Soma position and orientation in stratum radiatum, the number and orientation of dendrites, and the passive and active membrane properties of the two cell populations are only slightly different. In addition, in stratum radiatum and its border with lacunosum of perfusion-fixed hippocampi, 31.6+/-3.8% (adult) or 26.8+/-2.9% (postnatal day 17-20) of cholecystokinin-positive cells were also immunoreactive for calbindin. Therefore, at least two populations of pro-cholecystokinin-immunopositive interneurones, basket and Schaffer collateral-associated cells, exist in the CA1 area of the hippocampus, and are probably homologous to cholecystokinin-immunopositive basket and double bouquet cells in the isocortex. It is not known if the GABAergic terminals of double bouquet cells are co-aligned with specific glutamatergic inputs. However, in the hippocampal CA1 area, it is clear that the terminals of Schaffer collateral-associated cells are co-stratified with the glutamatergic input from the CA3 area, with as yet unknown functional consequences. The division of the postsynaptic neuronal surface by two classes of GABAergic cell expressing cholecystokinin in both the hippocampus and isocortex provides further evidence for the uniform synaptic organisation of the cerebral cortex.
Collapse
Affiliation(s)
- D W Cope
- MRC Anatomical Neuropharmacology Unit, Department of Pharmacology, Oxford University, Mansfield Road, Oxford OX1 3TH, UK.
| | | | | | | | | | | |
Collapse
|
35
|
Buzás P, Eysel UT, Adorján P, Kisvárday ZF. Axonal topography of cortical basket cells in relation to orientation, direction, and ocular dominance maps. J Comp Neurol 2001; 437:259-85. [PMID: 11494255 DOI: 10.1002/cne.1282] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The axonal (bouton) distributions of a layer 4 clutch cell (CC), two layer 3 medium-sized basket cells (MBC), and a layer 3 large basket cell (LBC) to orientation, direction, and ocular dominance maps were studied quantitatively. 1) The CC provided exclusively local projections (<380 microm from the soma) and contacted a narrow "niche" of functional representations. 2) The two MBCs emitted local projections (75% and 79% of all boutons), which were engaged with isoorientations (61% and 48%) and isodirections, and long-range projections (25% and 21%, >313 microm and >418 microm), which encountered cross-orientation sites (14% and 12%) and isoorientation sites (7% and 5%). Their direction preferences were mainly perpendicular to or opposite those of local projections. 3) The LBC provided the majority (60%) of its boutons to long-range distances (>437 microm). Locally, LBC boutons showed a rather balanced contribution to isoorientations (19%) and cross-orientations (12%) and preferred isodirections. Remotely, however, cross-orientation sites were preferred (31% vs. 23%) and the directional output was balanced. 4) Monte Carlo simulations revealed that the differences between the orientation specificity of local and long-range projections cannot be explained by a homogeneous lateral distribution of the boutons. 5) There was a similar eye preference in the local and long-range projection fields of the MBCs. The LBC contacted both contra- and ipsilateral eye domains. 6) The basket axons showed little laminar difference in orientation and direction topography. The results suggest that an individual basket cell can mediate a wide range of effects depending on the size and termination pattern of the axonal field.
Collapse
Affiliation(s)
- P Buzás
- Institut für Physiologie, Abteilung für Neurophysiologie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | | | | | | |
Collapse
|
36
|
Abstract
The high abundance of the cholecystokinin octapeptide in various brain regions is expressed by involvement of this neuropeptide in diverse brain functions. This peptide is mostly, if not always, co-localized with classic transmitters in central nerve terminals. Since the functions of the coexisting transmitters are often different, differential regulation of their release is obvious. This differentiation is realized by differences in presynaptic localization, release dynamics, and calcium regulation. In addition, CCK release is locally modulated by receptors, kinases and phosphatases. The regulatory mechanisms of CCK release are placed into physiological perspective.
Collapse
Affiliation(s)
- W E Ghijsen
- Graduate School for the Neurosciences, Swammerdam Institute for Life Sciences, Section Neurobiology, University of Amsterdam, Kruislaan 320, 1090 GB Amsterdam, The Netherlands.
| | | | | |
Collapse
|
37
|
Dantzker JL, Callaway EM. Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nat Neurosci 2000; 3:701-7. [PMID: 10862703 DOI: 10.1038/76656] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The functional role of an individual neuron within a cortical circuit is largely determined by that neuron's synaptic input. We examined the laminar sources of local input to subtypes of cortical neurons in layer 2/3 of rat visual cortex using laser scanning photostimulation. We identified three distinct laminar patterns of excitatory input that correspond to physiological and morphological subtypes of neurons. Fast-spiking inhibitory basket cells and excitatory pyramidal neurons received strong excitatory input from middle cortical layers. In contrast, adapting inhibitory interneurons received their strongest excitatory input either from deep layers or laterally from within layer 2/3. Thus, differential laminar sources of excitatory inputs contribute to the functional diversity of cortical inhibitory interneurons.
Collapse
Affiliation(s)
- J L Dantzker
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, California, 92037, USA.
| | | |
Collapse
|
38
|
Pesold C, Liu WS, Guidotti A, Costa E, Caruncho HJ. Cortical bitufted, horizontal, and Martinotti cells preferentially express and secrete reelin into perineuronal nets, nonsynaptically modulating gene expression. Proc Natl Acad Sci U S A 1999; 96:3217-22. [PMID: 10077664 PMCID: PMC15922 DOI: 10.1073/pnas.96.6.3217] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/1998] [Indexed: 11/18/2022] Open
Abstract
Reelin (Reln) is a protein with some structural analogies with other extracellular matrix proteins that functions in the regulation of neuronal migration during the development of cortical laminated structures. In the cortex of adult animals, Reln is expressed primarily in gamma-aminobutyric acid (GABA)ergic neurons and is secreted into perineuronal nets. However, only 50-60% of GABAergic interneurons express Reln. We have characterized this subpopulation of cortical GABAergic neurons that expresses Reln by using two strategies: (i) a double immunolabeling procedure to determine the colocalization of Reln with neuropeptides and Ca2+-binding proteins and (ii) a combination of Golgi staining and Reln immunolabeling to determine the morphology of the rat cortical cells that store Reln. Many interneurons that express Neuropeptide Y (NPY) or somatostatin (but none of those that express parvalbumin) are Reln-immunopositive. A small population of calbindin-positive interneurons and very few calretinin-positive cells express Reln immunopositivity. Golgi staining revealed that layer I horizontal cells, layer II-V bitufted neurons, and some deep cortical layer Martinotti cells express Reln. Basket and chandelier cells are often immunopositive to parvalbumin, but never to Reln. Although Reln is secreted by GABAergic neurons, its target are not the GABA receptors, but rather may be extrasynaptically located in perineuronal nets and concerned with the modulation of neuronal plasticity. Dab1, the target adapter protein that presumably mediates transcription regulation via the extrasynaptic actions of Reln, is expressed predominantly in pyramidal neurons, but it can also be detected in a small population of GABAergic neurons that are neither horizontal nor bitufted neurons.
Collapse
Affiliation(s)
- C Pesold
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 West Taylor Street, M/C 912, Chicago IL, 60612, USA.
| | | | | | | | | |
Collapse
|
39
|
Kawaguchi Y, Kubota Y. Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex. Neuroscience 1998; 85:677-701. [PMID: 9639265 DOI: 10.1016/s0306-4522(97)00685-4] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Physiological and morphological properties of large non-pyramidal cells immunoreactive for cholecystokinin, parvalbumin or somatostatin were investigated in vitro in the frontal cortex of 18-22-day-old rats. These three peptides were expressed in separate populations including large cells. Cholecystokinin cells and parvalbumin cells made boutons apposed to other cell bodies, but differed in their firing patterns in response to depolarizing current pulses. Parvalbumin cells belonged to fast-spiking cells. Parvalbumin fast-spiking cells also included chandelier cells. In contrast, cholecystokinin cells were found to be regular-spiking non-pyramidal cells or burst-spiking non-pyramidal cells with bursting activity from hyperpolarized potentials (two or more spikes on slow depolarizing humps). Large somatostatin cells belonged to the regular-spiking non-pyramidal category and featured wide or ascending axonal arbors (wide arbor cells and Martinotti cells) which did not seem to be apposed to the somata so frequently as large cholecystokinin and parvalbumin cells. For electron microscopic observations, another population of eight immunohistochemically-uncharacterized non-pyramidal cells were selected: (i) five fast spiking cells including one chandelier cell which are supposed to contain parvalbumin, and (ii) three large regular-spiking non-pyramidal cells with terminals apposed to somata, which are not considered to include somatostatin cells, but some of which may belong to cholecystokinin cells. The fast-spiking cells other than a chandelier cell and the large regular-spiking non-pyramidal cells made GABA-positive synapses on somata (4% and 12% of the synapses in two small to medium fast-spiking cells, 22% and 35% of the synapses in two large fast-spiking cells, and 10%, 18% and 37% of the synapses in three large regular-spiking non-pyramidal cells). A few terminals of the fast-spiking and regular-spiking non-pyramidal cells innervated GABAergic cells. About 30% of the fast-spiking cell terminals innervated spines, but few of the regular-spiking non-pyramidal cell terminals did. A fast-spiking chandelier cell made GABA-positive synapses on GABA-negative axon initial segments. These results suggest that large GABAergic cells are heterogeneous in neuroactive substances, firing patterns and synaptic connections, and that cortical cells receive heterogeneous GABAergic somatic inputs.
Collapse
Affiliation(s)
- Y Kawaguchi
- Laboratory for Neural Circuits, Bio-Mimetic Control Research Center, The Institute of Physical and Chemical Research (RIKEN), Moriyama, Nagoya, Japan
| | | |
Collapse
|
40
|
Abstract
Networks of GABAergic neurons have been implicated in neuronal population synchronization. To define the extent of cellular interconnections, we determined the effect, number, and subcellular distribution of synapses between putative GABAergic neurons in layers II-IV of the cat visual cortex using paired intracellular recordings in vitro followed by correlated light and electron microscopy. All neurons having interneuronal electrophysiological properties were classified by their postsynaptic target profile and were identified as basket (BC; n = 6), dendrite-targeting (DTC; n = 1), and double bouquet (DBC; n = 2) cells. In four out of five anatomically fully recovered and reconstructed cell pairs, synaptic connections were found to be reciprocal. Generally BCs established synaptic junctions closer (21 +/- 20 micron) to postsynaptic somata than did DBCs (43 +/- 19 micron; p < 0.01). The unitary number of synapses (n values, 10, 7, and 20) in each of three BC-to-BC pairs was higher than that in three BC-to-DBC (n values, 1, 2, and 2) and three DBC-to-BC (n values, 1, 4, and 4) connections (p < 0.05). A BC innervated a DTC through two synaptic junctions. Unitary postsynaptic effects mediated by five BCs could be recorded in two BCs, two DBCs, and a DTC. The BCs elicited short-duration fast IPSPs, similar to those mediated by GABAA receptors. At a membrane potential of -55.0 +/- 6.4 mV, unitary IPSPs (n = 5) had a mean amplitude of 919 +/- 863 microV. Postsynaptic response failures were absent when an IPSP was mediated by several release sites. Thus, distinct GABAergic interneurons form reciprocally interconnected networks. The strength of innervation and the proximal placement of synapses suggest a prominent role for BCs in governing the activity of intracortical GABAergic networks in layers II-IV.
Collapse
|
41
|
Crook JM, Kisvárday ZF, Eysel UT. Evidence for a contribution of lateral inhibition to orientation tuning and direction selectivity in cat visual cortex: reversible inactivation of functionally characterized sites combined with neuroanatomical tracing techniques. Eur J Neurosci 1998; 10:2056-75. [PMID: 9753093 DOI: 10.1046/j.1460-9568.1998.00218.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously reported that cells in cat areas 17 and 18 can show increases in response to non-optimal orientations or directions, commensurate with a loss of inhibition, during inactivation of laterally remote, visuotopically corresponding sites by iontophoresis of gamma-aminobutyric acid (GABA). We now present anatomical evidence for inhibitory projections from inactivation sites to recording sites where 'disinhibitory' effects were elicited. We made microinjections of [3H]-nipecotic acid, which selectively exploits the GABA re-uptake mechanism, < 100 microm from recording sites where cells had shown either an increase in response to non-optimal orientations during inactivation of a cross-orientation site (n = 2) or an increase in response to the non-preferred direction during inactivation of an iso-orientation site with opposite direction preference (n = 5). Retrogradely labelled GABAergic neurons were detected autoradiographically and their distribution was reconstructed from series of horizontal sections. In every case, radiolabelled cells were found in the vicinity of the inactivation site (three to six within 150 microm). The injection and inactivation sites were located in layers II/III-IV and their horizontal separation ranged from 400 to 560 microm. In another experiment, iontophoresis of biocytin at an inactivation site in layer III labelled two large basket cells with terminals in close proximity to cross-orientation recording sites in layers II/III where disinhibitory effects on orientation tuning had been elicited. We argue that the inactivation of inhibitory projections from inactivation to recording sites made a major contribution to the observed effects by reducing the strength of inhibition during non-optimal stimulation in recurrently connected excitatory neurons presynaptic to a recorded cell. The results provide further evidence that cortical orientation tuning and direction selectivity are sharpened, respectively, by cross-orientation inhibition and iso-orientation inhibition between cells with opposite direction preferences.
Collapse
Affiliation(s)
- J M Crook
- Department of Neurophysiology, Faculty of Medicine, Ruhr-University of Bochum, Germany
| | | | | |
Collapse
|
42
|
Somogyi P, Tamás G, Lujan R, Buhl EH. Salient features of synaptic organisation in the cerebral cortex. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 26:113-35. [PMID: 9651498 DOI: 10.1016/s0165-0173(97)00061-1] [Citation(s) in RCA: 652] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The neuronal and synaptic organisation of the cerebral cortex appears exceedingly complex, and the definition of a basic cortical circuit in terms of defined classes of cells and connections is necessary to facilitate progress of its analysis. During the last two decades quantitative studies of the synaptic connectivity of identified cortical neurones and their molecular dissection revealed a number of general rules that apply to all areas of cortex. In this review, first the precise location of postsynaptic GABA and glutamate receptors is examined at cortical synapses, in order to define the site of synaptic interactions. It is argued that, due to the exclusion of G protein-coupled receptors from the postsynaptic density, the presence of extrasynaptic receptors and the molecular compartmentalisation of the postsynaptic membrane, the synapse should include membrane areas beyond the membrane specialisation. Subsequently, the following organisational principles are examined: 1. The cerebral cortex consists of: (i) a large population of principal neurones reciprocally connected to the thalamus and to each other via axon collaterals releasing excitatory amino acids, and, (ii) a smaller population of mainly local circuit GABAergic neurones. 2. Differential reciprocal connections are also formed amongst GABAergic neurones. 3. All extrinsic and intracortical glutamatergic pathways terminate on both the principal and the GABAergic neurones, differentially weighted according to the pathway. 4. Synapses of multiple sets of glutamatergic and GABAergic afferents subdivide the surface of cortical neurones and are often co-aligned on the dendritic domain. 5. A unique feature of the cortex is the GABAergic axo-axonic cell, influencing principal cells through GABAA receptors at synapses located exclusively on the axon initial segment. The analysis of these salient features of connectivity has revealed a remarkably selective array of connections, yet a highly adaptable design of the basic circuit emerges when comparisons are made between cortical areas or layers. The basic circuit is most obvious in the hippocampus where a relatively homogeneous set of spatially aligned principal cells allows an easy visualization of the organisational rules. Those principles which have been examined in the isocortex proved to be identical or very similar. In the isocortex, the basic circuit, scaled to specific requirements, is repeated in each layer. As multiple sets of output neurones evolved, requiring subtly different needs for their inputs, the basic circuit may be superimposed several times in the same layer. Tangential intralaminar connections in both the hippocampus and isocortex also connect output neurones with similar properties, as best seen in the patchy connections in the isocortex. The additional radial superposition of several laminae of distinct sets of output neurones, each representing and supported by its basic circuit, requires a co-ordination of their activity that is mediated by highly selective interlaminar connections, involving both the GABAergic and the excitatory amino acid releasing neurones. The remarkable specificity in the geometry of cells and the selectivity in placement of neurotransmitter receptors and synapses on their surface, strongly suggest a predominant role for time in the coding of information, but this does not exclude an important role also for the rate of action potential discharge in cortical representation of information.
Collapse
Affiliation(s)
- P Somogyi
- Medical Research Council, Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK.
| | | | | | | |
Collapse
|
43
|
Morrison J, Hof P, Huntley G. Neurochemical organization of the primate visual cortex. HANDBOOK OF CHEMICAL NEUROANATOMY 1998. [DOI: 10.1016/s0924-8196(98)80004-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
44
|
Abstract
Examination of cholecystokinin-immunoreactive cells in the rat frontal cortex revealed the presence in layers I-VI of a non-uniform population ranging in size from small to large. All were also immunoreactive for GABA. The most commonly observed dendritic form of the small cells were bipolar or bitufted although some were multipolar and demonstrated vasoactive intestinal polypeptide and in a few case calretinin immunoreactivity. The large cells were multipolar or bitufted and lacked expression of vasoactive intestinal polypeptide and calretinin immunoreactivity but occasionally showed calbindin D28k immunoreactivity. Therefore, the cholecystokinin-immunoreactive cells could be divided into two distinct subpopulations depending on their chemistry and morphology. Our previous studies showed that GABAergic cells in the neocortex could be classified into at least three chemically different subgroups: (1) parvalbumin-containing cells; (2) somatostatin-containing cells (most of them also contain calbindin D28k); and (3) vasoactive intestinal polypeptide- and/or calretinin-containing cells. The present results indicated that the small cholecystokinin-immunoreactive non-pyramidal cells constitute a subset of the vasoactive intestinal polypeptide- and/or calretinin-containing cortical GABAergic cells. The large cells remain to be categorized.
Collapse
Affiliation(s)
- Y Kubota
- Laboratory for Neural Circuits, Institute of Physical and Chemical Research (RIKEN), Moriyama-ku, Nagoya Aichi, Japan.
| | | |
Collapse
|
45
|
Marco P, Sola RG, Ramón y Cajal S, DeFelipe J. Loss of inhibitory synapses on the soma and axon initial segment of pyramidal cells in human epileptic peritumoural neocortex: implications for epilepsy. Brain Res Bull 1997; 44:47-66. [PMID: 9288831 DOI: 10.1016/s0361-9230(97)00090-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The peritumoural neocortex removed from epileptic patients represents an important region for research because of its possible relationship to the generation, maintenance, and propagation of seizures. The peritumoural neocortex removed from an epileptic patient showing a regrowth of an anaplastic astrocytoma was examined in detail using immunocytochemistry for gamma-aminobutyric acid, glutamic acid decarboxylase, parvalbumin, nonphosphorylated neurofilament protein, glial fibrillary acidic protein, and histocompatibility antigen HLA-DR. The patterns of immunostaining were compared with the cytoarchitecture and myeloarchitecture in adjacent sections, and with the patterns of immunostaining observed in normal control neocortex. Furthermore, quantitative electron microscopy was used to compare the synaptic densities of presumptive excitatory and inhibitory synapses between regions showing different grades of cytoarchitectural and neurochemical alterations in the peritumoural neocortex, and to compare these regions with normal neocortex. A variety of changes in synaptic circuits in the peritumoural neocortex was found, but it appears that neurons within the less abnormal-looking regions were involved in altered synaptic circuits that might contribute to epileptic activity. In these regions, the most prominent change was the loss of inhibitory synapses on the soma and axon initial segment of pyramidal cells, but numerous excitatory synapses were present on their dendrites that would make these neurons hyperexcitable. However, the most abnormal regions histologically were likely a primary zone for progression of the tumour, with many surviving neurones, but which received and formed very few synapses; thus, they were probably unrelated to the initiation, maintenance, or propagation of seizures.
Collapse
Affiliation(s)
- P Marco
- Department of Neuropathology, Instituto Cajal, Madrid, Spain
| | | | | | | |
Collapse
|
46
|
Lewis D, Sesack S. Chapter VI Dopamine systems in the primate brain. HANDBOOK OF CHEMICAL NEUROANATOMY 1997. [DOI: 10.1016/s0924-8196(97)80008-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Smiley JF, Goldman-Rakic PS. Serotonergic axons in monkey prefrontal cerebral cortex synapse predominantly on interneurons as demonstrated by serial section electron microscopy. J Comp Neurol 1996; 367:431-43. [PMID: 8698902 DOI: 10.1002/(sici)1096-9861(19960408)367:3<431::aid-cne8>3.0.co;2-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Anatomical approaches were used to describe the distribution, appearance, and synaptic interactions of serotonin (5-HT)-immunoreactive axons in monkey prefrontal cortex. A plexus of 5-HT axons was found throughout the gray matter, with an especially high density in layer I and a slight increase in layer IV. They were strikingly heterogeneous, with a gradient of morphologies ranging from fine and nonvaricose to highly varicose or thick and nonvaricose. Electron microscopy showed that both varicose and nonvaricose axons were typically filled with clear vesicles and less abundant dense core vesicles. A serial section analysis of 5-HT varicosities in layers I, III, and V showed consistent results across layers. Only about 23% of labeled varicosities formed identifiable synapses. These synapses were consistently asymmetric and were 2-5 serial sections (or 0.08-0.38 mu) in diameter. Targets of identified 5-HT synapses were dendritic shafts with the exception of one cell soma. Followed in serial sections, postsynaptic dendrites typically had morphological features of interneurons, i.e. they lacked spines, had a high density of synaptic inputs, and often had a varicose morphology. Only 8% of postsynaptic shafts were classified as pyramidal dendrites. This is in striking contrast to our previous study in this cortex of dopamine axons, which synapsed predominantly on pyramidal dendrites. These are the first results to indicate that interneurons are the major recipient of identifiable 5-HT synapses in the monkey prefrontal cortex.
Collapse
Affiliation(s)
- J F Smiley
- Section of Neurobiology, Yale School of Medicine, New Haven, Connecticut 06510 USA
| | | |
Collapse
|
48
|
Sesack SR, Snyder CL, Lewis DA. Axon terminals immunolabeled for dopamine or tyrosine hydroxylase synapse on GABA-immunoreactive dendrites in rat and monkey cortex. J Comp Neurol 1995; 363:264-80. [PMID: 8642074 DOI: 10.1002/cne.903630208] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dopamine afferents to the cortex regulate the excitability of pyramidal neurons via a direct synaptic input. However, it has not been established whether dopamine also modulates pyramidal cell activity indirectly through synapses on gamma-aminobutyric acid (GABA) interneurons, and whether such inputs differ across cortical regions and species. We sought to address these issues by an immunocytochemical electron microscopic approach that combined peroxidase staining for dopamine or tyrosine hydroxylase (TH) with a pre-embedding gold-silver marker for GABA. In the deep layers of the rat prefrontal cortex and in the superficial layers of the monkey prefrontal and primary motor cortices, terminal varicosities immunoreactive for dopamine or TH formed primarily thin, symmetric synapses on distal dendrites. Both GABA-immunoreactive dendrites as well as unlabeled spines and dendrites were contacted by dopamine- or TH-immunoreactive terminals. Synaptic specializations were detected at some, but not all of these contacts. The relative frequency of these appositional and synaptic contacts did not appear to differ between the rat and monkey prefrontal cortex, or between the monkey prefrontal and motor cortices. Across regions and species, labeled and unlabeled targets of dopamine- or TH-positive terminals received additional synaptic input from unlabeled, and occasionally GABA-immunoreactive terminals. Close appositions between dopamine- or TH-immunoreactive and GABA-positive terminals were observed only rarely. These findings indicate that dopamine afferents provide direct synaptic inputs to GABA local circuit neurons in a consistent fashion across cortical regions and species. Thus, dopamine's cellular actions involve direct as well as modulatory effects on both GABA interneurons and pyramidal projection neurons.
Collapse
Affiliation(s)
- S R Sesack
- Department of Neuroscience, University of Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
49
|
Sesack SR, Bressler CN, Lewis DA. Ultrastructural associations between dopamine terminals and local circuit neurons in the monkey prefrontal cortex: a study of calretinin-immunoreactive cells. Neurosci Lett 1995; 200:9-12. [PMID: 8584271 DOI: 10.1016/0304-3940(95)12076-g] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dopamine terminals in the monkey prefrontal cortex (PFC) synaptically target the distal dendrites of both pyramidal cells and GABA interneurons. We sought to determine whether the latter input includes the innervation of interneurons that utilize calretinin (CalR) as a calcium-binding protein. Sections through prefrontal area 9 of cynomolgus monkeys were processed by immunoperoxidase for tyrosine hydroxylase (TH) to label dopamine varicosities and by pre-embedding immunogold for CalR. Electron microscopic examination of layers 1-3 revealed numerous TH-immunoreactive (TH-ir) terminals, but few were located in the vicinity of CalR-ir dendrites. Although close appositions were sometimes detected between these labeled processes, no synaptic inputs from TH-ir terminals to CalR-ir dendrites were observed. However, in adjacent sections from the same animals, TH-ir terminals were observed to synapse on GABA-ir dendrites. These findings suggest that dopamine afferents to the monkey PFC target the subclasses of GABA interneurons that do not contain CalR.
Collapse
Affiliation(s)
- S R Sesack
- Department of Neuroscience, University of Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
50
|
Nieuwenhuys R. The neocortex. An overview of its evolutionary development, structural organization and synaptology. ANATOMY AND EMBRYOLOGY 1994; 190:307-37. [PMID: 7840420 DOI: 10.1007/bf00187291] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
By way of introduction, an outline is presented of the origin and evolutionary development of the neocortex. A cortical formation is lacking in amphibians, but a simple three-layered cortex is present throughout the pallium of reptiles. In mammals, two three-layered cortical structures, i.e. the prepiriform cortex and the hippocampus, are separated from each other by a six-layered neocortex. Still small in marsupials and insectivores, this "new" structure attains amazing dimensions in anthropoids and cetaceans. Neocortical neurons can be allocated to one of two basic categories: pyramidal and nonpyramidal cells. The pyramidal neurons form the principal elements in neocortical circuitry, accounting for at least 70% of the total neocortical population. The evolutionary development of the pyramidal neurons can be traced from simple, "extraverted" neurons in the amphibian pallium, via pyramid-like neurons in the reptilian cortex to the fully developed neocortical elements designated by Cajal as "psychic cells". Typical mammalian pyramidal neurons have the following eight features in common: (1) spiny dendrites, (2) a stout radially oriented apical dendrite, forming (3) a terminal bouquet in the most superficial cortical layer, (4) a set of basal dendrites, (5) an axon descending to the subcortical white matter, (6) a number of intracortical axon collaterals, (7) terminals establishing synaptic contacts of the round vesicle/asymmetric variety, and (8) the use of the excitatory aminoacids glutamate and/or aspartate as their neurotransmitter. The pyramidal neurons constitute the sole output and the largest input system of the neocortex. They form the principal targets of the axon collaterals of other pyramidal neurons, as well as of the endings of the main axons of cortico-cortical neurons. Indeed, the pyramidal neurons constitute together a continuous network extending over the entire neocortex, justifying the generalization: the neocortex communicates first and foremost within itself. The typical pyramidal neurons represent the end stage of a progressive evolutionary process. During further development many of these elements have become transformed by reduction into various kinds of atypical or aberrant pyramidal neurons. Interestingly, none of the six morphological characteristics, mentioned above under 1-6, has appeared to be unassailable; pyramidal neurons lacking spines, apical dendrites, long axons and intracortical axon collaterals etc. have all been described. From an evolutionary point of view the typical pyramidal neurons represent not only the principal neocortical elements, but also the source of various excitatory local circuit neurons. The spiny stellate cells, which are abundant in highly specialized primary sensory areas, form a remarkable case in point.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- R Nieuwenhuys
- Department of Anatomy and Embryology, University of Nijmegen, The Netherlands
| |
Collapse
|