1
|
Lubejko ST, Livrizzi G, Buczynski SA, Patel J, Yung JC, Yaksh TL, Banghart MR. Inputs to the locus coeruleus from the periaqueductal gray and rostroventral medulla shape opioid-mediated descending pain modulation. SCIENCE ADVANCES 2024; 10:eadj9581. [PMID: 38669335 PMCID: PMC11051679 DOI: 10.1126/sciadv.adj9581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
The supraspinal descending pain modulatory system (DPMS) shapes pain perception via monoaminergic modulation of sensory information in the spinal cord. However, the role and synaptic mechanisms of descending noradrenergic signaling remain unclear. Here, we establish that noradrenergic neurons of the locus coeruleus (LC) are essential for supraspinal opioid antinociception. While much previous work has emphasized the role of descending serotonergic pathways, we find that opioid antinociception is primarily driven by excitatory output from the ventrolateral periaqueductal gray (vlPAG) to the LC. Furthermore, we identify a previously unknown opioid-sensitive inhibitory input from the rostroventromedial medulla (RVM), the suppression of which disinhibits LC neurons to drive spinal noradrenergic antinociception. We describe pain-related activity throughout this circuit and report the presence of prominent bifurcating outputs from the vlPAG to the LC and the RVM. Our findings substantially revise current models of the DPMS and establish a supraspinal antinociceptive pathway that may contribute to multiple forms of descending pain modulation.
Collapse
Affiliation(s)
- Susan T. Lubejko
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Giulia Livrizzi
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stanley A. Buczynski
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Chemistry and Biochemistry Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Janki Patel
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jean C. Yung
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tony L. Yaksh
- Departments of Anesthesiology and Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew R. Banghart
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Moriya S, Yamashita A, Masukawa D, Sakaguchi J, Ikoma Y, Sameshima Y, Kambe Y, Yamanaka A, Kuwaki T. Involvement of A5/A7 noradrenergic neurons and B2 serotonergic neurons in nociceptive processing: a fiber photometry study. Neural Regen Res 2021; 17:881-886. [PMID: 34472489 PMCID: PMC8530127 DOI: 10.4103/1673-5374.322465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In the central nervous system, the A6 noradrenaline (NA) and the B3 serotonin (5-HT) cell groups are well-recognized players in the descending antinociceptive system, while other NA/5-HT cell groups are not well characterized. A5/A7 NA and B2 5-HT cells project to the spinal horn and form descending pathways. We recorded G-CaMP6 green fluorescence signal intensities in the A5/A7 NA and the B2 5-HT cell groups of awake mice in response to acute tail pinch stimuli, acute heat stimuli, and in the context of a non-noxious control test, using fiber photometry with a calcium imaging system. We first introduced G-CaMP6 in the A5/A7 NA or B2 5-HT neuronal soma, using transgenic mice carrying the tetracycline-controlled transactivator transgene under the control of either a dopamine β-hydroxylase or a tryptophan hydroxylase-2 promoters and by the site-specific injection of adeno-associated virus (AAV-TetO(3G)-G-CaMP6). After confirming the specific expression patterns of G-CaMP6, we recorded G-CaMP6 green fluorescence signals in these sites in awake mice in response to acute nociceptive stimuli. G-CaMP6 fluorescence intensity in the A5, A7, and B2 cell groups was rapidly increased in response to acute nociceptive stimuli and soon after, it returned to baseline fluorescence intensity. This was not observed in the non-noxious control test. The results indicate that acute nociceptive stimuli rapidly increase the activities of A5/A7 NA or B2 5-HT neurons but the non-noxious stimuli do not. The present study suggests that A5/A7 NA or B2 5-HT neurons play important roles in nociceptive processing in the central nervous system. We suggest that A5/A7/B2 neurons may be new therapeutic targets. All performed procedures were approved by the Institutional Animal Use Committee of Kagoshima University (MD17105) on February 22, 2018.
Collapse
Affiliation(s)
- Shunpei Moriya
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Akira Yamashita
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Daiki Masukawa
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Junichi Sakaguchi
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Yoko Ikoma
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Yoshimune Sameshima
- Department of Pharmacology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Yuki Kambe
- Department of Pharmacology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Tomoyuki Kuwaki
- Department of Physiology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| |
Collapse
|
3
|
Rossi GC, Bodnar RJ. Interactive Mechanisms of Supraspinal Sites of Opioid Analgesic Action: A Festschrift to Dr. Gavril W. Pasternak. Cell Mol Neurobiol 2021; 41:863-897. [PMID: 32970288 PMCID: PMC11448623 DOI: 10.1007/s10571-020-00961-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022]
Abstract
Almost a half century of research has elaborated the discoveries of the central mechanisms governing the analgesic responses of opiates, including their receptors, endogenous peptides, genes and their putative spinal and supraspinal sites of action. One of the central tenets of "gate-control theories of pain" was the activation of descending supraspinal sites by opiate drugs and opioid peptides thereby controlling further noxious input. This review in the Special Issue dedicated to the research of Dr. Gavril Pasternak indicates his contributions to the understanding of supraspinal mediation of opioid analgesic action within the context of the large body of work over this period. This review will examine (a) the relevant supraspinal sites mediating opioid analgesia, (b) the opioid receptor subtypes and opioid peptides involved, (c) supraspinal site analgesic interactions and their underlying neurophysiology, (d) molecular (particularly AS) tools identifying opioid receptor actions, and (e) relevant physiological variables affecting site-specific opioid analgesia. This review will build on classic initial studies, specify the contributions that Gavril Pasternak and his colleagues did in this specific area, and follow through with studies up to the present.
Collapse
Affiliation(s)
- Grace C Rossi
- Department of Psychology, C.W. Post College, Long Island University, Post Campus, Brookville, NY, USA.
| | - Richard J Bodnar
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
- CUNY Neuroscience Collaborative, Graduate Center, CUNY, New York, NY, USA
| |
Collapse
|
4
|
Jeong Y, Wagner MA, Ploutz-Snyder RJ, Holden JE. Pain condition and sex differences in the descending noradrenergic system following lateral hypothalamic stimulation. IBRO Rep 2020; 8:11-17. [PMID: 31890982 PMCID: PMC6931064 DOI: 10.1016/j.ibror.2019.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/11/2019] [Indexed: 01/28/2023] Open
Abstract
LH stimulation produced pronociceptive and antinociceptive effects from alpha-adrenoceptors in naïve male and female rats. LH stimulation produced pronociceptive and antinociceptive effects from alpha-adrenoceptors in male CCI rats. LH stimulation produced alpha-adrenoceptor-mediated pronociception, but not antinociception in female CCI rats.
The lateral hypothalamus (LH) is known to modulate nociception via the descending noradrenergic system in acute nociception, but less is known about its role in neuropathic pain states. In naïve females, LH stimulation produces opposing effects of α-adrenoceptors, with α2-adrenoceptors mediating antinociception, while pronociceptive α1-adrenoceptors attenuate the effect. Whether this opposing response is seen in neuropathic conditions or in naïve males is unknown. We used a mixed factorial design to compare male and female rats with chronic constriction injury (CCI) to naïve rats, measured by Total Paw Withdrawal (TPW) responses to a thermal stimulus. Rats received one of three doses of carbachol to stimulate the LH followed by intrathecal injection of either an α1- or an α2-adrenoceptor antagonist (WB4101 or yohimbine, resp.) or saline for control. Overall, naïve rats showed a more pronounced opposing alpha-adrenergic response than CCI rats (p < 0.04). Naïve male and female rats demonstrated antinociception following α1-adrenoceptor blockade and hyperalgesia following α2-adrenoceptor blockade. Male CCI rats also showed dose dependent effects from either WB4101 or yohimbine (p < 0.05), while female CCI rats had significant antinociception from WB4101 (p < 0.05), but no effect from yohimbine. These results support the idea that peripheral nerve damage differentially alters the descending noradrenergic modulatory system in male and female rats, and notably, that female CCI rats do not show antinociception from descending noradrenergic input. These findings are suggestive that clinical therapies that recruit the descending noradrenergic system may require a different approach based on patient gender.
Collapse
Affiliation(s)
- Younhee Jeong
- College of Nursing Science, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Monica A Wagner
- The University of Pittsburgh School of Nursing, 3500 Victoria Street, Victoria Bldg, Pittsburgh, PA 15261, United States
| | - Robert J Ploutz-Snyder
- The University of Michigan School of Nursing, 400 N. Ingalls Bldg, Ann Arbor, MI 48109-5482, United States
| | - Janean E Holden
- The University of Michigan School of Nursing, 400 N. Ingalls Bldg, Ann Arbor, MI 48109-5482, United States
| |
Collapse
|
5
|
Anatomical evidence for lateral hypothalamic innervation of the pontine A7 catecholamine cell group in rat. Neurosci Lett 2018; 668:80-85. [PMID: 29329908 DOI: 10.1016/j.neulet.2018.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/22/2017] [Accepted: 01/09/2018] [Indexed: 12/29/2022]
Abstract
Substantial behavioral evidence exists to support the idea that the lateral hypothalamus (LH) makes axonal connection with spinally-projecting noradrenergic neurons of the A7 catecholamine cell group in the pons. Through this putative projection, the LH modulates nociception via α1- and α2-adrenoceptors in the dorsal horn. We used double-label immunocytochemistry to demonstrate that axons from the LH labeled with the anterograde tracer biotinylated dextran amine (BDA) appose tyrosine hydroxylase-immunoreactive (TH-ir) neuron profiles in the A7 area. Other pontine areas labeled with BDA included the dorsomedial tegmental area, the pontine reticular nucleus, oral part, the caudal aspect of the dorsal raphe, the periaqueductal grey and the A6 area. To confirm the findings of the brightfield experiment, we used confocal microscopy to identify axons from the LH labeled with the anterograde tracer Fluoro-Ruby co-localized with TH-ir dendrites and cell bodies in the A7 cell group. These findings provide an anatomical substrate for behavioral studies in which stimulation of the LH modifies nociception in the spinal cord via norepinephrine.
Collapse
|
6
|
Kuniyoshi AK, Kodama RT, Moraes LHF, Duzzi B, Iwai LK, Lima IF, Cajado-Carvalho D, Portaro FV. In vitro cleavage of bioactive peptides by peptidases from Bothrops jararaca venom and its neutralization by bothropic antivenom produced by Butantan Institute: Major contribution of serine peptidases. Toxicon 2017; 137:114-119. [DOI: 10.1016/j.toxicon.2017.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 11/24/2022]
|
7
|
Sex differences in hypothalamic-mediated tonic norepinephrine release for thermal hyperalgesia in rats. Neuroscience 2016; 324:420-9. [DOI: 10.1016/j.neuroscience.2016.03.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/31/2022]
|
8
|
Abstract
This article provides an integrated review of the basic anatomy and physiology of the pain processing pathways. The transmission and parcellation of noxious stimuli from the peripheral nervous system to the central nervous system is discussed. In addition, the inhibitory and excitatory systems that regulate pain along with the consequences of dysfunction are considered.
Collapse
Affiliation(s)
- Sarah Bourne
- Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, S4, Cleveland, OH 44195, USA
| | - Andre G Machado
- Department of Neurosurgery, Center for Neurological Restoration, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, S31, Cleveland, OH 44195, USA
| | - Sean J Nagel
- Department of Neurosurgery, Center for Neurological Restoration, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, 9500 Euclid Avenue, S31, Cleveland, OH 44195, USA.
| |
Collapse
|
9
|
Mitchell AJ, Lone AM, Tinoco AD, Saghatelian A. Proteolysis controls endogenous substance P levels. PLoS One 2013; 8:e68638. [PMID: 23894327 PMCID: PMC3716696 DOI: 10.1371/journal.pone.0068638] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/05/2013] [Indexed: 01/28/2023] Open
Abstract
Substance P (SP) is a prototypical neuropeptide with roles in pain and inflammation. Numerous mechanisms regulate endogenous SP levels, including the differential expression of SP mRNA and the controlled secretion of SP from neurons. Proteolysis has long been suspected to regulate extracellular SP concentrations but data in support of this hypothesis is scarce. Here, we provide evidence that proteolysis controls SP levels in the spinal cord. Using peptidomics to detect and quantify endogenous SP fragments, we identify the primary SP cleavage site as the C-terminal side of the ninth residue of SP. If blocking this pathway increases SP levels, then proteolysis controls SP concentration. We performed a targeted chemical screen using spinal cord lysates as a proxy for the endogenous metabolic environment and identified GM6001 (galardin, ilomastat) as a potent inhibitor of the SP 1–9-producing activity present in the tissue. Administration of GM6001 to mice results in a greater-than-three-fold increase in the spinal cord levels of SP, which validates the hypothesis that proteolysis controls physiological SP levels.
Collapse
Affiliation(s)
- Andrew J. Mitchell
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Anna Mari Lone
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico
- * E-mail: (ADT); (AS)
| | - Alan Saghatelian
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (ADT); (AS)
| |
Collapse
|
10
|
Bajic D, Proudfit HK. Projections from the rat cuneiform nucleus to the A7, A6 (locus coeruleus), and A5 pontine noradrenergic cell groups. J Chem Neuroanat 2013; 50-51:11-20. [PMID: 23524296 DOI: 10.1016/j.jchemneu.2013.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/01/2013] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
Abstract
Stimulation of neurons in the cuneiform nucleus (CnF) produces antinociception and cardiovascular responses that could be mediated, in part, by noradrenergic neurons that innervate the spinal cord dorsal horn. The present study determined the projections of neurons in the CnF to the pontine noradrenergic neurons in the A5, A6 (locus coeruleus), and A7 cell groups that are known to project to the spinal cord. Injections of the anterograde tracer, biotinylated dextran amine in the CnF of Sasco Sprague-Dawley rats labeled axons located near noradrenergic neurons that were visualized by processing tissue sections for tyrosine hydroxylase-immunoreactivity. Anterogradely labeled axons were more dense on the side ipsilateral to the BDA deposit. Both A7 and A5 cell groups received dense projections from neurons in the CnF, whereas locus coeruleus received only a sparse projection. Highly varicose anterogradely labeled axons from the CnF were found in close apposition to dendrites and somata of tyrosine hydroxylase-immunoreactive neurons in pontine tegmentum. Although definitive evidence for direct pathways from CnF neurons to the pontine noradrenergic cell groups requires ultrastructural analysis, the results of the present studies provide presumptive evidence of direct projections from neurons in the CnF to the pontine noradrenergic neurons of the A7, locus coeruleus, and A5 cell groups. These results support the suggestion that the analgesia and cardiovascular responses produced by stimulation of neurons in the CnF may be mediated, in part, by pontine noradrenergic neurons.
Collapse
Affiliation(s)
- Dusica Bajic
- Department of Pharmacology, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA.
| | | |
Collapse
|
11
|
Muto Y, Sakai A, Sakamoto A, Suzuki H. Activation of NK₁ receptors in the locus coeruleus induces analgesia through noradrenergic-mediated descending inhibition in a rat model of neuropathic pain. Br J Pharmacol 2012; 166:1047-57. [PMID: 22188400 DOI: 10.1111/j.1476-5381.2011.01820.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE The locus coeruleus (LC) is a major source of noradrenergic projections to the dorsal spinal cord, and thereby plays an important role in the modulation of nociceptive information. The LC receives inputs from substance P (SP)-containing fibres from other regions, and expresses the NK(1) tachykinin receptor, a functional receptor for SP. In the present study, we investigated the roles of SP in the LC in neuropathic pain. EXPERIMENTAL APPROACH Chronic constriction injury (CCI) of the left sciatic nerve was performed in rats to induce neuropathic pain. After development of neuropathic pain, SP was injected into the LC and the nocifensive behaviours were assessed. The involvement of noradrenergic descending inhibition in SP-induced analgesia was examined by i.t. administration of yohimbine, an α(2) -adrenoceptor antagonist. NK(1) receptor expression in the LC was examined by immunohistochemistry. KEY RESULTS In CCI rats, mechanical allodynia was alleviated by SP injection into the LC. These effects were abolished by prior injection of WIN 51708, an NK(1) receptor antagonist, into the LC or i.t. treatment with yohimbine. NK(1) receptor-like immunoreactivity was observed in noradrenergic neurons throughout the LC in intact rats, and remained unchanged after CCI. CONCLUSION AND IMPLICATIONS SP in the LC exerted analgesic effects on neuropathic pain through NK(1) receptor activation and resulted in facilitation of spinal noradrenergic transmission. Accordingly, manipulation of the SP/NK(1) receptor signalling pathway in the LC may be a promising strategy for effective treatment of neuropathic pain.
Collapse
Affiliation(s)
- Y Muto
- Department of Anesthesiology, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
12
|
Jeong Y, Moes JR, Wagner M, Holden JE. The posterior hypothalamus exerts opposing effects on nociception via the A7 catecholamine cell group in rats. Neuroscience 2012; 227:144-53. [PMID: 23036619 DOI: 10.1016/j.neuroscience.2012.09.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/19/2012] [Accepted: 09/22/2012] [Indexed: 01/16/2023]
Abstract
Stimulation of the posterior hypothalamic area (PH) produces antinociception in rats and humans, but the precise mechanisms are unknown. The PH forms anatomical connections with the parabrachial area, which contains the pontine A7 catecholamine cell group, a group of spinally projecting noradrenergic neurons known to produce antinociception in the dorsal horn. The aim of the present study was to determine whether PH-induced antinociception is mediated in part through connections with the A7 cell group in female Sprague-Dawley rats, as measured by the tail flick and foot withdrawal latency. Stimulation of the PH with the cholinergic agonist carbachol (125 nmol) produced antinociception that was blocked by pretreatment with atropine sulfate. Intrathecal injection of the α(2)-adrenoceptor antagonist yohimbine reversed PH-induced antinociception, but the α(1)-adrenoceptor antagonist WB4101 facilitated antinociception. Intrathecal injection of normal saline had no effect. In a separate experiment, cobalt chloride, which reversibly arrests synaptic activity, was microinjected into the A7 cell group and blocked PH-induced antinociception. These findings provide evidence that the PH modulates nociception in part through connections with the A7 catecholamine cell group through opposing effects. Antinociception occurs from actions at α(2)-adrenoceptors in the dorsal horn, while concurrent hyperalgesia occurs from actions of norepinephrine at α(1)-adrenoceptors. This hyperalgesic response likely attenuates antinociception from PH stimulation.
Collapse
Affiliation(s)
- Y Jeong
- College of Nursing Science, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 130-701, Korea.
| | | | | | | |
Collapse
|
13
|
Wei H, Pertovaara A. Regulation of Neuropathic Hypersensitivity by α2-Adrenoceptors in the Pontine A7 Cell Group. Basic Clin Pharmacol Toxicol 2012; 112:90-5. [DOI: 10.1111/j.1742-7843.2012.00930.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 08/08/2012] [Indexed: 01/06/2023]
Affiliation(s)
- Hong Wei
- Biomedicum Helsinki; Institute of Biomedicine/Physiology; University of Helsinki; Helsinki; Finland
| | - Antti Pertovaara
- Biomedicum Helsinki; Institute of Biomedicine/Physiology; University of Helsinki; Helsinki; Finland
| |
Collapse
|
14
|
Bajic D, Van Bockstaele EJ, Proudfit HK. Ultrastructural analysis of rat ventrolateral periaqueductal gray projections to the A5 cell group. Neuroscience 2012; 224:145-59. [PMID: 22917613 DOI: 10.1016/j.neuroscience.2012.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/05/2012] [Accepted: 08/09/2012] [Indexed: 11/15/2022]
Abstract
Stimulation of neurons in the ventrolateral periaqueductal gray (PAG) produces antinociception as well as cardiovascular depressor responses that are mediated in part by pontine noradrenergic neurons. A previous report using light microscopy has described a pathway from neurons in the ventrolateral PAG to noradrenergic neurons in the A5 cell group that may mediate these effects. The present study used anterograde tracing and electron microscopic analysis to provide more definitive evidence that neurons in the ventrolateral PAG form synapses with noradrenergic and non-catecholaminergic A5 neurons in Sasco Sprague-Dawley rats. Deposits of anterograde tracer, biotinylated dextran amine, into the rat ventrolateral PAG labeled a significant number of axons in the region of the rostral subdivision of the A5 cell group, and a relatively lower number in the caudal A5 cell group. Electron microscopic analysis of anterogradely-labeled terminals in both rostral (n=127) and caudal (n=70) regions of the A5 cell group indicated that approximately 10% of these form synapses with noradrenergic dendrites. In rostral sections, about 31% of these were symmetric synapses, 19% were asymmetric synapses, and 50% were membrane appositions without clear synaptic specializations. In caudal sections, about 22% were symmetric synapses, and the remaining 78% were appositions. In both rostral and caudal subdivisions of the A5, nearly 40% of the anterogradely-labeled terminals formed synapses with non-catecholaminergic dendrites, and about 45% formed axoaxonic synapses. These results provide direct evidence for a monosynaptic pathway from neurons in the ventrolateral PAG to noradrenergic and non-catecholaminergic neurons in the A5 cell group. Further studies should evaluate if this established monosynaptic pathway may contribute to the cardiovascular depressor effects or the analgesia produced by the activation of neurons in the ventrolateral PAG.
Collapse
Affiliation(s)
- D Bajic
- Department of Pharmacology, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
15
|
Tavares I, Almeida A, Albino-Teixeira A, Lima D. Lesions of the caudal ventrolateral medulla block the hypertension-induced inhibition of noxious-evoked c-fos expression in the rat spinal cord. Eur J Pain 2012; 1:149-60. [PMID: 15102416 DOI: 10.1016/s1090-3801(97)90073-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/1997] [Accepted: 07/11/1997] [Indexed: 11/20/2022]
Abstract
The effect of lesioning the lateral portion of the caudal ventrolateral medullary reticular formation (VLMIat) on the noxious-evoked expression of the c-fos proto-oncogene in spinal neurons, was studied in short-term hypertensive rats. Occlusion of the renal artery for 96 h in unlesioned animals induced a 52% increase in blood pressure (BP) and a 66% decrease in the number of Fos-immunoreactive (Fos-IR) spinal cells following noxious cutaneous stimulation, as compared to values in normotensive controls. Lesioning the VLMIat in hypertensive rats by unilateral quinolinic acid (QA) injection (0.3 microl of a 180 nmol/microl solution) 24 h before noxious stimulation, prevented the Fos-IR cell decrease. In normotensive rats, lesioning the VLMIat produced no changes in c-fos expression. To investigate the role played by the VLMIat in cardiovascular control, BP and heart rate (HR) were measured during local injections of QA or glutamate (0.5 microl of a 100 nmol/microl solution) to normotensive animals. Injections of QA produced an immediate rise in BP and HR which reached maximal values (18 and 14% increase, respectively) 5 min after the administration onset, then returning gradually to baseline levels. Glutamate injections resulted in an immediate decrease of the same values, which reached 29 and 39%, respectively, 4 min after the beginning of injection, after which they decreased to baseline levels. These results suggest that VLMIat neurons inhibit nociceptive spinal neurons in response to rises in blood pressure, while exerting negative control of cardiovascular parameters. It is suggested that the VLMIat is involved in the genesis of hypoalgesia during hypertension.
Collapse
Affiliation(s)
- I Tavares
- Institute of Histology and Embryology, Faculty of Medicine and IBMC of the University of Oporto, Porto, Portugal
| | | | | | | |
Collapse
|
16
|
Roles of A-type potassium currents in tuning spike frequency and integrating synaptic transmission in noradrenergic neurons of the A7 catecholamine cell group in rats. Neuroscience 2010; 168:633-45. [PMID: 20381592 DOI: 10.1016/j.neuroscience.2010.03.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 03/23/2010] [Accepted: 03/30/2010] [Indexed: 11/24/2022]
Abstract
We investigated voltage-dependent K(+) currents (I(K)) in noradrenergic (NAergic) A7 neurons. The I(K) evoked consisted of A-type I(K) (I(A)), which had the characteristics of a low threshold for activation (approximately -50 mV), fast activation/inactivation, and rapid recovery from inactivation. Since the I(A) were blocked by heteropodatoxin-2 (Hptx-2), a specific Kv4 channel blocker, and the NAergic A7 neurons were shown to be reactive with antibodies against Kv4.1/Kv4.3 channel proteins, we conclude that the I(A) evoked in NAergic neurons are mediated by Kv4.1/Kv4.3 channels. I(A) were also evoked using voltage commands of a single action potential (AP), a subthreshold voltage change between two consecutive APs, or excitatory postsynaptic potential (EPSP) activity recorded in current-clamp mode (CCM). Blockade of the I(A) by 4-AP, a broad spectrum I(A) blocker, or by Hptx-2 increased the half-width and spontaneous firing of APs and reduced the amount of synaptic drive needed to elicit APs in CCM, showing that the I(A) play important roles in regulating the shape and firing frequency of APs and in synaptic integration in NAergic A7 neurons. Since these neurons are the principal projection neurons to the dorsal horn of the spinal cord, these results also suggest roles for Kv4.1/4.3 channels in descending NAergic pain regulation.
Collapse
|
17
|
Bajic D, Commons KG. Visualizing acute pain-morphine interaction in descending monoamine nuclei with Fos. Brain Res 2010; 1306:29-38. [PMID: 19833107 PMCID: PMC2810425 DOI: 10.1016/j.brainres.2009.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/30/2009] [Accepted: 10/02/2009] [Indexed: 12/17/2022]
Abstract
The effect of morphine is often studied in the absence of pain, and it remains poorly understood if and how noxious stimulation may change the activity state of descending pain-modulatory pathways and their response to morphine. Immunohistochemical double-labeling technique with Fos and markers for noradrenergic and serotonergic neurons was used to examine if an intraplantar formalin injection (an acute noxious input) changed the effect of morphine on noradrenergic neurons of the A7 and A5 cell groups, and serotonergic neurons of the nucleus raphe magnus (NRM). Four groups of rats were analyzed: (1) control injected with normal saline subcutaneously, (2) rats treated with FORMALIN into the hind paw 30 min after subcutaneous normal saline injection, (3) rats injected with MORPHINE sulfate subcutaneously, and (4) rats treated with formalin into the hind paw 30 min after subcutaneous morphine injection (morphine/formalin). The average number of total Fos-labeled cells per section was unchanged in all areas of analysis in all treatment groups. However, the percentage of noradrenergic neurons in the A7 and A5 cell groups that contained Fos was significantly increased in the morphine/formalin group compared to all other groups, while no differences were found in serotonin cells in the NRM. In contrast with the view that morphine simply blocks access of nociceptive information to supraspinal brain areas, these data suggest that noxious stimulation has the capacity to modify the actions of morphine on brainstem noradrenergic nuclei, which may participate in descending pain modulation as well as other behavioral responses to pain.
Collapse
Affiliation(s)
- Dusica Bajic
- Department of Anesthesiology, Perioperative and Pain Medicine, Children's Hospital Boston, Boston, MA, USA.
| | | |
Collapse
|
18
|
Hamity MV, White SR, Hammond DL. Effects of neurokinin-1 receptor agonism and antagonism in the rostral ventromedial medulla of rats with acute or persistent inflammatory nociception. Neuroscience 2009; 165:902-13. [PMID: 19892001 DOI: 10.1016/j.neuroscience.2009.10.064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/27/2009] [Accepted: 10/29/2009] [Indexed: 12/21/2022]
Abstract
The rostral ventromedial medulla (RVM), a central relay in the bulbospinal pathways that modulate nociception, contains high concentrations of substance P (Sub P) and neurokinin-1 (NK1) receptors. However, the function of Sub P in the RVM is poorly understood. This study characterized the actions of Sub P in the RVM in the absence of injury and then used two NK1 receptor antagonists, L-733,060 and L-703, 606, to probe the role of endogenously released Sub P in the development and maintenance of persistent inflammatory nociception of immune or neurogenic origin. In uninjured rats, microinjection of Sub P in the RVM produced a transient thermal antinociception that was attenuated by pretreatment with L-733,060 or L-703,606. It did not alter threshold to withdrawal from tactile stimulation with von Frey filaments. Microinjection of the antagonists alone did not alter paw withdrawal latency (PWL) or threshold suggesting that Sub P is not tonically released in the RVM in the absence of injury. However, microinjection of either antagonist in the RVM was sufficient to reverse heat hyperalgesia 4 h, 4 days or 2 weeks after intraplantar (ipl) injection of complete Freund's adjuvant (CFA). Antagonism of NK1 receptors in the RVM did not prevent or reverse tactile hypersensitivity induced by CFA, but did attenuate that produced by capsaicin. NK1 receptor antagonism did not prevent the development of thermal hyperalgesia, tactile hypersensitivity or spontaneous pain behaviors induced by mustard oil (MO). The results suggest that Sub P has bimodal actions in the RVM and that following inflammatory injury, it can play a critical role as a pronociceptive agent in the development and maintenance of hyperalgesia and tactile hypersensitivity. However, its actions are highly dependent on the stimulus modality and the type of injury, and this may be an additional basis for the poor efficacy of NK1 receptor antagonists in clinical trials.
Collapse
Affiliation(s)
- M V Hamity
- Department of Anesthesia, The University of Iowa, 200 Hawkins Drive 6 JCP, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
19
|
Min MY, Shih PY, Wu YW, Lu HW, Lee ML, Yang HW. Neurokinin 1 receptor activates transient receptor potential-like currents in noradrenergic A7 neurons in rats. Mol Cell Neurosci 2009; 42:56-65. [PMID: 19463951 DOI: 10.1016/j.mcn.2009.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022] Open
Abstract
Noradrenergic (NAergic) A7 neurons are involved in modulating nociception by releasing noradrenaline in the dorsal spinal cord. Since NAergic A7 neurons receive dense Substance P (Sub-P) releasing terminals from ventromedial medulla, here we tested the effect of Sub-P on them. Bath application of Sub-P induced an inward current (I(Sub-P)) in NAergic neurons, which was significantly blocked by Neurokinin 1 (NK1) receptor antagonist. The I(Sub-P) was reversed at approximately -20 mV, blocked by several TRP channel blockers, enhanced by OAG and negatively regulated by PKC. Immunohistochemistry staining showed that NAergic A7 neurons express high level of TRPC6 channel proteins, which is consistent with pharmacological properties of I(Sub-P) shown above, as TRPC6 channel is shown to be augmented by OAG and inhibited by PKC. In conclusion, the above results provide mechanism underlying postsynaptic action of Sub-P on NAergic A7 neurons and a role for TRPC6 channel in NAergic pain modulation.
Collapse
Affiliation(s)
- Ming-Yuan Min
- Institute of Zoology, College of Life Science, National Taiwan University, Taipei 106, Taiwan; Department of Life Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Safari MS, Haghparast A, Semnanian S. Effect of lidocaine administration at the nucleus locus coeruleus level on lateral hypothalamus-induced antinociception in the rat. Pharmacol Biochem Behav 2009; 92:629-34. [PMID: 19281839 DOI: 10.1016/j.pbb.2009.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 02/25/2009] [Accepted: 03/02/2009] [Indexed: 11/26/2022]
Abstract
Several lines of evidence have shown that stimulation or inactivation of lateral hypothalamus (LH) produces antinociception. In this study, we assessed the role of nucleus locus coeruleus (LC) in antinociceptive response induced by LH stimulation or inactivation in the rat. The cholinergic agonist carbachol (125 nmol/0.5 microl saline) or lidocaine (2%; 0.5 microl) was unilaterally microinjected into the LH with the LC inactivation concurrently. Antinociceptive responses were obtained by tail-flick test and represented as maximal possible effect (MPE) at 5, 10, 15, 20, 30 and 60 min after drug administration. The results showed that microinjection of carbachol into the LH significantly induced antinociception at 5 and 10 min (p<0.001). This effect was significantly blocked by microinjection of lidocaine into the LC. On the other hand, microinjection of lidocaine into LH-induced antinociception at 5 (p<0.01) and 10 (p<0.05) min after administration. However, inactivation of the LC following the LH inactivation increased MPE at 5 min after injection. These findings support the conclusion that antinociception produced by LH stimulation or inactivation involves two separate mechanisms. It seems that analgesic response induced by LH stimulation is mediated in part by the subsequent activation of spinally projecting noradrenergic neurons in the LC cell group.
Collapse
Affiliation(s)
- Mir-Shahram Safari
- Neuroscience Research Center, Shahid Beheshti University, M.C., P.O. Box 19615-1178, Tehran, Iran
| | | | | |
Collapse
|
21
|
Jeong Y, Holden JE. Lateral Hypothalamic-Induced Alpha-Adrenoceptor Modulation Occurs in a Model of Inflammatory Pain in Rats. Biol Res Nurs 2009; 10:331-9. [DOI: 10.1177/1099800408325053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous work from our lab showed that stimulation of the lateral hypothalamus (LH) produces analgesia (antinociception) in a model of thermal nociceptive pain. This antinociceptive effect is mediated by α2-adrenoceptors in the spinal cord dorsal horn. However, a concomitant, opposing hyperalgesic (pro-nociceptive) response also occurs, which is mediated by α1-adrenoceptors in the dorsal horn. Antinociception predominates but is attenuated by the pronociceptive response. To determine whether such an effect occurs in a model of inflammatory pain, we applied mustard oil (allyl isothiocyanate; 20 μl) to the left ankle of female Sprague-Dawley rats. We then stimulated the LH using carbamylcholine chloride (carbachol; 125 nmol). The foot withdrawal latencies were measured. Some rats received intrathecal α-adrenoceptor antagonists to determine whether the opposing α-adrenoceptor response was present. Mustard oil application produced hyperalgesia in the affected paw, while the LH stimulation increased the foot withdrawal latencies for the mustard oil paw as compared to the control group. Following carbachol microinjection in the LH, WB4101, an α1-adrenoceptor antagonist, produced significantly longer foot withdrawal latencies compared to saline controls, while yohimbine, an α2-antagonist, decreased the foot withdrawal latencies from 10 min postinjection ( p < .05). These findings support the hypothesis that the LH-induced nociceptive modulation is mediated through an α-adrenoceptor opposing response in a model of inflammatory pain.
Collapse
Affiliation(s)
- Younhee Jeong
- College of Nursing Science, Kyunghee University, Seoul,
Korea
| | - Janean E. Holden
- University of Illinois at Chicago, and Department of
Medical-Surgical Nursing, College of Nursing, Chicago, Illinois,
| |
Collapse
|
22
|
Rosenow JM. Physiology and Pathophysiology of Chronic Pain. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00022-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Min MY, Wu YW, Shih PY, Lu HW, Lin CC, Wu Y, Li MJ, Yang HW. Physiological and morphological properties of, and effect of substance P on, neurons in the A7 catecholamine cell group in rats. Neuroscience 2008; 153:1020-33. [PMID: 18440151 DOI: 10.1016/j.neuroscience.2008.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 03/02/2008] [Accepted: 03/03/2008] [Indexed: 11/26/2022]
Abstract
The A7 catecholamine cell group consists of noradrenergic (NAergic) neurons that project to the dorsal horn of the spinal cord. Here, we characterized their morphology and physiology properties and tested the effect of substance P (Sub-P) on them, since the results of many morphological studies suggest that A7 neurons are densely innervated by Sub-P-releasing terminals from nuclei involved in the descending inhibitory system, such as the lateral hypothalamus and periaqueductal gray area. Whole cell recordings were made from neurons located approximately 200 microm rostral to the trigeminal motor nucleus (the presumed A7 area) in sagittal brainstem slices from rats aged 7-10 days. After recording, the neurons were injected with biocytin and immunostained with antibody against dopamine-beta-hydroxylase (DBH). DBH-immunoreactive (ir) cells were presumed to be NAergic neurons. They had a large somata diameter ( approximately 20 microm) and relatively simple dendritic branching patterns. They fired action potentials (AP) spontaneously with or without blockade of synaptic inputs, and had similar properties to those of NAergic neurons in other areas, including the existence of calcium channel-mediated APs and a voltage-dependent delay in initiation of the AP (an indicator of the existence of A-type potassium currents) and an ability to be hyperpolarized by norepinephrine. Furthermore, in all DBH-ir neurons tested, Sub-P caused depolarization of the membrane potential and an increase in neuronal firing rate by acting on neurokinin-1 receptors. Non-DBH-ir neurons with a smaller somata size were also found in the A7 area. These showed great diversity in firing patterns and about half were depolarized by Sub-P. Morphological examination suggested that the non-DBH-ir neurons form contacts with DBH-ir neurons. These results provide the first description of the intrinsic regulation of membrane properties of, and the excitatory effect of Sub-P on, A7 area neurons, which play an important role in pain regulation.
Collapse
Affiliation(s)
- M-Y Min
- Department of Life Science, College of Life Science, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Karlsson K, Sharma H, Nyberg F. Chromatographic characterization of substance P endopeptidase in the rat brain reveals affected enzyme activity following heat stress. Biomed Chromatogr 2006; 20:77-82. [PMID: 15954166 DOI: 10.1002/bmc.531] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper describes a study of substance P endopeptidase (SPE)-like activity in various regions of the brain from male rats subjected to heat stress (HS). The enzyme activity was found to be affected in several brain areas including cerebellum, cerebral cortex, hippocampus, hypothalamus[sol ]thalamus and the spinal cord following HS. Significant increases in SPE activity were observed in, for example, hippocampus and the spinal cord. SPE-containing extracts from hippocampus were pooled and subsequently purified by size exclusion chromatography (using a Superdex 75 HR column) and by anion-exchange chromatography (using Resource Q column). The gel permeation chromatography separated the SPE-like activity into two fractions, one of which was suggested to be identical to neutral endopeptidase owing to its molecular size and inhibitory profile. The other active enzyme fraction behaved in conformity with SPE, previously identified in human cerebrospinal fluid. The activity of the purified fraction of these two enzymes was found to be increased (27%) in HS-treated animals.
Collapse
Affiliation(s)
- Krister Karlsson
- Uppsala University, Division of Biological Research on Drug Dependence, Department of Pharmaceutical Bioscience, Faculty of Pharmacy, Uppsala University, PO Box 591, S-751 24, Uppsala, Sweden.
| | | | | |
Collapse
|
25
|
Takeda M, Tanimoto T, Takahashi M, Kadoi J, Nasu M, Matsumoto S. Activation of α2-adrenoreceptors suppresses the excitability of C1 spinal neurons having convergent inputs from tooth pulp and superior sagittal sinus in rats. Exp Brain Res 2006; 174:210-20. [PMID: 16604314 DOI: 10.1007/s00221-006-0442-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 03/09/2006] [Indexed: 11/25/2022]
Abstract
The aim of the present study was to test the hypothesis that activation of alpha(2)-adrenoreceptors modulates the excitability of C1 neurons having convergent inputs from both the tooth pulp (TP) and the superior sagittal sinus (SSS), by using the microiontophoretic techniques of drug application and immunohistochemical approaches. Extracellular single-unit recordings were made from 38 C1 neurons responding to electrical stimulation of TP under pentobarbital-anesthetized rats. Seventy-one percent of C1 neurons (27/38) that responded to TP stimulation also responded to electrical stimulation of the SSS. In these neurons, L: -glutamate-evoked C1 neuronal discharge firings were increased in a dose-dependent manner. The mean glutamate-evoked firing rates were dose-dependently inhibited after microiontophoretic application of clonidine (alpha(2)-adrenoreceptor/imidazoline I(1) receptor agonist). The inhibition of glutamate-evoked C1 mean firings by clonidine was antagonized by the co-application of idazoxan (alpha(2)-adrenoreceptor/imidazoline I(2) receptor antagonist), yohimbine (alpha(2)-adrenoreceptor) but not the alpha(1)-adrenoreceptor antagonist, prazosin with affinity for alpha(2B)- and alpha(2C)-adrenoreceptors. The mean spontaneous discharge frequencies were significantly inhibited by the microiontophoretic application of clonidine and this inhibition was reversed by the co-application of idazoxan, yohimbine. Microiontophoresis of clonidine also resulted in a reduction of TP-/SSS-evoked activity and this effect was reversed by the co-application of yohimbine. Immunoreactivity for alpha(2A)-adrenoreceptor was found in the superficial layers of I-III in the C1 region. These results suggest that alpha(2)-adrenoreceptor agonist clonidine inhibits the excitability of C1 neurons having convergent inputs from TP and SSS afferents, and that the activation of alpha(2A)-adrenoreceptors onto C1 dorsal horn neurons may contribute as a useful therapeutic target for the alleviation of trigeminal referred pain associated with migraine and tooth pain.
Collapse
Affiliation(s)
- M Takeda
- Department of Physiology, School of Dentistry at Tokyo, Nippon Dental University, 1-9-20 Fujimi-cho, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Despite the many advances in our understanding of the mechanisms underlying pain processing, pain continues to be a major healthcare problem in the United States. Each day, millions of Americans are affected by both acute and chronic pain conditions, costing in excess of $100 billion for treatment-related costs and lost work productivity. Thus, it is imperative that better treatment strategies be developed. One step toward improving pain management is through increased knowledge of pain physiology. Within the nervous system, there are several pathways that transmit information about pain from the periphery to the brain. There is also a network of pathways that carry modulatory signals from the brain and brainstem that alter the incoming flow of pain information. This article provides a review to the physiology and processing of pain.
Collapse
Affiliation(s)
- Cynthia L Renn
- Department of Organizational Systems and Adult Health, School of Nursing, University of Maryland, Baltimore, Maryland 21201-1579, USA.
| | | |
Collapse
|
27
|
VanderHorst VGJM, Ulfhake B. The organization of the brainstem and spinal cord of the mouse: relationships between monoaminergic, cholinergic, and spinal projection systems. J Chem Neuroanat 2005; 31:2-36. [PMID: 16183250 DOI: 10.1016/j.jchemneu.2005.08.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2004] [Revised: 07/31/2005] [Accepted: 08/01/2005] [Indexed: 10/25/2022]
Abstract
Information regarding the organization of the CNS in terms of neurotransmitter systems and spinal connections in the mouse is sparse, especially at the level of the brainstem. An overview is presented of monoaminergic and cholinergic systems in the brainstem and spinal cord that were visualized immunohistochemically in inbred C57BL/6 and outbred CD-1 mice. This information is complemented with data on spinal cord-projecting systems that were characterized using retrograde tracing, spinal hemisections, and double labeling techniques. Attention is given to differences in these systems related to spinal levels. The data are discussed with reference to studies in the rat, and to standardized information as provided in the atlas of the mouse brain. Although the overall organization of these systems in the mouse is largely similar to those in the rat, species differences are present in relative location, size and/or connectivity of cell groups. For example, catecholaminergic neurons in the (ventro)lateral pons (A5 and A7 cell groups) in the mouse project to the spinal cord mainly via contralateral, and not ipsilateral, pathways. The data further supplement information as provided in standardized brainstem sections of the C57BL/6 mouse [Paxinos, G., Franklin, K.B.J., 2001. The mouse brain in stereotaxic coordinates. Academic Press, San Diego], especially with respect to the size and/or location of the catecholaminergic retrorubral field (A8 group), A5, A1, and C1 cell groups, and the serotonergic B4 group, reticulotegmental nucleus (B9 group), lateral paragigantocellular nucleus and raphe magnus nucleus (B3 group). Altogether this study provides a comprehensive overview of the spatial relationships of neurochemically and anatomically defined neuronal systems in the mouse brainstem and spinal cord.
Collapse
|
28
|
Nalwalk JW, Svokos K, Taraschenko O, Leurs R, Timmerman H, Hough LB. Activation of brain stem nuclei by improgan, a non-opioid analgesic. Brain Res 2004; 1021:248-55. [PMID: 15342273 DOI: 10.1016/j.brainres.2004.06.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2004] [Indexed: 11/25/2022]
Abstract
Improgan is a compound developed from histamine antagonists which shows the pre-clinical profile of a highly effective, non-opioid analgesic when administered into the rodent CNS. Pharmacological studies suggest that improgan activates descending pain-relieving circuits, but the brain and spinal sites of action of this drug have not been previously studied. Presently, the effects of intracerebral and intrathecal microinjections of improgan were evaluated on thermal nociceptive responses in rats. Improgan produced large, dose- and time-related reductions in nociceptive responses following administration into the ventrolateral periaqueductal gray (PAG), the dorsal PAG, and the rostral ventromedial medulla (RVM). The drug had no measurable effects after injections into the caudate nucleus, basolateral amygdala, hippocampus, ventromedial hypothalamus, superior colliculi, ventrolateral medulla, or the spinal subarachnoid space. Inactivation of the RVM by muscimol microinjections completely attenuated antincociceptive responses produced by intraventricular improgan. These findings, taken with earlier results, show that, like opioids and cannabinoids, improgan acts in the PAG and RVM to activate descending analgesic systems. Unlike these other analgesics, improgan does not act in the spinal cord or in CNS areas outside of the brain stem.
Collapse
Affiliation(s)
- J W Nalwalk
- Center of Neuropharmacology and Neuroscience MC-136, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | | | |
Collapse
|
29
|
Nag S, Mokha SS. Estrogen attenuates antinociception produced by stimulation of Kölliker-Fuse nucleus in the rat. Eur J Neurosci 2004; 20:3203-7. [PMID: 15579177 DOI: 10.1111/j.1460-9568.2004.03775.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This is the first demonstration of sex-related differences in the alpha2-adrenoceptor-mediated antinociceptive effects produced by stimulation of an endogenous noradrenergic pathway. Electrical or chemical (substance P) stimulation of Kölliker-Fuse nucleus (KF, A7) is known to produce antinociception mediated by alpha2-adrenoceptors in the spinal cord. KF stimulation has also been shown to inhibit the responses of nociceptive neurons in the dorsal horn of the medulla and the spinal cord. We investigated whether KF stimulation produces sex-specific modulation of trigeminal nociception. The N-methyl-D-aspartic acid (NMDA)-induced nociceptive behavior was employed as an index of nociception. Microinjection of NMDA (2 nmol/10 microL) in the trigeminal region produced nociceptive scratching behavior that was confined to the orofacial region. Male and ovariectomized (OVX) Sprague-Dawley rats were implanted with a guide cannula dorsal to the KF nucleus and a PE-10 cannula in the trigeminal region dorsal to obex. Nociceptive testing was conducted after 5-7 days of recovery. A group of ovariectomized rats (OVX+E) was treated with estradiol benzoate 48 h prior to nociceptive testing. There were no significant differences in the number of NMDA-induced scratches or duration between the male, OVX and OVX+E groups. Microinjection of substance P (3.7 pmol/0.5 microL) in the KF significantly reduced the number of NMDA-induced scratches and their duration in male and OVX groups; these were restored to control levels by yohimbine (30 microg/15 microL), an alpha2-adrenoceptor antagonist. However, KF stimulation failed to inhibit the NMDA-induced scratching behavior in the OVX+E group. We conclude that stimulation of KF produces estrogen-dependent modulation of nociception.
Collapse
Affiliation(s)
- S Nag
- Department of Physiology, Meharry Medical College, 1005 D.B. Todd Blvd., Nashville, TN-37208, USA
| | | |
Collapse
|
30
|
Abstract
The generation of neuropathic pain is a complex phenomenon involving a process of peripheral and central sensitization producing enhanced transmission of nociceptive inputs to the brain associated with the loss of discriminatory processing of noxious and innocuous stimuli. This increased flow of abnormally processed nociceptive inputs to the brain may overcome the ability of descending modulatory pathways to produce analgesia, causing further worsening of the pain. Several crucial locations involved in the physiologic generation of pain inputs (eg, peripheral nociceptors, dorsal horns, thalamus, cortex) show evidence of functional reorganization and altered nociceptive processing in association with chronic pain. These locations present the best targets for therapeutic intervention, including systemic administration of drugs able to counteract the chemical storm induced by neural injuries in the nociceptive afferents and dorsal horns, or for more focused intervention, such as neuroablative procedures; intrathecal drug delivery; and spinal cord, deep brain, or motor cortex stimulation.
Collapse
Affiliation(s)
- Pantaleo Romanelli
- Epilepsy Surgery Unit, Department of Neurosurgery, Neuromed IRCCS, Pozzilli, Italy.
| | | |
Collapse
|
31
|
Buhler AV, Proudfit HK, Gebhart GF. Separate populations of neurons in the rostral ventromedial medulla project to the spinal cord and to the dorsolateral pons in the rat. Brain Res 2004; 1016:12-9. [PMID: 15234247 DOI: 10.1016/j.brainres.2004.04.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2004] [Indexed: 11/24/2022]
Abstract
Activation of neurons in the rostral ventromedial medulla (RVM) directly modulates spinal nociceptive transmission by projections to the spinal cord dorsal horn and indirectly by projections to neurons in the dorsolateral pons (DLP) that project to the spinal cord dorsal horn. However, it is not known whether the same neurons in the RVM produce both direct and indirect modulation of nociception. Deposits of the retrograde tracers Fluoro-Gold (FG) in the spinal cord dorsal horn and DiI in the DLP were used to determine whether the same RVM neurons project to both of these regions. Only 0.9+/-0.1% of RVM neurons retrogradely labeled with Fluoro-Gold from the spinal cord were also labeled with DiI placed in the DLP. In addition, spinally projecting RVM neurons were significantly larger than RVM neurons that project to the DLP. Finally, spinally projecting neurons were found predominantly on the midline and within the RVM; neurons that project to the DLP had a wider distribution and were present both within and outside of the RVM. Thus, separate and morphologically distinct populations of RVM neurons appear to modulate nociception by direct and indirect descending pathways.
Collapse
Affiliation(s)
- A V Buhler
- Department of Pharmacology, Carver College of Medicine, The University of Iowa, Bowen Science BLD 2-351, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
32
|
Skyba D, Radhakrishnan R, Rohlwing J, Wright A, Sluka K. Joint manipulation reduces hyperalgesia by activation of monoamine receptors but not opioid or GABA receptors in the spinal cord. Pain 2004; 106:159-68. [PMID: 14581123 PMCID: PMC2732015 DOI: 10.1016/s0304-3959(03)00320-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Joint manipulation has long been used for pain relief. However, the underlying mechanisms for manipulation-related pain relief remain largely unexplored. The purpose of the current study was to determine which spinal neurotransmitter receptors mediate manipulation-induced antihyperalgesia. Rats were injected with capsaicin (50 microl, 0.2%) into one ankle joint and mechanical withdrawal threshold measured before and after injection. The mechanical withdrawal threshold decreases 2 h after capsaicin injection. Two hours after capsaicin injection, the following drugs were administered intrathecally: bicuculline, blocks gamma-aminobutyric acid (GABAA) receptors; naloxone, blocks opioid receptors; yohimbine blocks, alpha2-adrenergic receptors; and methysergide, blocks 5-HT(1/2) receptors. In addition, NAN-190, ketanserin, and MDL-72222 were administered to selectively block 5-HT1A, 5-HT2A, and 5-HT3 receptors, respectively. Knee joint manipulation was performed 15 min after administration of drug. The knee joint was flexed and extended to end range of extension while the tibia was simultaneously translated in an anterior to posterior direction. The treatment group received three applications of manipulation, each 3 min in duration separated by 1 min of rest. Knee joint manipulation after capsaicin injection into the ankle joint significantly increases the mechanical withdrawal threshold for 45 min after treatment. Spinal blockade of 5-HT(1/2) receptors with methysergide prevented, while blockade of alpha2-adrenergic receptors attenuated, the manipulation-induced antihyperalgesia. NAN-190 also blocked manipulation-induced antihyperalgesia suggesting that effects of methysergide are mediated by 5-HT1A receptor blockade. However, spinal blockade of opioid or GABAA receptors had no effect on manipulation induced-antihyperalgesia. Thus, the antihyperalgesia produced by joint manipulation appears to involve descending inhibitory mechanisms that utilize serotonin and noradrenaline.
Collapse
Affiliation(s)
- D.A. Skyba
- Neuroscience Graduate Program, University of Iowa, Iowa City, IA, USA
- Pain Research Program, University of Iowa, Iowa City, IA, USA
| | - R. Radhakrishnan
- Physical Therapy and Rehabilitation Science Graduate Program, University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA
- Pain Research Program, University of Iowa, Iowa City, IA, USA
| | - J.J. Rohlwing
- Physical Therapy and Rehabilitation Science Graduate Program, University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA
| | - A. Wright
- School of Physiotherapy, Curtin University of Technology, Perth, WA, Australia
| | - K.A. Sluka
- Neuroscience Graduate Program, University of Iowa, Iowa City, IA, USA
- Physical Therapy and Rehabilitation Science Graduate Program, University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA
- Pain Research Program, University of Iowa, Iowa City, IA, USA
- Corresponding author. Address: Physical Therapy and Rehabilitation Science Graduate Program, University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA. Tel.: +1-319-335-9791; fax: +1-319-335-9707. E-mail address: (K.A. Sluka)
| |
Collapse
|
33
|
Harasawa I, Honda K, Tanoue A, Shinoura H, Ishida Y, Okamura H, Murao N, Tsujimoto G, Higa K, Kamiya HO, Takano Y. Responses to noxious stimuli in mice lacking alpha(1d)-adrenergic receptors. Neuroreport 2003; 14:1857-60. [PMID: 14534435 DOI: 10.1097/00001756-200310060-00020] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nociceptive behaviors were examined in the mice lacking alpha1d-adrenergic receptor (alpha1d-AR) and wild type littermates using tail-flick, hot-plate (hindpaw-licking and jumping), tail-pinch and formalin tests. The distribution of alpha1d-AR was studied using in situ hybridization in the wild type mice. Mutant mice showed longer tail-flick and hindpaw-licking latencies while their jumping latency was shorter. Mechanical and chemical nociception was not altered in alpha1d-knockout mice. In situ hybridization study revealed dense alpha1d-AR mRNA expression in the reticular thalamic nucleus, the hippocampus, the cingulate cortex and the spinal cord. These results suggest that alpha1d-AR in the spinal cord contributes to thermal pronociception; and that the jump behavior seen when escaping from heat is inhibited via the supraspinal alpha1d-AR.
Collapse
Affiliation(s)
- Ichiro Harasawa
- Department of Anesthesiology, School of Medicine, Faculty of Pharmaceutical Sciences, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Although much has been accomplished in the past several decades, treatment of chronic pain remains imperfect. This article presents the anatomy and physiology of the pain system along with the neurobiologic changes that occur in the establishment and maintenance of chronic pain states.
Collapse
Affiliation(s)
- Joshua M Rosenow
- Section of Functional and Stereotactic Neurosurgery, S31, Department of Neurosurgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | |
Collapse
|
35
|
Abstract
Chronic pain is a complex problem with staggering negative health and economic consequences. The complexity of chronic pain is presented within Cervero and Laird's model that describes three phases of pain, including pain without tissue damage, pain with tissue damage and inflammation, and neuropathic pain. The increased afferent input in phases 2 and 3 of chronic pain produces marked changes in primary afferents, dorsal root ganglia, and spinal cord dorsal horn. These changes promote the symptoms of chronic pain, including spontaneous pain, hyperalgesia, and allodynia. Increased afferent input also evokes supraspinal input to the dorsal horn, including biphasic innervation from the ventromedial medulla and A7 catecholamine cell group, that promotes hyperalgesia and allodynia. More rostral brain structures, such as the lateral hypothalamus, amygdala, and hippocampus, may also play a role in chronic pain. Although much has been discovered about the multiple pathological mechanisms involved in chronic pain, further research is needed to fully comprehend these mechanisms.
Collapse
Affiliation(s)
- Janean E Holden
- The University of Illinois at Chicago, 718 College of Nursing, Chicago, IL 60612-7350, USA.
| | | |
Collapse
|
36
|
Holden JE, Van Poppel AY, Thomas S. Antinociception from lateral hypothalamic stimulation may be mediated by NK(1) receptors in the A7 catecholamine cell group in rat. Brain Res 2002; 953:195-204. [PMID: 12384253 DOI: 10.1016/s0006-8993(02)03285-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Stimulation of the lateral hypothalamus (LH) produces antinociception that is modified by intrathecal alpha-adrenergic antagonists. Spinally-projecting noradrenergic neurons in the LH have not been identified, suggesting that the LH may innervate brainstem noradrenergic neurons, such as the A7 catecholamine cell group in the dorsolateral pontine tegmentum, that modify nociception at the level of the spinal cord dorsal horn. Recently we demonstrated in neuroanatomical studies that substance P-immunoreactive neurons in the LH project the A7 area. To identify a functional connection between substance P neurons in the LH and the A7 cell group, the cholinergic agonist carbachol (125 nmol) was microinjected into the LH of female Sprague-Dawley rats and antinociception was obtained on the tail flick or foot withdrawal test. Cobalt chloride (100 nM) was then microinjected near the A7 cell group to block synaptic activation of spinally-projecting A7 neurons, which were identified using tyrosine-hydroxylase immunoreactivity. Within 5 min of the cobalt chloride injection, the antinociceptive effect of carbachol stimulation was blocked. In another set of experiments, the NK(1) receptor antagonist L-703-606 (5 microg) was microinjected near the A7 cell group following LH stimulation with carbachol. L-703-606 also abolished LH-induced antinociception. These results support the conclusion that antinociception produced by activating substance P neurons in the LH is mediated in part by the subsequent activation of spinally-projecting noradrenergic neurons in the A7 cell group.
Collapse
Affiliation(s)
- Janean E Holden
- Department of Medical-Surgical Nursing, The University of Illinois at Chicago, 718 College of Nursing (M/C 802), 845 S. Damen Avenue, Chicago, IL 60612-7350, USA.
| | | | | |
Collapse
|
37
|
Proudfit HK. The challenge of defining brainstem pain modulation circuits. THE JOURNAL OF PAIN 2002; 3:350-4; discussion 358-9. [PMID: 14622736 DOI: 10.1054/jpai.2002.127777] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Wang XM, Zhang ZJ, Bains R, Mokha SS. Effect of antisense knock-down of alpha(2a)- and alpha(2c)-adrenoceptors on the antinociceptive action of clonidine on trigeminal nociception in the rat. Pain 2002; 98:27-35. [PMID: 12098614 DOI: 10.1016/s0304-3959(01)00464-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although activation of alpha(2)-adrenoceptors is known to play an important role in mediating antinociception, the contribution of various alpha(2)-adrenoceptor subtypes in modulating trigeminal nociception remains unknown since subtype specific agonists and antagonists are not available. The present study investigated the functional role of alpha(2)-adrenoceptor subtypes in modulating the N-methyl-D-aspartate-induced nociceptive behavior in the medullary dorsal horn by using antisense oligodeoxynucleotides to selectively knock-down the receptor subtypes. Microinjection of N-methyl-D-aspartate (2 nmol in 10 microl) through a cannula implanted dorsal to the medullary dorsal horn produced a total of 164.9+/-8.8 scratches in the facial region (n=14), and the scratching behavior lasted for 77.8+/-5.2s (n=14). Microinjection of clonidine, an alpha(2)-agonist (7 microg in 5 microl), 15 min prior to administration of N-methyl-D-aspartate, produced a reduction of 71.6% (n=12) in the number of scratches and a reduction of 57.5% (n=12) in the duration. The inhibitory effect of clonidine was blocked by idazoxan (n=4) and yohimbine (n=4), alpha(2) antagonists. In rats pretreated with the antisense probe to the alpha(2A) adrenoceptor, clonidine only produced a reduction of 7.3% in the number of scratches (n=12) and a reduction of 9% in the duration (n=12). The antinociceptive effect of clonidine recovered completely 4 days after termination of the alpha(2A) antisense oligodeoxynucleotide treatment. In contrast to the alpha(2A) antisense-treated animals, clonidine reduced the number of scratches and the duration by 85.5% (n=9) and 82.1% (n=9), respectively, in rats pretreated with the sense probe to the alpha(2A) adrenoceptor. The effect of clonidine was not altered in rats pretreated with the antisense or the sense probes to the alpha(2C) adrenoceptor. In the alpha(2C) antisense pretreated rats, clonidine reduced the number of scratches and the duration by 60.8% (n=11) and 44.5 % (n=11), respectively. In the sense-pretreated rats, clonidine produced a reduction of 69.1% in the number of scratches (n=9) and a reduction of 55.1% in the duration (n=9). In order to assess the effectiveness of the antisense treatment, the receptor expression was examined by immunohistochemistry. Antisense treatment reduced alpha(2A) and alpha(2C) receptor immunoreactivity in the medullary dorsal horn compared to the sense and the vehicle-treated animals. Quantitative image analysis revealed a significant decrease in pixel intensity following the antisense treatment. These results indicate that activation of alpha(2A) adrenoceptor plays an important role in mediating the antinociceptive effect of clonidine in the medullary dorsal horn in the rat.
Collapse
Affiliation(s)
- X-M Wang
- Department of Anatomy and Physiology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
40
|
Holden JE, Naleway E. Microinjection of carbachol in the lateral hypothalamus produces opposing actions on nociception mediated by alpha(1)- and alpha(2)-adrenoceptors. Brain Res 2001; 911:27-36. [PMID: 11489441 DOI: 10.1016/s0006-8993(01)02567-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Electrical stimulation of the lateral hypothalamus (LH) produces antinociception partially blocked by intrathecal alpha-adrenergic antagonists, but the mechanism underlying this effect is not clear. Evidence from immunological studies demonstrates that substance P-immunoreactive neurons in the LH project near the A7 catecholamine cell group, a group of noradrenergic neurons in the pons known to effect antinociception in the spinal cord dorsal horn. Such evidence suggests that LH neurons may activate A7 neurons to produce antinociception. To test this hypothesis, the cholinergic agonist carbachol was microinjected into the LH at doses of 63, 125 and 250 nmol and the resulting effects on tail-flick and nociceptive foot-withdrawal latencies were measured. All three doses significantly increased response latencies on both tests, with the 125-nmol dose providing the optimal effect. Intrathecal injection of the opioid antagonist naltrexone (97 nmol) partially reversed antinociception, but neither the alpha(2)-adrenoceptor antagonist yohimbine nor the alpha(1)-adrenoceptor antagonist WB4101 altered latencies. However, two sequential doses of yohimbine blocked LH-induced antinociception on both tests. In contrast, two sequential doses of WB4101 increased nociceptive responses on both the tail-flick and foot-withdrawal tests. These findings, and those of published reports, suggest that neurons in the LH activate spinally projecting methionine enkephalin neurons, as well as two populations of A7 noradrenergic neurons that exert a bidirectional effect on nociception. One of these populations increases nociception through the action of alpha(1)-adrenoceptors and the other inhibits nociception through the action of alpha(2)-adrenoceptors in the spinal cord dorsal horn.
Collapse
MESH Headings
- Adrenergic alpha-Antagonists/pharmacology
- Analgesia
- Animals
- Carbachol/pharmacology
- Cholinergic Agonists/pharmacology
- Dose-Response Relationship, Drug
- Efferent Pathways/drug effects
- Efferent Pathways/metabolism
- Female
- Hypothalamic Area, Lateral/drug effects
- Hypothalamic Area, Lateral/metabolism
- Injections, Spinal
- Nociceptors/drug effects
- Nociceptors/metabolism
- Norepinephrine/metabolism
- Pain/metabolism
- Pain/physiopathology
- Pain Measurement/drug effects
- Pons/drug effects
- Pons/metabolism
- Posterior Horn Cells/drug effects
- Posterior Horn Cells/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/drug effects
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-2/drug effects
- Receptors, Adrenergic, alpha-2/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Substance P/metabolism
Collapse
Affiliation(s)
- J E Holden
- Department of Medical-Surgical Nursing, The University of Illinois at Chicago, Chicago, IL 60612-7350, USA.
| | | |
Collapse
|
41
|
Bajic D, Van Bockstaele EJ, Proudfit HK. Ultrastructural analysis of ventrolateral periaqueductal gray projections to the A7 catecholamine cell group. Neuroscience 2001; 104:181-97. [PMID: 11311541 DOI: 10.1016/s0306-4522(01)00052-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stimulation of neurons in the ventrolateral periaqueductal gray produces antinociception that is mediated in part by pontine noradrenergic neurons. Previous light microscopic analysis provided suggestive evidence for a direct projection from neurons in the ventrolateral periaqueductal gray to noradrenergic neurons in the A7 cell group that innervate the spinal cord dorsal horn. Therefore, the present ultrastructural study used anterograde tracing combined with tyrosine hydroxylase immunoreactivity to provide definitive evidence that neurons in the ventrolateral periaqueductal gray form synapses with the somata and dendrites of noradrenergic neurons of the A7 cell group. Injections of the anterograde tracers biotinylated dextran amine or Phaseolus vulgaris leucoagglutinin into the ventrolateral periaqueductal gray of Sasco Sprague-Dawley rats yielded a dense innervation in the region of the lateral pons containing the A7 cell group. Electron microscopic analysis of anterogradely labeled terminals (n=401) in the region of the A7 cell group indicated that approximately 10% of these formed plasmalemmal appositions to tyrosine hydroxylase-immunoreactive dendrites with no intervening astrocytic processes. About 23% of these were asymmetric synapses, 10% were symmetric synapses, and 67% did not exhibit clearly differentiated synaptic specializations. The majority of anterogradely labeled terminals (60%) formed plasmalemmal appositions with dendrites and somata that lacked detectable tyrosine hydroxylase immunoreactivity. About 35% of these were symmetric synapses, 9% were asymmetric synapses and 56% did not form synaptic specializations. Approximately 30% of all anterogradely labeled terminals displayed features characteristic of axo-axonic synapses.The present results provide direct ultrastructural evidence to support the hypothesis that the analgesia produced by stimulation of neurons in the ventrolateral periaqueductal gray is mediated, in part, by activation of spinally projecting noradrenergic neurons in the A7 catecholamine cell group.
Collapse
Affiliation(s)
- D Bajic
- Department of Pharmacology, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | | | |
Collapse
|
42
|
Nuseir K, Proudfit HK. Bidirectional modulation of nociception by GABA neurons in the dorsolateral pontine tegmentum that tonically inhibit spinally projecting noradrenergic A7 neurons. Neuroscience 2000; 96:773-83. [PMID: 10727795 DOI: 10.1016/s0306-4522(99)00603-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The A7 catecholamine cell group in the dorsolateral pontine tegmentum constitutes an important part of the descending pathways that modulate nociception. Evidence from immunocytochemical studies demonstrate that noradrenergic A7 neurons are densely innervated by GABA terminals arising from GABA neurons that are located in the dorsolateral pontine tegmentum medial to the A7 cell group. GABA(A) receptors are also located on the somata and dendrites of noradrenergic A7 neurons. These findings suggest that noradrenergic neurons in the A7 cell group may be under tonic inhibitory control by GABA neurons. To test this hypothesis, the GABA(A) antagonist bicuculline methiodide in doses of 0.2 or 1.0nmol was microinjected into sites located dorsal to the A7 cell group and the resulting effects on tail flick and nociceptive foot withdrawal responses were measured. Both doses of bicuculline produced significant increases in tail flick latencies and small, but significant, increases in foot withdrawal latencies. Intrathecal injection of the alpha(2)-adrenoceptor antagonist yohimbine, in a dose of 76.7nmol (30microg), attenuated the antinociceptive effect of bicuculline on both the tail and the feet. In contrast, the alpha(1)-adrenoceptor antagonist WB4101, in a nearly equimolar dose of 78.6nmol (30microg), increased the antinociceptive effect of bicuculline on both the tail and the feet. Intrathecal injection of the antagonists alone did not consistently alter nociceptive responses of either the feet or the tail. These findings suggest that noradrenergic neurons in the A7 cell group are tonically inhibited by local GABA neurons. Furthermore, these findings suggest that inhibition of GABA(A) receptors located on spinally-projecting A7 noradrenergic neurons disinhibits, or activates, two populations of A7 neurons that have opposing effects on nociception. One of these populations facilitates nociception by an action mediated by alpha(1)-adrenoceptors in the spinal cord dorsal horn and the other population inhibits nociception by an action mediated by alpha(2)-adrenoceptors.
Collapse
Affiliation(s)
- K Nuseir
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
43
|
Bodnar RJ. Supraspinal circuitry mediating opioid antinociception: antagonist and synergy studies in multiple sites. J Biomed Sci 2000; 7:181-94. [PMID: 10810236 DOI: 10.1007/bf02255465] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Supraspinal opioid antinociception is mediated by sensitive brain sites capable of supporting this response following microinjection of opioid agonists. These sites include the ventrolateral periaqueductal gray (vIPAG), the rostral ventromedial medulla (RVM), the locus coeruleus and the amygdala. Each of these sites comprise an interconnected anatomical and physiologically relevant system mediating antinociceptive responses through regional interactions. Such interactions have been identified using two pharmacological approaches: (1) the ability of selective antagonists delivered to one site to block antinociception elicited by opioid agonists in a second site, and (2) the presence of synergistic antinociceptive interactions following simultaneous administration of subthreshold doses of opioid agonists into pairs of sites. Thus, the RVM has essential serotonergic, opioid, cholinergic and NMDA synapses that are necessary for the full expression of morphine antinociception elicited from the vIPAG, and the vIPAG has essential opioid synapses that are necessary for the full expression of opioid antinociception elicited from the amygdala. Further, the vIPAG, RVM, locus coeruleus and amygdala interact with each other in synergistically supporting opioid antinociception.
Collapse
Affiliation(s)
- R J Bodnar
- Department of Psychology and Neuropsychology Doctoral Subprogram, Queens College, City University of New York, Flushing, NY 11367, USA.
| |
Collapse
|
44
|
WANG CHIACHUAN, WILLIS WILLIAMD, WESTLUND KARINN. Ascending projections from the area around the spinal cord central canal: A Phaseolus vulgaris leucoagglutinin study in rats. J Comp Neurol 1999; 415:341-67. [PMID: 10553119 PMCID: PMC7875518 DOI: 10.1002/(sici)1096-9861(19991220)415:3<341::aid-cne3>3.0.co;2-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A single small iontophoretic injection of Phaseolus vulgaris leucoagglutinin labels projections from the area surrounding the spinal cord central canal at midthoracic (T6-T9) or lumbosacral (L6-S1) segments of the spinal cord. The projections from the midthoracic or lumbosacral level of the medial spinal cord are found: 1) ascending ipsilaterally in the dorsal column near the dorsal intermediate septum or the midline of the gracile fasciculus, respectively; 2) terminating primarily in the dorsal, lateral rim of the gracile nucleus and the medial rim of the cuneate nucleus or the dorsomedial rim of the gracile nucleus, respectively; and 3) ascending bilaterally with slight contralateral predominance in the ventrolateral quadrant of the spinal cord and terminating in the ventral and medial medullary reticular formation. Other less dense projections are to the pons, midbrain, thalamus, hypothalamus, and other forebrain structures. Projections arising from the lumbosacral level are also found in Barrington's nucleus. The results of the present study support previous retrograde tract tracing and physiological studies from our group demonstrating that the neurons in the area adjacent to the central canal of the midthoracic or lumbosacral level of the spinal cord send long ascending projections to the dorsal column nucleus that are important in the transmission of second-order afferent information for visceral nociception. Thus, the axonal projections through both the dorsal and the ventrolateral white matter from the CC region terminate in many regions of the brain providing spinal input for sensory integration, autonomic regulation, motor and emotional responses, and limbic activation.
Collapse
Affiliation(s)
| | | | - KARIN N. WESTLUND
- Correspondence to: Karin N. Westlund High, Department of Anatomy and Neurosciences, Member, Marine Biomedical Institute, University of Texas Medical Branch, Galveston, TX 77555-1069.
| |
Collapse
|
45
|
Holden JE, Schwartz EJ, Proudfit HK. Microinjection of morphine in the A7 catecholamine cell group produces opposing effects on nociception that are mediated by alpha1- and alpha2-adrenoceptors. Neuroscience 1999; 91:979-90. [PMID: 10391476 DOI: 10.1016/s0306-4522(98)00673-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Stimulation of neurons in the ventromedial medulla produces antinociception in part by inhibiting nociceptive dorsal horn neurons. This antinociceptive effect is mediated in part by spinally projecting noradrenergic neurons located in the A7 catecholamine cell group. Methionine-enkephalin-immunoreactive neurons in the ventromedial medulla project to an area that includes the A7 cell group, and these enkephalin neurons may mediate part of the antinociception produced by stimulation of sites in the ventromedial medulla. This possibility was tested by determining the effects of microinjecting morphine near the A7 cell group on nociceptive foot and tail responses. Microinjection of a 3.75 nmol dose of morphine in the A7 region did not alter nociceptive responses, but a higher dose of 7.5 nmol facilitated these responses. In contrast, a higher dose of 15 nmol of morphine did not alter nociceptive responses. Selective alpha-adrenoceptor antagonists were injected intrathecally to determine whether the hyperalgesia produced by morphine is mediated by spinally projecting noradrenergic A7 neurons. Intrathecal injection of the alpha2-adrenoceptor antagonist yohimbine did not alter the hyperalgesic effect produced by the 7.5 nmol dose of morphine, but the alpha1 antagonist WB4101 reversed the hyperalgesia and produced antinociception that lasted for nearly 30 min. Although the 15 nmol dose of morphine did not alter nociceptive responses, intrathecal injection of yohimbine after the microinjection of morphine produced a significant facilitation of nociception, and intrathecal injection of WB401 produced a significant antinociceptive effect. Intrathecal injection of the antagonists alone did not consistently alter nociception. These findings, and those of published reports, suggest that morphine indirectly activates two populations of spinally projecting A7 noradrenergic neurons that have opposing effects on nociception. One of these populations facilitates nociception by an action mediated by alpha1-adrenoceptors in the spinal cord dorsal horn and the other population inhibits nociception by an action mediated by alpha2-adrenoceptors. These results suggest that some of the methionine-enkephalin neurons located in the ventromedial medulla that project to the A7 cell group can exert bidirectional control of nociceptive responses.
Collapse
Affiliation(s)
- J E Holden
- Department of Medical-Surgical Nursing, University of Illinois at Chicago, 60612, USA
| | | | | |
Collapse
|
46
|
Proudfit HK, Monsen M. Ultrastructural evidence that substance P neurons form synapses with noradrenergic neurons in the A7 catecholamine cell group that modulate nociception. Neuroscience 1999; 91:1499-513. [PMID: 10391454 DOI: 10.1016/s0306-4522(98)00716-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Potent antinociception can be produced by electrical stimulation of spinally projecting noradrenergic neurons in the A7 catecholamine cell group and this effect is blocked by intrathecal injection of alpha2-adrenoceptor antagonists. Microinjection of substance P near A7 neurons also produces antinociception that is blocked by intrathecal injection of alpha2-adrenoceptor antagonists. These observations suggest that substance P produces antinociception by activating noradrenergic A7 neurons. However, it is not known whether this effect of substance P is produced by a direct or an indirect action on A7 neurons. Although light microscopic studies have demonstrated the existence of both substance P-containing axon terminals and neurokinin-1 receptors in the region of the A7 cell group, it is not known whether substance P terminals form synapses with noradrenergic A7 neurons. These experiments used double-labeling immunocytochemical methods and electron microscopic analysis to determine whether substance P-containing axons form synapses with noradrenergic neurons in the A7 cell group. Pre-embedding immunocytochemistry, combined with light and electron microscopic analysis, was used to provide ultrastructural evidence for synaptic connections between substance P-immunoreactive terminals labeled with immunoperoxidase and tyrosine hydroxylase-immunoreactive A7 neurons labeled with silver-enhanced immunogold. Tyrosine hydroxylase labeling was found in perikarya and dendrites in the A7 region, and substance P labeling was found in axons and synaptic terminals. Substance P-labeled terminals formed asymmetric synapses with tyrosine hydroxylase-labeled dendrites, but only a few of these were present on tyrosine hydroxylase-labeled somata. Substance P-labeled terminals also formed asymmetric synapses with unlabeled dendrites, and many unlabeled terminals formed both symmetric and asymmetric synapses with tyrosine hydroxylase-labeled dendrites. These results demonstrate that substance P neurons form a significant number of synapses with the dendrites of noradrenergic A7 neurons and support the conclusion that microinjection of substance P in the A7 cell group produces antinociception by direct activation of spinally projecting noradrenergic neurons.
Collapse
Affiliation(s)
- H K Proudfit
- Department of Pharmacology, University of Illinois at Chicago, 60612, USA
| | | |
Collapse
|
47
|
Nuseir K, Heidenreich BA, Proudfit HK. The antinociception produced by microinjection of a cholinergic agonist in the ventromedial medulla is mediated by noradrenergic neurons in the A7 catecholamine cell group. Brain Res 1999; 822:1-7. [PMID: 10082877 DOI: 10.1016/s0006-8993(98)01195-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of neurons in the ventromedial medulla by electrical stimulation or by microinjection of opioid or cholinergic agonists produces antinociception that is mediated in part by spinally-projecting noradrenergic neurons. Several lines of evidence indicate that these noradrenergic neurons are located in the pontine A7 catecholamine cell group. For example, anatomical studies have demonstrated that neurons in the ventromedial medulla project to the noradrenergic neurons in the A7 catecholamine cell group that provide the major noradrenergic innervation of the spinal cord dorsal horn. In addition, electrical and chemical stimulation of A7 neurons produces antinociception that can be reduced by intrathecal injection of alpha2-adrenoceptor antagonists. The present studies provide more direct evidence that activation of neurons in the ventromedial medulla produces antinociception by activating noradrenergic neurons in the A7 cell group. Neurons in the ventromedial medulla were stimulated by microinjecting the cholinergic agonist carbachol (5 microg) into sites in the nucleus raphe magnus or the nucleus gigantocellularis pars alpha of pentobarbital anesthetized Sprague-Dawley rats. In some experiments, the local anesthetic tetracaine (10 microg) was then microinjected near the A7 cell group to inactivate the spinally-projecting noradrenergic neurons. In other experiments, cobalt chloride (100 mM) was microinjected near the A7 cell group to block synaptic activation of spinally-projecting noradrenergic neurons. Microinjection of carbachol into sites in the ventromedial medulla produced antinociception, assessed using the tail flick test, that lasted more than 60 min. However, the effects of carbachol were attenuated by microinjection of either tetracaine or cobalt into sites near the A7 cell group neurons identified by tyrosine hydroxylase-immunoreactivity. Similar injections of tetracaine or cobalt more than 500 microm from the A7 neurons did not alter the antinociceptive effect of carbachol. These results support the conclusion that the antinociception produced by activating neurons in the ventromedial medulla is mediated in part by the subsequent activation of spinally-projecting noradrenergic neurons in the A7 cell group.
Collapse
Affiliation(s)
- K Nuseir
- Department of Pharmacology (mc868), University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | | | |
Collapse
|
48
|
Bajic D, Proudfit HK. Projections of neurons in the periaqueductal gray to pontine and medullary catecholamine cell groups involved in the modulation of nociception. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990315)405:3<359::aid-cne6>3.0.co;2-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Fang F, Proudfit HK. Antinociception produced by microinjection of morphine in the rat periaqueductal gray is enhanced in the foot, but not the tail, by intrathecal injection of alpha1-adrenoceptor antagonists. Brain Res 1998; 790:14-24. [PMID: 9593804 DOI: 10.1016/s0006-8993(97)01441-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antinociception produced by microinjection of morphine in the ventrolateral periaqueductal gray is mediated in part by alpha2-adrenoceptors in the spinal cord dorsal horn. However, several recent reports demonstrate that microinjection of morphine in the ventrolateral periaqueductal gray inhibits nociceptive responses to noxious heating of the tail by activating descending neuronal systems that are different from those that inhibit the nociceptive responses to noxious heating of the feet. More specifically, alpha2-adrenoceptors appear to mediate the antinociception produced by morphine using the tail-flick test, but not that using the foot-withdrawal or hot-plate tests. The present study extended these findings and determined the role of alpha1-adrenoceptors in mediating the antinociceptive effects of morphine microinjected into the ventrolateral periaqueductal gray using both the foot-withdrawal and the tail-flick responses to noxious radiant heating in lightly anesthetized rats. Intrathecal injection of selective antagonists was used to determine whether the antinociceptive effects of morphine were modulated by alpha1-adrenoceptors. Injection of the selective alpha1-adrenoceptor antagonists prazosin or WB4101 potentiated the increase in the foot-withdrawal response latency produced by microinjection of morphine in the ventrolateral periaqueductal gray. In contrast, either prazosin or WB4101 partially reversed the increase in the tail-flick response latency produced by morphine. These results indicate that microinjection of morphine in the ventrolateral periaqueductal gray modulates nociceptive responses to noxious heating of the feet by activating descending neuronal systems that are different from those that inhibit the nociceptive responses to noxious heating of the tail. More specifically, alpha1-adrenoceptors mediate a pro-nociceptive action of morphine using the foot-withdrawal response, but in contrast, alpha1-adrenoceptors appear to mediate part of the antinociceptive effect of morphine determined using the tail-flick test.
Collapse
Affiliation(s)
- F Fang
- Department of Pharmacology, The University of Illinois at Chicago, 835 S. Wolcott, Chicago, IL 60612, USA
| | | |
Collapse
|
50
|
Holden JE, Proudfit HK. Enkephalin neurons that project to the A7 catecholamine cell group are located in nuclei that modulate nociception: ventromedial medulla. Neuroscience 1998; 83:929-47. [PMID: 9483575 DOI: 10.1016/s0306-4522(97)00437-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The location of methionine enkephalin neurons in the medulla oblongata that project to the dorsolateral pontine tegmentum was investigated using anterograde and retrograde tract tracing combined with immunocytochemical neurotransmitter identification. The results of these experiments demonstrate that enkephalinergic neurons from areas known to modulate nociception project to the region of the A7 catecholamine cell group in the dorsolateral pontine tegmentum. The medullary nuclei that contain these enkephalinergic neurons include the nucleus raphe magnus and the nucleus reticularis gigantocellularis pars alpha in the ventromedial medulla. While some of these enkephalinergic axons appose the somata and dendrites of A7 neurons, the majority of these axons appear to contact non-catecholamine neurons in the dorsolateral pontine tegmentum. Unidentified neurons located in the nucleus raphe magnus, the nucleus reticularis gigantocellularis pars alpha, and the nucleus reticularis gigantocellularis also project to the A7 area. Many of the neurons in the nucleus reticularis gigantocellularis pars alpha appear to contact both noradrenergic A7 neurons and non-catecholamine neurons in the dorsolateral pontine tegmentum, whereas most of those in the nucleus raphe magnus appear to contact non-catecholamine neurons. The anatomical findings described in this report and the results of preliminary behavioral studies provide evidence to support a model in which activation of the enkephalin-containing neurons in the ventromedial medulla facilitates nociception, while the non-enkephalin neurons mediate part of the antinociception produced by stimulating sites in the ventromedial medulla.
Collapse
Affiliation(s)
- J E Holden
- Department of Pharmacology, University of Illinois at Chicago 60612, USA
| | | |
Collapse
|