1
|
Roldán-Sastre A, Aguado C, Martín-Belmonte A, Alfaro-Ruiz R, Moreno-Martínez AE, Luján R. Cellular Diversity and Differential Subcellular Localization of the G-Protein G αo Subunit in the Mouse Cerebellum. Front Neuroanat 2021; 15:686279. [PMID: 34248508 PMCID: PMC8267243 DOI: 10.3389/fnana.2021.686279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/02/2021] [Indexed: 11/27/2022] Open
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) transduce signals from G protein-coupled receptors (GPCRs) to effector ion channels and enzymes Gαo, a member of the pertussis toxin-sensitive Gi/o family, is widely expressed in the brain, although its role within a neuronal context remains largely unknown. Using immunohistochemical and quantitative immunoelectron microscopy techniques, we have investigated the expression, cellular and subcellular localization of Gαo in the cerebellar cortex. Histoblot revealed that Gαo is expressed in many brain regions, including the cerebellum. At the cellular level, Gαo protein was distributed in Purkinje cells, basket cells, stellate cells, granule cells and Golgi cells. At the subcellular level, pre-embedding immunoelectron microscopy revealed mainly a postsynaptic localization of Gαo along the extrasynaptic plasma membrane of Purkinje cell dendritic shafts and spines, and dendrites of basket, stellate and granule cells. To a lesser extent, immunolabeling for Gαo was localized in different types of axon terminals establishing excitatory synapses. Moreover, post-embedding immunoelectron microscopy revealed the synaptic localization of Gαo on PSDs of glutamatergic synapses between Purkinje cell spines and parallel fiber terminals and its co-localization with GABAB1 in the same spines. Quantitative analysis of Gαo immunoparticles revealed they preferentially localized on the cytoplasmic face of the plasma membrane. Furthermore, the analysis revealed a high concentration of Gαo around excitatory synapses on Purkinje cell dendritic spines, but a uniform distribution in granule cell dendrites. These molecular-anatomical findings suggest that Gαo is a major signal transducer of specific GPCRs in different neuronal populations in the cerebellum.
Collapse
Affiliation(s)
- Alberto Roldán-Sastre
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Rocío Alfaro-Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Ciencias Médicas, Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
2
|
Izumisawa Y, Ito K, Sugita K, Arai T, Kokudo H, Kitamura N, Shibuya I. Mechanisms of GABA-mediated inhibition of the angiotensin II-induced cytosolic Ca 2+ increase in rat subfornical organ neurons. Brain Res 2021; 1763:147451. [PMID: 33773979 DOI: 10.1016/j.brainres.2021.147451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Neurons in the subfornical organ (SFO) sense both neurotransmitters and circulating humoral factors such as angiotensin II (AII) and atrial natriuretic peptide (ANP), and regulate multiple physiological functions including drinking behavior. We recently reported that AII at nanomolar concentrations induced a persistent [Ca2+]i increase in acutely dissociated SFO neurons and that this effect of AII was reversibly inhibited by GABA. In the present study, we studied the inhibitory mechanism of GABA using Ca2+ imaging and patch-clamp electrophysiology. The AII-induced persistent [Ca2+]i increase was inhibited by GABA in more than 90% of AII-responsive neurons and by other two SFO inhibitory ligands, ANP and galanin, in about 60 and 30% of neurons respectively. The inhibition by GABA was mimicked by the GABAA and GABAB receptor agonists muscimol and baclofen. The involvement of both GABA receptor subtypes was confirmed by reversal of the GABA-mediated inhibition only when the GABAA and GABAB receptors antagonists bicuculline methiodide and CGP55845 were both present. The GABAB agonist baclofen rapidly and reversibly inhibited voltage-gated Ca2+ channel (VGCC) currents recorded in response to depolarizing pulses in voltage-clamp electrophysiology using Ba2+ as a charge carrier (IBa). Baclofen inhibition of IBa was antagonized by CGP55845, confirming GABAB receptor involvement; was reduced by N-ethylmaleimide, suggesting downstream Gi-mediated actions; and was partially removed by a large prepulse, indicating voltage-dependency. The magnitude of IBa inhibition by baclofen was reduced by the application of selective blockers for N-, P/Q-, and L-type VGCCs (ω-conotoxin GVIA, ω-agatoxin IVA, and nifedipine respectively). Overall, our study indicates that GABA inhibition of the AII-induced [Ca2+]i increase is mediated by both GABAA and GABAB receptors, and that GABAB receptors associated with Gi proteins suppress Ca2+ entry through VGCCs in SFO neurons.
Collapse
Affiliation(s)
- Yu Izumisawa
- Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, Japan
| | - Kenji Ito
- Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, Japan
| | - Keisuke Sugita
- Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, Japan
| | - Tazuyo Arai
- Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, Japan
| | - Hina Kokudo
- Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, Japan
| | - Naoki Kitamura
- Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, Japan
| | - Izumi Shibuya
- Department of Veterinary Physiology, Faculty of Agriculture, Tottori University, Japan.
| |
Collapse
|
3
|
GABA B receptors: modulation of thalamocortical dynamics and synaptic plasticity. Neuroscience 2020; 456:131-142. [PMID: 32194227 DOI: 10.1016/j.neuroscience.2020.03.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 01/03/2023]
Abstract
GABAB-receptors (GABAB-Rs) are metabotropic, G protein-coupled receptors for the neurotransmitter GABA. Their activation induces slow inhibitory control of the neuronal excitability mediated by pre- and postsynaptic inhibition. Presynaptically GABAB-Rs reduce GABA and glutamate release inhibiting presynaptic Ca2+ channels in both inhibitory and excitatory synapses while postsynaptic GABAB-Rs induce robust slow hyperpolarization by the activation of K+ channels. GABAB-Rs are activated by non-synaptic or volume transmission, which requires high levels of GABA release, either by the simultaneous discharge of GABAergic interneurons or very intense discharges in the thalamus or by means of the activation of a neurogliaform interneurons in the cortex. The main receptor subunits GABAB1a, GABAB1b and GABAB2 are strongly expressed in neurons and glial cells throughout the central nervous system and GABAB-R activation is related to many neuronal processes such as the modulation of rhythmic activity in several brain regions. In the thalamus, GABAB-Rs modulate the generation of the main thalamic rhythm, spindle waves. In the cerebral cortex, GABAB-Rs also modulate the most prominent emergent oscillatory activity-slow oscillations-as well as faster oscillations like gamma frequency. Further, recent studies evaluating the complexity expressed by the cortical network, a parameter associated with consciousness levels, have found that GABAB-Rs enhance this complexity, while their blockade decreases it. This review summarizes the current results on how the activation of GABAB-Rs affects the interchange of information between brain areas by controlling rhythmicity as well as synaptic plasticity.
Collapse
|
4
|
Differential association of GABA B receptors with their effector ion channels in Purkinje cells. Brain Struct Funct 2017; 223:1565-1587. [PMID: 29177691 PMCID: PMC5869904 DOI: 10.1007/s00429-017-1568-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/10/2017] [Indexed: 11/23/2022]
Abstract
Metabotropic GABAB receptors mediate slow inhibitory effects presynaptically and postsynaptically through the modulation of different effector signalling pathways. Here, we analysed the distribution of GABAB receptors using highly sensitive SDS-digested freeze-fracture replica labelling in mouse cerebellar Purkinje cells. Immunoreactivity for GABAB1 was observed on presynaptic and, more abundantly, on postsynaptic compartments, showing both scattered and clustered distribution patterns. Quantitative analysis of immunoparticles revealed a somato-dendritic gradient, with the density of immunoparticles increasing 26-fold from somata to dendritic spines. To understand the spatial relationship of GABAB receptors with two key effector ion channels, the G protein-gated inwardly rectifying K+ (GIRK/Kir3) channel and the voltage-dependent Ca2+ channel, biochemical and immunohistochemical approaches were performed. Co-immunoprecipitation analysis demonstrated that GABAB receptors co-assembled with GIRK and CaV2.1 channels in the cerebellum. Using double-labelling immunoelectron microscopic techniques, co-clustering between GABAB1 and GIRK2 was detected in dendritic spines, whereas they were mainly segregated in the dendritic shafts. In contrast, co-clustering of GABAB1 and CaV2.1 was detected in dendritic shafts but not spines. Presynaptically, although no significant co-clustering of GABAB1 and GIRK2 or CaV2.1 channels was detected, inter-cluster distance for GABAB1 and GIRK2 was significantly smaller in the active zone than in the dendritic shafts, and that for GABAB1 and CaV2.1 was significantly smaller in the active zone than in the dendritic shafts and spines. Thus, GABAB receptors are associated with GIRK and CaV2.1 channels in different subcellular compartments. These data provide a better framework for understanding the different roles played by GABAB receptors and their effector ion channels in the cerebellar network.
Collapse
|
5
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 PMCID: PMC6151493 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 564] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
6
|
Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics. Nat Neurosci 2015; 19:233-42. [PMID: 26691831 DOI: 10.1038/nn.4198] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/16/2015] [Indexed: 01/04/2023]
Abstract
GABAB receptors, the most abundant inhibitory G protein-coupled receptors in the mammalian brain, display pronounced diversity in functional properties, cellular signaling and subcellular distribution. We used high-resolution functional proteomics to identify the building blocks of these receptors in the rodent brain. Our analyses revealed that native GABAB receptors are macromolecular complexes with defined architecture, but marked diversity in subunit composition: the receptor core is assembled from GABAB1a/b, GABAB2, four KCTD proteins and a distinct set of G-protein subunits, whereas the receptor's periphery is mostly formed by transmembrane proteins of different classes. In particular, the periphery-forming constituents include signaling effectors, such as Cav2 and HCN channels, and the proteins AJAP1 and amyloid-β A4, both of which tightly associate with the sushi domains of GABAB1a. Our results unravel the molecular diversity of GABAB receptors and their postnatal assembly dynamics and provide a roadmap for studying the cellular signaling of this inhibitory neurotransmitter receptor.
Collapse
|
7
|
Intracellular calcium chelation with BAPTA-AM modulates ethanol-induced behavioral effects in mice. Exp Neurol 2012; 234:446-53. [PMID: 22306018 DOI: 10.1016/j.expneurol.2012.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 11/23/2022]
Abstract
Calcium (Ca(2+)) has been characterized as one of the most ubiquitous, universal and versatile intracellular signaling molecules responsible for controlling numerous cellular processes. Ethanol-induced effects on Ca(2+) distribution and flux have been widely studied in vitro, showing that acute ethanol administration can modulate intracellular Ca(2+) concentrations in a dose dependent manner. In vivo, the relationship between Ca(2+) manipulation and the corresponding ethanol-induced behavioral effects have focused on Ca(2+) flux through voltage-gated Ca(2+) channels. The present study investigated the role of inward Ca(2+) currents in ethanol-induced psychomotor effects (stimulation and sedation) and ethanol intake. We studied the effects of the fast Ca(2+) chelator, BAPTA-AM, on ethanol-induced locomotor activity and the sedative effects of ethanol. Swiss (RjOrl) mice were pretreated with BAPTA-AM (0-10 mg/kg) 30 min before an ethanol (0-4 g/kg) challenge. Our results revealed that pretreatment with BAPTA-AM prevented locomotor stimulation produced by ethanol without altering basal locomotion. In contrast, BAPTA-AM reversed ethanol-induced hypnotic effects. In a second set of experiments, we investigated the effects of intracellular Ca(2+) chelation on ethanol intake. Following a drinking-in-the-dark methodology, male C57BL/6J mice were offered 20% v/v ethanol, tap water, or 0.1% sweetened water. The results of these experiments revealed that BAPTA-AM pretreatment (0-5 mg/kg) reduced ethanol consumption in a dose-dependent manner while leaving water and sweetened water intake unaffected. Our findings support the role of inward Ca(2+) currents in mediating different behavioral responses induced by ethanol. Our results are discussed together with data indicating that ethanol appears to be more sensitive to intracellular Ca(2+) manipulations than other psychoactive drugs.
Collapse
|
8
|
Padgett CL, Slesinger PA. GABAB receptor coupling to G-proteins and ion channels. ADVANCES IN PHARMACOLOGY 2010; 58:123-47. [PMID: 20655481 DOI: 10.1016/s1054-3589(10)58006-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
GABA(B) receptors have been found to play a key role in regulating membrane excitability and synaptic transmission in the brain. The GABA(B) receptor is a G-protein coupled receptor (GPCR) that associates with a subset of G-proteins (pertussis toxin sensitive Gi/o family), that in turn regulate specific ion channels and trigger cAMP cascades. In this review, we describe the relationships between the GABA(B) receptor, its effectors and associated proteins that mediate GABA(B) receptor function within the brain. We discuss a unique feature of the GABA(B) receptor, the requirement for heterodimerization to produce functional receptors, as well as an increasing body of evidence that suggests GABA(B) receptors comprise a macromolecular signaling heterocomplex, critical for efficient targeting and function of the receptors. Within this complex, GABA(B) receptors associate specifically with Gi/o G-proteins that regulate voltage-gated Ca(2+) (Ca(V)) channels, G-protein activated inwardly rectifying K(+) (GIRK) channels, and adenylyl cyclase. Numerous studies have revealed that lipid rafts, scaffold proteins, targeting motifs in the receptor, and regulators of G-protein signaling (RGS) proteins also contribute to the function of GABA(B) receptors and affect cellular processes such as receptor trafficking and activity-dependent desensitization. This complex regulation of GABA(B) receptors in the brain may provide opportunities for new ways to regulate GABA-dependent inhibition in normal and diseased states of the nervous system.
Collapse
Affiliation(s)
- Claire L Padgett
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | |
Collapse
|
9
|
Nanjayya SB, Shivappa M, Chand PK, Murthy P, Benegal V. Baclofen in cannabis dependence syndrome. Biol Psychiatry 2010; 68:e9-10. [PMID: 20494335 DOI: 10.1016/j.biopsych.2010.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
|
10
|
Cimarosti H, Kantamneni S, Henley JM. Ischaemia differentially regulates GABA(B) receptor subunits in organotypic hippocampal slice cultures. Neuropharmacology 2009; 56:1088-96. [PMID: 19328818 PMCID: PMC3309028 DOI: 10.1016/j.neuropharm.2009.03.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 02/19/2009] [Accepted: 03/18/2009] [Indexed: 02/04/2023]
Abstract
Reduced synaptic inhibition due to dysfunction of ionotropic GABA(A) receptors has been proposed as one factor in cerebral ischaemia-induced excitotoxic cell death. However, the participation of the inhibitory metabotropic GABA(B) receptors in these pathological processes has not been extensively investigated. We used oxygen-glucose deprivation (OGD) and NMDA-induced excitotoxicity as models to investigate whether ischaemia-like challenges alter the protein levels of GABA(B1) and GABA(B2) receptor subunits in rat organotypic hippocampal slice cultures. Twenty-four hours after the insult both OGD and NMDA produced a marked decrease in the total levels of GABA(B2) (approximately 75%), while there was no significant change in the levels of GABA(B1) after OGD, but an increase after NMDA treatment (approximately 100%). The GABA(B) receptor agonist baclofen (100 microM) was neuroprotective following OGD or NMDA treatment if added before or during the insult. GABA(B) receptors comprise heterodimers of GABA(B1) and GABA(B2) subunits and our results suggest that the separate subunits are independently regulated in response to extreme neuronal stress. However, because GABA(B2) is required for functional surface expression, down-regulation of this subunit removes an important inhibitory feedback mechanism under pathological conditions.
Collapse
Affiliation(s)
| | | | - Jeremy M. Henley
- Department of Anatomy, MRC Centre for Synaptic Plasticity, School of Medical Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
11
|
Choi IS, Cho JH, Jeong SG, Hong JS, Kim SJ, Kim J, Lee MG, Choi BJ, Jang IS. GABAB receptor-mediated presynaptic inhibition of glycinergic transmission onto substantia gelatinosa neurons in the rat spinal cord. Pain 2008; 138:330-342. [DOI: 10.1016/j.pain.2008.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/17/2007] [Accepted: 01/08/2008] [Indexed: 12/01/2022]
|
12
|
Marshall FH. The role of GABA(B) receptors in the regulation of excitatory neurotransmission. Results Probl Cell Differ 2007; 44:87-98. [PMID: 17549439 DOI: 10.1007/400_2007_038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GABA(B) receptors are the metabotrophic receptors for GABA. They are members of the G-protein coupled superfamily of receptors but are highly unusual as they are made up of a dimer of 7-transmembrane spanning subunits. The receptors are widely distributed throughout the central nervous system where they act post-synaptically to cause a long-lasting hyperpolarisation through the activation of a potassium conductance. They are also present pre-synaptically where they act as auto and heteroreceptors to inhibit neurotransmitter release. GABA(B) receptors play a complex role in the regulation of excitatory transmission and their activation can have both inhibitory and dis-inhibitory effects. This has profound physiological and behavioural consequences including modification of LTP and memory, regulation of seizure activity and nociception.
Collapse
Affiliation(s)
- Fiona H Marshall
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, UK.
| |
Collapse
|
13
|
Tsutsuki H, Kohda T, Hara M, Kozaki S, Ihara H. Nitric oxide inhibits depolarization-evoked glutamate release from rat cerebellar granule cells. Nitric Oxide 2007; 16:217-27. [PMID: 17126044 DOI: 10.1016/j.niox.2006.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 10/01/2006] [Accepted: 10/06/2006] [Indexed: 10/24/2022]
Abstract
Nitric oxide (NO) modulates the release of various neurotransmitters, some of these are considered to be involved in neuronal plasticity that includes long-term depression in the cerebellum. To date, there have been no reports on the modulation of the exocytotic release of neurotransmitters in the cerebellar granule cells (CGCs) by NO. The aim of this study was to investigate the effects of NO on the exocytotic release of glutamate from rat CGCs. Treatment with NO-related reagents revealed that NO inhibited high-K(+)-evoked glutamate release. Clostridium botulinum type B neurotoxin (BoNT/B) attenuated the enhancement of glutamate release caused by NO synthase (NOS) inhibition; this indicates that NO acts on the high-K(+)-evoked exocytotic pathway. cGMP-related reagents did not affect the high-K(+)-evoked glutamate release. NO-related reagents did not affect Ca(2+) ionophore-induced glutamate release, suggesting that NO inhibits Ca(2+) entry through voltage-dependent Ca(2+) channels (VDCC). Monitoring of intracellular Ca(2+) revealed that NO inhibited high-K(+)-evoked Ca(2+) entry. L-type VDCC blockers inhibited glutamate release and NO did not have an additive effect on the inhibition produced by the L-type VDCC blocker. The inhibition of the high-K(+)-evoked glutamate release by NO was abolished by a reducing reagent; this suggested that NO regulates the high-K(+)-evoked glutamate release from CGCs by redox modulation.
Collapse
Affiliation(s)
- Hiroyasu Tsutsuki
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Gakuen-cho, Sakai, Osaka, Japan
| | | | | | | | | |
Collapse
|
14
|
Lashgari R, Motamedi F, Noorbakhsh SM, Zahedi-Asl S, Komaki A, Shahidi S, Haghparast A. Assessing the long-term role of L-type voltage dependent calcium channel blocker verapamil on short-term presynaptic plasticity at dentate gyrus of hippocampus. Neurosci Lett 2007; 415:174-8. [PMID: 17267114 DOI: 10.1016/j.neulet.2007.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 01/02/2007] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
High-voltage-activated Ca(2+) channels on presynaptic nerve terminals are known to play an important role in neurotransmitter release at both excitatory and inhibitory synapses. Whereas there is currently debate over the contribution of L-type voltage dependent Ca(2+) channels (L-type VDCCs) on the short-term presynaptic plasticity which is a defining feature of neuronal activity, the underlying mechanisms are poorly understood. In the present study, the L-type VDCCs chronically was inhibited with different doses of verapamil (10, 20 and 50 mg/kg; orally) to evaluate hippocampal dentate gyrus (DG) inhibitory interneuron function and its involvement on short-term plasticity using paired pulse stimulation in perforant path-DG of hippocampus. Our data show that chronic oral treatment of verapamil at dose of 50 mg/kg but not at lower doses, facilitated the excitability of DG cells at inter-stimulus intervals 20, 30 and 50 ms (P<0.03, 0.01 and 0.001; respectively) in population spike amplitude ratio, which is indicative of paired pulse potentiation in perforant path-DG synapses. While there are no significant differences in field excitatory postsynaptic potential slope ratio at all doses. We suggest that DG neurons facilitation is caused by inhibition of inhibitory interneurons directly and/or indirectly via inhibition of glutamate release in hippocampal DG. Therefore, these experiments indicate that chronic use of verapamil has effect on short-term presynaptic plasticity.
Collapse
Affiliation(s)
- Reza Lashgari
- Neuroscience Research Center and Department of Physiology, Shaheed Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | | | |
Collapse
|
15
|
Osawa Y, Xu D, Sternberg D, Sonett JR, D'Armiento J, Panettieri RA, Emala CW. Functional expression of the GABAB receptor in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2006; 291:L923-31. [PMID: 16829628 DOI: 10.1152/ajplung.00185.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system and exerts its actions via both ionotropic (GABA(A)/GABA(C)) and metabotropic (GABA(B)) receptors (R). In addition to their location on neurons, GABA and functional GABA(B) receptors have been detected in nonneuronal cells in peripheral tissue. Although the GABA(B)R has been shown to function as a prejunctional inhibitory receptor on parasympathetic nerves in the lung, the expression and functional coupling of GABA(B) receptors to G(i) in airway smooth muscle itself have never been described. We detected the mRNA encoding multiple-splice variants of the GABA(B)R1 and GABA(B)R2 in total RNA isolated from native human and guinea pig airway smooth muscle and from RNA isolated from cultured human airway smooth muscle (HASM) cells. Immunoblots identified the GABA(B)R1 and GABA(B)R2 proteins in human native and cultured airway smooth muscle. The GABA(B)R1 protein was immunohistochemically localized to airway smooth muscle in guinea pig tracheal rings. Baclofen, a GABA(B)R agonist, elicited a concentration-dependent stimulation of [(35)S]GTPgammaS binding in HASM homogenates that was abrogated by the GABA(B)R antagonist CGP-35348. Baclofen also inhibited adenylyl cyclase activity and induced ERK phosphorylation in HASM. Another GABA(B)R agonist, SKF-97541, mimicked while pertussis toxin blocked baclofen's effect on ERK phosphorylation, implicating G(i) protein coupling. Functional GABA(B) receptors are expressed in HASM. GABA may modulate an uncharacterized signaling cascade via GABA(B) receptors coupled to the G(i) protein in airway smooth muscle.
Collapse
Affiliation(s)
- Yoko Osawa
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, 630 W. 168th St., P&S Box 46, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Evans GJO, Cousin MA. Simultaneous monitoring of three key neuronal functions in primary neuronal cultures. J Neurosci Methods 2006; 160:197-205. [PMID: 17049620 PMCID: PMC2225589 DOI: 10.1016/j.jneumeth.2006.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/25/2006] [Accepted: 09/02/2006] [Indexed: 11/22/2022]
Abstract
The coupling of Ca2+ influx to synaptic vesicle (SV) recycling in nerve terminals is essential for neurotransmitter release and thus neuronal communication. Both of these parameters have been monitored using fluorescent reporter dyes such as fura-2 and FM1-43 in single central nerve terminals. However, their simultaneous monitoring has been hampered by the proximity of their fluorescence spectra, resulting in significant contamination of their signals by bleedthrough. We have developed an assay that simultaneously monitors both SV recycling and changes in intracellular free Ca2+ ([Ca2+]i) in cultured neurons using the reporter dyes FM4-64 and fura-2AM. By monitoring both fura-2 and FM4-64 emission in the far red range, we were able to visualize functionally independent readouts of both SV recycling and [Ca2+]i independent of fluorescence bleedthrough. We were also able to incorporate an assay of cell viability without any fluorescence bleedthrough from either fura-2 or FM4-64 signals, using the dye SYTOX Green. We propose that this assay of three key neuronal functions could be simply translated into a high content screening format for studies investigating small molecule inhibitors of these processes.
Collapse
|
17
|
Rusakov DA, Wuerz A, Kullmann DM. Heterogeneity and specificity of presynaptic Ca2+ current modulation by mGluRs at individual hippocampal synapses. ACTA ACUST UNITED AC 2004; 14:748-58. [PMID: 15054054 PMCID: PMC1482790 DOI: 10.1093/cercor/bhh035] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
GABA release from axonal boutons formed by cortical interneurons shows target cell-dependent sensitivity to group III metabotropic glutamate receptor (mGluR) agonists, as well as variable dependence on presynaptic Ca2+ influx via N- and P-type channels. How Ca2+ channels interact with heterogeneous mGluR modulation to determine information flow in the synaptic circuitry is not known. Here we combine electrophysiology with two-photon microscopy to analyze Ca2+ influx at individual axonal varicosities of hippocampal interneurons. Action potentials triggered Ca2+ influx at individual varicosities, principally (>80%) via N- and P-type channels. Although Ca2+ influx at some varicosities was almost entirely mediated by N-type channels, P-type channels only contributed up to 60% of the action potential-evoked Ca2+ transient. At a subset of synapses activation of group III mGluRs depressed GABA release, and decreased Ca2+ influx via N-type channels (in contrast to an action on P-type channels reported at auditory brainstem calyceal synapses). The identity of the dominant channel subtype mediating Ca2+ influx tended to be conserved at varicosities supplied by the same axon. In contrast, neighboring varicosities often showed heterogeneous sensitivity to group III mGluR activation. Glutamatergic modulation of GABA release from individual synapses thus depends on the co-occurrence of presynaptic N-type Ca2+ channels and the target cell-dependent expression of group III mGluRs.
Collapse
Affiliation(s)
- Dmitri A Rusakov
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | | | | |
Collapse
|
18
|
Hervás C, Pérez-Sen R, Miras-Portugal MT. Coexpression of functional P2X and P2Y nucleotide receptors in single cerebellar granule cells. J Neurosci Res 2003; 73:384-99. [PMID: 12868072 DOI: 10.1002/jnr.10676] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present study describes the presence and expression of functional nucleotide receptors, both ionotropic and metabotropic, in highly purified cultures of cerebellar granule neurons. Microfluorimetric experiments have been carried out to record specific [Ca(2+)](i) transients in individual granule neurons after challenge with diverse nucleotides. Although great heterogeneity was found in nucleotide responses in single cells, these responses all became modified during the course of granule cell differentiation, not only at the level of the number of responding cells, but also in the magnitude of the response to nucleotides. These in vitro developmental changes were more significant in metabotropic responses to pyrimidine nucleotides, UTP and UDP, which were down- and upregulated, respectively, during the time in culture. At least two types of ADP-specific receptors seem expressed in different granule cell subpopulations responding to 2MeSADP, as the specific P2Y(1) antagonist MRS-2179 inhibited Ca(2+) responses in only one of these populations. The great diversity of metabotropic responses observed was confirmed by the RT-PCR expression of different types of P2Y receptors in granule cell cultures: P2Y(1), P2Y(4), P2Y(6), and P2Y(12). Similarly, ionotropic nucleotide responses were confirmed by the presence of specific messengers for different P2X subunits, and by immunolabeling studies (P2X(1), P2X(2), P2X(3), P2X(4) and P2X(7)). Immunolabeling reflected great variety in the P2X subunit distribution along the granule neuron cytoarchitecture, with P2X(2), P2X(3) and P2X(4) present at somatodendritic locations, and P2X(1), P2X(7), and P2X(3), located at the axodendritic prolongations. The punctuated labeling pattern obtained for P2X(3) and P2X(7) subunits is particularly notable, as it presents a high degree of colocalization with synaptophysin, a specific marker of synaptic vesicles, suggesting specialized localization and function in granule neurons.
Collapse
MESH Headings
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Animals
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Cells, Cultured
- Cerebellum/cytology
- Gene Expression
- Membrane Proteins
- Neurons/cytology
- Neurons/physiology
- Rats
- Rats, Wistar
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2X
- Receptors, Purinergic P2X2
- Receptors, Purinergic P2X3
- Receptors, Purinergic P2X4
- Receptors, Purinergic P2X7
- Receptors, Purinergic P2Y1
- Receptors, Purinergic P2Y12
- Thionucleotides/pharmacology
- Uridine Diphosphate/pharmacology
Collapse
Affiliation(s)
- Cristina Hervás
- Biochemistry Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | | | | |
Collapse
|
19
|
Shinnick-Gallagher P, McKernan MG, Xie J, Zinebi F. L-type voltage-gated calcium channels are involved in the in vivo and in vitro expression of fear conditioning. Ann N Y Acad Sci 2003; 985:135-49. [PMID: 12724155 DOI: 10.1111/j.1749-6632.2003.tb07078.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fear conditioning, a behavioral model of fear learning and cue-related anxiety, causes enhanced neuronal transmission in the thalamic to lateral amygdala pathway.(1,2) In the expression phase of learned fear, this increased transmission recorded in vitro is revealed in increased amplitudes of excitatory postsynaptic currents (EPSCs) and occlusion of paired-pulse facilitation (PPF) implicating a presynaptic increase in transmitter release. Here we examined the contribution of L-type calcium channels in fear conditioning. We measured the effect of nimodipine (Nim, 1.5-20 mg/kg), an L-type calcium channel antagonist, on fear-potentiated startle in which startle was assessed in animals receiving paired or unpaired tone and foot shock. Nim administered intraperitoneally blocked fear-potentiated startle but not baseline startle in a dose-dependent manner. We also analyzed the effect of Nim (10 micro M) in vitro on synaptic facilitation of EPSCs and PPF in slices from naïve control, unpaired control, and fear-conditioned animals. In neurons from naïve control animals, Nim had no effect on EPSC amplitude or PPF, but in slices from fear-conditioned rats, Nim reduced EPSC amplitude, suggesting the recruitment of L-type calcium channels within the fear-conditioning pathway. Nim increased PPF in slices from fear-conditioned animals, suggesting that L-type calcium channels may contribute to increased probability of release in fear conditioning. In slices from unpaired animals, Nim decreased synaptic transmission but had little effect on PPF, suggesting that stress or contextual fear learning may induce L-type channel activity in fear-conditioned and unpaired control animal groups. We also analyzed protein expression of the alpha(1C) and alpha(1D) L-type calcium channel subunits isolated from the amygdala and found that alpha(1C) protein was significantly increased in fear-conditioned animals. These findings suggest that L-type calcium channels play a role in the amygdala in cued fear conditioning and have important implications in the treatment of anxiety and in emotional learning and plasticity.
Collapse
Affiliation(s)
- Patricia Shinnick-Gallagher
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555-1031, USA.
| | | | | | | |
Collapse
|
20
|
Easter A, Spruce AE. Recombinant GABA(B) receptors formed from GABA(B1) and GABA(B2) subunits selectively inhibit N-type Ca(2+) channels in NG108-15 cells. Eur J Pharmacol 2002; 440:17-25. [PMID: 11959084 DOI: 10.1016/s0014-2999(02)01343-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Efficient transfection of NG108-15 cells with GABA(B) receptor subunits was achieved using polyethylenimine. Baclofen modulated high voltage-activated Ca(2+) current in differentiated cells transfected with GABA(B1) and GABA(B2) receptor subunits or with the GABA(B2) subunit alone, but not with the GABA(B1) subunit alone. Characteristics of the current modulation were very similar for cells transfected with GABA(B1/2) and GABA(B2) subunits. Using antisense oligonucleotides against GABA(B1) subunits and also western immunoblotting, we are able to show that NG108-15 cells contain endogenous GABA(B1) subunits. Therefore, functional receptors can be formed by the combination of native GABA(B1) subunits with transfected GABA(B2) subunits, in agreement with the proposed heteromeric structure of GABA(B) receptors. Finally, we used selective channel blockers to identify the subtypes of Ca(2+) channels that are modulated by GABA(B) receptors. In fact, in differentiated NG108-15 cells, the recombinant GABA(B) receptors couple only to N-type Ca(2+) channels.
Collapse
Affiliation(s)
- Alison Easter
- Division of Neuroscience-Pharmacology, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
21
|
Katsura M, Shuto K, Mohri Y, Shigeto M, Ohkuma S. Functional significance of nitric oxide in ionomycin-evoked [3H]GABA release from mouse cerebral cortical neurons. J Neurochem 2002; 81:130-41. [PMID: 12067225 DOI: 10.1046/j.1471-4159.2002.00810.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated a role of nitric oxide (NO) on ionomycin-evoked [3H]GABA release using mouse cerebral cortical neurons. lonomycin dose-dependently released [3H]GABA up to 1 microM. The extent of the release by 0.1 microM ionomycin was in a range similar to that by 30 mM KCl. The ionomycin (0.1 microM)-evoked [3H]GABA release was dose-dependently inhibited by NO synthase inhibitors and hemoglobin, indicating that the ionomycin-evoked [3H]GABA release is mediated through NO formation. The inhibition of cGMP formation by 1H-[1,2,4] oxodizao [4,3-a] quinoxalin-1-one (ODQ), a selective inhibitor for NO-sensitive guanylate cyclase, showed no affects on the ionomycin-evoked [3H]GABA release. Tetrodotoxin and dibucaine significantly suppressed the ionomycin-evoked [3H]GABA release and ionomycin increased fluorescence intensity of bis-oxonol, suggesting the involvement of membrane depolarization in this release. The ionomycin-evoked [3H]GABA release was maximally reduced by about 50% by GABA uptake inhibitors. The concomitant presence of nifedipine and omega-agatoxin VIA (omega-ATX), inhibitors for L- and P/Q-type voltage-dependent calcium channels, respectively, caused the reduction in the ionomycin-evoked release by about 50%. The simultaneous addition of nifedipine, omega-ATX and nipecotic acid completely abolished the release. Although ionomycin released glutamate, (+)-5-methyl-1-,11-dihydro-5H-dibenzo-[a,d]cycloheptan-5,10-imine (MK-801) and 6,7-dinitroquinoxaline-2,3-dione (DNQX) showed no effects on the ionomycin-induced [3H]GABA release. Based on these results, it is concluded that NO formed by ionomycin plays a critical role in ionomycin-evoked [3H]GABA release from the neurons.
Collapse
Affiliation(s)
- Masashi Katsura
- Department of Pharmacology, Kawasaki Medical School, Matsushima, Kurashiki, Japan
| | | | | | | | | |
Collapse
|
22
|
Kulik A, Nakadate K, Nyíri G, Notomi T, Malitschek B, Bettler B, Shigemoto R. Distinct localization of GABA(B) receptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus. Eur J Neurosci 2002; 15:291-307. [PMID: 11849296 DOI: 10.1046/j.0953-816x.2001.01855.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Metabotropic gamma-aminobutyric acid receptors (GABA(B)Rs) are involved in modulation of synaptic transmission and activity of cerebellar and thalamic neurons. We used subtype-specific antibodies in pre- and postembedding immunohistochemistry combined with three-dimensional reconstruction of labelled profiles and quantification of immunoparticles to reveal the subcellular distribution of pre- and postsynaptic GABA(B)R1a/b and GABA(B)R2 in the rat cerebellum and ventrobasal thalamus. GABA(B)R1a/b and R2 were extensively colocalized in most brain regions including the cerebellum and thalamus. In the cerebellum, immunoreactivity for both subtypes was prevalent in the molecular layer. The most intense immunoreactivity was found in Purkinje cell spines with a high density of immunoparticles at extrasynaptic sites peaking at around 240 nm from glutamatergic synapses between spines and parallel fibre varicosities. This is in contrast to dendrites at sites around GABAergic synapses where sparse and random distribution was found for both subtypes. In addition, more than one-tenth of the synaptic membrane specialization of spine-parallel fibre synapses were labelled at pre- or postsynaptic sites. Weak immunolabelling for both subtypes was also seen in parallel fibres but only rarely in GABAergic axons. In the ventrobasal thalamus, immunolabelling for both receptor subtypes was intense over the dendritic field of thalamocortical cells. Electron microscopy demonstrated an extrasynaptic localization of GABA(B)R1a/b and R2 exclusively in postsynaptic elements. Quantitative analysis further revealed the density of GABA(B)R1a/b around GABAergic synapses was higher than glutamatergic synapses on thalamocortical cell dendrites. The distinct localization of GABA(B)Rs relative to synaptic sites in the cerebellum and ventrobasal thalamus suggests that GABA(B)Rs differentially regulate activity of different neuronal populations.
Collapse
Affiliation(s)
- Akos Kulik
- Division of Cerebral Structure, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Takahashi M, Freed R, Blackmer T, Alford S. Calcium influx-independent depression of transmitter release by 5-HT at lamprey spinal cord synapses. J Physiol 2001; 532:323-36. [PMID: 11306653 PMCID: PMC2278557 DOI: 10.1111/j.1469-7793.2001.0323f.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The mechanisms by which 5-hydroxytryptamine (5-HT) depresses transmitter release from lamprey reticulospinal axons were investigated. These axons make glutamatergic synapses onto spinal ventral horn neurons. 5-HT reduces release at these synapses, yet the mechanisms remain unclear. 2. Excitatory postsynaptic currents (EPSCs) evoked by stimulation of reticulospinal axons were recorded in ventral horn neurons. 5-HT depressed the EPSCs in a dose-dependent manner with an apparent Km of 2.3 microM. 3. To examine the presynaptic effect of 5-HT, electrophysiological and optical recordings were made from presynaptic axons. Action potentials evoked Ca(2+) transients in the axons loaded with a Ca(2+)-sensitive dye. 5-HT slightly reduced the Ca(2+) transient. 4. A third-power relationship between Ca(2+) entry and transmitter release was determined. However, presynaptic Ca(2+) currents were unaffected by 5-HT. 5. Further, in the presence of a K(+) channel blocker, 4-aminopyridine (4-AP), 5-HT left unaltered the presynaptic Ca(2+) transient, ruling out the possibility of its direct action on presynaptic Ca(2+) current. 5-HT activated a 4-AP-sensitive current with a reversal potential of -95 mV in these axons. 6. The basal Ca(2+) concentration did not affect 5-HT-mediated inhibition of release. Although 5-HT caused a subtle reduction in resting axonal [Ca(2+)]i, synaptic responses recorded during enhanced resting [Ca(2+)]i, by giving stimulus trains, were equally depressed by 5-HT. 7. 5-HT reduced the frequency of TTX-insensitive spontaneous EPSCs at these synapses, but had no effect on their amplitude. We propose a mechanism of inhibition for transmitter release by 5-HT that is independent of presynaptic Ca(2+) entry.
Collapse
Affiliation(s)
- M Takahashi
- Department of Physiology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
24
|
Princivalle A, Spreafico R, Bowery N, De Curtis M. Layer-specific immunocytochemical localization of GABA(B)R1a and GABA(B)R1b receptors in the rat piriform cortex. Eur J Neurosci 2000; 12:1516-20. [PMID: 10762380 DOI: 10.1046/j.1460-9568.2000.01060.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A peculiar, layer-segregated immunoreactive distribution of GABABR1a and GABABR1b receptor antibodies is present in the piriform cortex of adult rats. The GABABR1a antibody selectively marked the neuropile in layer Ia, where afferent olfactory fibres and intrinsic GABAergic (gamma-aminobutyric acid) axons terminate on the distal apical dendrites of pyramidal neurons. The GABABR1b antibody was detected in the soma and the large basal dendrites of layer II and III neurons. The pattern of distribution observed supports the hypothesis that (presynaptic) GABABR1a receptors in the superficial molecular layer modulate neurotransmitter release in a feedforward synaptic circuit, whereas GABABR1b (postsynaptic) receptors mediate feedback inhibitory potentials on principal cells.
Collapse
Affiliation(s)
- A Princivalle
- Department of Pharmacology, University of Birmingham, UK
| | | | | | | |
Collapse
|
25
|
MacManus A, Ramsden M, Murray M, Henderson Z, Pearson HA, Campbell VA. Enhancement of (45)Ca(2+) influx and voltage-dependent Ca(2+) channel activity by beta-amyloid-(1-40) in rat cortical synaptosomes and cultured cortical neurons. Modulation by the proinflammatory cytokine interleukin-1beta. J Biol Chem 2000; 275:4713-8. [PMID: 10671502 DOI: 10.1074/jbc.275.7.4713] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Beta-amyloid protein is thought to underlie the neurodegeneration associated with Alzheimer's disease by inducing Ca(2+)-dependent apoptosis. Elevated neuronal expression of the proinflammatory cytokine interleukin-1beta is an additional feature of neurodegeneration, and in this study we demonstrate that interleukin-1beta modulates the effects of beta-amyloid on Ca(2+) homeostasis in the rat cortex. beta-Amyloid-(1-40) (1 microM) caused a significant increase in (45)Ca(2+) influx into rat cortical synaptosomes via activation of L- and N-type voltage-dependent Ca(2+) channels and also increased the amplitude of N- and P-type Ca(2+) channel currents recorded from cultured cortical neurons. In contrast, interleukin-1beta (5 ng/ml) reduced the (45)Ca(2+) influx into cortical synaptosomes and inhibited Ca(2+) channel activity in cultured cortical neurons. Furthermore, the stimulatory effects of beta-amyloid protein on Ca(2+) influx were blocked following exposure to interleukin-1beta, suggesting that interleukin-1beta may govern neuronal responses to beta-amyloid by regulating Ca(2+) homeostasis.
Collapse
Affiliation(s)
- A MacManus
- Department of Physiology, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
26
|
Monteiro RA, Henrique RM, Rocha E, Silva MW, Oliveira MH. Quantitative age-changes in endoplasmic reticulum and nucleus of cerebellar granule cells. Neurobiol Aging 2000; 21:97-105. [PMID: 10794854 DOI: 10.1016/s0197-4580(00)00104-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A stereological study was performed on cerebellar granule cells from rats 2 to 24 months of age (eight different ages, five animals per age group) to quantify age-related alterations in the rough endoplasmic reticulum (RER). The mean surface density and the mean total surface area of the nucleus, as well as the mean absolute volume of euchromatin per cell, were also estimated to examine whether or not these had quantitative relationships with the RER. The mean surface density and the mean total surface area of RER per cell changed significantly, attaining maximum values at 24 months of 1733 microm(2)/1000 microm(3) (0.06) and 64 microm(2) (0.03), respectively, (coefficients of variation in parentheses). The corresponding values at 2 months were 706 microm(2)/1000 microm(3) (0.20) and 26 microm(2) (0.24). The mean absolute volume of the euchromatin changed significantly, with a minimum value of 57 microm(3) (0.05) occurring at 21 months. We postulate that the increase in RER may be part of a mechanism that compensates for an age-related decrease in euchromatin. An increase in the RER network may improve intracellular transport of proteins, production of which is apparently diminished with aging. The increase may also compensate for the reported decrease in calcium buffer capacity of smooth endoplasmic reticulum.
Collapse
Affiliation(s)
- R A Monteiro
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences, University of Oporto, Largo Professor Abel Salazar no. 2, 4099-003, Porto, Portugal.
| | | | | | | | | |
Collapse
|
27
|
Saqr HE, Guan Z, Yates AJ, Stokes BT. Mechanisms through which PDGF alters intracellular calcium levels in U-1242 MG human glioma cells. Neurochem Int 1999; 35:411-22. [PMID: 10524708 DOI: 10.1016/s0197-0186(99)00092-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PDGF-BB induces a rapid, sustained increase in intracellular calcium levels in U-1242 MG cells. We used several calcium channel blockers to identify the types of channels involved. L channel blockers (verapamil, nimodipine, nicardipine, nitrendipine and taicatoxin) had no effect on PDGF-BB induced alterations in intracellular calcium. Blockers of P, Q and N channels (omega-agatoxin-IVA, omega-conotoxin MVIIC and omega-conotoxin GVIA) also had no effect. This indicates that these channels play an insignificant role in supplying the Ca2+ necessary for PDGF stimulated events in U-1242 MG cells. However, a T channel blocker (NDGA) and the non-specific (NS) calcium channel blockers (FFA and SK&F 9365) abolished PDGF-induced increases in intracellular calcium. This indicates that PDGF causes calcium influx through both non-specific cationic channels and T channels. To study the participation of intracellular calcium stores in this process, we used thapsigargin, caffeine and ryanodine, all of which cause depletion of intracellular calcium stores. The PDGF effect was abolished using both thapsigargin and caffeine but not ryanodine. Collectively, these data indicate that in these human glioma cells PDGF-BB induces release of intracellular calcium from caffeine- and thapsigargin-sensitive calcium stores which in turn lead to further calcium influx through both NS and T channels.
Collapse
Affiliation(s)
- H E Saqr
- Department of Pathology, The Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
28
|
Que M, Witte OW, Neumann-Haefelin T, Schiene K, Schroeter M, Zilles K. Changes in GABA(A) and GABA(B) receptor binding following cortical photothrombosis: a quantitative receptor autoradiographic study. Neuroscience 1999; 93:1233-40. [PMID: 10501447 DOI: 10.1016/s0306-4522(99)00197-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Experimental cortical photothrombosis leads to pronounced alterations in the binding density of [3H]muscimol and [3H]baclofen to GABA(A) and GABA(B) receptors, both in the lesioned and the structurally intact cortex. The binding density of [3H]muscimol to GABA(A) receptors was markedly increased in the "core" of the lesion during the first week, reaching a maximum on the third day post-lesion. Simultaneously, it dropped in the exofocal primary somatosensory cortex. Reductions in the binding density of [3H]muscimol were also found in remote cortical areas of the contralateral hemisphere and lasted for several weeks. In contrast to the down-regulation of apparent binding density of [3H]muscimol, a long-lasting up-regulation of that of [3H]baclofen to GABA(B) receptors was measured in the exofocal primary somatosensory cortex and in remote cortical areas of both hemispheres. The greatest increase in the binding density of [3H]baclofen was seen on the seventh day in the surroundings of the lesion. Our findings indicate that widespread alterations in the concentrations of GABA(A) and GABA(B) receptors are induced in remote cortical areas by a focal ischaemic lesion. Since GABA(A) receptor affinity is regulated by nitric oxide, we suggest that the observed down-regulation of GABA(A) receptors may be correlated with a lesion-induced increase in nitric oxide, whereas the up-regulation of GABAB receptors might be caused by other mechanisms, e.g., compensatory processes. In the centre of the lesion, however, a GABA(A) receptor-mediated mechanism, which limits the spread of lesion-induced hyperexcitability, is thought to be involved.
Collapse
Affiliation(s)
- M Que
- C. & O. Vogt Institute of Brain Research, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Deisz RA. The GABA(B) receptor antagonist CGP 55845A reduces presynaptic GABA(B) actions in neocortical neurons of the rat in vitro. Neuroscience 1999; 93:1241-9. [PMID: 10501448 DOI: 10.1016/s0306-4522(99)00203-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Use-dependent depression of inhibitory postsynaptic potentials was investigated with intracellular recordings and the paired-pulse paradigm in rat neocortical neurons in vitro. Pairs of stimuli invariably reduced the second inhibitory postsynaptic potential-A (GABA(A) receptor-mediated inhibitory postsynaptic potential) of a pair; at interstimulus intervals of 500 ms, the amplitude of the second inhibitory postsynaptic potential-A was considerably smaller than the first (36.2 +/- 6.2%, n= 17). Decreasing the interstimulus interval reduced the second inhibitory postsynaptic potential-A further and with interstimulus intervals shorter than 330 ms the compound excitatory postsynaptic potential-inhibitory postsynaptic potential response reversed from a hyperpolarizing to a depolarizing response. The depression of the inhibitory postsynaptic potential-A exhibited a maximum at interstimulus intervals near 150 ms and recovered with a time constant of 282 +/- 96.2 ms. Elimination of excitatory transmission by the application of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and D(-)-2-amino-5-phosphonovaleric acid yielded an essentially unaltered time-course of paired-pulse depression (maximum depression near 150 ms, time constant of recovery 232 +/- 98 ms). The polarity change of the compound excitatory postsynaptic potential response at shorter interstimulus intervals was abolished in the presence of CNQX and D(- )-2-amino-5-phosphonovaleric acid. CNQX and D(-)-2-amino-5-phosphonovaleric acid also reduced the apparent depolarizing shift of the reversal potential between the first and second inhibitory postsynaptic potential-A from about 6 mV to less than 2 mV. Application of the GABA(B) receptor antagonist CGP 55845A in the presence of CNQX and (-)-2-amino-5-phosphonovaleric acid abolished the inhibitory postsynaptic potential-B and paired-pulse depression. Under these conditions, the amplitude of the second inhibitory postsynaptic potential was, on average, about 90% of the first, i.e. reduced by about 10%. The second inhibitory postsynaptic potential-A was approximately constant at interstimulus intervals between 100 and 500 ms. It is concluded that paired-pulse depression of cortical inhibition is predominantly mediated by presynaptic GABA(B) receptors of GABAergic interneurons. The abolition of net inhibition at interstimulus intervals near 330 ms may facilitate spread of excitation and neuronal synchrony during repetitive cortical activation near 3 Hz. This use-dependent depression of inhibition may contribute to highly synchronized slow electroencephalogram activity during spike-and-wave or delta activity.
Collapse
Affiliation(s)
- R A Deisz
- Humboldt University Berlin, Anatomical Institute Charité, Cell and Neurobiology Group, Berlin, Germany.
| |
Collapse
|
30
|
Meir A, Ginsburg S, Butkevich A, Kachalsky SG, Kaiserman I, Ahdut R, Demirgoren S, Rahamimoff R. Ion channels in presynaptic nerve terminals and control of transmitter release. Physiol Rev 1999; 79:1019-88. [PMID: 10390521 DOI: 10.1152/physrev.1999.79.3.1019] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The primary function of the presynaptic nerve terminal is to release transmitter quanta and thus activate the postsynaptic target cell. In almost every step leading to the release of transmitter quanta, there is a substantial involvement of ion channels. In this review, the multitude of ion channels in the presynaptic terminal are surveyed. There are at least 12 different major categories of ion channels representing several tens of different ion channel types; the number of different ion channel molecules at presynaptic nerve terminals is many hundreds. We describe the different ion channel molecules at the surface membrane and inside the nerve terminal in the context of their possible role in the process of transmitter release. Frequently, a number of different ion channel molecules, with the same basic function, are present at the same nerve terminal. This is especially evident in the cases of calcium channels and potassium channels. This abundance of ion channels allows for a physiological and pharmacological fine tuning of the process of transmitter release and thus of synaptic transmission.
Collapse
Affiliation(s)
- A Meir
- Department of Physiology and the Bernard Katz Minerva Centre for Cell Biophysics, Hebrew University Hadassah Medical School, Jerusalem, Israel
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yamada K, Yu B, Gallagher JP. Different subtypes of GABAB receptors are present at pre- and postsynaptic sites within the rat dorsolateral septal nucleus. J Neurophysiol 1999; 81:2875-83. [PMID: 10368404 DOI: 10.1152/jn.1999.81.6.2875] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
GABAB receptor activation modulates neuronal activity mediated by multiple CNS transmitters and can occur at pre- and postsynaptic sites. In low concentrations, baclofen acts presynaptically to diminish transmitter release via both hetero- and autoreceptors, whereas at increasing concentrations, the same compound alters postsynaptic membrane excitability by inducing a membrane hyperpolarization. We have utilized electrophysiological techniques in vitro to focus on the possibility that pharmacologically different subtypes of GABAB receptors are present on presynaptic sites of glutamatergic terminals when compared with GABAB receptors on postsynaptic sites within the dorsolateral septal nucleus (DLSN). The glutamatergic terminal within the DLSN originates from a pyramidal cell body located within the hippocampus and most likely terminates on a GABAergic neuron from which recordings were made. Whole cell patch voltage-clamp methods were employed to record pharmacologically isolated excitatory postsynaptic currents (EPSCs) from DLSN neurons as an index of glutamatergic transmission. Using a modified internal pipette solution containing QX-314 and in which CsGluconate and GDPbetaS replaced Kgluconate and GTP, respectively, we recorded isolated monosynaptic EPSCs. The GABAA receptor antagonists bicuculline and picrotoxin were included in the external standard superfusion solution. Application of the GABAB receptor agonists, (+/-)-baclofen, CGP44533, and CGP35024 (10 nM to 10 microM) depressed glutamate-mediated EPSCs in a concentration-dependent manner. With the use of this combination of solutions, CGP44533 did not produce postsynaptic membrane property changes. Under these conditions, both (+/-)-baclofen and CGP35024 still induced increases of postsynaptic membrane conductance associated with an outward current. The GABAB receptor antagonist CGP55845A (1 microM) blocked the presynaptic CGP44533-mediated depressant effects of EPSCs, whereas CGP35348 (100 microM) or barium (2 mM) was ineffective. Furthermore, both CGP35348 (100 microM) and CGP55845A (1 microM) were effective in blocking the postsynaptic conductance changes associated with baclofen and CGP35024, whereas barium was ineffective. Our results demonstrate a distinct pharmacology for GABAB agonists acting at putative subtypes of GABAB receptors located on presynaptic sites of a glutamatergic terminal versus GABAB receptors on postsynaptic sites of a DLSN neuron. Furthermore, our results also suggest a different pharmacology and/or coupling of a GABAB receptor to different effectors at postsynaptic sites within the DLSN. Thus there may be three or more pharmacologically distinct GABAB receptors or receptor complexes associated with DLSN neurons: at least one pre- and two postsynaptic. If this distinct pharmacology and GABAB receptor distribution also extends to other CNS structures, such differences could provide development of selective drugs to act at these multiple sites.
Collapse
Affiliation(s)
- K Yamada
- Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1031, USA
| | | | | |
Collapse
|
32
|
Hill MP, Brotchie JM. Control of glutamate release by calcium channels and kappa-opioid receptors in rodent and primate striatum. Br J Pharmacol 1999; 127:275-83. [PMID: 10369483 PMCID: PMC1565998 DOI: 10.1038/sj.bjp.0702523] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The modulation of depolarization (4-aminopyridine, 2 mM)-evoked endogenous glutamate release by kappa-opioid receptor activation and blockade of voltage-dependent Ca2+ -channels has been investigated in synaptosomes prepared from rat and marmoset striatum. 4-Aminopyridine (4-AP)-stimulated, Ca2+ -dependent glutamate release was inhibited by enadoline, a selective kappa-opioid receptor agonist, in a concentration-dependent and norbinaltorphimine (nor-BNI, selective kappa-opioid receptor antagonist)-sensitive manner in rat (IC50 = 4.4+/-0.4 microM) and marmoset (IC50 = 2.9+/-0.7 microM) striatal synaptosomes. However, in the marmoset, there was a significant (approximately 23%) nor-BNI-insensitive component. In rat striatal synaptosomes, the Ca2+ -channel antagonists omega-agatoxin-IVA (P/Q-type blocker), omega-conotoxin-MVIIC (N/P/Q-type blocker) and omega-conotoxin-GVIA (N-type blocker) reduced 4-AP-stimulated, Ca2+ -dependent glutamate release in a concentration-dependent manner with IC50 values of 6.5+/-0.9 nM, 75.5+5.9 nM and 106.5+/-8.7 nM, respectively. In marmoset striatal synaptosomes, 4-AP-stimulated, Ca2+ -dependent glutamate release was significantly inhibited by omega-agatoxin-IVA (30 nM, 57.6+/-2.3%, inhibition), omega-conotoxin-MVIIC (300 nM, 57.8+/-3.1%) and omega-conotoxin-GVIA (1 microM, 56.7+/-2%). Studies utilizing combinations of Ca2+ -channel antagonists suggests that in the rat striatum, two relatively distinct pools of glutamate, released by activation of either P or Q-type Ca2+ -channels, exist. In contrast, in the primate there is much overlap between the glutamate released by P and Q-type Ca2+ -channel activation. Studies using combinations of enadoline and the Ca2+ -channel antagonists suggest that enadoline-induced inhibition of glutamate release occurs primarily via reduction of Ca2+ -influx through P-type Ca2+ -channels in the rat but via N-type Ca2+ -channels in the marmoset. In conclusion, the results presented suggest that there are species differences in the control of glutamate release by kappa-opioid receptors and Ca2+ -channels.
Collapse
Affiliation(s)
- M P Hill
- Manchester Movement Disorders Laboratory, Division of Neuroscience, School of Biological Sciences, University of Manchester.
| | | |
Collapse
|
33
|
Brice NL, Dolphin AC. Differential plasma membrane targeting of voltage-dependent calcium channel subunits expressed in a polarized epithelial cell line. J Physiol 1999; 515 ( Pt 3):685-94. [PMID: 10066897 PMCID: PMC2269176 DOI: 10.1111/j.1469-7793.1999.685ab.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/1998] [Accepted: 12/07/1998] [Indexed: 11/28/2022] Open
Abstract
1. Voltage-dependent calcium channels (VDCCs) show a highly non-uniform distribution in many cell types, including neurons and other polarized secretory cells. We have examined whether this can be mimicked in a polarized epithelial cell line (Madin-Darby canine kidney), which has been used extensively to study the targeting of proteins. 2. We expressed the VDCC alpha1A, alpha1B or alpha1C subunits either alone or in combination with accessory subunits alpha2-delta and the different beta subunits, and examined their localization immunocytochemically. An alpha1 subunit was only targeted to the plasma membrane if co-expressed with the accessory subunits. 3. The combination alpha1C/alpha2-delta and all beta subunits was always localized predominantly to the basolateral membrane. It has been suggested that this is equivalent to somatodendritic targeting in neurons. 4. In contrast, the alpha1B subunit was expressed at the apical membrane with all the accessory subunit combinations, by 24 h after microinjection. This membrane destination shows some parallels with axonal targeting in neurons. 5. The alpha1A subunit was consistently observed at the apical membrane in the combinations alpha1A/alpha2-delta/beta1b or beta4. In contrast, when co-expressed with alpha2-delta/beta2a, alpha1A was clearly targeted to the basolateral membrane. 6. In conclusion, the VDCC alpha1 subunit appears to be the primary determinant for targeting the VDCC complex, but the beta subunit can modify this destination, particularly for alpha1A.
Collapse
Affiliation(s)
- N L Brice
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
34
|
Amabeoku GJ. Gamma-aminobutyric acid and glutamic acid receptors may mediate theophylline-induced seizures in mice. GENERAL PHARMACOLOGY 1999; 32:365-72. [PMID: 10211593 DOI: 10.1016/s0306-3623(98)00201-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effects of drugs affecting GABA and glutamic acid receptors on theophylline-induced seizures were investigated in mice. Theophylline elicited tonic seizures in mice in a dose dependent manner. Muscimol, DABA and AOAA significantly prolonged the onset and significantly decreased the incidence of theophylline-induced seizures. Baclofen significantly delayed the onset of the tonic seizures induced by theophylline. Bicuculline and picrotoxin significantly shortened the onset and significantly increased the incidence of seizures induced by a low dose of theophylline and also significantly antagonized muscimol-attenuating effect against theophylline seizures. N-methyl-DL-aspartic acid significantly shortened the onset and significantly increased the incidence of seizures elicited by a low dose of theophylline. D-(-)-2-amino-phosphonopentanoic acid effectively delayed the onset and significantly decreased the incidence of seizures elicited by theophylline and also significantly antagonized the potentiating effect of N-methyl-DL-aspartic acid on seizures induced by a low dose of theophylline. Dextromethorphan and ketamine profoundly shortened the onset of theophylline-induced seizures. Clonidine effectively prolonged the onset and significantly decreased the incidence of theophylline-induced seizures. These data indicate that GABA(A) and N-methyl-D-aspartic acid receptors may mediate theophylline-elicited tonic seizures in mice.
Collapse
Affiliation(s)
- G J Amabeoku
- Department of Pharmacology, School of Pharmacy, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
35
|
L-Type calcium channels mediate a slow excitatory synaptic transmission in rat midbrain dopaminergic neurons. J Neurosci 1998. [PMID: 9712641 DOI: 10.1523/jneurosci.18-17-06693.1998] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Patch pipettes were used to record whole-cell synaptic currents under voltage-clamp in dopaminergic neurons in slices of rat substantia nigra pars compacta and ventral tegmental area. We report that dihydropyridines (DHPs), L-type Ca2+ channel antagonists, depressed a slow EPSC (EPSCslow) evoked by a train of focally delivered electrical stimuli. In fact, the amplitude of the EPSCslow was reduced by the DHP antagonists nifedipine (1-100 microM), nimodipine (1-100 microM), and isradipine (30 nM-100 microM) in a concentration-dependent and reversible manner. On the other hand, Bay-K 8644 (1 microM), an L-type Ca2+ channel agonist, increased the EPSCslow. The DHPs depressed the EPSCslow only when the high-frequency stimulation that was used to evoke this synaptic current lasted >70 msec. On the other hand, Bay-K 8644 increased the amplitude of the EPSCslow only when it was evoked by a train <70 msec. Moreover, the DHPs did not affect the EPSCfast, the IPSCfast, and the IPSCslow. The inhibition of the EPSCslow caused by the DHPs is attributed to presynaptic mechanisms because (1) the inward current generated by exogenously administered glutamate was not affected and (2) the EPSCslow was reduced to a similar degree even when the activation state of postsynaptic L-type Ca2+ channels was changed by holding the neurons at -100, -60, and +30 mV. Finally, a DHP-sensitive component of the EPSCslow could even be detected after the blockade of N-, Q-, and P-type Ca2+ channels by the combination of omega-conotoxin GVIA, omega-agatoxin IVA, and omega-conotoxin MVIIC. Taken together, these results indicate that under certain patterns of synaptic activity, L-type Ca2+ channels regulate the synaptic release of excitatory amino acids on the dopaminergic neurons of the ventral mesencephalon.
Collapse
|
36
|
Abstract
Serotonin, a neuromodulator at the crayfish neuromuscular junction, regulates neurotransmission without changing intracellular calcium levels. However, the mechanism of this regulation remains unclear. By analysis of synaptic depression using a depletion model and measurement of vesicle recycling using the styryl dye FM1-43, we show that serotonin increases the number of vesicles available for transmitter release (total synaptic vesicle pool size). This regulation is due either to an increase in the number of vesicles at each release site or to an activation of previously nonsecreting or silent synapses. We also observed that low calcium medium rendered part of the vesicle pool unavailable for release. These results suggest a new mechanism for regulating synaptic transmission.
Collapse
Affiliation(s)
- C Wang
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
37
|
Monteiro RA, Henrique RM, Rocha E, Marini-Abreu MM, Oliveira MH, Silva MW. Age-related changes in the volume of somata and organelles of cerebellar granule cells. Neurobiol Aging 1998; 19:325-32. [PMID: 9733165 DOI: 10.1016/s0197-4580(98)00064-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Because cerebellar granule cells are fixed post-mitotic cells, it is expected that they undergo age-related changes like other neurons. To examine this possibility, a stereological study on granule cells of rat neocerebellar cortex was performed for an age spectrum of 2 to 24 months using eight different age groups. The nucleator method, together with point and intersection counting, was used to obtain primary data; arithmetical calculations determined the secondary data. In the soma, the absolute surface area did not change significantly; the volume did, however, exhibit a significant negative linear trend with age. Excluding dense bodies, the absolute volumes of the cytoplasmic components did not vary significantly. The absolute volume of dense bodies displayed a significant positive linear trend with age. Significant positive correlations were detected between the somatic volume and the absolute volume of either mitochondria or ground substance. It was concluded that granule cells showed a fair degree of morphological stability through 18 months. However, the observed changes warn that accompanying physiological alterations may occur, with putative effects on motor coordination.
Collapse
Affiliation(s)
- R A Monteiro
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences, University of Oporto, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
38
|
Okuma Y, Yokotani K, Murakami Y, Osumi Y. Properties of calcium channels coupled to endogenous glutamate release from the vascularly perfused rat stomach in vitro. Life Sci 1998; 62:1641-5. [PMID: 9585150 DOI: 10.1016/s0024-3205(98)00121-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have demonstrated that both high-K+ and electrical stimulation of the vagus nerves release endogenous glutamate from the vascularly-perfused rat stomach in a calcium-dependent manner. In the present study, we examined properties of calcium channel subtypes mediating endogenous glutamate release from the stomach. Application of 50 mM KCl elicited a release of glutamate, and this release was abolished in calcium-free medium. The release of glutamate was significantly inhibited by both omega-agatoxin IVA, a P/Q-type calcium channel antagonist, and isradipine, an L type calcium channel antagonist. Omega-conotoxin GVIA, an N type calcium channel antagonist and flunarizine, a nonselective T-type calcium channel antagonist were without effect. In contrast to this case of glutamate, omega-conotoxin GVIA induced a marked inhibition in the release of gastric noradrenaline. The combined treatment with omega-agatoxin IVA plus isradipine produced a marked synergistic inhibition of the glutamate release. This inhibition was, however, much less than that by cadmium. The present results suggest that P/Q and L type calcium channels coexist to regulate the release of gastric glutamate. Furthermore, it is possible that unidentified calcium channels other than P/Q and L type channels are also involved in the release of glutamate in the stomach.
Collapse
Affiliation(s)
- Y Okuma
- Department of Pharmacology, Kochi Medical School, Nankoku, Japan
| | | | | | | |
Collapse
|
39
|
Presynaptic GABAB autoreceptor modulation of P/Q-type calcium channels and GABA release in rat suprachiasmatic nucleus neurons. J Neurosci 1998. [PMID: 9465016 DOI: 10.1523/jneurosci.18-05-01913.1998] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA is the primary transmitter released by neurons of the suprachiasmatic nucleus (SCN), the circadian clock in the brain. Whereas GABAB receptor agonists exert a significant effect on circadian rhythms, the underlying mechanism by which GABAB receptors act in the SCN has remained a mystery. We found no GABAB receptor-mediated effect on slow potassium conductance, membrane potential, or input resistance in SCN neurons in vitro using whole-cell patch-clamp recording. In contrast, the GABAB receptor agonist baclofen (1-100 microM) exerted a large and dose-dependent inhibition (up to 100%) of evoked IPSCs. Baclofen reduced the frequency of spontaneous IPSCs but showed little effect on the frequency or amplitude of miniature IPSCs in the presence of tetrodotoxin. The activation of GABAB receptors did not modulate postsynaptic GABAA receptor responses. The depression of GABA release by GABAB autoreceptors appeared to be mediated primarily through a modulation of presynaptic calcium channels. The baclofen inhibition of both calcium currents and evoked IPSCs was greatly reduced (up to 100%) by the P/Q-type calcium channel blocker agatoxin IVB, suggesting that P/Q-type calcium channels are the major targets involved in the modulation of GABA release. To a lesser degree, N-type calcium channels were also involved. The inhibition of GABA release by baclofen was abolished by a pretreatment with pertussis toxin (PTX), whereas the inhibition of whole-cell calcium currents by baclofen was only partially depressed by PTX, suggesting that G-protein mechanisms involved in GABAB receptor modulation at the soma and axon terminal may not be identical. We conclude that GABAB receptor activation exerts a strong presynaptic inhibition of GABA release in SCN neurons, primarily by modulating P/Q-type calcium channels at axon terminals.
Collapse
|
40
|
Hundt W, Hölter SM, Spanagel R. Discriminative stimulus effects of glutamate release inhibitors in rats trained to discriminate ethanol. Pharmacol Biochem Behav 1998; 59:691-5. [PMID: 9512073 DOI: 10.1016/s0091-3057(97)00463-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In a drug discrimination paradigm with rats trained to discriminate ethanol (1 g/kg IP) from saline we studied two substances, lamotrigine and riluzole, which are regarded as glutamate release inhibitors concerning their ability to substitute for ethanol. Both substances have been shown to act primarily on voltage-gated sodium channels; however, Lamotrigine dose dependently generalized to the ethanol cue, whereas riluzole did not. These results reflect the different high-dose effects of both sustances at voltage-gated calcium channels, where lamotrigine has inhibitory effects, but not riluzole, and provide further evidence for a role of voltage-gated calcium channels in the mediation of the effects of ethanol.
Collapse
Affiliation(s)
- W Hundt
- Max Planck Institute of Psychiatry, Clinical Institute, Munich, Germany
| | | | | |
Collapse
|
41
|
Schousboe A, Sonnewald U, Civenni G, Gegelashvili G. Role of astrocytes in glutamate homeostasis. Implications for excitotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 429:195-206. [PMID: 9413575 DOI: 10.1007/978-1-4757-9551-6_14] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- A Schousboe
- Department of Biological Sciences, Royal Danish School of Pharmacy, Copenhagen, Denmark
| | | | | | | |
Collapse
|
42
|
Cousin MA, Hurst H, Nicholls DG. Presynaptic calcium channels and field-evoked transmitter exocytosis from cultured cerebellar granule cells. Neuroscience 1997; 81:151-61. [PMID: 9300408 DOI: 10.1016/s0306-4522(97)00047-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Regulated exocytosis from cultured rat cerebellar granule cells can be localized by the vesicle specific marker FM2-10 to specific sites, the highest density of which are at visible varicosities coinciding with neurite-neurite contacts. Exocytosis can be evoked by uniform electrical field pulses, which initiate tetrodotoxin-sensitive action potentials, or by elevated KCl. [3H]D-Aspartate is an authentic false transmitter in this preparation, judged by sensitivity of release to bafilomycin A1 and tetanus toxin. The coupling of presynaptic voltage-activated Ca2+ channels to [3H]D-aspartate exocytosis was determined during field stimulation. The peak cytoplasmic free Ca2+ concentration achieved in the varicosities was proportional to Ca2+ entry during a 10 strain of pulses. L-type Ca2+ channels did not contribute to either Ca2+ entry or [3H]D-aspartate exocytosis. The P-type Ca2+ channel antagonist omega-agatoxin-IVA (30 nM) only inhibited at 75% of the varicosities, although a mean 15% inhibition of Ca2+ entry caused a 39% inhibition of exocytosis. In contrast the N-type Ca2+ channel inhibitor omega-conotoxin-GVIA (1 microM), which inhibited at virtually all varicosities, caused mean inhibitions of Ca2+ entry and exocytosis of 26% and 24% respectively. The toxin omega-conotoxin-MVIIC (5 microM), which inhibits N-, P- and Q-type Ca2+ channels, was effective at all varicosities. The Q-type component of Ca2+ entry was calculated to be only 5-10%; however, the additional inhibition of exocytosis was 30%. Thus P-type and particularly Q-type channels appear to be more closely coupled to exocytosis than N-type Ca2+ channels. The residual Ca2+ entry following 5 microM omega-conotoxin-MVIIC is scarcely coupled to release. The omega-agatoxin-IVA and omega-conotoxin-GVIA inhibitions of both Ca2+ entry and exocytosis were additive and varied stochastically between individual varicosities. These results demonstrate that both Q- and P-type Ca2+ channels are highly efficient in their coupling to amino acid exocytosis, with N-type less efficient, and L-type channels not at all. The Ca2+ channel types coupled to exocytosis are also able to support exocytosis when evoked by either brief field-evoked action potentials or prolonged depolarization with KCl, indicating that these presynaptic channels, in contrast to those on the somata of the cells, can respond to widely different patterns of activation.
Collapse
Affiliation(s)
- M A Cousin
- Department of Pharmacology, Ninewells Medical School, University of Dundee, U.K
| | | | | |
Collapse
|
43
|
Dobrev D, Andreas K. Modulation of potassium-evoked [3H]dopamine release from rat striatal slices by voltage-activated calcium channel ligands: effects of omega-conotoxin-MVIIC. Neurochem Res 1997; 22:1085-93. [PMID: 9251097 DOI: 10.1023/a:1027305016440] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We examined the involvement of voltage-activated Ca2+ channels (VACCs) on K+(50 mM)-evoked [3H]dopamine ([3H]DA) release from superfused rat striatal slices. Neither nifedipine nor nitrendipine modified K(+)-evoked [3H]DA release, indicating that L-type VACCs are not involved. K(+)-evoked [3H]DA release was partially inhibited by omega-CTx-GVIA and omega-Aga-IVA, and was abolished by 3 microM omega-CTx-MVIIC (IC50 approximately 128 nM), suggesting the involvement of N-, P-, or Q-type VACCs, respectively. Moreover, even subnanomolar concentrations of omega-CTx-MVIIC (0.1-0.5 nM) inhibited K(+)-evoked [3H]DA release by approximately 25%, suggesting the possible involvement of a still not classified (perhaps O-type?) Ca2+ channel subtype. The effects of omega-CTx-MVIIC (10-100 nM) and omega-CTx-GVIA (1 microM) were additive, suggesting that low nanomolar concentrations of omega-CTx-MVIIC does not interact with N-type VACCs. In conclusion, the K(+)-evoked [3H]DA release from rat striatal slices is mediated by entry of Ca2+ through omega-CTx-GVIA sensitive (N-type) as well as through omega-Aga-IVA (P-type) and omega-CTx-MVIIC (probably Q-type) sensitive VACCs.
Collapse
Affiliation(s)
- D Dobrev
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Technology, Dresden, Germany
| | | |
Collapse
|
44
|
Schmitz Y, Witkovsky P. Dependence of photoreceptor glutamate release on a dihydropyridine-sensitive calcium channel. Neuroscience 1997; 78:1209-16. [PMID: 9174087 DOI: 10.1016/s0306-4522(96)00678-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A "reduced retina" preparation, consisting of the photoreceptor layer attached to the pigment epithelium in the eyecup, was used to study the pharmacology of the calcium channels controlling glutamate release by photoreceptors in Xenopus. Glutamate release was evoked either by dark adaptation or by superfusion with elevated (20 mM) potassium medium. Both darkness- and potassium-induced release were blocked by cadmium (200 microM). The N-type calcium channel blocker, omega-conotoxin GVIA (500 nM), the P-type calcium channel blocker, omega-agatoxin IVA (20 nM), and the P- and Q-type channel blocker omega-conotoxin MVIIC (1 microM) had no effect on glutamate release. In contrast, the dihydropyridines, nifedipine (10 microM) and nitrendipine (10 microM), which affect L-type calcium channels, blocked both darkness- and potassium-induced release. Bay K 8644 (10 microM), which promotes the open state of L-type calcium channels, enhanced glutamate release. These results indicate that photoreceptor glutamate release is controlled mainly by dihydropyridine-sensitive calcium channels. A dependence of glutamate release on L-type calcium channels also has been reported for depolarizing bipolar cells of a fish retina. Thus, it appears that non-inactivating L-type calcium channels are appropriate to mediate transmitter release in neurons whose physiological responses are sustained, graded potentials.
Collapse
Affiliation(s)
- Y Schmitz
- Department of Ophthalmology, New York University Medical Center, New York 10016, USA
| | | |
Collapse
|
45
|
Varming T, Christopherson P, Schousboe A, Drejer J. Pharmacological characterisation of voltage-sensitive calcium channels and neurotransmitter release from mouse cerebellar granule cells in culture. J Neurosci Res 1997; 48:43-52. [PMID: 9086180 DOI: 10.1002/(sici)1097-4547(19970401)48:1<43::aid-jnr4>3.0.co;2-e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using subtype-specific Ca-channel blockers, we have characterised the voltage-sensitive Ca2+ currents as well as neurotransmitter release from cultured mouse cerebellar granule cells. The whole cell version of the patch clamp technique was adapted to monitor the isolated Ca-channel currents. The currents were activated at potentials more positive than -40 mV and were composed of at least four pharmacological distinct components being sensitive to nifedipine (35%), omega-conotoxin GVIA (10%), and omega-agatoxin IVA (42%) corresponding to L-, N-, and P-channel-mediated currents. The insensitive fraction (13%) possibly represented R channels. High potassium-evoked release of 3H-D-aspartate was used as a model of synaptic release. These studies were performed at relatively mild stimulation conditions (30 mM K+, 0.4 mM Ca2+), and 85% of the evoked release was Ca2+ dependent as well as tetrodotoxin and Cd2+ sensitive. Nifedipine and omega-agatoxin IVA dose dependently (IC50 values of 10 nM and 0.7 nM, respectively) blocked most of the release, whereas omega-conotoxin MVIIA (IC50 = 5 nM) caused partial blockage. The results indicate that several subtypes of voltage-sensitive Ca channels are present in mouse cerebellar granule cells. Furthermore, the data suggest that L, N, and P channels act in concert in the neurotransmitter release process.
Collapse
|
46
|
Poncer JC, McKinney RA, Gähwiler BH, Thompson SM. Either N- or P-type calcium channels mediate GABA release at distinct hippocampal inhibitory synapses. Neuron 1997; 18:463-72. [PMID: 9115739 DOI: 10.1016/s0896-6273(00)81246-5] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transmitter release at most central synapses depends on multiple types of calcium channels. Identification of the channels mediating GABA release in hippocampus is complicated by the heterogeneity of interneurons. Unitary IPSPs were recorded from pairs of inhibitory and pyramidal cells in hippocampal slice cultures. The N-type channel antagonist omega-conotoxin MVIIA abolished IPSPs generated by interneurons in st. radiatum, whereas the P/Q-type antagonist omega-agatoxin IVA had no effect. In contrast, omega-agatoxin IVA abolished IPSPs generated by st. lucidum and st. oriens interneurons, but omega-conotoxin MVIIA had no effect. After unitary IPSPs were blocked by toxin, transmission could not be restored by increasing presynaptic calcium entry. The axons of the two types of interneurons terminated within distinct strata of area CA3. Thus, GABA release onto pyramidal cells, unlike glutamate release, is mediated entirely by either N- or P-type calcium channels, depending on the presynaptic cell and the postsynaptic location of the synapse.
Collapse
Affiliation(s)
- J C Poncer
- Brain Research Institute, University of Zurich, Switzerland
| | | | | | | |
Collapse
|
47
|
Marszalec W, Song JH, Narahashi T. The effects of the muscle relaxant, CS-722, on synaptic activity of cultured neurones. Br J Pharmacol 1996; 119:126-32. [PMID: 8872365 PMCID: PMC1915728 DOI: 10.1111/j.1476-5381.1996.tb15685.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The pharmacological properties of the centrally acting muscle relaxant, CS-722, were studied in cultured hippocampal cells and dorsal root ganglion cells of the rat using the whole-cell variation of the patch clamp technique. 2. CS-722 inhibited the occurrence of spontaneous excitatory and inhibitory postsynaptic currents in hippocampal neurones at concentrations of 100-300 microM, but had no effect on postsynaptic currents evoked by the application of glycine, gamma-aminobutyric acid, glutamate or N-methyl-D-aspartate. 3. CS-722 reduced voltage-gated sodium currents, while shifting the sodium channel inactivation curve to more negative membrane potentials. This effect is similar to that reported for local anaesthetics. Voltage-gated potassium currents were decreased by CS-722 by approximately 20%, whereas voltage-activated calcium currents were inhibited by about 25%. 4. CS-722 inhibited evoked inhibitory postsynaptic currents. However, the spontaneous quantal release of inhibitory transmitter was not affected. 5. The inhibitory effect of CS-722 on spontaneous inhibitory postsynaptic currents and excitatory postsynaptic currents in hippocampal cultures probably results from an inhibition of both sodium and calcium currents. This inhibitory effect is likely to be amplified in polysynaptic neuronal circuits.
Collapse
Affiliation(s)
- W Marszalec
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | |
Collapse
|
48
|
Bon C, Galvan M. Electrophysiological actions of GABAB agonists and antagonists in rat dorso-lateral septal neurones in vitro. Br J Pharmacol 1996; 118:961-7. [PMID: 8799569 PMCID: PMC1909507 DOI: 10.1111/j.1476-5381.1996.tb15493.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. The actions of GABAB-receptor agonists and antagonists on rat dorso-lateral septal neurones in vitro were recorded with intracellular microelectrodes. 2. In the presence of 1 microM tetrodotoxin to prevent indirect neuronal effects caused by action potential-dependent neurotransmitter release, bath application of baclofen (0.1-30 microM) or SK&F 97541 (0.01-3 microM) evoked concentration-dependent hyperpolarizations which reversed close to the potassium equilibrium potential; the EC50S were 0.55 and 0.05 microM, respectively. No significant desensitization was observed during prolonged agonist exposure (< or = 10 min). 3. Hyperpolarizations induced by baclofen were antagonized in a competitive manner by the following GABAB-receptors antagonists (calculated pA2 values in parentheses): CGP 36742 (4.0), 2-OH saclofen (4.2), CGP 35348 (4.5), CGP 52432 (6.7) and CGP 55845A (8.3). Responses to SK&F 97541 were also antagonized by CGP 55845A (pA2 = 8.4). 4. The amplitude of the late, GABAB receptor-mediated inhibitory postsynaptic potential (i.p.s.p.) was reduced by the GABAB antagonists as follows (means +/- s.e.mean): CGP 55845A (1 microM) 91 +/- 5%, CGP 52432 (1 microM) 64 +/- 5%, CGP 35348 (100 microM) 82 +/- 5%, CGP 36742 (100 microM) 76 +/- 8%, and 2-OH saclofen (100 microM) 68 +/- 3%. 5. It is concluded that neurones in the rat dorso-lateral septal nucleus express conventional GABAB receptors, which are involved in the generation of slow inhibitory postsynaptic potentials. CGP 55845A is the most potent GABAB receptor antagonist described in this brain area.
Collapse
Affiliation(s)
- C Bon
- Department of Pharmacology, Marion Merrell Research Institute, Strasbourg, France
| | | |
Collapse
|