1
|
Kentar M, Ramirez-Cuapio FL, Gutiérrez-Herrera MA, Sanchez-Porras R, Díaz-Peregrino R, Holzwarth N, Maier-Hein L, Woitzik J, Santos E. Mild hypothermia reduces spreading depolarizations and infarct size in a swine model. J Cereb Blood Flow Metab 2023; 43:999-1009. [PMID: 36722153 PMCID: PMC10196741 DOI: 10.1177/0271678x231154604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 02/02/2023]
Abstract
Spreading depolarizations (SDs) have been linked to infarct volume expansion following ischemic stroke. Therapeutic hypothermia provides a neuroprotective effect after ischemic stroke. This study aimed to evaluate the effect of hypothermia on the propagation of SDs and infarct volume in an ischemic swine model. Through left orbital exenteration, middle cerebral arteries were surgically occluded (MCAo) in 16 swine. Extensive craniotomy and durotomy were performed. Six hypothermic and five normothermic animals were included in the analysis. An intracranial temperature probe was placed right frontal subdural. One hour after ischemic onset, mild hypothermia was induced and eighteen hours of electrocorticographic (ECoG) and intrinsic optical signal (IOS) recordings were acquired. Postmortem, 4 mm-thick slices were stained with 2,3,5-triphenyltetrazolium chloride to estimate the infarct volume. Compared to normothermia (36.4 ± 0.4°C), hypothermia (32.3 ± 0.2°C) significantly reduced the frequency and expansion of SDs (ECoG: 3.5 ± 2.1, 73.2 ± 5.2% vs. 1.0 ± 0.7, 41.9 ± 21.8%; IOS 3.9 ± 0.4, 87.6 ± 12.0% vs. 1.4 ± 0.7, 67.7 ± 8.3%, respectively). Further, infarct volume among hypothermic animals (23.2 ± 1.8% vs. 32.4 ± 2.5%) was significantly reduced. Therapeutic hypothermia reduces infarct volume and the frequency and expansion of SDs following cerebral ischemia.
Collapse
Affiliation(s)
- Modar Kentar
- Department of Neurosurgery,
University of Heidelberg, Heidelberg, Germany
| | | | | | - Renan Sanchez-Porras
- Department of Neurosurgery,
Evangelisches Krankenhaus Oldenburg, Carl von Ossietzky University of Oldenburg,
Oldenburg, Germany
| | | | - Niklas Holzwarth
- Division of Intelligent Medical
Systems, German Cancer Research Center, Heidelberg, Germany
| | - Lena Maier-Hein
- Division of Intelligent Medical
Systems, German Cancer Research Center, Heidelberg, Germany
| | - Johannes Woitzik
- Department of Neurosurgery,
Evangelisches Krankenhaus Oldenburg, Carl von Ossietzky University of Oldenburg,
Oldenburg, Germany
| | - Edgar Santos
- Department of Neurosurgery,
University of Heidelberg, Heidelberg, Germany
- Department of Neurosurgery,
Evangelisches Krankenhaus Oldenburg, Carl von Ossietzky University of Oldenburg,
Oldenburg, Germany
| |
Collapse
|
2
|
Calcium/Calmodulin-Stimulated Protein Kinase II (CaMKII): Different Functional Outcomes from Activation, Depending on the Cellular Microenvironment. Cells 2023; 12:cells12030401. [PMID: 36766743 PMCID: PMC9913510 DOI: 10.3390/cells12030401] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Calcium/calmodulin-stimulated protein kinase II (CaMKII) is a family of broad substrate specificity serine (Ser)/threonine (Thr) protein kinases widely expressed in many tissues that is capable of mediating diverse functional responses depending on its cellular and molecular microenvironment. This review briefly summarises current knowledge on the structure and regulation of CaMKII and focuses on how the molecular environment, and interaction with binding partner proteins, can produce different populations of CaMKII in different cells, or in different subcellular locations within the same cell, and how these different populations of CaMKII can produce diverse functional responses to activation following an increase in intracellular calcium concentration. This review also explores the possibility that identifying and characterising the molecular interactions responsible for the molecular targeting of CaMKII in different cells in vivo, and identifying the sites on CaMKII and/or the binding proteins through which these interactions occur, could lead to the development of highly selective inhibitors of specific CaMKII-mediated functional responses in specific cells that would not affect CaMKII-mediated responses in other cells. This may result in the development of new pharmacological agents with therapeutic potential for many clinical conditions.
Collapse
|
3
|
Zhang M, Duan X, Wang L, Wen J, Fang P. Deregulation of HSF1-mediated endoplasmic reticulum unfolded protein response promotes cisplatin resistance in lung cancer cells. FEBS J 2022; 290:2706-2720. [PMID: 36536996 DOI: 10.1111/febs.16709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/03/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Mild hypothermia can induce apoptotic cell death in many cancer cells, but the underlying mechanisms remain unclear. In a genetic screen in Caenorhabditis elegans, we found that impaired endoplasmic reticulum unfolded protein response (UPRER ) increased animal survival after cold shock. Consistently, in normal human lung cells, decreasing culture temperature from 37 to 30 °C activated UPRER and promoted cell death. However, lung adenocarcinoma cells were impaired in UPRER induction and resistant to hypothermia-induced cell death. Mechanistically, hypothermic stress increased HSF1 levels, which in turn activated UPRER to promote apoptotic cell death. HSF1 expression was associated with UPRER genes in normal tissues, but such association was lost in many cancers, especially lung adenocarcinoma. Activating UPRER enhanced the cytotoxicity of chemotherapy drugs cisplatin preferentially in cancer cells. Consistently, cancer patients with higher UPRER expression had generally better prognosis. Together, our study on hypothermia has led to the discovery of HSF1-UPRER in the regulation of drug sensitivity in lung cancer cells, providing novel thoughts on developing new strategies against chemoresistance.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xiaoyu Duan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Lu Wang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Jing Wen
- Department of Pharmacy, The Third Hospital of Changsha, China
| | - Pingfei Fang
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
4
|
Andrews PJ, Sinclair HL, Rodríguez A, Harris B, Rhodes J, Watson H, Murray G. Therapeutic hypothermia to reduce intracranial pressure after traumatic brain injury: the Eurotherm3235 RCT. Health Technol Assess 2019; 22:1-134. [PMID: 30168413 DOI: 10.3310/hta22450] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of disability and death in young adults worldwide. It results in around 1 million hospital admissions annually in the European Union (EU), causes a majority of the 50,000 deaths from road traffic accidents and leaves a further ≈10,000 people severely disabled. OBJECTIVE The Eurotherm3235 Trial was a pragmatic trial examining the effectiveness of hypothermia (32-35 °C) to reduce raised intracranial pressure (ICP) following severe TBI and reduce morbidity and mortality 6 months after TBI. DESIGN An international, multicentre, randomised controlled trial. SETTING Specialist neurological critical care units. PARTICIPANTS We included adult participants following TBI. Eligible patients had ICP monitoring in place with an ICP of > 20 mmHg despite first-line treatments. Participants were randomised to receive standard care with the addition of hypothermia (32-35 °C) or standard care alone. Online randomisation and the use of an electronic case report form (CRF) ensured concealment of random treatment allocation. It was not possible to blind local investigators to allocation as it was obvious which participants were receiving hypothermia. We collected information on how well the participant had recovered 6 months after injury. This information was provided either by the participant themself (if they were able) and/or a person close to them by completing the Glasgow Outcome Scale - Extended (GOSE) questionnaire. Telephone follow-up was carried out by a blinded independent clinician. INTERVENTIONS The primary intervention to reduce ICP in the hypothermia group after randomisation was induction of hypothermia. Core temperature was initially reduced to 35 °C and decreased incrementally to a lower limit of 32 °C if necessary to maintain ICP at < 20 mmHg. Rewarming began after 48 hours if ICP remained controlled. Participants in the standard-care group received usual care at that centre, but without hypothermia. MAIN OUTCOME MEASURES The primary outcome measure was the GOSE [range 1 (dead) to 8 (upper good recovery)] at 6 months after the injury as assessed by an independent collaborator, blind to the intervention. A priori subgroup analysis tested the relationship between minimisation factors including being aged < 45 years, having a post-resuscitation Glasgow Coma Scale (GCS) motor score of < 2 on admission, having a time from injury of < 12 hours and patient outcome. RESULTS We enrolled 387 patients from 47 centres in 18 countries. The trial was closed to recruitment following concerns raised by the Data and Safety Monitoring Committee in October 2014. On an intention-to-treat basis, 195 participants were randomised to hypothermia treatment and 192 to standard care. Regarding participant outcome, there was a higher mortality rate and poorer functional recovery at 6 months in the hypothermia group. The adjusted common odds ratio (OR) for the primary statistical analysis of the GOSE was 1.54 [95% confidence interval (CI) 1.03 to 2.31]; when the GOSE was dichotomised the OR was 1.74 (95% CI 1.09 to 2.77). Both results favoured standard care alone. In this pragmatic study, we did not collect data on adverse events. Data on serious adverse events (SAEs) were collected but were subject to reporting bias, with most SAEs being reported in the hypothermia group. CONCLUSIONS In participants following TBI and with an ICP of > 20 mmHg, titrated therapeutic hypothermia successfully reduced ICP but led to a higher mortality rate and worse functional outcome. LIMITATIONS Inability to blind treatment allocation as it was obvious which participants were randomised to the hypothermia group; there was biased recording of SAEs in the hypothermia group. We now believe that more adequately powered clinical trials of common therapies used to reduce ICP, such as hypertonic therapy, barbiturates and hyperventilation, are required to assess their potential benefits and risks to patients. TRIAL REGISTRATION Current Controlled Trials ISRCTN34555414. FUNDING This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 22, No. 45. See the NIHR Journals Library website for further project information. The European Society of Intensive Care Medicine supported the pilot phase of this trial.
Collapse
Affiliation(s)
- Peter Jd Andrews
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - H Louise Sinclair
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Aryelly Rodríguez
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| | - Bridget Harris
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Gordon Murray
- Centre for Population Health Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Abstract
Therapeutic hypothermia (TH) is a potent neuroprotective therapy in experimental cerebral ischemia, with multiple effects at several stages of the ischemic cascade. In animals, TH is so powerful that all preclinical stroke studies require strict temperature control. In humans, multiple clinical studies documented powerful protection with TH after accidental neonatal hypoxic-ischemic injury and global cerebral ischemia with return of spontaneous circulation after cardiac arrest. National and international guidelines recommend TH for selected survivors of global ischemia, with profound benefits seen. Recently, a study comparing target temperature 33-36°C failed to demonstrate significant effects in cardiac arrest patients. Additionally, clinical trials of TH for head trauma and stroke have so far failed to confirm benefit in humans despite a vast preclinical literature. Therefore, it is now critical to understand the fundamental explanation for the success of TH in some, but famously not all, clinical trials. TH in animals appears to work when used soon after ischemia onset; for a short duration; and at a deep target temperature.
Collapse
|
6
|
Abstract
Hypothermia is the most potent neuroprotective therapy available. Clinical use of hypothermia is limited by technology and homeostatic mechanisms that maintain core body temperature. Recent advances in intravascular cooling catheters and successful trials of hypothermia for cardiac arrest revivified interest in hypothermia for stroke, resulting in Phase 1 clinical trials and plans for further development. Given the recent spate of neuroprotective therapy failures, we sought to clarify whether clinical trials of therapeutic hypothermia should be mounted in stroke patients. We reviewed the preclinical and early clinical trials of hypothermia for a variety of indications, the putative mechanisms for neuroprotection with hypothermia, and offer several hypotheses that remain to be tested in clinical trials. Therapeutic hypothermia is promising, but further Phase 1 and Phase 2 development efforts are needed to ensure that cooling of stroke patients is safe, before definitive efficacy trials.
Collapse
Affiliation(s)
- Patrick D. Lyden
- Neurology and Research Services of the San Diego Veteran's Administration Medical Center and the Department of Neurosciences, University of California, San Diego, CA, USA
| | - Derk Krieger
- Section of Stroke and Neurological Critical Care, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Midori Yenari
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, CA, USA
- Neurology Department of the San Francisco Veteran's Administration Medical Center, San Francisco, CA, USA
| | - W. Dalton Dietrich
- Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, USA
| |
Collapse
|
7
|
Wang D, Zhang J. Effects of hypothermia combined with neural stem cell transplantation on recovery of neurological function in rats with spinal cord injury. Mol Med Rep 2014; 11:1759-67. [PMID: 25385306 PMCID: PMC4270334 DOI: 10.3892/mmr.2014.2905] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 09/18/2014] [Indexed: 12/13/2022] Open
Abstract
The microenvironment of the injured spinal cord is hypothesized to be involved in driving the differentiation and survival of engrafted neural stem cells (NSCs). Hypothermia is known to improve the microenvironment of the injured spinal cord in a number of ways. To investigate the effect of NSC transplantation in combination with hypothermia on the recovery of rat spinal cord injury, 60 Sprague-Dawley female rats were used to establish a spinal cord hemisection model. They were divided randomly into three groups: A, spinal cord injury group; B, NSC transplantation group; and C, NSC transplantation + hypothermia group. At 1, 2, 4, 6 and 8 weeks post-injury, the motor function of all animals was evaluated using the Basso, Beattie and Besnaham locomotor scoring system and the inclined plane test. At 4 weeks post-transplantation, histological analysis and immunocytochemistry were performed. At 8 weeks post-transplantation, horseradish peroxidase nerve tracing and transmission electron microscopy were conducted to observe axonal regeneration. The outcome of hind limb motor function recovery in group C significantly surpassed that in group B at 4 weeks post-injury (P<0.05). Recovery was also observed in group A, but to a lesser degree. For the pathological sections no neural axonal were observed in group A. A few axon-like structures were observed in group B and more in group C. Horseradish peroxidase-labeled neurofibers and bromodeoxyuridine-positive cells were observed in the spinal cords of group C. Fewer of these cells were found in group B and fewer still in group A. The differences among the three groups were significant (P<0.05). Using transmission electron microscopy, newly formed nerve fibers and myelinated nerve fibers were observed in the central transverse plane in groups B and C, although these nerve fibers were not evident in group A. In conclusion, NSC transplantation promoted the recovery of hind limb function in rats, and combination treatment with hypothermia produced synergistic effects.
Collapse
Affiliation(s)
- Dong Wang
- Department of Neurosurgery, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, P.R. China
| | - Jianjun Zhang
- Department of Neurosurgery, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, P.R. China
| |
Collapse
|
8
|
Luo T, Park Y, Sun X, Liu C, Hu B. Protein misfolding, aggregation, and autophagy after brain ischemia. Transl Stroke Res 2013; 4:581-8. [PMID: 24323413 DOI: 10.1007/s12975-013-0299-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/17/2013] [Accepted: 10/20/2013] [Indexed: 01/02/2023]
Abstract
Ischemic brain injury is a common disorder linked to a variety of diseases. Significant progress has been made in our understanding of the underlying mechanisms. Previous studies show that protein misfolding, aggregation, and multiple organelle damage are major pathological events in postischemic neurons. The autophagy pathway is the chief route for bulk degradation of protein aggregates and damaged organelles. The latest studies suggest that impairment of autophagy contributes to abnormal protein aggregation and organelle damages after brain ischemia. This article reviews recent studies of protein misfolding, aggregation, and impairment of autophagy after brain ischemia.
Collapse
Affiliation(s)
- Tianfei Luo
- Shock, Trauma and Anesthesiology Research Center, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | | | | | | | | |
Collapse
|
9
|
Han HS, Park J, Kim JH, Suk K. Molecular and cellular pathways as a target of therapeutic hypothermia: pharmacological aspect. Curr Neuropharmacol 2012; 10:80-7. [PMID: 22942881 PMCID: PMC3286850 DOI: 10.2174/157015912799362751] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 08/08/2011] [Accepted: 09/08/2011] [Indexed: 11/22/2022] Open
Abstract
Induced therapeutic hypothermia is the one of the most effective tools against brain injury and inflammation. Even though its beneficial effects are well known, there are a lot of pitfalls to overcome, since the potential adverse effects of systemic hypothermia are still troublesome. Without the knowledge of the precise mechanisms of hypothermia, it will be difficult to tackle the application of hypothermia in clinical fields. Better understanding of the characteristics and modes of hypothermic actions may further extend the usage of hypothermia by developing novel drugs based on the hypothermic mechanisms or by combining hypothermia with other therapeutic modalities such as neuroprotective drugs. In this review, we describe the potential therapeutic targets for the development of new drugs, with a focus on signal pathways, gene expression, and structural changes of cells. Theapeutic hypothermia has been shown to attenuate neuroinflammation by reducing the production of reactive oxygen species and proinflammatory mediators in the central nervous system. Along with the mechanism-based drug targets, applications of therapeutic hypothermia in combination with drug treatment will also be discussed in this review.
Collapse
Affiliation(s)
- Hyung Soo Han
- Department of Physiology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu, 700-422, Korea
| | | | | | | |
Collapse
|
10
|
Awad H, Elgharably H, Popovich PG. Role of induced hypothermia in thoracoabdominal aortic aneurysm surgery. Ther Hypothermia Temp Manag 2012; 2:119-37. [PMID: 24716449 DOI: 10.1089/ther.2012.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
For more than 50 years, hypothermia has been used in aortic surgery as a tool for neuroprotection. Hypothermia has been introduced into thoracoabdominal aortic aneurysm (TAAA) surgery by many cardiovascular centers to protect the body's organs, including the spinal cord. Numerous publications have shown that hypothermia can prevent immediate and delayed motor dysfunction after aortic cross-clamping. Here, we reviewed the historical application of hypothermia in aortic surgery, role of hypothermia in preclinical studies, cellular and molecular mechanisms by which hypothermia confers neuroprotection, and the role of systemic and regional hypothermia in clinical protocols to reduce and/or eliminate the devastating consequences of ischemic spinal cord injury after TAAA repair.
Collapse
Affiliation(s)
- Hamdy Awad
- 1 Department of Anesthesiology, Wexner Medical Center at The Ohio State University , Columbus, Ohio
| | | | | |
Collapse
|
11
|
Hypothermia to Identify Therapeutic Targets for Stroke Treatment. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
12
|
Liu CH, Zhang F, Krisrian T, Polster B, Fiskum GM, Hu B. Protein Aggregation and Multiple Organelle Damage After Brain Ischemia. Transl Stroke Res 2012. [DOI: 10.1007/978-1-4419-9530-8_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Hu B, Friberg H, Wieloch T. Protracted Tyrosine Phosphorylation of the Glutamate Receptor Subunit NR2 in the Rat Hippocampus Following Transient Cerebral Ischemia is Prevented by Intra-Ischemic Hypothermia. Ther Hypothermia Temp Manag 2011; 1:159-164. [PMID: 23667772 DOI: 10.1089/ther.2011.0013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Changes in the dynamic interactions of macromolecules in cell membranes appear to underlie the robust neuroprotective effect of hypothermia against selective neuronal degeneration in the CA1 region of the rat hippocampus after transient cerebral ischemia, but the detailed mechanisms are still elusive. Using the two-vessel occlusion model of transient normothermic cerebral ischemia of 15 min duration, we investigated the tyrosine phosphorylation of synaptic proteins in general and that of the NMDA receptor subunits in particular, at different times of recirculation. Specifically, the effect of intra-ischemic hypothermia (33°C), which provides neuroprotection to the CA1 region of the hippocampus, was studied. Phosphorylation of tyrosine residues on the NMDA receptor (NR) 2, but not of the NR1 or the AMPA receptor subunit 1 (GluR1) proteins, was markedly enhanced following cerebral ischemia. Protein tyrosine phosphorylation was persistently increased in the postsynaptic densities of the vulnerable CA1 region, but was transient in the CA3/dentate gyrus (DG) neurons where cell death was not evident. The phospho-tyrosine phosphatase activity decreased during reperfusion in the CA1 region but not in CA3/DG. Importantly, decreasing body temperature to 33°C during ischemia modified the dynamics of the protein tyrosine phosphorylation of NR2 in the CA1 region, which was transient and similar in time course to that seen in the CA3/DG region after normothermic ischemia. We conclude that the protracted tyrosine phosphorylation of the NR2 subunit in the hippocampus CA1 region following normothermic ischemia is attenuated by hypothermia and therefore constitutes an important target for hypothermic neuroprotection.
Collapse
Affiliation(s)
- Bingren Hu
- Laboratory for Experimental Brain Research, The Wallenberg Neuroscience Center , Lund University Hospital, Lund, Sweden . ; Shock, Trauma and Anesthesiology Research Center, Department of Anesthesiology, University of Maryland School of Medicine , Baltimore, Maryland
| | | | | |
Collapse
|
14
|
Hypothermia enhances the colocalization of calmodulin kinase IIα with neuronal nitric oxide synthase in the hippocampus following cerebral ischemia. Neurosci Lett 2011; 505:228-32. [PMID: 22015767 DOI: 10.1016/j.neulet.2011.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/03/2011] [Accepted: 10/04/2011] [Indexed: 12/16/2022]
Abstract
Hypothermia has been shown to have neuroprotective effects against neurotrauma and cerebrovascular disease. Cerebral ischemia induces the activation of calcium/calmodulin kinase II (CaM-KII), which modulates many enzymes. We have previously demonstrated that CaM-KIIα downregulates neuronal nitric oxide synthase (nNOS) activity. However, precise details regarding the neuroprotective mechanism of hypothermia largely remain to be elucidated. Therefore, in this study, we investigated the neuroprotective mechanism of hypothermia, focusing on the association between CaM-KIIα and nNOS in CA1 hippocampus after focal cerebral ischemia in mice. The temperature was maintained at normothermia (36.5-37.5°C) or mild hypothermia (31.5-32.5°C) during these procedures. Focal cerebral ischemia induced significant dissociation of CaM-KIIα from nNOS in the CA1 hippocampus but not in the cerebral cortex under normothermia. Hypothermia did not change the expression of nNOS, but it significantly induced the colocalization of CaM-KIIα with nNOS in CA1 hippocampus immediately after cerebral ischemia. These results presumably result in the attenuation of nNOS activity and could contribute to the tolerance to post-ischemic damage. This effect could be one of the neuroprotective mechanisms of hypothermia.
Collapse
|
15
|
Abstract
Spinal cord injury (SCI) is a devastating condition that affects approximately 11,000 patients each year in the United States. Although a significant amount of research has been conducted to clarify the pathophysiology of SCI, there are limited therapeutic interventions that are currently available in the clinic. Moderate hypothermia has been used in a variety of experimental and clinical situations to target several neurological disorders, including traumatic brain and SCI. Recent studies using clinically relevant animal models of SCI have reported the efficacy of therapeutic hypothermia (TH) in terms of promoting long-term behavioral improvement and reducing histopathological damage. In addition, several clinical studies have demonstrated encouraging evidence for the use of TH in patients with a severe cervical spinal cord injury. Moderate hypothermia (33°C) introduced systemically by intravascular cooling strategies appears to be safe and provides some improvement of long-term recovery of function. TH remains an experimental clinical approach and randomized multicenter trials are needed to critically evaluate this potentially exciting therapeutic intervention targeting this patient population.
Collapse
Affiliation(s)
- W Dalton Dietrich
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136-1060, USA.
| | | | | | | |
Collapse
|
16
|
Abstract
Traumatic brain injury remains a major cause of death and severe disability throughout the world. Traumatic brain injury leads to 1,000,000 hospital admissions per annum throughout the European Union. It causes the majority of the 50,000 deaths from road traffic accidents and leaves 10,000 patients severely handicapped: three quarters of these victims are young people. Therapeutic hypothermia has been shown to improve outcome after cardiac arrest, and consequently the European Resuscitation Council and American Heart Association guidelines recommend the use of hypothermia in these patients. Hypothermia is also thought to improve neurological outcome after neonatal birth asphyxia. Cardiac arrest and neonatal asphyxia patient populations present to health care services rapidly and without posing a diagnostic dilemma; therefore, therapeutic systemic hypothermia may be implemented relatively quickly. As a result, hypothermia in these two populations is similar to the laboratory models wherein systemic therapeutic hypothermia is commenced very soon after the injury and has shown so much promise. The need for resuscitation and computerised tomography imaging to confirm the diagnosis in patients with traumatic brain injury is a factor that delays intervention with temperature reduction strategies. Treatments in traumatic brain injury have traditionally focussed on restoring and maintaining adequate brain perfusion, surgically evacuating large haematomas where necessary, and preventing or promptly treating oedema. Brain swelling can be monitored by measuring intracranial pressure (ICP), and in most centres ICP is used to guide treatments and to monitor their success. There is an absence of evidence for the five commonly used treatments for raised ICP and all are potential 'double-edged swords' with significant disadvantages. The use of hypothermia in patients with traumatic brain injury may have beneficial effects in both ICP reduction and possible neuro-protection. This review will focus on the bench-to-bedside evidence that has supported the development of the Eurotherm3235Trial protocol.
Collapse
Affiliation(s)
- H Louise Sinclair
- Department of Anaesthesia, Critical Care and Pain Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Peter JD Andrews
- Department of Anaesthesia, Critical Care and Pain Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| |
Collapse
|
17
|
Yamamoto Y, Shioda N, Han F, Moriguchi S, Nakajima A, Yokosuka A, Mimaki Y, Sashida Y, Yamakuni T, Ohizumi Y, Fukunaga K. Nobiletin improves brain ischemia-induced learning and memory deficits through stimulation of CaMKII and CREB phosphorylation. Brain Res 2009; 1295:218-29. [PMID: 19646972 DOI: 10.1016/j.brainres.2009.07.081] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 07/13/2009] [Accepted: 07/16/2009] [Indexed: 11/24/2022]
Abstract
Decreased cerebral blood flow causes cognitive impairments and neuronal injury in the progressive age-related neurodegenerative disorders such as Alzheimer's disease (AD) and vascular dementia. In the present study, we for the first time found that nobiletin, a novel leading compound for AD therapy, improved cerebral ischemia-induced memory deficits in vivo. Treatment with 50 mg/kg of nobiletin (i.p.) for the consecutive 7 days before and after brain ischemia significantly inhibited delayed neuronal death in the hippocampal CA1 neurons in a 20-min bilateral common carotid arteries occlusion (BCCAO) ischemia. However, the contextual memory assessed by passive avoidance task was not improved. On the other hand, a 5-min BCCAO-induced contextual memory deficit was significantly improved by the nobiletin treatment. In the 5-min BCCAO mice, Western blot analysis evidently showed that the levels of synaptic proteins, including calcium/calmodulin-dependent protein kinase II (CaMKII), microtubule-associated protein 2 (MAP2) and glutamate receptor 1 (GluR1), significantly decreased in the hippocampal CA1 region. The nobiletin treatment prevented the reduction in CaMKII, MAP2 and GluR1 protein levels in the hippocampal CA1 region, accompanied by restoration of both ERK and CREB phosphorylation and CaMKII autophosphorylation. Consistent with the restored CaMKII and ERK phosphorylation, an electrophysiological study showed that the impaired hippocampal long-term potentiation (LTP) observed in the 5-min ischemic mice was significantly improved by the nobiletin treatment. These findings suggest that the activation of CaMKII and ERK signaling in part mediates improvement of ischemia-induced learning and memory deficits by nobiletin.
Collapse
Affiliation(s)
- Yui Yamamoto
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki-Aoba Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Dietrich WD, Atkins CM, Bramlett HM. Protection in animal models of brain and spinal cord injury with mild to moderate hypothermia. J Neurotrauma 2009; 26:301-12. [PMID: 19245308 DOI: 10.1089/neu.2008.0806] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
For the past 20 years, various laboratories throughout the world have shown that mild to moderate levels of hypothermia lead to neuroprotection and improved functional outcome in various models of brain and spinal cord injury (SCI). Although the potential neuroprotective effects of profound hypothermia during and following central nervous system (CNS) injury have long been recognized, more recent studies have described clinically feasible strategies for protecting the brain and spinal cord using hypothermia following a variety of CNS insults. In some cases, only a one or two degree decrease in brain or core temperature can be effective in protecting the CNS from injury. Alternatively, raising brain temperature only a couple of degrees above normothermia levels worsens outcome in a variety of injury models. Based on these data, resurgence has occurred in the potential use of therapeutic hypothermia in experimental and clinical settings. The study of therapeutic hypothermia is now an international area of investigation with scientists and clinicians from every part of the world contributing to this important, promising therapeutic intervention. This paper reviews the experimental data obtained in animal models of brain and SCI demonstrating the benefits of mild to moderate hypothermia. These studies have provided critical data for the translation of this therapy to the clinical arena. The mechanisms underlying the beneficial effects of mild hypothermia are also summarized.
Collapse
Affiliation(s)
- W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136-1060, USA.
| | | | | |
Collapse
|
19
|
Therapeutic hypothermia preserves antioxidant defenses after severe traumatic brain injury in infants and children. Crit Care Med 2009; 37:689-95. [PMID: 19114918 DOI: 10.1097/ccm.0b013e318194abf2] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Oxidative stress contributes to secondary damage after traumatic brain injury (TBI). Hypothermia decreases endogenous antioxidant consumption and lipid peroxidation after experimental cerebral injury. Our objective was to determine the effect of therapeutic hypothermia on oxidative damage after severe TBI in infants and children randomized to moderate hypothermia vs. normothermia. DESIGN Prospective randomized controlled study. SETTING Pediatric intensive care unit of Pittsburgh Children's Hospital. PATIENTS The study included 28 patients. MEASUREMENTS AND MAIN RESULTS We compared the effects of hypothermia (32 degrees C-33 degrees C) vs. normothermia in patients treated in a single center involved in a multicentered randomized controlled trial of hypothermia in severe pediatric TBI (Glasgow Coma Scale score <or=8). The patients randomized to hypothermia (n = 13) were cooled to target temperature within approximately 6 to 24 hours for 48 hours and then rewarmed. Antioxidant status was assessed by measurements of total antioxidant reserve and glutathione. Protein oxidation and lipid peroxidation were assessed by measurements of protein thiols and F2-isoprostane, respectively, in ventricular cerebrospinal fluid (CSF) samples (n = 76) obtained on day 1-3 after injury. The association between Glasgow Coma Scale score, age, gender, treatment, temperature, time after injury, and CSF antioxidant reserve, glutathione, protein-thiol, F2-isoprostane levels were assessed by bivariate and multiple regression models. Demographic and clinical characteristics were similar between the two treatment groups. Mechanism of injury included both accidental injury and nonaccidental injury. Multiple regression models revealed preservation of CSF antioxidant reserve by hypothermia (p = 0.001). Similarly, a multiple regression model showed that glutathione levels were inversely associated with patient temperature at the time of sampling (p = 0.002). F2-isoprostane levels peaked on day 1 after injury and were progressively decreased thereafter. Although F2-isoprostane levels were approximately three-fold lower in patients randomized to hypothermia vs. normothermia, this difference was not statistically significant. CONCLUSION To our knowledge, this is the first study demonstrating that hypothermia attenuates oxidative stress after severe TBI in infants and children. Our data also support the concept that CSF represents a valuable tool for monitoring treatment effects on oxidative stress after TBI.
Collapse
|
20
|
Skelding KA, Rostas JAP. Regulation of CaMKII in vivo: the importance of targeting and the intracellular microenvironment. Neurochem Res 2009; 34:1792-804. [PMID: 19415486 DOI: 10.1007/s11064-009-9985-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 04/21/2009] [Indexed: 01/05/2023]
Abstract
CaMKII (calcium/calmodulin-stimulated protein kinase II) is a multifunctional protein kinase that regulates normal neuronal function. CaMKII is regulated by multi-site phosphorylation, which can alter enzyme activity, and targeting to cellular microdomains through interactions with binding proteins. These proteins integrate CaMKII into multiple signalling pathways, which lead to varied functional outcomes following CaMKII phosphorylation, depending on the identity and location of the binding partner. A new phosphorylation site on CaMKII (Thr253) has been identified in vivo. Thr253 phosphorylation controls CaMKII purely by targeting, does not effect enzyme activity, and occurs in response to physiological and pathological stimuli in vivo, but only in CaMKII molecules present in specific cellular locations. This new phosphorylation site offers a potentially novel regulatory mechanism for controlling functional responses elicited by CaMKII that are restricted to specific subcellular locations and/or certain cell types, by controlling interactions with proteins that are expressed in the cell at that location.
Collapse
Affiliation(s)
- Kathryn A Skelding
- School of Biomedical Sciences and Hunter Medical Research Institute, Faculty of Health, The University of Newcastle, Callaghan, NSW 2308, Australia
| | | |
Collapse
|
21
|
Abstract
Induced hypothermia after ischemic stroke is a promising neuroprotective therapy and is the most potent in pre-clinical models. Technological limitations and homeostatic mechanisms that maintain core body temperature, however, have limited the clinical application of hypothermia. Advances in intravascular cooling and successful trials of hypothermia after global cerebral ischemia, such as in cardiac arrest and neonatal asphyxia, have renewed interest in hypothermia for stroke.
Collapse
Affiliation(s)
- Thomas M Hemmen
- Department of Neuroscience, University of California, San Diego, California 92103-8466, USA.
| | | |
Collapse
|
22
|
Davies KD, Alvestad RM, Coultrap SJ, Browning MD. alphaCaMKII autophosphorylation levels differ depending on subcellular localization. Brain Res 2007; 1158:39-49. [PMID: 17559813 PMCID: PMC2077298 DOI: 10.1016/j.brainres.2007.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/09/2007] [Accepted: 05/06/2007] [Indexed: 10/23/2022]
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) has important roles in many processes in the central nervous system. It is enriched at the post-synaptic density (PSD), a localization which is thought to be critical for many of its proposed neuronal functions. In order to better understand the mechanisms that regulate association of CaMKII with the PSD, we compared the levels of autophosphorylation between PSD-associated kinase and kinase in other parts of the neuron. We were surprised to find that alphaCaMKII in a PSD-enriched fraction prepared from recovered hippocampal CA1-minislices had a relatively low level of threonine 286 (T286) phosphorylation and a relatively high level of threonine 305 (T305) phosphorylation. Furthermore, when the minislices were subjected to a treatment that mimics ischemic conditions, there was a significant translocation of alphaCaMKII to the PSD-enriched fraction accompanied with a dramatic reduction in T286 phosphorylation levels throughout the neuron. These findings have important implications for our understanding of the role of autophosphorylation in the localization of CaMKII.
Collapse
Affiliation(s)
- Kurtis D. Davies
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, Colorado 80045
| | - Rachel M. Alvestad
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, Colorado 80045
| | - Steven J. Coultrap
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, Colorado 80045
| | - Michael D. Browning
- Department of Pharmacology, University of Colorado Health Sciences Center, Aurora, Colorado 80045
- Program in Neuroscience, University of Colorado Health Sciences Center, Aurora, Colorado 80045
| |
Collapse
|
23
|
Abstract
Induced hypothermia is one of the most promising neuroprotective therapies. Technological limitations and homeostatic mechanisms that maintain core body temperature have impeded the clinical use of hypothermia. Recent advances in intravascular cooling catheters and successful trials of hypothermia for cardiac arrest and neonatal asphyxia renewed interest in hypothermia for stroke, resulting in early phase clinical trials and plans for further development. This review elaborates on the clinical implications of hypothermia research in stroke and technical and logistical issues associated with the application of hypothermia.
Collapse
Affiliation(s)
- Thomas M Hemmen
- Department of Neuroscience, University of California, San Diego, San Diego, CA 92103-8466, USA.
| | | |
Collapse
|
24
|
Karaszewski B, Wardlaw JM, Marshall I, Cvoro V, Wartolowska K, Haga K, Armitage PA, Bastin ME, Dennis MS. Measurement of brain temperature with magnetic resonance spectroscopy in acute ischemic stroke. Ann Neurol 2006; 60:438-46. [PMID: 16972284 DOI: 10.1002/ana.20957] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Pyrexia is associated with poor outcome after stroke, but the temperature changes in the brain after stroke are poorly understood. We used magnetic resonance spectroscopic imaging (water-to-N-acetylaspartate frequency shift) to measure cerebral temperature noninvasively in stroke patients. METHODS We performed magnetic resonance diffusion, perfusion (diffusion- and perfusion-weighted imaging), and magnetic resonance spectroscopic imaging, compared temperatures in tissues as defined by the diffusion-weighted imaging appearance (definitely abnormal, possibly abnormal and immediately adjacent normal-appearing brain, and normal brain), and tested associations with lesion and patient characteristics. RESULTS Among 40 patients, temperature was higher in possibly abnormal (37.63 degrees C) than in definitely abnormal tissue (37.30 degrees C; p < 0.001) or in normal-appearing brain (ipsilateral, 37.16 degrees C; contralateral, 37.22 degrees C; both p < 0.001). Ischemic lesion temperature increased before normal brain temperature. Higher temperatures occurred in lesions that were large, had diffusion/perfusion-weighted imaging mismatch, had reduced cerebral blood flow, and in clinically severe strokes. Only 1 of 25 patients with ischemic lesion temperature greater than 37.5 degrees C was pyrexial. INTERPRETATION Temperature is elevated in acutely ischemic brain. More work is required to determine whether raised temperature results from ischemic metabolic reactions, impaired heat exchange from reduced cerebral blood flow, or early inflammatory cell activity (or a combination of these), but magnetic resonance spectroscopic imaging could be used in studies of temperature after brain injury and to monitor interventions.
Collapse
Affiliation(s)
- Bartosz Karaszewski
- Department of Neurology of Adults, Medical University of Gdansk, Gdansk, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Atkins CM, Chen S, Alonso OF, Dietrich WD, Hu BR. Activation of calcium/calmodulin-dependent protein kinases after traumatic brain injury. J Cereb Blood Flow Metab 2006; 26:1507-18. [PMID: 16570077 DOI: 10.1038/sj.jcbfm.9600301] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A prominent cognitive impairment after traumatic brain injury (TBI) is hippocampal-dependent memory loss. Although the histopathologic changes in the brain are well documented after TBI, the underlying biochemical mechanisms that contribute to memory loss have yet to be thoroughly delineated. Thus, we determined if calcium/calmodulin-dependent protein kinases (CaMKs), known to be necessary for the formation of hippocampal-dependent memories, are regulated after TBI. Sprague-Dawley rats underwent moderate parasagittal fluid-percussion brain injury on the right side of the parietal cortex. The ipsilateral hippocampus and parietal cortex were Western blotted for phosphorylated, activated alpha-calcium/calmodulin-dependent protein kinase II (alpha-CaMKII), CaMKIV, and CaMKI. alpha-Calcium/calmodulin-dependent protein kinase II was activated in membrane subcellular fractions from the hippocampus and parietal cortex 30 mins after TBI. CaMKI and CaMKIV were activated in a more delayed manner, increasing in phosphorylation 1 h after TBI. The increase in activated alpha-CaMKII in membrane fractions was accompanied by a decrease in cytosolic total alpha-CaMKII, suggesting redistribution to the membrane. Using confocal microscopy, we observed that alpha-CaMKII was activated within hippocampal neurons of the dentate gyrus, CA3, and CA1 regions. Two downstream substrates of alpha-CaMKII, the AMPA-type glutamate receptor GluR1, and cytoplasmic polyadenylation element-binding protein, concomitantly increased in phosphorylation in the hippocampus and cortex 1 h after TBI. These results demonstrate that several of the biochemical cascades that subserve memory formation are activated unselectively in neurons after TBI. As memory formation requires activation of CaMKII signaling pathways at specific neuronal synapses, unselective activation of CaMKII signaling in all synapses may disrupt the machinery for memory formation, resulting in memory loss after TBI.
Collapse
Affiliation(s)
- Coleen M Atkins
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
26
|
Suh SW, Frederickson CJ, Danscher G. Neurotoxic zinc translocation into hippocampal neurons is inhibited by hypothermia and is aggravated by hyperthermia after traumatic brain injury in rats. J Cereb Blood Flow Metab 2006; 26:161-9. [PMID: 15988476 DOI: 10.1038/sj.jcbfm.9600176] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Hypothermia reduces excitotoxic neuronal damage after seizures, cerebral ischemia and traumatic brain injury (TBI), while hyperthermia exacerbates damage from these insults. Presynaptic release of ionic zinc (Zn2+), translocation and accumulation of Zn2+ ions in postsynaptic neurons are important mechanisms of excitotoxic neuronal injury. We hypothesized that temperature-dependent modulation of excitotoxicity is mediated in part by temperature-dependent changes in the synaptic release and translocation of Zn2+. In the present studies, we used autometallographic (AMG) and fluorescent imaging of N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) staining to quantify the influence of temperature on translocation of Zn2+ into hippocampal neurons in adult rats after weight drop-induced TBI. The central finding was that TBI-induced Zn2+ translocation is strongly influenced by brain temperature. Vesicular Zn2+ release was detected by AMG staining 1 h after TBI. At 30 degrees C, hippocampus showed almost no evidence of vesicular Zn2+ release from presynaptic terminals; at 36.5 degrees C, the hippocampus showed around 20% to 30% presynaptic vesicular Zn2+ release; and at 39 degrees C vesicular Zn2+ release was significantly greater (40% to 60%) than at 36.5 degrees C. At 6 h after TBI, intracellular Zn2+ accumulation was detected by the TSQ staining method, which showed that Zn2+ translocation also paralleled the vesicular Zn2+ release. Neuronal injury, assessed by counting eosinophilic neurons, also paralleled the translocation of Zn2+, being minimal at 30 degrees C and maximal at 39 degrees C. We conclude that pathological Zn2+ translocation in brain after TBI is temperature-dependent and that hypothermic neuronal protection might be mediated in part by reduced Zn2+ translocation.
Collapse
Affiliation(s)
- Sang Won Suh
- Department of Neurology, University of California, San Francisco, California 94121, USA.
| | | | | |
Collapse
|
27
|
Truettner JS, Suzuki T, Dietrich WD. The effect of therapeutic hypothermia on the expression of inflammatory response genes following moderate traumatic brain injury in the rat. ACTA ACUST UNITED AC 2005; 138:124-34. [PMID: 15922484 DOI: 10.1016/j.molbrainres.2005.04.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 03/11/2005] [Accepted: 04/17/2005] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury (TBI) initiates a cascade of cellular and molecular responses including both pro- and anti-inflammatory. Although post-traumatic hypothermia has been shown to improve outcome in various models of brain injury, the underlying mechanisms responsible for these effects have not been clarified. In this study, inflammation cDNA arrays and semi-quantitative RT-PCR were used to detect genes that are differentially regulated after TBI. In addition, the effect of post-traumatic hypothermia on the expression of selective genes was also studied. Rats (n = 6-8 per group) underwent moderate fluid-percussion (F-P) brain injury with and without hypothermic treatment (33 degrees C/3 h). RNA from 3-h or 24-h survival was analyzed for the expression of IL1-beta, IL2, IL6, TGF-beta2, growth-regulated oncogene (GRO), migration inhibitory factor (MIF), and MCP (a transcription factor). The interleukins IL-1beta, IL-2, and IL-6 and TGF-beta and GRO were strongly upregulated early and transiently from 2- to 30-fold over sham at 3 h, with normalization by 24 h. In contrast, the expressions of MIF and MCP were both reduced by TBI compared to sham. Post-traumatic hypothermia had no significant effect on the acute expression of the majority of genes investigated. However, the expression of TGF-beta2 at 24 h was significantly reduced by temperature manipulation. The mechanism by which post-traumatic hypothermia is protective may not involve a general genetic response of the inflammatory genes. However, specific genes, including TGF-beta2, may be altered and effect cell death mechanisms after TBI. Hypothermia differentially regulates certain genes and may target more delayed responses underlying the secondary damage following TBI.
Collapse
Affiliation(s)
- Jessie S Truettner
- Department of Neurological Surgery, The Neurotrauma Research Center, The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
28
|
Abstract
Transient brain hypoxia-ischemia (HI) in neonates leads to delayed neuronal death and long-term neurological deficits. However, the underlying mechanisms are incompletely understood. Calcium-calmodulin-dependent protein kinase II (CaMKII) is one of the most abundant protein kinases in neurons and plays crucial roles in synaptic development and plasticity. This study used a neonatal brain HI model to investigate whether and how CaMKII was altered after HI and how the changes were affected by brain development. Expression of CaMKII was markedly up-regulated during brain development. After HI, CaMKII was totally and permanently depleted from the cytosol and concomitantly deposited into a Triton-insoluble fraction in neurons that were undergoing delayed neuronal death. Autophosphorylation of CaMKII-Thr286 transiently increased at 30 min of reperfusion and declined thereafter. All these changes were mild in P7 pups but more dramatic in P26 rats, consistent with the development-dependent CaMKII expression in neurons. The results suggest that long-term CaMKII depletion from the cytosolic fraction and deposition into the Triton-insoluble fraction may disable synaptic development, damage synaptic plasticity, and contribute to delayed neuronal death and long-term synaptic deficits after transient HI.
Collapse
Affiliation(s)
- Kaixiong Tang
- Department of Neurology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
29
|
Kurihara J, Katsura KI, Siesjö BK, Wieloch T. Hyperglycemia and hypercapnia differently affect post-ischemic changes in protein kinases and protein phosphorylation in the rat cingulate cortex. Brain Res 2004; 995:218-25. [PMID: 14672811 DOI: 10.1016/j.brainres.2003.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hyperglycemia and hypercapnia aggravate intra-ischemic acidosis and subsequent brain damage. However, hyperglycemia causes more extensive post-ischemic damage than hypercapnia, particularly in the cingulate cortex. We investigated the changes in the subcellular distribution of protein kinase Cgamma (PKCgamma) and the Ca2+/calmodulin-dependent protein kinase II (CaMKII), as well as changes in protein tyrosine phosphorylation during and following 10 min normoglycemic, hyperglycemic (plasma glucose approximately 20 mM) and hypercapnic (paCO2) approximately 300 mm Hg) global cerebral ischemia. During reperfusion period, the translocation to cell membranes of PKCgamma, but not CaMKII, was prolonged by intra-ischemic hyperglycemia, while it was only marginally affected by hypercapnia. The tyrosine-phosphorylation of proteins in the synaptosomal membranes, as well as the extracellular signal-regulated kinase (ERK) in the cytosol, markedly increased during reperfusion following hyperglycemic ischemia, but to a lesser degree following hypercapnic ischemia. Our data suggest that PKCgamma, tyrosine kinase and ERK systems are involved in the process of ischemic damage in the cingulate cortex, where hyperglycemia may affect these kinases through an additional mechanism other than exaggerated acidosis.
Collapse
Affiliation(s)
- Junichi Kurihara
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa 199-0195, Japan.
| | | | | | | |
Collapse
|
30
|
Matsumoto S, Shamloo M, Matsumoto E, Isshiki A, Wieloch T. Protein kinase C-gamma and calcium/calmodulin-dependent protein kinase II-alpha are persistently translocated to cell membranes of the rat brain during and after middle cerebral artery occlusion. J Cereb Blood Flow Metab 2004; 24:54-61. [PMID: 14688616 DOI: 10.1097/01.wcb.0000095920.70924.f5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The levels of protein kinase C-gamma (PKC-gamma ) and the calcium/calmodulin-dependent kinase II-alpha (CaMKII-alpha) were measured in crude synaptosomal (P2), particulate (P3), and cytosolic (S3) fractions of the neocortex of rats exposed to 1-hour and 2-hour middle cerebral artery occlusion (MCAO) and 2-hour MCAO followed by 2-hour reperfusion. During MCAO, PKC levels increased in P2 and P3 in the most severe ischemic areas concomitantly with a decrease in S3. In the penumbra, PKCgamma decreased in S3 without any significant increases in P2 and P3. Total PKC-gamma also decreased in the penumbra but not in the ischemic core, suggesting that the protein is degraded by an energy-dependent mechanism, possibly by the 26S proteasome. The CaMKII-alpha levels increased in P2 but not P3 during ischemia and reperfusion in all ischemic regions, particularly in the ischemic core. Concomitantly, the levels in S3 decreased by 20% to 40% in the penumbra and by approximately 80% in the ischemic core. There were no changes in the total levels of CaMKII-alpha during MCAO. The authors conclude that during and after ischemia, PKC and CaMKII-alpha are translocated to the cell membranes, particularly synaptic membranes, where they may modulate cellular function, such as neurotransmission, and also affect cell survival. Drugs preventing PKC and/or CaMKII-alpha translocation may prove beneficial against ischemic cell death.
Collapse
Affiliation(s)
- Shohei Matsumoto
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University Hospital, Lund, Sweden.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Experimental evidence and clinical experience show that hypothermia protects the brain from damage during ischaemia. There is a growing hope that the prevention of fever in stroke will improve outcome and that hypothermia may be a therapeutic option for the treatment of stroke. Body temperature is directly related to stroke severity and outcome, and fever after stroke is associated with substantial increases in morbidity and mortality. Normalisation of temperature in acute stroke by antipyretics is generally recommended, although there is no direct evidence to support this treatment. Despite its obvious therapeutic potential, hypothermia as a form of neuroprotection for stroke has been investigated in only a few very small studies. Therapeutic hypothermia is feasible in acute stroke but owing to serious side-effects--such as hypotension, cardiac arrhythmia, and pneumonia--it is still thought of as experimental, and evidence of efficacy from clinical trials is needed.
Collapse
|
32
|
Uemura A, Naito Y, Matsubara T. Dynamics of Ca(2+)/calmodulin-dependent protein kinase II following acute myocardial ischemia-translocation and autophosphorylation. Biochem Biophys Res Commun 2002; 297:997-1002. [PMID: 12359253 DOI: 10.1016/s0006-291x(02)02279-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase (CaMK) family is responsive to changes in the intracellular Ca(2+) concentration. However, their functions have not been well established in the ischemia/reperfusion heart. The effects of myocardial ischemia on CaMKII, the most strongly expressed form, were investigated using isolated rat hearts. Rat hearts were rendered globally ischemic by stopping perfusion for 15 min, and then reperfused, heart ventricles being analyzed in each phase. Western blotting detected a decrease in the cytosolic and concomitant increase in the particulate fraction of CaMKII following transient ischemia. Redistribution to the cytosol was revealed on reperfusion. Northern blot showed CaMKII gene expression decreased by ischemia. Furthermore, autoradiography and confocal immunohistochemical findings provided autophosphorylation of CaMKII in the cytosol, ischemia causing decrease, with gradual recovery on reperfusion. These results indicate a transient partial translocation of CaMKII accompanied by kinase activity, with residual myocardial CaMKII undergoing autophosphorylation during ischemia and reperfusion, demonstrating two different characteristic dynamics of CaMKII.
Collapse
Affiliation(s)
- Arata Uemura
- Third Department of Internal Medicine, School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | |
Collapse
|
33
|
Osuka K, Watanabe Y, Usuda N, Nakazawa A, Fukunaga K, Miyamoto E, Takayasu M, Tokuda M, Yoshida J. Phosphorylation of neuronal nitric oxide synthase at Ser847 by CaM-KII in the hippocampus of rat brain after transient forebrain ischemia. J Cereb Blood Flow Metab 2002; 22:1098-106. [PMID: 12218415 DOI: 10.1097/00004647-200209000-00007] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors previously demonstrated that Ca2+/calmodulin (CaM)-dependent protein kinase IIalpha (CaM-KIIalpha) can phosphorylate neuronal nitric oxide synthase (nNOS) at Ser847 and attenuate NOS activity in neuronal cells. In the present study, they established that forebrain ischemia causes an increase in the phosphorylation of nNOS at Ser847 in the hippocampus. This nNOS phosphorylation appeared to be catalyzed by CaM-KII: (1) it correlated with the autophosphorylation of CaM-KIIalpha; (2) it was blocked by the CaM-KII inhibitor, KN-93; and (3) nNOS and CaM-KIIalpha were found to coexist in the hippocampus. Examination of the spatial relation between nNOS and CaM-KIIalpha in the brain revealed coexistence in the hippocampus but not in the cortex during reperfusion, with a concomitant increase in autophosphorylation of CaM-KIIalpha. The phosphorylation of nNOS at Ser847 probably takes place in nonpyramidal hippocampal neurons, which increased after 30 minutes of reperfusion in the hippocampus, whereas no significant increase was detected in the cortex. An intraventricular injection of KN-93 significantly decreased the phosphorylation of nNOS in the hippocampus. These results point to CaM-KII as a protein kinase, which by its colocalization may attenuate the activity of nNOS through its Ser847 phosphorylation, and may thus contribute to promotion of tolerance to postischemic damage in hippocampal neurons.
Collapse
Affiliation(s)
- Koji Osuka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mengesdorf T, Althausen S, Mies G, Oláh L, Paschen W. Phosphorylation state, solubility, and activity of calcium/calmodulin-dependent protein kinase II alpha in transient focal ischemia in mouse brain. Neurochem Res 2002; 27:477-84. [PMID: 12199152 DOI: 10.1023/a:1019844518704] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During and after middle cerebral artery occlusion in mice, CaMKII alpha protein was irreversibly translocated from the soluble to the Triton X-100-nonsoluble fraction. This decrease in solubility had a strong effect on activity: CaMKII alpha was almost completely inactivated after being translocated. Results from solubilization experiments suggest that different mechanisms underlie the conversion of CaMKII alpha protein from a soluble to a detergent nonsoluble form in ischemic as opposite to nonischemic tissue. Analysis of the phosphorylation state of CaMKII alpha revealed that in the total homogenate and the Triton X-100-nonsoluble fraction, CaMKII alpha phosphorylated at only one site was the dominant phosphorylated form, whereas in the soluble fraction CaMKII phosphorylated at two sites was the predominant phosphorylated species. Investigation of the mechanisms underlying ischemia-induced changes in the solubility of CaMKII alpha could help to elucidate processes triggered by transient focal cerebral ischemia that lead to neuronal cell injury.
Collapse
Affiliation(s)
- Thorsten Mengesdorf
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Shamloo M, Kamme F, Wieloch T. Subcellular distribution and autophosphorylation of calcium/calmodulin-dependent protein kinase II-alpha in rat hippocampus in a model of ischemic tolerance. Neuroscience 2000; 96:665-74. [PMID: 10727785 DOI: 10.1016/s0306-4522(99)00586-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A brief period of sublethal ischemia induces resistance to a subsequent, otherwise lethal, ischemic insult, a process named ischemic tolerance or preconditioning. A persistently disturbed cell signaling during reperfusion after cerebral ischemia has been proposed to contribute to ischemic cell death. Here, we report on the effect of ischemic preconditioning on the levels of the regulatory alpha-subunit of calcium/calmodulin protein kinase II and its phosphorylation in the hippocampal CA1 region. We found that during and following lethal cerebral ischemia, calcium/calmodulin protein kinase II-alpha is persistently translocated to cell membranes, where it becomes phosphorylated at threonine 286. In contrast, in the preconditioned brains the translocation and phosphorylation are transient and return to preischemic values after one day of reperfusion. At this time of reperfusion, the total level of calcium/calmodulin protein kinase II-alpha is significantly lower in preconditioned animals compared to the sham and non-conditioned animals. After one day of reperfusion, the level of calcium/calmodulin protein kinase II-alpha messenger RNA decreases in the non-conditioned brains, whereas it is unchanged in preconditioned brains. We conclude that, during and after ischemia, calcium/calmodulin protein kinase II-alpha is translocated to cell membranes and becomes phosphorylated at threonine 286. This could detrimentally influence cell survival by changing receptor function and ion channel conductance. Ischemic preconditioning prevents the persistent presence of calcium/calmodulin protein kinase II-alpha at cell membranes, presumably by enhancing its degradation, which could be part of a neuroprotective mechanism of ischemic tolerance.
Collapse
Affiliation(s)
- M Shamloo
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, S-221 85, Lund, Sweden
| | | | | |
Collapse
|
37
|
Blanquet PR. Identification of two persistently activated neurotrophin-regulated pathways in rat hippocampus. Neuroscience 2000; 95:705-19. [PMID: 10670437 DOI: 10.1016/s0306-4522(99)00489-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Brain-derived neurotrophic factor contributes profoundly to modulate activity-dependent synaptic plasticity in adult brain areas such as the hippocampus, but the mechanisms underlying this important role still remain unclear. Recently, we have shown that two serine/threonine kinases, calcium/calmodulin-dependent protein kinase-2 and casein kinase-2, are capable of mediating brain-derived neurotrophic factor responses in adult rat hippocampus. In the present study, using hippocampal slices from adult rat, we show that phospholipase C-regulated calcium signals couple the brain-derived neurotrophic factor receptor to two distinct pathways: a pathway in which calcium/calmodulin-dependent protein kinase-2 stimulates a signalling module involving the p38 subfamily of mitogen-activated protein kinases and its downstream target, usually named mitogen-activated protein kinase-activated protein kinase-2; and a pathway in which the extracellular signal-regulated kinase subfamily of mitogen-activated protein kinases activates casein kinase-2. Our results suggest that: (i) extracellular signal-regulated kinase is activated by B-Raf in response to a calcium-sensitive adenylate cyclase; and (ii) extracellular signal-regulated kinase activates casein kinase-2 via a protein phosphatase(s) that may be of the PP1 and/or PP2A type. Interestingly, we also show that neurotrophin-induced activation of the two signalling cascades promotes a sustained activation of mitogen-activated protein kinase-activated protein kinase-2 and casein kinase-2 in slices. Considering the ability of these two kinases to be persistently activated, and that most of the protein kinases which lie in these pathways are believed to be important for multiple events underlying neuronal plasticity, it is suggested that the mechanisms described here might contribute both to rapid synaptic changes through local effects and to long-lasting synaptic responses through new gene transcription in the hippocampus.
Collapse
Affiliation(s)
- P R Blanquet
- Unité de Recherche de Physiopharmacologie du Système Nerveux, U-161 INSERM, Paris, France
| |
Collapse
|
38
|
Modification of postsynaptic densities after transient cerebral ischemia: a quantitative and three-dimensional ultrastructural study. J Neurosci 1999. [PMID: 10066252 DOI: 10.1523/jneurosci.19-06-01988.1999] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abnormal synaptic transmission has been hypothesized to be a cause of neuronal death resulting from transient ischemia, although the mechanisms are not fully understood. Here, we present evidence that synapses are markedly modified in the hippocampus after transient cerebral ischemia. Using both conventional and high-voltage electron microscopy, we performed two- and three-dimensional analyses of synapses selectively stained with ethanolic phosphotungstic acid in the hippocampus of rats subjected to 15 min of ischemia followed by various periods of reperfusion. Postsynaptic densities (PSDs) from both area CA1 and the dentate gyrus were thicker and fluffier in postischemic hippocampus than in controls. Three-dimensional reconstructions of selectively stained PSDs created using electron tomography indicated that postsynaptic densities became more irregular and loosely configured in postischemic brains compared with those in controls. A quantitative study based on thin sections of the time course of PSD modification indicated that the increase in thickness was both greater and more long-lived in area CA1 than in dentate gyrus. Whereas the magnitude of morphological change in dentate gyrus peaked at 4 hr of reperfusion (140% of control values) and declined thereafter, changes in area CA1 persisted and increased at 24 hr of reperfusion (191% of control values). We hypothesize that the degenerative ultrastructural alteration of PSDs may produce a toxic signal such as a greater calcium influx, which is integrated from the thousands of excitatory synapses onto dendrites, and is propagated to the neuronal somata where it causes or contributes to neuronal damage during the postischemic phase.
Collapse
|
39
|
Hu BR, Fux CM, Martone ME, Zivin JA, Ellisman MH. Persistent phosphorylation of cyclic AMP responsive element-binding protein and activating transcription factor-2 transcription factors following transient cerebral ischemia in rat brain. Neuroscience 1999; 89:437-52. [PMID: 10077326 DOI: 10.1016/s0306-4522(98)00352-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The transcription factors cyclic AMP responsive element-binding protein (CREB) and activating transcription factor-2 were studied in rat brains subjected to 15 min ischemia followed by varied periods of reperfusion using western blot and immunocytochemical analyses. The total amounts of both CREB and activating transcription factor-2 were not altered in the hippocampus after ischemia. In contrast, levels of the phosphorylated forms of both transcription factors decreased during ischemia but rebounded following reperfusion. The phospho-forms of CREB and activating transcription factor-2 showed regional and temporal differences in their expression. Phospho-CREB was increased relative to control levels at 30 min, and continued to increase for at least three days postischemia, mainly in dentate granule cells. The level of phospho-activating transcription factor-2 appeared to be higher in CAI pyramidal cells than in dentate granule cells after ischemia. The present findings suggest that the signaling pathways for phosphorylation of CREB may be neuroprotective for dentate cells, which are relatively resistant to ischemic insults. The increased phospho-activating transcription factor-2 may reflect increased stresses in these neurons. The more modest activation of CREB pathways in CA1 neurons may not be enough to overcome the increased stresses in these neurons, contributing to delayed neuronal death.
Collapse
Affiliation(s)
- B R Hu
- Department of Neurosciences and National Center for Microscopy and Imaging Research, University of California, San Diego 92093-0624, USA
| | | | | | | | | |
Collapse
|
40
|
Regional selective neuronal degeneration after protein phosphatase inhibition in hippocampal slice cultures: evidence for a MAP kinase-dependent mechanism. J Neurosci 1998. [PMID: 9736650 DOI: 10.1523/jneurosci.18-18-07296.1998] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The regional selectivity and mechanisms underlying the toxicity of the serine/threonine protein phosphatase inhibitor okadaic acid (OA) were investigated in hippocampal slice cultures. Image analysis of propidium iodide-labeled cultures revealed that okadaic acid caused a dose- and time-dependent injury to hippocampal neurons. Pyramidal cells in the CA3 region and granule cells in the dentate gyrus were much more sensitive to okadaic acid than the pyramidal cells in the CA1 region. Electron microscopy revealed ultrastructural changes in the pyramidal cells that were not consistent with an apoptotic process. Treatment with okadaic acid led to a rapid and sustained tyrosine phosphorylation of the mitogen-activated protein kinases ERK1 and ERK2 (p44/42(mapk)). The phosphorylation was markedly reduced after treatment of the cultures with the microbial alkaloid K-252a (a nonselective protein kinase inhibitor) or the MAP kinase kinase (MEK1/2) inhibitor PD98059. K-252a and PD98059 also ameliorated the okadaic acid-induced cell death. Inhibitors of protein kinase C, Ca2+/calmodulin-dependent protein kinase II, or tyrosine kinase were ineffective. These results indicate that sustained activation of the MAP kinase pathway, as seen after e.g., ischemia, may selectively harm specific subsets of neurons. The susceptibility to MAP kinase activation of the CA3 pyramidal cells and dentate granule cells may provide insight into the observed relationship between cerebral ischemia and dementia in Alzheimer's disease.
Collapse
|
41
|
Maier CM, Ahern KV, Cheng ML, Lee JE, Yenari MA, Steinberg GK. Optimal depth and duration of mild hypothermia in a focal model of transient cerebral ischemia: effects on neurologic outcome, infarct size, apoptosis, and inflammation. Stroke 1998; 29:2171-80. [PMID: 9756600 DOI: 10.1161/01.str.29.10.2171] [Citation(s) in RCA: 256] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Mild hypothermia is possibly the single most effective method of cerebroprotection developed to date. However, many questions regarding mild hypothermia remain to be addressed before its potential implementation in the treatment of human stroke. Here we report the results of 2 studies designed to determine the optimal depth and duration of mild hypothermia in focal stroke and its effects on infarct size, neurological outcome, programmed cell death, and inflammation. METHODS Rats underwent a 2-hour occlusion of the left middle cerebral artery. In the first study (I) animals were kept (intraischemically) at either 37 degreesC (n=8), 33 degreesC (n=8), or 30 degreesC (n=8). Study II consisted of 4 groups: (1) controls (37 degreesC, n=10), (2) 30 minutes of hypothermia started at ischemic onset (33 degreesC, n=9), (3)1 hour (33 degreesC, n=8), and (4) 2 hours (33 degreesC, n=8). Brain temperature was measured by a thermocouple probe placed in the contralateral cortex. After suture removal, all animals were rewarmed and reperfused for 22 hours (I) or 70 hours (II). RESULTS Mild hypothermia to 33 degreesC or 30 degreesC was neuroprotective (17+/-7% and 27+/-6%, respectively) relative to controls (53+/-8%, P<0.02), but 33 degreesC was better tolerated and recovery from anesthesia was faster. The neurological score of hypothermic animals was significantly better than that of controls (I & II) at both 24 and 72 hours postischemia except for the 30-minute group (II), which showed no improvement. In Study II, 2 hours of hypothermia reduced injury by 59%, 1 hour reduced injury by 84% whereas 30 minutes did not reduce injury. Normalized for infarct size, 2 hours of mild hypothermia decreased neutrophil accumulation by 57% whereas both 1 hour and 30 minutes had no effect. At 72 hours, 1 and 2 hours of mild hypothermia decreased transferase dUTP nick-end labeling (TUNEL) staining by 78% and 99%, respectively, and 30 minutes of hypothermia had no effect. CONCLUSIONS Intraischemic mild hypothermia must be maintained for 1 to 2 hours to obtain optimal neuroprotection against ischemic cell death due to necrosis and apoptosis.
Collapse
Affiliation(s)
- C M Maier
- Departments of Neurosurgery, Stanford Stroke Center, Stanford University, Stanford, Calif
| | | | | | | | | | | |
Collapse
|
42
|
Tymianski M, Sattler R, Zabramski JM, Spetzler RF. Characterization of neuroprotection from excitotoxicity by moderate and profound hypothermia in cultured cortical neurons unmasks a temperature-insensitive component of glutamate neurotoxicity. J Cereb Blood Flow Metab 1998; 18:848-67. [PMID: 9701346 DOI: 10.1097/00004647-199808000-00005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although profound hypothermia has been used for decades to protect the human brain from hypoxic or ischemic insults, little is known about the underlying mechanism. We therefore report the first characterization of the effects of moderate (30 degrees C) and profound hypothermia (12 degrees to 20 degrees C) on excitotoxicity in cultured cortical neurons exposed to excitatory amino acids (EAA; glutamate, N-methyl-D-aspartate [NMDA], AMPA, or kainate) at different temperatures (12 degrees to 37 degrees C). Cooling neurons to 30 degrees C and 20 degrees C was neuroprotective, but cooling to 12 degrees C was toxic. The extent of protection depended on the temperature, the EAA receptor agonist employed, and the duration of the EAA challenge. Neurons challenged briefly (5 minutes) with all EAA were protected, as were neurons challenged for 60 minutes with NMDA, AMPA, or kainate. The protective effects of hypothermia (20 degrees and 30 degrees C) persisted after rewarming to 37 degrees C, but rewarming from 12 degrees C was deleterious. Surprisingly, however, prolonged (60 minutes) exposures to glutamate unmasked a temperature-insensitive component of glutamate neurotoxicity that was not seen with the other, synthetic EAA; this component was still mediated via NMDA receptors, not by ionotropic or metabotropic non-NMDA receptors. The temperature-insensitivity of glutamate toxicity was not explained by effects of hypothermia on EAA-evoked [Ca2+]i increases measured using high- and low-affinity Ca2+ indicators, nor by effects on mitochondrial production of reactive oxygen species. This first characterization of excitotoxicity at profoundly hypothermic temperatures reveals a previously unnoticed feature of glutamate neurotoxicity unseen with the other EAA, and also suggests that hypothermia protects the brain at the level of neurons by blocking, rather than slowing, excitotoxicity.
Collapse
Affiliation(s)
- M Tymianski
- The Toronto Hospital Research Institute, and Division of Neurosurgery, The Toronto Hospital, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
43
|
Abstract
Transient ischemia leads to changes in synaptic efficacy and results in selective neuronal damage during the postischemic phase, although the mechanisms are not fully understood. The protein composition and ultrastructure of postsynaptic densities (PSDs) were studied by using a rat transient ischemic model. We found that a brief ischemic episode induced a marked accumulation in PSDs of the protein assembly ATPases, N-ethylmaleimide-sensitive fusion protein, and heat-shock cognate protein-70 as well as the BDNF receptor (trkB) and protein kinases, as determined by protein microsequencing. The changes in PSD composition were accompanied by a 2.5-fold increase in the yield of PSD protein relative to controls. Biochemical modification of PSDs correlated well with an increase in PSD thickness observed in vivo by electron microscopy. We conclude that a brief ischemic episode modifies the molecular composition and ultrastructure of synapses by assembly of proteins to the postsynaptic density, which may underlie observed changes in synaptic function and selective neuronal damage.
Collapse
|
44
|
Cardiopulmonary and cerebral resuscitation: An update. Acta Anaesthesiol Scand 1997. [DOI: 10.1111/j.1399-6576.1997.tb04885.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
45
|
Perkins G, Renken C, Martone ME, Young SJ, Ellisman M, Frey T. Electron tomography of neuronal mitochondria: three-dimensional structure and organization of cristae and membrane contacts. J Struct Biol 1997; 119:260-72. [PMID: 9245766 DOI: 10.1006/jsbi.1997.3885] [Citation(s) in RCA: 254] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The structure of neuronal mitochondria from chick and rat was examined using electron microscope tomography of chemically fixed tissue embedded in plastic and sliced in approximately 500 nm-thick sections. Three-dimensional reconstructions of representative mitochondria were made from single-axis tilt series acquired with an intermediate voltage electron microscope (400 kV). The tilt increment was either 1 degree or 2 degrees ranging from -60 degrees to +60 degrees. The mitochondrial ultrastructure was similar across species and neuronal regions. The outer and inner membranes were each approximately 7 nm thick. The inner boundary membrane was found to lie close to the outer membrane, with a total thickness across both membranes of approximately 22 nm. We discovered that the inner membrane invaginates to form cristae only through narrow, tubular openings, which we call crista junctions. Sometimes the cristae remain tubular throughout their length, but often multiple tubular cristae merge to form lamellar compartments. Punctate regions, approximately 14 nm in diameter, were observed in which the inner and outer membranes appeared in contact (total thickness of both membranes approximately 14 nm). These contact sites are known to a play a key role in the transport of proteins into the mitochondrion. It has been hypothesized that contact sites may be proximal to crista junctions to facilitate transport of proteins destined for the cristae. However, our statistical analyses indicated that contact sites are randomly located with respect to these junctions. In addition, a close association was observed between endoplasmic reticulum membranes and the outer mitochondrial membrane, consistent with the reported mechanism of transport of certain lipids into the mitochondrion.
Collapse
Affiliation(s)
- G Perkins
- Biology Department, San Diego State University, California 92115, USA.
| | | | | | | | | | | |
Collapse
|
46
|
MacManus JP, Rasquinha I, Black MA, Laferriere NB, Monette R, Walker T, Morley P. Glutamate-treated rat cortical neuronal cultures die in a way different from the classical apoptosis induced by staurosporine. Exp Cell Res 1997; 233:310-20. [PMID: 9194493 DOI: 10.1006/excr.1997.3558] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The alkaloid protein kinase inhibitor staurosporine induced neuronal cell death with both the morphological and the biochemical characteristics of apoptosis. The punctate chromatin associated with apoptosis with retention of plasma membrane integrity was observed in neurons identified by colocalization of NeuN staining. Such cells had DNA fragmentation visualized by in situ end-labeling which was seen as a laddered pattern upon gel electrophoresis. In contrast cells treated with glutamate did not exhibit either of these morphological or biochemical hallmarks of apoptosis. Instead a much smaller and more compact pyknotic structure was observed associated with smeared DNA fragmentation patterns. A confocal time-lapse study of the appearance of the morphological changes in individual nuclei after staurosporine treatment showed collapse into punctate chromatin over a period of 10 min. In contrast, the collapse into small pyknotic nuclei after glutamate treatment was at least 10 times slower. It is concluded that excitotoxicity produced by glutamate did not induce cell death by an apoptotic mechanism in cultured cortical neurons.
Collapse
Affiliation(s)
- J P MacManus
- Apoptosis Research Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario.
| | | | | | | | | | | | | |
Collapse
|