1
|
Mostafaee H, Idoon F, Mohasel-Roodi M, Alipour F, Lotfi N, Sadeghi A. The effects of induced type I diabetes on developmental regulation of GDNF, NRTN, and NCAM proteins in the dentate gyrus of male rat offspring. J Chem Neuroanat 2024; 136:102391. [PMID: 38219812 DOI: 10.1016/j.jchemneu.2024.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Maternal diabetes during pregnancy can affect the neurological development of offspring. Glial cell-derived neurotrophic factor (GDNF), neurturin (NRTN), and neural cell adhesion molecules (NCAM) are three important proteins for brain development. Therefore, this study aimed to investigate the impacts of the mentioned neurotrophic factors in the hippocampal dentate gyrus (DG) of rat offspring born to diabetic mothers. METHODS Wistar female rats were randomly allocated into diabetic (STZ-D) [(45 mg/kg BW, STZ (Streptozotocin), i.p)], diabetic + NPH insulin (STZ-INS) [(4-6 unit/kg/day SC)], and control groups. The animals in all groups were mated by non-diabetic male rats. Two weeks after birth, male pups from each group were sacrificed and then protein contents of GDNF, NRTN, and NCAM were evaluated using immunohistochemistry. RESULTS The study found that the expression of GDNF and NRTN in the hippocampus of diabetic rat offspring was significantly higher compared to the diabetic+ insulin and control groups, respectively (P < 0.01, P < 0.001). Additionally, the expression of NCAM was significantly higher in the diabetic group the diabetic+ insulin and control groups (P < 0.01, P < 0.001). CONCLUSIONS The results of the study revealed that diabetes during pregnancy significantly impacts the distribution pattern of GDNF, NRTN, and NCAM in the hippocampus of rat neonates.
Collapse
Affiliation(s)
- Hamideh Mostafaee
- Department of Anatomical Sciences, Birjand University of Medical Sciences, Iran
| | - Faezeh Idoon
- Department of Anatomical Sciences, Birjand University of Medical Sciences, Iran
| | - Mina Mohasel-Roodi
- Department of Anatomical Sciences, Birjand University of Medical Sciences, Iran
| | - Fatemeh Alipour
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasim Lotfi
- Department of Anatomical Sciences, Birjand University of Medical Sciences, Iran
| | - Akram Sadeghi
- Department of Anatomical Sciences, Birjand University of Medical Sciences, Iran; Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, Münster, Germany.
| |
Collapse
|
2
|
Ameliorative Effects of Bifidobacterium animalis subsp. lactis J-12 on Hyperglycemia in Pregnancy and Pregnancy Outcomes in a High-Fat-Diet/Streptozotocin-Induced Rat Model. Nutrients 2022; 15:nu15010170. [PMID: 36615827 PMCID: PMC9824282 DOI: 10.3390/nu15010170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Bifidobacterium, a common probiotic, is widely used in the food industry. Hyperglycemia in pregnancy has become a common disease that impairs the health of the mother and can lead to adverse pregnancy outcomes, such as preeclampsia, macrosomia, fetal hyperinsulinemia, and perinatal death. Currently, Bifidobacterium has been shown to have the potential to mitigate glycolipid derangements. Therefore, the use of Bifidobacterium-based probiotics to interfere with hyperglycemia in pregnancy may be a promising therapeutic option. We aimed to determine the potential effects of Bifidobacterium animalis subsp. lactis J-12 (J-12) in high-fat diet (HFD)/streptozotocin (STZ)-induced rats with hyperglycemia in pregnancy (HIP) and respective fetuses. We observed that J-12 or insulin alone failed to significantly improve the fasting blood glucose (FBG) level and oral glucose tolerance; however, combining J-12 and insulin significantly reduced the FBG level during late pregnancy. Moreover, J-12 significantly decreased triglycerides and total cholesterol, relieved insulin and leptin resistance, activated adiponectin, and restored the morphology of the maternal pancreas and hepatic tissue of HIP-induced rats. Notably, J-12 ingestion ameliorated fetal physiological parameters and skeletal abnormalities. HIP-induced cardiac, renal, and hepatic damage in fetuses was significantly alleviated in the J-12-alone intake group, and it downregulated hippocampal mRNA expression of insulin receptor (InsR) and insulin-like growth factor-1 receptor (IGF-1R) and upregulated AKT mRNA on postnatal day 0, indicating that J-12 improved fetal neurological health. Furthermore, placental tissue damage in rats with HIP appeared to be in remission in the J-12 group. Upon exploring specific placental microbiota, we observed that J-12 affected the abundance of nine genera, positively correlating with FBG and leptin in rats and hippocampal mRNA levels of InsR and IGF-1R mRNA in the fetus, while negatively correlating with adiponectin in rats and hippocampal levels of AKT in the fetus. These results suggest that J-12 may affect the development of the fetal central nervous system by mediating placental microbiota via the regulation of maternal-related indicators. J-12 is a promising strategy for improving HIP and pregnancy outcomes.
Collapse
|
3
|
Zegarra-Valdivia JA, Fernandes J, Fernandez de Sevilla ME, Trueba-Saiz A, Pignatelli J, Suda K, Martinez-Rachadell L, Fernandez AM, Esparza J, Vega M, Nuñez A, Aleman IT. Insulin-like growth factor I sensitization rejuvenates sleep patterns in old mice. GeroScience 2022; 44:2243-2257. [PMID: 35604612 DOI: 10.1007/s11357-022-00589-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/06/2022] [Indexed: 11/04/2022] Open
Abstract
Sleep disturbances are common during aging. Compared to young animals, old mice show altered sleep structure, with changes in both slow and fast electrocorticographic (ECoG) activity and fewer transitions between sleep and wake stages. Insulin-like growth factor I (IGF-I), which is involved in adaptive changes during aging, was previously shown to increase ECoG activity in young mice and monkeys. Furthermore, IGF-I shapes sleep architecture by modulating the activity of mouse orexin neurons in the lateral hypothalamus (LH). We now report that both ECoG activation and excitation of orexin neurons by systemic IGF-I are abrogated in old mice. Moreover, orthodromical responses of LH neurons are facilitated by either systemic or local IGF-I in young mice, but not in old ones. As orexin neurons of old mice show dysregulated IGF-I receptor (IGF-IR) expression, suggesting disturbed IGF-I sensitivity, we treated old mice with AIK3a305, a novel IGF-IR sensitizer, and observed restored responses to IGF-I and rejuvenation of sleep patterns. Thus, disturbed sleep structure in aging mice may be related to impaired IGF-I signaling onto orexin neurons, reflecting a broader loss of IGF-I activity in the aged mouse brain.
Collapse
Affiliation(s)
- Jonathan A Zegarra-Valdivia
- Cajal Institute (CSIC), Madrid, Spain.,CIBERNED, Madrid, Spain.,Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Jansen Fernandes
- Cajal Institute (CSIC), Madrid, Spain.,Universidade Federal São Paulo, São Paulo, Brazil
| | | | | | | | - Kentaro Suda
- Cajal Institute (CSIC), Madrid, Spain.,Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | - Angel Nuñez
- Department of Neurosciences, School of Medicine, UAM, Madrid, Spain
| | - Ignacio Torres Aleman
- CIBERNED, Madrid, Spain. .,Achucarro Basque Center for Neuroscience, Leioa, Spain. .,IKERBASQUE Basque Science Foundation, Bilbao, Spain.
| |
Collapse
|
4
|
Lee TK, Chen BH, Lee JC, Shin MC, Cho JH, Lee HA, Choi JH, Hwang IK, Kang IJ, Ahn JH, Park JH, Choi SY, Won MH. Age‑dependent decreases in insulin‑like growth factor‑I and its receptor expressions in the gerbil olfactory bulb. Mol Med Rep 2018; 17:8161-8166. [PMID: 29658594 PMCID: PMC5983990 DOI: 10.3892/mmr.2018.8886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/06/2018] [Indexed: 12/23/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) is a multifunctional protein present in the central nervous system. A number of previous studies have revealed alterations in IGF-I and its receptor (IGF-IR) expression in various regions of the brain. However, there are few reports on age-dependent alterations in IGF-I and IGF-IR expressions in the olfactory bulb, which contains the secondary neurons of the olfactory system. The present study examined the cellular morphology in the olfactory bulb by using cresyl violet (CV) staining at postnatal month (PM) 3 in the young group, PM 6 in the adult group and PM 24 in the aged group in gerbils. In addition, detailed examinations were performed of the protein levels and immunoreactivities of IGF-I and IGF-IR in the olfactory bulb in each group. There were no significant changes in the cellular morphology between the three groups. The protein levels and immunoreactivities of the IGF-I and IGF-IR were the highest in the young group and they decreased with age. He protein levels and immunoreactivities of the IGF-I and IGF-IR were the lowest in the aged group. In brief, our results indicate that IGF-I and IGF-IR expressions are strong in young olfactory bulbs and significantly reduced in aged olfactory bulbs. In conclusion, subsequent decreases in IGF-I and IGF-IR expression with age may be associated with olfactory decline. Further studies are required to investigate the roles of IFG-I and IGF-IR in disorders of the olfactory system.
Collapse
Affiliation(s)
- Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jung Hoon Choi
- Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|
5
|
Yamada J, Hatabe J, Tankyo K, Jinno S. Cell type- and region-specific enhancement of adult hippocampal neurogenesis by daidzein in middle-aged female mice. Neuropharmacology 2016; 111:92-106. [DOI: 10.1016/j.neuropharm.2016.08.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/03/2016] [Accepted: 08/27/2016] [Indexed: 10/21/2022]
|
6
|
Altered expression and chromatin structure of the hippocampal IGF1r gene is associated with impaired hippocampal function in the adult IUGR male rat. J Dev Orig Health Dis 2014; 3:83-91. [PMID: 25101918 DOI: 10.1017/s2040174411000791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exposure to intrauterine growth restriction (IUGR) is an important risk factor for impaired learning and memory, particularly in males. Although the basis of IUGR-associated learning and memory dysfunction is unknown, potential molecular participants may be insulin-like growth factor 1 (Igf1) and its receptor, IGF1r. We hypothesized that transcript levels and protein abundance of Igf1 and IGF1r in the hippocampus, a brain region critical for learning and memory, would be lower in IUGR male rats than in age-matched male controls at birth (postnatal day 0, P0), at weaning (P21) and adulthood (P120). We also hypothesized that changes in messenger Ribonucleic acid (mRNA) transcript levels and protein abundance would be associated with specific histone marks in IUGR male rats. Lastly, we hypothesized that IUGR male rats would perform poorer on tests of hippocampal function at P120. IUGR was induced by bilateral ligation of the uterine arteries in pregnant dams at embryonic day 19 (term is 21 days). Hippocampal Igf1 mRNA transcript levels and protein abundance were unchanged in IUGR male rats at P0, P21 or P120. At P0 and P120, IGF1r expression was increased in IUGR male rats. At P21, IGF1r expression was decreased in IUGR male rats. Increased IGF1r expression was associated with more histone 3 lysine 4 dimethylation (H3K4Me2) in the promoter region. In addition, IUGR male rats performed poorer on intermediate-term spatial working memory testing at P120. We speculate that altered IGF1r expression in the hippocampus of IUGR male rats may play a role in learning and memory dysfunction later in life.
Collapse
|
7
|
Decreased Insulin-Like Growth Factor-I and Its Receptor Expression in the Hippocampus and Somatosensory Cortex of the Aged Mouse. Neurochem Res 2014; 39:770-6. [DOI: 10.1007/s11064-014-1269-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/22/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
|
8
|
The effects of maternal diabetes on expression of insulin-like growth factor-1 and insulin receptors in male developing rat hippocampus. Brain Struct Funct 2012; 218:73-84. [PMID: 22241286 DOI: 10.1007/s00429-011-0377-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/29/2011] [Indexed: 01/17/2023]
Abstract
Diabetes during pregnancy causes neurodevelopmental and neurocognitive abnormalities in offspring. Insulin and insulin-like growth factor-1 (IGF-1) are important regulators of developmental and cognitive functions in the central nervous system. We examined the effects of maternal diabetes on insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor (InsR) expression in the developing rat hippocampus. Female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was killed at P0, P7, and P14. We found a significant bilateral upregulation of both IGF-1R and InsR transcripts in the hippocampus of pups born to diabetic mothers at P0, as compared to controls. However, at the same time point, the results of western blot analysis revealed only a slight change in their protein levels. At P7, there was a marked bilateral reduction in mRNA expression and protein levels of IGF-1R, although not of InsR in the diabetic group. We also found a downregulation in IGF1-R transcripts, especially in left hippocampus of the diabetic group at P14. Moreover, at the same time point, InsR expression was significantly decreased in both hippocampi of diabetic newborns. When compared with controls, we did not find any difference in hippocampal IGF-1R or InsR mRNA and protein levels in the insulin-treated group. The present study revealed that diabetes during pregnancy strongly influences the regulation of both IGF-1R and InsR in the right/left developing hippocampi. Furthermore, the rigid control of maternal glycaemia by insulin administration normalized these effects.
Collapse
|
9
|
Castillo-Padilla DV, Borgornio-Pérez G, Zentella-Dehesa A, Sandoval-Montiel A, Gallegos JLV, Rivas-Arancibia S. Growth Hormone Prevents the Memory Deficit Caused by Oxidative Stress in Early Neurodegenerative Stage in Rats. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/nm.2012.33033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Costantini C, Lorenzetto E, Cellini B, Buffelli M, Rossi F, Della-Bianca V. Astrocytes regulate the expression of insulin-like growth factor 1 receptor (IGF1-R) in primary cortical neurons during in vitro senescence. J Mol Neurosci 2009; 40:342-52. [PMID: 19862643 DOI: 10.1007/s12031-009-9305-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 10/12/2009] [Indexed: 12/29/2022]
Abstract
The role of insulin-like growth factor 1 (IGF1) pathway as regulator of aging and age-related diseases is increasingly recognized. Recent evidence has been provided that neuronal IGF1-R increases during aging leading to activation of a signaling pathway that causes an increased production of amyloid beta-peptide, the principal event in the pathogenesis of Alzheimer's disease. Here, by using long-term neuronal cultures as a model of aging, we show that astroglial cells are required to upregulate the expression of IGF1-R in neurons during in vitro senescence. Moreover, evidence is provided that the cross-talk between astrocytes and neurons is independent of cell-to-cell contact, and it is mediated by low molecular weight soluble factor(s) released by astrocytes in culture medium. These results suggest that astrocytes could play an important role in aging and age-related pathological processes.
Collapse
Affiliation(s)
- Claudio Costantini
- Section of General Pathology, Department of Pathology, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Ungewitter E, Scrable H. Antagonistic pleiotropy and p53. Mech Ageing Dev 2009; 130:10-7. [PMID: 18639575 PMCID: PMC2771578 DOI: 10.1016/j.mad.2008.06.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/29/2008] [Accepted: 06/12/2008] [Indexed: 12/30/2022]
Abstract
George Williams' antagonistic pleiotropy theory of aging proposes that cellular damage and organismal aging are caused by pleiotrophic genes, or genes with multiple phenotypic effects [Williams, G.C., 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398-411]. According to this theory, genes that exhibit antagonistic pleiotropy increase the odds of successful reproduction early in life, but have deleterious effects later in life. The tumor suppressor p53 confers protection against cancer (and death) by interrupting the abnormal proliferation of cells. When control of proliferation is applied to normal stem cells, however, it can impair tissue homeostasis and accelerate aging. We use data from recently developed models of accelerated aging in mice to determine if the deleterious effects of p53 on aging reflect antagonistic pleiotropy of the p53 gene or are attributable to genes that can modify p53 activity but are evolving independently.
Collapse
|
12
|
Puglielli L. Aging of the brain, neurotrophin signaling, and Alzheimer's disease: is IGF1-R the common culprit? Neurobiol Aging 2008; 29:795-811. [PMID: 17313996 PMCID: PMC2387053 DOI: 10.1016/j.neurobiolaging.2007.01.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/21/2006] [Accepted: 01/13/2007] [Indexed: 12/26/2022]
Abstract
The last decade has revealed that the lifespan of an organism can be modulated by the signaling pathway that acts downstream of the insulin/insulin-like growth factor 1 receptors (IR/IGF1-R), indicating that there is a "program" that drives the process of aging. New results have now linked the same pathway to the neurogenic capacities of the aging brain, to neurotrophin signaling, and to the molecular pathogenesis of Alzheimer's disease. Therefore, a common signaling cascade now seems to link aging to age-associated pathologies of the brain, suggesting that pharmacologic approaches aimed at the modulation of this pathway can serve to delay the onset of age-associated disorders and improve the quality of life. Work from a wide range of fields performed with different approaches has already identified some of the signaling molecules that act downstream of IGF1-R, and has revealed that a delicate checkpoint exists to balance excessive growth/"immortality" and reduced growth/"senescence" of a cell. Future research will determine how far the connection goes and how much of it we can influence.
Collapse
Affiliation(s)
- Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, and Geriatric Research Education Clinical Center, VA Medical Center, VAH-GRECC 11G, 2500 Overlook Terrace, Madison, WI 53705, USA.
| |
Collapse
|
13
|
The insulin-like growth factor pathway is altered in spinocerebellar ataxia type 1 and type 7. Proc Natl Acad Sci U S A 2008; 105:1291-6. [PMID: 18216249 DOI: 10.1073/pnas.0711257105] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polyglutamine diseases are inherited neurodegenerative disorders caused by expansion of CAG repeats encoding a glutamine tract in the disease-causing proteins. There are nine disorders, each having distinct features but also clinical and pathological similarities. In particular, spinocerebellar ataxia type 1 and 7 (SCA1 and SCA7) patients manifest cerebellar ataxia with degeneration of Purkinje cells. To determine whether the disorders share molecular pathogenic events, we studied two mouse models of SCA1 and SCA7 that express the glutamine-expanded protein from the respective endogenous loci. We found common transcriptional changes, with down-regulation of insulin-like growth factor binding protein 5 (Igfbp5) representing one of the most robust changes. Igfbp5 down-regulation occurred in granule neurons through a non-cell-autonomous mechanism and was concomitant with activation of the insulin-like growth factor (IGF) pathway and the type I IGF receptor on Purkinje cells. These data define one common pathogenic response in SCA1 and SCA7 and reveal the importance of intercellular mechanisms in their pathogenesis.
Collapse
|
14
|
Burger C, López MC, Feller JA, Baker HV, Muzyczka N, Mandel RJ. Changes in transcription within the CA1 field of the hippocampus are associated with age-related spatial learning impairments. Neurobiol Learn Mem 2006; 87:21-41. [PMID: 16829144 DOI: 10.1016/j.nlm.2006.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 05/04/2006] [Accepted: 05/20/2006] [Indexed: 11/20/2022]
Abstract
Aged rats display a broad range of behavioral performance in spatial learning. The aim of this study was to identify candidate genes that are associated with learning and memory impairments. We first categorized aged-superior learners and age learning-impaired rats based on their performance in the Morris water maze (MWM) and then isolated messenger RNA from the CA1 hippocampal region of each animal to interrogate Affymetrix microarrays. Microarray analysis identified a set of 50 genes that was transcribed differently in aged-superior learners that had successfully learned the spatial strategy in the MWM compared to aged learning-impaired animals that were unable to learn and a variety of groups designed to control for all non-learning aspects of exposure to the water maze paradigm. A detailed analysis of the navigation patterns of the different groups of animals during acquisition and probe trials of the MWM task was performed. Young animals used predominantly an allocentric (spatial) search strategy and aged-superior learners appeared to use a combination of allocentric and egocentric (response) strategies, whereas aged-learning impaired animals displayed thigmotactic behavior. The significant 50 genes that we identified were tentatively classified into four groups based on their putative role in learning: transcription, synaptic morphology, ion conductivity and protein modification. Thus, this study has potentially identified a set of genes that are responsible for the learning impairments in aged rats. The role of these genes in the learning impairments associated with aging will ultimately have to be validated by manipulating gene expression in aged rats. Finally, these 50 genes were functioning in the context of an aging CA1 region where over 200 genes was found to be differentially expressed compared to a young CA1.
Collapse
Affiliation(s)
- Corinna Burger
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Box 100266, Gainesville, FL 32610, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Le Grevès M, Zhou Q, Berg M, Le Grevès P, Fhölenhag K, Meyerson B, Nyberg F. Growth hormone replacement in hypophysectomized rats affects spatial performance and hippocampal levels of NMDA receptor subunit and PSD-95 gene transcript levels. Exp Brain Res 2006; 173:267-73. [PMID: 16633806 DOI: 10.1007/s00221-006-0438-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
Clinical studies have demonstrated that growth hormone (GH) promotes learning and memory processes in GH-deficient (GHD) patients. In animal studies, GH also influences the N-methyl-D-aspartate (NMDA) receptor system in the hippocampus, an essential component of long-term potentiation (LTP), which is highly involved in memory acquisition. This study was designed to examine the beneficial effects of recombinant human GH (rhGH) on cognitive function in male rats with multiple hormone deficiencies resulting from hypophysectomy (Hx). The performance of an rhGH-treated group and an untreated control group was appraised in the Morris water maze (MWM). The rhGH-treated group performed significantly better in the spatial memory task than the control animals on the second and third trial days. Further training eliminated this difference between the groups. Hippocampal mRNA expression of the NMDA subunits NR1, NR2A and NR2B, insulin-like growth factor type 1 receptor (IGF-1R), and postsynaptic density protein-95 (PSD-95) was then measured in the animals by Northern blot analysis. The results suggest that there may be a relationship between the NMDA receptor subunit mRNA expression levels and learning ability, and that learning is improved by rhGH in Hx rats. Furthermore, a link between MWM performance and PSD-95 was also suggested by this study.
Collapse
Affiliation(s)
- Madeleine Le Grevès
- Department of Pharmaceutical Biosciences, Division of Biological Research on Drug Dependence, Uppsala University, P.O. Box 591, 751 24, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
16
|
Costantini C, Scrable H, Puglielli L. An aging pathway controls the TrkA to p75NTR receptor switch and amyloid beta-peptide generation. EMBO J 2006; 25:1997-2006. [PMID: 16619032 PMCID: PMC1456930 DOI: 10.1038/sj.emboj.7601062] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 03/03/2006] [Indexed: 12/25/2022] Open
Abstract
Aging of the brain is characterized by marked changes in the expression levels of the neurotrophin receptors, TrkA and p75(NTR). An expression pattern in which TrkA predominates in younger animals switches to one in which p75(NTR) predominates in older animals. This TrkA-to-p75(NTR) switch is accompanied by activation of the second messenger ceramide, stabilization of beta-site amyloid precursor protein-cleaving enzyme-1 (BACE1), and increased production of amyloid beta-peptide (Abeta). Here, we show that the insulin-like growth factor-1 receptor (IGF1-R), the common regulator of lifespan and age-related events in many different organisms, is responsible for the TrkA-to-p75(NTR) switch in both human neuroblastoma cell lines and primary neurons from mouse brain. The signaling pathway that controls the level of TrkA and p75(NTR) downstream of the IGF1-R requires IRS2, PIP3/Akt, and is under the control of PTEN and p44, the short isoform of p53. We also show that hyperactivation of IGF1-R signaling in p44 transgenic animals, which show an accelerated form of aging, is characterized by early TrkA-to-p75(NTR) switch and increased production of Abeta in the brain.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Medicine, University of Wisconsin-Madison, Veterans Administration Hospital (GRECC 11G), Madison, WI, USA
| | - Heidi Scrable
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Veterans Administration Hospital (GRECC 11G), Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, VAH-GRECC 11G, 2500 Overlook Terrace, Madison, WI 53705, USA. Tel.: +1 608 2561901 ext. 11569; Fax: +1 608 2807291; E-mail:
| |
Collapse
|
17
|
Grill JD, Sonntag WE, Riddle DR. Dendritic stability in a model of adult-onset IGF-I deficiency. Growth Horm IGF Res 2005; 15:337-348. [PMID: 16143551 DOI: 10.1016/j.ghir.2005.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2004] [Revised: 07/01/2005] [Accepted: 07/09/2005] [Indexed: 11/18/2022]
Abstract
OBJECTIVE A significant decrease in plasma levels of insulin-like growth factor-I (IGF-I) is one of the most robust hallmarks of aging and may contribute to functional changes associated with senescence. This study examined the role of IGF-I in the maintenance of adult dendritic morphology. DESIGN We utilized a model of the aging-related decrease in plasma IGF-I to examine whether such a decrease, in itself, leads to dendritic changes in the cerebral cortex. The dw/dw rat, originally of the Lewis strain, suffers from a spontaneous mutation in which growth hormone (GH) production is severely decreased. Since GH is responsible for the production of circulating IGF-I by the liver, these animals are deficient in plasma IGF-I. Homozygous dw/dw rats were administered porcine GH to sustain IGF-I levels during development and then GH injections were stopped as adults in order to examine the effects of adult-onset GH and IGF-I deficiency. Animals sacrificed after two or eight weeks of GH and IGF-I deficiency were compared to age-matched dw/dw animals that received GH both developmentally and throughout adulthood (GH/IGF-I replete). The dendritic arbors of pyramidal neurons in cingulate cortex were labeled by intracellular injection and reconstructed in three dimensions. RESULTS Comparing GH/IGF-I replete and deficient dw/dw rats, we found no differences in the apical or basal arbors of either layer two or layer five pyramidal neurons. CONCLUSIONS These findings indicate that a decrease in plasma levels of IGF-I is not sufficient in itself to produce dendritic changes like those seen in aging animals.
Collapse
Affiliation(s)
- Joshua D Grill
- Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
18
|
Schmoll H, Ramboiu S, Platt D, Herndon JG, Kessler C, Popa-Wagner A. Age Influences the Expression of GAP-43 in the Rat Hippocampus following Seizure. Gerontology 2005; 51:215-24. [PMID: 15980649 DOI: 10.1159/000085117] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Accepted: 08/18/2004] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Normal aging is associated with impairments in learning and memory and motor function. One viable hypothesis is that these changes reflect an age-related decrease in brain plasticity. OBJECTIVE The aim of the present study was to identify age-related changes in the time course of expression of the axonal growth associated protein 43 (GAP-43) in a rat model of brain plasticity. METHODS We examined by Northern blotting, in situ hybridization, and immunohistochemistry the effects of age on the time course of the expression GAP-43 following pentylenetetrazole-induced seizure in the hippocampus of 3-, 18-, and 28-month-old rats. RESULTS In this model of brain plasticity, young rats displayed a decrease in GAP-43 mRNA levels in CA1, CA3, and polymorphic regions, lasting from 10 h to 3 days after seizure. This was followed by recovery, with peak expression between days 10 and 20. The baseline levels of GAP-43 mRNA decreased with age, especially in the CA3 region. Despite lower baseline levels, middle-aged rats showed the same pattern of upregulation of GAP-43 mRNA expression as the young animals. Old rats showed only minimal upregulation, however, and this occurred only in the polymorphic layer. The level GAP-43 protein itself was higher in old control rats than in the other two control groups, a condition that was transiently reversed by seizure activity. CONCLUSIONS Middle-aged rats are still capable of a sustained, though diminished, response to seizure activity, while old rats lose this ability. Disruption of the temporal and anatomical coordination of expression of GAP-43 may contribute to the general decline in brain plasticity with age.
Collapse
Affiliation(s)
- H Schmoll
- Department of Neurology, Ernst Moritz Arndt University, Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Le Grevès M, Le Grevès P, Nyberg F. Age-related effects of IGF-1 on the NMDA-, GH- and IGF-1-receptor mRNA transcripts in the rat hippocampus. Brain Res Bull 2005; 65:369-74. [PMID: 15833590 DOI: 10.1016/j.brainresbull.2005.01.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 01/27/2005] [Accepted: 01/27/2005] [Indexed: 11/17/2022]
Abstract
Insulin-like growth factor-1 (IGF-1) and growth hormone (GH) have been suggested to promote memory and cognitive capabilities. In a recent publication we observed that GH increase the proportion of the NR2B subunit mRNA transcript of the NMDA receptor in rat hippocampus. NR2B has been suggested to be essential for spatial learning and long-term potentiation (LTP). This effect of GH might be IGF-1-mediated or a result of a co-ordination with IGF-1. To test this hypothesis further, we examined the effects of 10 daily s.c. injections of IGF-1 on NMDA receptor subunits (NR1, NR2A, and NR2B), GH receptor (GHR), GH binding protein (GHBP) and type 1 IGF receptor (IGF-1R) gene transcripts in the hippocampus. The NR2B subunit mRNA increased in young (11 weeks) but not in older (14-16 months) rats and the expression of the NR2A mRNA was decreased in both groups. The ratio of NR2B to NR2A is suggested to mirror the potential for synaptic plasticity. In both age groups, IGF-1 treatment resulted in a significant increase of this ratio at transcription level. The GHR mRNA increased in young rats, mimicking the effect of GH, while the IGF-1R mRNA was decreased in the older group of rats after IGF-1 treatment. These results suggest that IGF-1 in many aspects may mediate the actions earlier shown for GH.
Collapse
Affiliation(s)
- Madeleine Le Grevès
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, SE-75124 Uppsala, Sweden.
| | | | | |
Collapse
|
20
|
Abstract
The discovery that the adult mammalian brain creates new neurons from pools of stemlike cells was a breakthrough in neuroscience. Interestingly, this particular new form of structural brain plasticity seems specific to discrete brain regions, and most investigations concern the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampal formation (HF). Overall, two main lines of research have emerged over the last two decades: the first aims to understand the fundamental biological properties of neural stemlike cells (and their progeny) and the integration of the newly born neurons into preexisting networks, while the second focuses on understanding its relevance in brain functioning, which has been more extensively approached in the DG. Here, we propose an overview of the current knowledge on adult neurogenesis and its functional relevance for the adult brain. We first present an analysis of the methodological issues that have hampered progress in this field and describe the main neurogenic sites with their specificities. We will see that despite considerable progress, the levels of anatomic and functional integration of the newly born neurons within the host circuitry have yet to be elucidated. Then the intracellular mechanisms controlling neuronal fate are presented briefly, along with the extrinsic factors that regulate adult neurogenesis. We will see that a growing list of epigenetic factors that display a specificity of action depending on the neurogenic site under consideration has been identified. Finally, we review the progress accomplished in implicating neurogenesis in hippocampal functioning under physiological conditions and in the development of hippocampal-related pathologies such as epilepsy, mood disorders, and addiction. This constitutes a necessary step in promoting the development of therapeutic strategies.
Collapse
Affiliation(s)
- Djoher Nora Abrous
- Laboratoire de Physiopathologie des Comportements, Institut National de la Sané et de la Recherche Médicale, U588, Université de Bordeaux, France.
| | | | | |
Collapse
|
21
|
Abstract
Age-related decrements in hippocampal neurogenesis have been suggested as a basis for learning impairment during aging. In the current study, a rodent model of age-related cognitive decline was used to evaluate neurogenesis in relation to hippocampal function. New hippocampal cell survival was assessed approximately 1 month after a series of intraperitoneal injections of 5-bromo-2'-deoxyuridine (BrdU). Correlational analyses between individual measures of BrdU-positive cells and performance on the Morris water maze task provided no indication that this measure of neurogenesis was more preserved in aged rats with intact cognitive abilities. On the contrary, among aged rats, higher numbers of BrdU-positive cells in the granule cell layer were associated with a greater degree of impairment on the learning task. Double-labelling studies confirmed that the majority of the BrdU+ cells were of the neuronal phenotype; the proportion of differentiated neurons was not different across a broad range of cognitive abilities. These data demonstrate that aged rats that maintain cognitive function do so despite pronounced reductions in hippocampal neurogenesis. In addition, these findings suggest the interesting possibility that impaired hippocampal function is associated with greater survival of newly generated hippocampal neurons at advanced ages.
Collapse
Affiliation(s)
- J L Bizon
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
22
|
van Dam PS, Aleman A. Insulin-like growth factor-I, cognition and brain aging. Eur J Pharmacol 2004; 490:87-95. [PMID: 15094076 DOI: 10.1016/j.ejphar.2004.02.047] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2004] [Indexed: 10/26/2022]
Abstract
Aging is associated with a decline in the activity of the growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis. As aging also coincides with a decline in specific cognitive functions and as some of these dysfunctions are also observed in subjects with GH deficiency, it has been hypothesised that a causal relationship exists between the reduction in circulating GH and/or IGF-I and the observed cognitive deficits in the elderly. The present review summarises the available data concerning the possible relation between GH, IGF-I and cognitive performance, and regarding possible underlying pathophysiological mechanisms.
Collapse
Affiliation(s)
- P Sytze van Dam
- Department of Internal medicine, Onze Lieve Vrouwe Gasthuis, PO Box 95500, 1090 HM Amsterdam, The Netherlands.
| | | |
Collapse
|
23
|
Dahly EM, Miller ME, Lund PK, Ney DM. Postreceptor resistance to exogenous growth hormone exists in the jejunal mucosa of parenterally fed rats. J Nutr 2004; 134:530-7. [PMID: 14988442 DOI: 10.1093/jn/134.3.530] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Our objective was to determine whether the intestinal mucosa is resistant to the mitogenic effects of exogenous growth hormone (GH) but sensitive to exogenous insulin-like growth factor-I (IGF-I) during total parenteral nutrition (TPN) because of decreased GH receptor (GHR) binding or postreceptor responsiveness to GH. First, only continuous i.v. administration of IGF-I, but neither pulsatile subcutaneous nor continuous i.v. GH, stimulated jejunal mucosal hyperplasia; however, both GH and IGF-I increased serum IGF-I and promoted similar whole-body growth after 8 d of exclusive TPN and 6 d of growth factor treatment in rats. This suggests a tissue-specific resistance to GH action in the intestinal mucosa during TPN. Second, exogenous GH during TPN did not reduce GH-specific binding in jejunum, suggesting that the inability of GH to stimulate mucosal hyperplasia is not due to low levels of the GHR. Third, IGF-I, but not GH, induced acute expression of c-fos (P < 0.009) and c-jun (P = 0.053) mRNAs in jejunum based on Northern analysis and in situ hybridization histochemistry 60 min after a single i.v. bolus of GH or IGF-I. This suggests that IGF-I, but not GH, activates early postreceptor growth-related signaling pathways in jejunum. In summary, the lack of early c-fos and c-jun induction in response to GH in TPN rats indicates that the jejunal mucosa is resistant to exogenous GH between GHR activation and induction of immediate early genes. This may contribute to the inability of mucosal cells to respond to the trophic effects of GH.
Collapse
Affiliation(s)
- Elizabeth M Dahly
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
24
|
Varela-Nieto I, de la Rosa EJ, Valenciano AI, León Y. Cell death in the nervous system: lessons from insulin and insulin-like growth factors. Mol Neurobiol 2003; 28:23-50. [PMID: 14514984 DOI: 10.1385/mn:28:1:23] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2002] [Accepted: 02/28/2003] [Indexed: 12/11/2022]
Abstract
Programmed cell death is an essential process for proper neural development. Cell death, with its similar regulatory and executory mechanisms, also contributes to the origin or progression of many or even all neurodegenerative diseases. An understanding of the mechanisms that regulate cell death during neural development may provide new targets and tools to prevent neurodegeneration. Many studies that have focused mainly on insulin-like growth factor-I (IGF-I), have shown that insulin-related growth factors are widely expressed in the developing and adult nervous system, and positively modulate a number of processes during neural development, as well as in adult neuronal and glial physiology. These factors also show neuroprotective effects following neural damage. Although some specific actions have been demonstrated to be anti-apoptotic, we propose that a broad neuroprotective role is the foundation for many of the observed functions of the insulin-related growth factors, whose therapeutical potential for nervous system disorders may be greater than currently accepted.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Instituto de Investigaciones Biomédicas "Alberto Sols," Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, E-28029 Madrid, Spain.
| | | | | | | |
Collapse
|
25
|
Drapeau E, Mayo W, Aurousseau C, Le Moal M, Piazza PV, Abrous DN. Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc Natl Acad Sci U S A 2003; 100:14385-90. [PMID: 14614143 PMCID: PMC283601 DOI: 10.1073/pnas.2334169100] [Citation(s) in RCA: 497] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2003] [Accepted: 09/26/2003] [Indexed: 12/12/2022] Open
Abstract
Neurogenesis occurs within the adult dentate gyrus of the hippocampal formation and it has been proposed that the newly born neurons, recruited into the preexistent neuronal circuits, might be involved in hippocampal-dependent learning processes. Age-dependent spatial memory impairments have been related to an alteration in hippocampal plasticity. The aim of the current study was to examine whether cognitive functions in aged rats are quantitatively correlated with hippocampal neurogenesis. To this end, we took advantage of the existence of spontaneous individual differences observed in aged subjects in a hippocampal-dependent task, the water maze. We expected that the spatial memory capabilities of aged rats would be related to the levels of hippocampal neurogenesis. Old rats were trained in the water maze, and, 3 weeks after training, rats were injected with 5-bromo-2'-deoxyuridine (BrdUrd, 50 or 150 mg/kg) to label dividing cells. Cell proliferation was examined one day after the last BrdUrd injection, whereas cell survival and differentiation were determined 3 weeks later. It is shown that a quantitative relationship exists between learning and the number of newly generated neurons. Animals with preserved spatial memory, i.e., the aged-unimpaired rats, exhibited a higher level of cell proliferation and a higher number of new neurons in comparison with rats with spatial memory impairments, i.e., the aged-impaired rats. In conclusion, the extent of memory dysfunction in aged rats is quantitatively related to the hippocampal neurogenesis. These data reinforce the assumption that neurogenesis is involved in memory processes and aged-related cognitive alterations.
Collapse
Affiliation(s)
- Elodie Drapeau
- Institut National de la Santá et de la Recherche Médicale Unité 588, Domaine de Carreire, Rue Camille Saint Saëns, University of Bordeaux II, 33077 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
26
|
Bizon JL, Gallagher M. Production of new cells in the rat dentate gyrus over the lifespan: relation to cognitive decline. Eur J Neurosci 2003; 18:215-9. [PMID: 12859354 DOI: 10.1046/j.1460-9568.2003.02733.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The identification of neurogenesis in the dentate gyrus of adult mammals has sparked much interest in a functional role for these new neurons in hippocampal-dependent cognition. The current investigation used a model of age-related cognitive decline in rodents to study the relationship between changes in markers of neurogenesis and hippocampal function. New cell production in the granule cell layer was progressively reduced across the lifespan of male Long Evans rats, with a 40% reduction at middle age (13 months) and a reduction in excess of 80% in advanced age (25 months), compared with young mature adults (7 months). These effects of aging were not, however, predictive of cognitive status. In particular, the pronounced decrease in new cell production during aging did not distinguish among rats that varied over a wide range of cognitive abilities.
Collapse
Affiliation(s)
- J L Bizon
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| | | |
Collapse
|
27
|
Chung YH, Shin CM, Joo KM, Kim MJ, Cha CI. Region-specific alterations in insulin-like growth factor receptor type I in the cerebral cortex and hippocampus of aged rats. Brain Res 2002; 946:307-13. [PMID: 12137935 DOI: 10.1016/s0006-8993(02)03041-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the present study, we investigated age-related changes in IGF-I receptor localization in the cerebral cortex and hippocampus of Sprague-Dawley rats using immunohistochemistry. In the cerebral cortex of adult rats, weakly stained cells were seen in layers II-III and layer V/VI in several cortical regions. In aged rats, there was a significant increase in IGF-I receptor immunoreactivity in the pyramidal cells in the same cortical regions. In the hippocampus of adult rats, several moderately stained neurons were seen in CA1-3 areas and the dentate gyrus. Levels of IGF-I receptor protein increased substantially with age in the CA3 area of the hippocampus. Our first morphological data concerning the differential regulation of IGF-I receptors in aged cerebral cortex and hippocampus may provide insights into age-related changes in trophic support as well as basic knowledge required for the study of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Yoon Hee Chung
- Department of Anatomy, Seoul National University College of Medicine, 28 Yongon-Dong, Chongno-Gu, South Korea
| | | | | | | | | |
Collapse
|
28
|
Bizon JL, Helm KA, Han JS, Chun HJ, Pucilowska J, Lund PK, Gallagher M. Hypothalamic-pituitary-adrenal axis function and corticosterone receptor expression in behaviourally characterized young and aged Long-Evans rats. Eur J Neurosci 2001; 14:1739-51. [PMID: 11860468 DOI: 10.1046/j.0953-816x.2001.01781.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the current investigation, hypothalamic-pituitary-adrenal (HPA) axis function was examined in young and aged male Long-Evans rats that were initially assessed on a version of the Morris water maze sensitive to cognitive impairment during ageing. In behaviourally characterized rats, a 1-h restraint stress paradigm revealed that plasma corticosterone concentrations in aged cognitively impaired rats took significantly longer to return to baseline following the stressor than did those in young or aged cognitively unimpaired rats. No differences in basal or peak plasma corticosterone concentrations, however, were observed between young or aged rats, irrespective of cognitive status. Using ribonuclease protection assays and in situ hybridization, we evaluated mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA abundance in young and aged rats characterized on the spatial task. Abundance of MR mRNA was decreased as a function of age in stratum granulosum but not hippocampus proper, and the decrease in MR mRNA was largely unrelated to cognitive status. However, GR mRNA was significantly reduced in several hippocampal subfields (i.e. stratum granulosum and temporal hippocampus proper) and other related cortical structures (medial prefrontal and olfactory regions) of aged cognitively impaired rats compared to either young or aged cognitively unimpaired cohorts, and was significantly correlated with spatial learning ability among the aged rats in each of these brain regions. In agreement with previous stereological data from this ageing model, no changes were detected in neuron density in the hippocampus of the rats used in the in situ hybridization analysis. These data are the first to describe a coordinated decrease in GR mRNA in a functional brain system including hippocampus and related cortical areas that occurs in tandem with impairments of the HPA response to stress and cognitive decline in ageing.
Collapse
Affiliation(s)
- J L Bizon
- Department of Psychology, Johns Hopkins University, 3400 North Charles St., Baltimore, MD 21218, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Ostlund P, Lindegren H, Pettersson C, Bedecs K. Up-regulation of functionally impaired insulin-like growth factor-1 receptor in scrapie-infected neuroblastoma cells. J Biol Chem 2001; 276:36110-5. [PMID: 11461928 DOI: 10.1074/jbc.m105710200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A growing body of evidence suggests that an altered level or function of the neurotrophic insulin-like growth factor-1 receptor (IGF-1R), which supports neuronal survival, may underlie neurodegeneration. This study has focused on the expression and function of the IGF-1R in scrapie-infected neuroblastoma cell lines. Our results show that scrapie infection induces a 4-fold increase in the level of IGF-1R in two independently scrapie-infected neuroblastomas, ScN2a and ScN1E-115 cells, and that the increased IGF-1R level was accompanied by increased IGF-1R mRNA levels. In contrast to the elevated IGF-1R expression in ScN2a, receptor binding studies revealed an 80% decrease in specific (125)I-IGF-1-binding sites compared with N2a cells. This decrease in IGF-1R-binding sites was shown to be caused by a 7-fold decrease in IGF-1R affinity. Furthermore, ScN2a showed no significant difference in IGF-1 induced proliferative response, despite the noticeable elevated IGF-1R expression, putatively explained by the reduced IGF-1R binding affinity. Additionally, IGF-1 stimulated IGF-1Rbeta tyrosine phosphorylation showed no major change in the dose-response between the cell types, possibly due to altered tyrosine kinase signaling in scrapie-infected neuroblastoma cells. Altogether these data indicate that scrapie infection affects the expression, binding affinity, and signal transduction mediated by the IGF-1R in neuroblastoma cells. Altered IGF-1R expression and function may weaken the trophic support in scrapie-infected neurons and thereby contribute to neurodegeneration in prion diseases.
Collapse
Affiliation(s)
- P Ostlund
- Department of Neurochemistry and Neurotoxicology, University of Stockholm, Svante Arrhenius v. 21A, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
30
|
Smith DR, Hoyt EC, Gallagher M, Schwabe RF, Lund PK. Effect of age and cognitive status on basal level AP-1 activity in rat hippocampus. Neurobiol Aging 2001; 22:773-86. [PMID: 11705637 DOI: 10.1016/s0197-4580(01)00240-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activator protein-1 (AP-1) was examined at multiple levels (mRNA, DNA binding, composition) in hippocampus of young and aged rats that were behaviorally characterized for spatial memory. GFAP mRNA was measured as a gene product known to increase with aging and to be regulated by AP-1. The activity of Jun-amino terminal-kinase (JNK) was also assessed. Levels of c-jun and c-fos mRNAs were unchanged with aging or spatial learning ability. Abundance of GFAP mRNA was significantly increased in aged hippocampus but did not correlate with spatial learning. Total AP-1 binding activity was unaltered with age or cognitive ability. In hippocampus of young, aged unimpaired and aged impaired rats, AP-1 consists mainly of c-Jun, phosphorylated c-Jun (p-c-Jun), JunD, and smaller amounts of c-Fos. JNK is constitutively active in young and aged hippocampus. We conclude that the basal expression of c-fos and c-jun mRNA, overall AP-1 binding activity and AP-1 composition are not influenced by aging or cognitive ability.
Collapse
Affiliation(s)
- D R Smith
- Department of Psychology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
31
|
Schmoll H, Badan I, Fischer B, Wagner AP. Dynamics of gene expression for immediate early- and late genes after seizure activity in aged rats. Arch Gerontol Geriatr 2001; 32:199-218. [PMID: 11395167 DOI: 10.1016/s0167-4943(01)00101-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ability of the rodent brain to support plasticity-related phenomena declines with increasing age. A decreased coordination of genes implicated in brain plasticity may be one factor contributing to this decline. Synaptic rearrangement that occurs after seizure activity is regarded as a model of brain plasticity. In a rat model of seizure-related brain plasticity, we found that the induction of immediate-early genes, as exemplified by c-fos and tissue plasminogen activator ( tPA), is not impaired in the aged rat brain. However, the aged rat brain responded more slowly to chemically induced seizure, and the levels of c-fos and tPA mRNAs induction are decreased in the cortex and in the hippocampus of 30 month old rats, as compared to the levels expressed by 3 month old rats. In addition, at the peak induction, the TPA transcripts were restricted to certain cortical layers of the older rats. Surprisingly, in applying the same experimental paradigm to late genes, we found that there was a shift toward earlier times in the maximum expression of growth-related molecules, the microtubule-associated protein 1B (MAP1B) mRNA, which was very evident in 18 month old rats. Aberrant immunolabeling of MAP1B occurred in cortical layer VI of the aged rats where, unlike in young rats, there was heavy staining of neuronal somata. These results suggest that (1) one consequence of aging, besides decreases in the levels of mRNA, is a progressive loss of coordination in gene activity following the administration of a stimulus; (2) since c-fos, TPA and MAP1B have been implicated in neuronal plasticity, these findings could explain, in part, the limited plasticity of the aging brain.
Collapse
Affiliation(s)
- H Schmoll
- Department of Neurology, Ernst-Moritz-Arndt-Universität, Ellernholzstr. 1-2 D-17487, Greifswald, Germany
| | | | | | | |
Collapse
|
32
|
Jafferali S, Dumont Y, Sotty F, Robitaille Y, Quirion R, Kar S. Insulin-like growth factor-I and its receptor in the frontal cortex, hippocampus, and cerebellum of normal human and alzheimer disease brains. Synapse 2000; 38:450-9. [PMID: 11044892 DOI: 10.1002/1098-2396(20001215)38:4<450::aid-syn10>3.0.co;2-j] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Assimilated evidence indicates that the neurotoxic potential of amyloid beta (Abeta) peptide and an alteration in the level of growth factor(s) may possibly be involved in the loss of neurons observed in the brain of patients suffering from Alzheimer disease (AD), the prevalent cause of dementia in the elderly. In the present study, using receptor binding assays and immunocytochemistry, we evaluated the pharmacological profile of insulin-like growth factor-I (IGF-I) receptors and the distribution of IGF-I immunoreactivity in the frontal cortex, hippocampus, and cerebellum of AD and age-matched control brains. In control brains, [(125)I]IGF-I binding was inhibited more potently by IGF-I than by Des(1-3)IGF-I, IGF-II or insulin. The IC(50) values for IGF-I in the frontal cortex, hippocampus, and cerebellum of the normal brain did not differ significantly from the corresponding regions of the AD brain. Additionally, neither K(D) nor B(max) values were found to differ in the hippocampus of AD brains from the controls. At the regional levels, [(125)I]IGF-I binding sites in the AD brain also remained unaltered compared to the controls. As for the peptide itself, IGF-I immunoreactivity, in normal control brains, was evident primarily in a subpopulation of astrocytes in the frontal cortex and hippocampus, and in certain Purkinje cells of the cerebellum. In AD brains, a subset of Abeta-containing neuritic plaques, apart from astrocytes, exhibit IGF-I immunoreactivity. These results, taken together, suggest a role for IGF-I in compensatory plasticity and/or survival of the susceptible neurons in AD brains.
Collapse
Affiliation(s)
- S Jafferali
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Wagner AP, Schmoll H, Badan I, Platt D, Kessler C. Brain plasticity: to what extent do aged animals retain the capacity to coordinate gene activity in response to acute challenges. Exp Gerontol 2000; 35:1211-27. [PMID: 11113603 DOI: 10.1016/s0531-5565(00)00154-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability of the rodent brain to support plasticity-related phenomena declines with increasing age. A decreased coordination of genes implicated in brain plasticity may be one factor contributing to this decline. Synaptic rearrangement that occurs after seizure activity is regarded as a model of brain plasticity. In a rat model of seizure-related brain plasticity, we found that the induction of immediate-early genes, as exemplified by c-fos and tissue plasminogen activator (TPA) is not impaired in the aged rat brain. However, the aged rat brain responded more slowly to chemically induced seizure and the levels of c-fos and TPA mRNAs induction are decreased in the cortex and in the hippocampus of 30-month-old rats, as compared to the levels expressed by 3-month-old rats. In addition, at the peak induction the TPA transcripts were restricted to certain cortical layers of the older rats. Surprisingly, in applying the same experimental paradigm to late genes we found that there was a shift toward earlier times in the maximum expression of growth-related molecule, the microtubule-associated protein 1B (MAP1B) mRNA, which was very evident in 18-month-old rats. Aberrant immunolabeling of MAP1B occurred in cortical layer VI of the aged rats where, unlike in young rats, there was heavy staining of neuronal somata. These results suggest that (i) one consequence of aging, besides decreases in the levels of mRNA, is a progressive loss of coordination in gene activity following the administration of a stimulus; (ii) since c-fos, TPA and MAP1B have been implicated in neuronal plasticity, these findings could explain, in part, the limited plasticity of the aging brain.
Collapse
Affiliation(s)
- A P Wagner
- Department of Neurology, Ernst-Moritz-Arndt-Universität, Greifswald, Germany.
| | | | | | | | | |
Collapse
|
34
|
Lai M, Hibberd CJ, Gluckman PD, Seckl JR. Reduced expression of insulin-like growth factor 1 messenger RNA in the hippocampus of aged rats. Neurosci Lett 2000; 288:66-70. [PMID: 10869817 DOI: 10.1016/s0304-3940(00)01170-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adult neurones remain dependent on neurotrophic factors such as insulin-like growth factor 1 (IGF-1) to sustain neuronal viability by maintaining cell phenotype, supporting synaptic plasticity and providing neuroprotective and neuroregenerative mechanisms. A decline in the cellular expression of neurotrophic factors has been speculated to contribute to the age-related changes that occur in the brain, where the hippocampus appears particularly susceptible. Using in situ hybridisation, we have made a detailed comparison of the expression of IGF-1 mRNA in the hippocampal formation between young (6 months) and aged (23 months) rats. IGF-1 mRNA expression was measured from cell populations containing only high density radioactive labelling (>20 grains/cell) to avoid ambiguity of signal. The amount of IGF-1 mRNA signal was significantly lower in cells of the alveus (P<0.05) and stratum lacunosum moleculare (P<0.01) of aged compared to young rats. These findings challenge reports that IGF-1 mRNA is unaltered in the ageing hippocampus and provide further evidence that changes in the IGF-1 system is a significant factor in the progressive age-related deterioration of normal neuronal function.
Collapse
Affiliation(s)
- M Lai
- Department of Molecular Endocrinology, University of Edinburgh, Western General Hospital, Scotland, UK.
| | | | | | | |
Collapse
|
35
|
Abstract
According to the somatomedin model, growth hormone (GH)-dependent hepatic synthesis is responsible for maintaining circulating insulin-like growth factor (IGF)-I levels. On the other hand, the local autocrine/paracrine IGF-I expression in peripheral tissue is generally GH-independent and reflects the effects of various and tissue-specific trophic hormones. Circulating IGF-I levels undergo important age-related variations increasing at puberty and decreasing, thereafter, to low levels in the elderly. Low IGF-I levels in the elderly mainly reflect impaired somatotroph secretion but the decline in gonadal sex steroid levels, some protein and micronutrients malnutrition as well as age-dependent variations in IGF-binding proteins may also play a role in the age-related decrease in IGF-I activity. This, in turn, partially accounts for age-related changes in bones, muscles, cardiovascular system, central nervous system and the immune system. However, it is currently unclear whether treatment with exogenous IGF-I can retard or reverse age-related changes in body structure and function.
Collapse
Affiliation(s)
- E Arvat
- Division of Endocrinology, Department of Internal Medicine, University of Turin, Italy
| | | | | |
Collapse
|
36
|
Popa-Wagner A, Fischer B, Platt D, Neubig R, Schmoll H, Kessler C. Anomalous expression of microtubule-associated protein 1B in the hippocampus and cortex of aged rats treated with pentylenetetrazole. Neuroscience 1999; 94:395-403. [PMID: 10579203 DOI: 10.1016/s0306-4522(99)00204-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to assess the age-dependent response of microtubule-associated protein 1B, a plasticity-associated protein deriving from a late gene, following administration of an epileptogenic stimulus. The effect of a single administration of the convulsant pentylenetetrazole on microtubule-associated protein 1B expression in the hippocampal formation and cortex of three-, 18- and 28-month-old rats was assessed using northern blot analysis, in situ hybridization and immunohistochemistry. In three-month-old rats, we detected initial increases in microtubule-associated protein 1B messenger RNA at 15 h following pentylenetetrazole administration in the granule cells of the dentate gyrus, in the CA3 region of the hippocampus and in layers II/III of the entorhinal cortex, and these reached a maximum at 44 h. However, in the hippocampus and cortex of 18-month-old rats, the peak occurred at 15 h, and in the brains of 28-month-old rats a blunted peak was reached at 3 h. Pentylenetetrazole treatment in young rats resulted in a robust induction of microtubule-associated protein 1B immunoreactivity in the granule cells of the dentate gyrus and in layers II/III of the entorhinal cortex, but also produced a large decrease in the retrosplenial cortex. However, following pentylenetetrazole treatment in older rats, the granule cells of the dentate gyrus were nearly devoid of microtubule-associated protein 1B immunoreactivity, whereas the retrosplenial cortex showed no changes at all, and the entorhinal cortex had an expression pattern similar to that of young rats. Aberrant immunolabeling of microtubule-associated protein 1B occurred in cortical layer VI of the aged rats where, unlike in young rats, there was heavy staining of neuronal somata. These results suggest that the regulation of the plasticity-associated protein microtubule-associated protein 1B is altered in the ageing rat brain, with the peak of expression shifted to earlier times in 18-month-old rats and blunted, variable increases at even earlier times in 28-month-old rats.
Collapse
Affiliation(s)
- A Popa-Wagner
- Department of Neurology, Ernst-Moritz-Arndt-Universität, Greifswald, Germany.
| | | | | | | | | | | |
Collapse
|
37
|
Tamashiro KL, Kimura Y, Blanchard RJ, Blanchard DC, Yanagimachi R. Bypassing spermiogenesis for several generations does not have detrimental consequences on the fertility and neurobehavior of offspring: a study using the mouse. J Assist Reprod Genet 1999; 16:315-24. [PMID: 10394528 PMCID: PMC3455532 DOI: 10.1023/a:1020406016312] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
PURPOSE This study was conducted to determine whether the omission of spermiogenesis and all prefertilization events for five generations in mice affects the fertility or behavior of offspring. METHODS Fifth-generation hybrid (C57BL/6 x DBA/2) mice were produced using round spermatid injection (ROSI). Control groups consisted of mice born after natural mating with and without sham operation. The growth, fertility, and behavior of offspring were compared. Behavior tests conducted assessed elementary reasoning (Krushinsky test), emotionality (Mouse Defense Test Battery), and spatial learning and memory (Morris water maze). RESULTS There were no significant differences in the growth and fertility of fifth-generation ROSI mice compared to natural fertilization mice. We also found no evidence of significant learning or behavioral deficits of the fifth-generation ROSI mice. CONCLUSIONS In this study, we found no evidence that bypassing the natural biological processes involved in spermiogenesis produces adverse effects on the growth, fertility, or behavior of mouse offspring.
Collapse
Affiliation(s)
- K L Tamashiro
- Bekesy Laboratory of Neurobiology, University of Hawaii at Manoa, Honolulu 96822, USA
| | | | | | | | | |
Collapse
|
38
|
Colombo PJ, Gallagher M. Individual differences in spatial memory and striatal ChAT activity among young and aged rats. Neurobiol Learn Mem 1998; 70:314-27. [PMID: 9774524 DOI: 10.1006/nlme.1998.3857] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Individual differences in spatial memory among young and aged rats were assessed using memory tasks related to integrity of the hippocampus and the neostriatum. Relationships were then examined between measures of spatial memory and regional choline acetyltransferase (ChAT) activity, a marker for cholinergic integrity. Twenty-four-month-old Long-Evans rats were impaired in comparisons with 6-month-old rats on measures of place learning, working memory, reference memory, and perseveration in water-maze tasks. Aged rats that were impaired on one measure of memory, however, were not necessarily impaired on other measures. ChAT activity in the ventromedial and dorsolateral neostriatum of aged rats was significantly reduced in comparisons with young rats whereas no difference was found in the hippocampus. Aged rats with the most ChAT activity in the anterior ventromedial neostriatum performed best on the place-learning and reference memory tasks but also made the most perseverative errors on the working memory task. In addition, young and aged rats with the most ChAT activity in the anterior dorsolateral neostriatum were those with the least accurate working memory. No relationships were found between ChAT activity in the hippocampus and spatial memory. Thus age-related memory impairment has components that can be segregated by measuring relationships between cholinergic integrity in subregions of the anterior neostriatum and memory tasks with different strategic requirements.
Collapse
Affiliation(s)
- P J Colombo
- Department of Psychology, Johns Hopkins University, Baltimore, Maryland, 21218, USA.
| | | |
Collapse
|
39
|
Niblock MM, Brunso-Bechtold JK, Lynch CD, Ingram RL, McShane T, Sonntag WE. Distribution and levels of insulin-like growth factor I mRNA across the life span in the Brown Norway x Fischer 344 rat brain. Brain Res 1998; 804:79-86. [PMID: 9729292 DOI: 10.1016/s0006-8993(98)00645-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previous studies have reported changes in insulin-like growth factor I (IGF-I) mRNA expression during early postnatal development of the rat brain. Although changes in IGF-I gene expression have been documented in a wide range of central nervous system structures during early development and investigated in the hippocampus during aging, no study has compared changes in IGF-I gene expression in different brain regions across the life span. The present study assessed the distribution of IGF-I gene expression using in situ hybridization in rats aged 2-30 months. Dot blots were used as a quantitative assessment of cortical IGF-I mRNA. Results indicate that both the distribution and levels of brain IGF-I mRNA do not change significantly between 2 and 30 months of age in the rat. However, in spite of relatively constant levels of mRNA, other studies from our laboratory have demonstrated that cortical IGF-I protein levels decrease 36.6% between 11 and 32 months of age, suggesting that IGF-I function is decreased with increasing age.
Collapse
Affiliation(s)
- M M Niblock
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | |
Collapse
|
40
|
Connor B, Dragunow M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 27:1-39. [PMID: 9639663 DOI: 10.1016/s0165-0173(98)00004-6] [Citation(s) in RCA: 385] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent evidence suggests that neurotrophic factors that promote the survival or differentiation of developing neurons may also protect mature neurons from neuronal atrophy in the degenerating human brain. Furthermore, it has been proposed that the pathogenesis of human neurodegenerative disorders may be due to an alteration in neurotrophic factor and/or trk receptor levels. The use of neurotrophic factors as therapeutic agents is a novel approach aimed at restoring and maintaining neuronal function in the central nervous system (CNS). Research is currently being undertaken to determine potential mechanisms to deliver neurotrophic factors to selectively vulnerable regions of the CNS. However, while there is widespread interest in the use of neurotrophic factors to prevent and/or reduce the neuronal cell loss and atrophy observed in neurodegenerative disorders, little research has been performed examining the expression and functional role of these factors in the normal and diseased human brain. This review will discuss recent studies and examine the role members of the nerve growth factor family (NGF, BDNF and NT-3) and trk receptors as well as additional growth factors (GDNF, TGF-alpha and IGF-I) may play in neurodegenerative disorders of the human brain.
Collapse
Affiliation(s)
- B Connor
- Department of Pharmacology, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | | |
Collapse
|
41
|
Connor B, Beilharz EJ, Williams C, Synek B, Gluckman PD, Faull RL, Dragunow M. Insulin-like growth factor-I (IGF-I) immunoreactivity in the Alzheimer's disease temporal cortex and hippocampus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 49:283-90. [PMID: 9387889 DOI: 10.1016/s0169-328x(97)00192-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
IGF-I has been shown to enhance neuronal survival and inhibit apoptosis. IGF-I immunoreactivity was examined in the Alzheimer's disease and normal post-mortem human hippocampus and temporal cortex to determine whether IGF-I protein levels are altered in response to neurodegeneration. IGF-I immunoreactivity was induced in a subpopulation of GFAP-immunopositive astroglia in the Alzheimer's disease temporal cortex. These observations raise the possibility that IGF-I has a neuroprotective role in the Alzheimer's disease brain.
Collapse
Affiliation(s)
- B Connor
- Department of Pharmacology, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
42
|
Doré S, Kar S, Rowe W, Quirion R. Distribution and levels of [125I]IGF-I, [125I]IGF-II and [125I]insulin receptor binding sites in the hippocampus of aged memory-unimpaired and -impaired rats. Neuroscience 1997; 80:1033-40. [PMID: 9284058 DOI: 10.1016/s0306-4522(97)00154-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and insulin are localized within distinct brain regions and their respective functions are mediated by specific membrane receptors. High densities of binding sites for these growth factors are discretely and differentially distributed throughout the brain, with prominent levels localized to the hippocampal formation. IGFs and insulin, in addition to their growth promoting actions, are considered to play important roles in the development and maintenance of normal cell functions throughout life. We compared the anatomical distribution and levels of IGF and insulin receptors in young (five month) and aged (25 month) memory-impaired and memory-unimpaired male Long Evans rats as determined in the Morris water maze task in order to determine if alterations in IGF and insulin activity may be related to the emergence of cognitive deficits in the aged memory-impaired rat. In the hippocampus, [125I]IGF-I receptors are concentrated primarily in the dentate gyrus (DG) and the CA3 sub-field while high amounts of [125I]IGF-II binding sites are localized to the pyramidal cell layer, and the granular cell layer of the DG. [125I]insulin binding sites are mostly found in the molecular layer of the DG and the CA1 sub-field. No significant differences were found in [125I]IGF-I. [125I]IGF-II or [125I]insulin binding levels in any regions or laminae of the hippocampus of young vs aged rats. and deficits in cognitive performance did not relate to altered levels of these receptors in aged memory-impaired vs aged memory-unimpaired rats. Other regions. including various cortical areas, were also examined and failed to reveal any significant differences between the three groups studied. It thus appears that IGF-I, IGF-II and insulin receptor sites are not markedly altered during the normal ageing process in the Long Evans rat, in spite of significant learning deficits in a sub-group (memory-impaired) of aged animals. Hence. recently reported changes in IGF-I receptor messenger RNA levels in aged memory-impaired rats are apparently not reflected at the level of the translated protein.
Collapse
Affiliation(s)
- S Doré
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
43
|
Dragunow M, MacGibbon GA, Lawlor P, Butterworth N, Connor B, Henderson C, Walton M, Woodgate A, Hughes P, Faull RL. Apoptosis, neurotrophic factors and neurodegeneration. Rev Neurosci 1997; 8:223-65. [PMID: 9548234 DOI: 10.1515/revneuro.1997.8.3-4.223] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apoptosis is an active process of cell death characterized by distinct morphological features, and is often the end result of a genetic programme of events, i.e. programmed cell death (PCD). There is growing evidence supporting a role for apoptosis in some neurodegenerative diseases. This conclusion is based on DNA fragmentation studies and findings of increased levels of pro-apoptotic genes in human brain and in in vivo and in vitro model systems. Additionally, there is some evidence for a loss of neurotrophin support in neurodegenerative diseases. In Alzheimer's disease, in particular, there is strong evidence from human brain studies, transgenic models and in vitro models to suggest that the mode of nerve cell death is apoptotic. In this review we describe the evidence implicating apoptosis in neurodegenerative diseases with a particular emphasis on Alzheimer's disease.
Collapse
Affiliation(s)
- M Dragunow
- Department of Pharmacology and Clinical Pharmacology, Medicine and Health Sciences Campus, The University of Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
This review addresses the importance of animal models for understanding the effects of normal aging on the brain and cognitive functions. First, studies of laboratory animals can help to distinguish between healthy aging and pathological conditions that may contribute to cognitive decline late in life. Second, research on individual differences in aging, a theme of interest in studies of elderly human beings, can be advanced by the experimental control afforded in the use of animal models. The review offers a neuropsychological framework to compare the effects of aging in human beings, monkeys, and rodents. We consider aging in relation to the role of the medial temporal lobe in memory, the information processing functions of the prefrontal cortex in the strategic use of memory, and the regulation of attention by distributed neural circuitry. We also provide an overview of the neurobiological effects of aging that may account for alterations in psychological functions.
Collapse
Affiliation(s)
- M Gallagher
- Department of Psychology, University of North Carolina at Chapel Hill 27599, USA
| | | |
Collapse
|
45
|
Le Jeune H, Cécyre D, Rowe W, Meaney MJ, Quirion R. Ionotropic glutamate receptor subtypes in the aged memory-impaired and unimpaired Long-Evans rat. Neuroscience 1996; 74:349-63. [PMID: 8865188 DOI: 10.1016/0306-4522(96)00213-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The comparative quantitative autoradiographic distribution of ionotropic glutamate receptor subtypes were investigated in young adults (six months) and aged (24-25 months) cognitively impaired and unimpaired male Long-Evans rats. Aged rats were behaviorally characterized as either cognitively impaired or unimpaired based upon their performances in the Morris water maze task compared to the young adult controls. The status of the N-methyl-D-aspartate, [125I]dizocilpine maleate, [3H]kainate and amino-3-hydroxy-5-methylisoxasole-4-propionate (AMPA, [3H]AMPA) receptor binding sites were then established in these three subgroups of animals as a function of their cognitive performance in the Morris water maze task. The apparent densities of both N-methyl-D-aspartate/[125I]dizocilpine maleate and kainate binding sites were significantly decreased in various regions of the aged rat brain. Marked losses in [125I]dizocilpine maleate binding sites were observed in outer laminae of the frontal, parietal and temporal cortices, and the stratum radiatum of the CA3 subfield of the hippocampus. Interestingly, losses in [125I]dizocilpine maleate binding sites were generally most evident in the cognitively unimpaired aged subgroup, suggesting a possible inverse relationship between losses of this receptor subtype and cognitive performances in the Morris water maze task. The levels of [3H]kainate binding were most significantly diminished in various cortical and hippocampal areas as well as the striatum and septal nuclei of both groups of aged rats. In contrast, the apparent density of [3H]AMPA binding was increased in most hippocampal subfields and the superficial laminae of the occipital cortex of the cognitively impaired vs young adult rats. Changes in [3H]AMPA labeling failed to reach significance in the unimpaired cohort. Taken together, these results show that while losses in [3H]kainate binding were similar in both subgroups of aged rats, differences were seen with respect to cognitive status for both [125I]dizocilpine maleate/N-methyl-D-aspartate and [3H]AMPA binding sites. Decreases in [125I]dizocilpine maleate binding sites were mostly restricted to cortical areas of cognitively unimpaired rats, while increases in the AMPA binding subtype were seen in the memory-impaired subgroup. It would thus appear that changes in N-methyl-D-aspartate and AMPA receptor subtypes may be more critical than alterations in kainate binding sites for the emergence of the functional deficits seen in the aged cognitively impaired rat.
Collapse
Affiliation(s)
- H Le Jeune
- Douglas Hospital Research Centre, Verdun, Québec, Canada
| | | | | | | | | |
Collapse
|