1
|
Al Khader A, Fararjeh AFS, Kaddumi EG, Al-Saghbini M. Significance of fibulin-3 expression in bladder cancer: a tissue microarray-based immunohistochemical study. World J Surg Oncol 2022; 20:133. [PMID: 35473807 PMCID: PMC9040230 DOI: 10.1186/s12957-022-02597-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/16/2022] [Indexed: 12/25/2022] Open
Abstract
Background Predicting the behavior of bladder cancer by easy noninvasive methods and with less cost is needed. Fibulin-3 (EFEMP1), a glycoprotein of the extracellular matrix that is encoded by the gene EFEMP1, has been nominated as one of the potential mediators of muscle invasion in bladder cancer. Methods In this tissue microarray-based immunohistochemical study, fibulin-3 level of expression was evaluated using a semiquantitative scoring system and was correlated with patient’s age and sex and tumor grade and stage. Results A total of 160 urothelial carcinoma cases were analyzed. The age of the patients ranged from 25 to 91 years (mean, 60.15; SD, 11.60). Fibulin-3 was significantly associated with muscle invasion and overall tumor stage (p = 0.033 and 0.02, respectively). Fibulin-3 expression was nonsignificantly associated with tumor grade (p = 0.092) Conclusions We found that the expression of fibulin-3 is significantly associated with muscle invasion in urinary bladder urothelial carcinoma. However, the prognostic role of fibulin-3 needs further investigations.
Collapse
Affiliation(s)
- Ali Al Khader
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan.
| | - Abdul Fattah S Fararjeh
- Department of Medical Laboratory Analysis, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Ezidin G Kaddumi
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| | - Mohamad Al-Saghbini
- Department of Pathology and Forensic Medicine, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan
| |
Collapse
|
2
|
Chen TJ, Chan TC, Li WS, Li CF, Ke HL, Wei YC, Wu WJ, Li WM. Utility of EFEMP1 in the Prediction of Oncologic Outcomes of Urothelial Carcinoma. Genes (Basel) 2021; 12:872. [PMID: 34204134 PMCID: PMC8226762 DOI: 10.3390/genes12060872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/30/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
Urothelial carcinoma (UC) of the upper tract (UTUC) and urinary bladder (UBUC) is a heterogeneous malignancy. Through transcriptomic profiling of the Gene Expression Omnibus UBUC dataset (GSE31684), we discovered that epidermal growth factor-containing fibulin-like extracellularmatrix protein 1 (EFEMP1) was the most upregulated gene during metastatic development. EFEMP1 is an important component of basement membranes and acts as an enzyme regulator in extracellular matrix biology. Initially, evaluation of EFEMP1 mRNA expression in 50 UBUCs showed significantly upregulated levels in high stage UC. We further validated the clinical significance of EFEMP1 in 340 UTUC and 295 UBUC using immunohistochemistry, evaluated by H-score. High EFEMP1 immunoexpression significantly correlated with high pathologic stage, high histological grade, lymph node metastasis, vascular invasion, perineural invasion and high mitosis (all p < 0.05). After adjusting for established clinicopathological factors, EFEMP1 expression status retained its prognostic impact on disease-specific survival and metastasis-free survival in UTUC and UBUC (all p < 0.01). Furthermore, Ingenuity Pathway Analysis showed that actin cytoskeleton signaling, tumor microenvironment pathway and mitochondrial dysfunction were significantly enriched by EFEMP1 dysregulation. In conclusion, high EFEMP1 expression was associated with adverse pathological features in UC and independently predicted worse outcomes, suggesting its roles in clinical decision-making and risk stratification.
Collapse
Affiliation(s)
- Tzu-Ju Chen
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (W.-S.L.); (C.-F.L.)
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| | - Wan-Shan Li
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (W.-S.L.); (C.-F.L.)
- Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
| | - Chien-Feng Li
- Department of Clinical Pathology, Chi Mei Medical Center, Tainan 710, Taiwan; (T.-J.C.); (W.-S.L.); (C.-F.L.)
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan;
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Hung-Lung Ke
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-L.K.); (W.-J.W.)
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Yu-Ching Wei
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Pathology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-L.K.); (W.-J.W.)
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wei-Ming Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; (H.-L.K.); (W.-J.W.)
- Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Urology, Ministry of Health and Welfare, Pingtung Hospital, Pingtung 900, Taiwan
| |
Collapse
|
3
|
Livingstone I, Uversky VN, Furniss D, Wiberg A. The Pathophysiological Significance of Fibulin-3. Biomolecules 2020; 10:E1294. [PMID: 32911658 PMCID: PMC7563619 DOI: 10.3390/biom10091294] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 02/07/2023] Open
Abstract
Fibulin-3 (also known as EGF-containing fibulin extracellular matrix protein 1 (EFEMP1)) is a secreted extracellular matrix glycoprotein, encoded by the EFEMP1 gene that belongs to the eight-membered fibulin protein family. It has emerged as a functionally unique member of this family, with a diverse array of pathophysiological associations predominantly centered on its role as a modulator of extracellular matrix (ECM) biology. Fibulin-3 is widely expressed in the human body, especially in elastic-fibre-rich tissues and ocular structures, and interacts with enzymatic ECM regulators, including tissue inhibitor of metalloproteinase-3 (TIMP-3). A point mutation in EFEMP1 causes an inherited early-onset form of macular degeneration called Malattia Leventinese/Doyne honeycomb retinal dystrophy (ML/DHRD). EFEMP1 genetic variants have also been associated in genome-wide association studies with numerous complex inherited phenotypes, both physiological (namely, developmental anthropometric traits) and pathological (many of which involve abnormalities of connective tissue function). Furthermore, EFEMP1 expression changes are implicated in the progression of numerous types of cancer, an area in which fibulin-3 has putative significance as a therapeutic target. Here we discuss the potential mechanistic roles of fibulin-3 in these pathologies and highlight how it may contribute to the development, structural integrity, and emergent functionality of the ECM and connective tissues across a range of anatomical locations. Its myriad of aetiological roles positions fibulin-3 as a molecule of interest across numerous research fields and may inform our future understanding and therapeutic approach to many human diseases in clinical settings.
Collapse
Affiliation(s)
- Imogen Livingstone
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford OX3 7LD, UK; (I.L.); (D.F.)
| | - Vladimir N. Uversky
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Moscow Region, Russia;
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Dominic Furniss
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford OX3 7LD, UK; (I.L.); (D.F.)
- Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Akira Wiberg
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford OX3 7LD, UK; (I.L.); (D.F.)
- Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
4
|
Levi N, Papismadov N, Solomonov I, Sagi I, Krizhanovsky V. The ECM path of senescence in aging: components and modifiers. FEBS J 2020; 287:2636-2646. [PMID: 32145148 DOI: 10.1111/febs.15282] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/25/2019] [Accepted: 03/04/2020] [Indexed: 11/29/2022]
Abstract
The extracellular matrix (ECM) is a key noncellular component in all organs and tissues. It is composed of a large number of proteins including collagens, glycoproteins (GP), and ECM-associated proteins, which show diversity of biochemical and biophysical functions. The ECM is dynamic both in normal physiology of tissues and under pathological conditions. One cellular phenomenon associated with changes in both ECM components expression and in ECM remodeling enzymes secretion is cellular senescence. It represents a stable state form of cell cycle arrest induced in proliferating cells by various forms of stress. Short-term induction of senescence is essential for tumor suppression and tissue repair. However, long-term presence of senescent cells in tissues may have a detrimental role in promoting tissue damage and aging. Up to date, there is insufficient knowledge about the interplay between the ECM and senescence cells. Since changes in the ECM occur in many physiological and pathological conditions in which senescent cells are present, a better understanding of ECM-senescence interactions is necessary. Here, we will review the functions of the different ECM components and will discuss the current knowledge about their regulation in senescent cells and their influence on the senescence state.
Collapse
Affiliation(s)
- Naama Levi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Nurit Papismadov
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Inna Solomonov
- Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Sagi
- Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Nilsson MI, Bourgeois JM, Nederveen JP, Leite MR, Hettinga BP, Bujak AL, May L, Lin E, Crozier M, Rusiecki DR, Moffatt C, Azzopardi P, Young J, Yang Y, Nguyen J, Adler E, Lan L, Tarnopolsky MA. Lifelong aerobic exercise protects against inflammaging and cancer. PLoS One 2019; 14:e0210863. [PMID: 30682077 PMCID: PMC6347267 DOI: 10.1371/journal.pone.0210863] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 01/03/2019] [Indexed: 12/16/2022] Open
Abstract
Biological aging is associated with progressive damage accumulation, loss of organ reserves, and systemic inflammation ('inflammaging'), which predispose for a wide spectrum of chronic diseases, including several types of cancer. In contrast, aerobic exercise training (AET) reduces inflammation, lowers all-cause mortality, and enhances both health and lifespan. In this study, we examined the benefits of early-onset, lifelong AET on predictors of health, inflammation, and cancer incidence in a naturally aging mouse model (C57BL/J6). Lifelong, voluntary wheel-running (O-AET; 26-month-old) prevented age-related declines in aerobic fitness and motor coordination vs. age-matched, sedentary controls (O-SED). AET also provided partial protection against sarcopenia, dynapenia, testicular atrophy, and overall organ pathology, hence augmenting the 'physiologic reserve' of lifelong runners. Systemic inflammation, as evidenced by a chronic elevation in 17 of 18 pro- and anti-inflammatory cytokines and chemokines (P < 0.05 O-SED vs. 2-month-old Y-CON), was potently mitigated by lifelong AET (P < 0.05 O-AET vs. O-SED), including master regulators of the cytokine cascade and cancer progression (IL-1β, TNF-α, and IL-6). In addition, circulating SPARC, previously known to be upregulated in metabolic disease, was elevated in old, sedentary mice, but was normalized to young control levels in lifelong runners. Remarkably, malignant tumours were also completely absent in the O-AET group, whereas they were present in the brain (pituitary), liver, spleen, and intestines of sedentary mice. Collectively, our results indicate that early-onset, lifelong running dampens inflammaging, protects against multiple cancer types, and extends healthspan of naturally-aged mice.
Collapse
Affiliation(s)
- Mats I. Nilsson
- Department of Pathology and Molecular Medicine, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Jacqueline M. Bourgeois
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Joshua P. Nederveen
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Marlon R. Leite
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Bart P. Hettinga
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Adam L. Bujak
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Linda May
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Ethan Lin
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Michael Crozier
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Daniel R. Rusiecki
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Chris Moffatt
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Paul Azzopardi
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Jacob Young
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Yifan Yang
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Jenny Nguyen
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Ethan Adler
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Lucy Lan
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| | - Mark A. Tarnopolsky
- Exerkine Corporation, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University Medical Center (MUMC), Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Ohanian J, Liao A, Forman SP, Ohanian V. Age-related remodeling of small arteries is accompanied by increased sphingomyelinase activity and accumulation of long-chain ceramides. Physiol Rep 2014; 2:2/5/e12015. [PMID: 24872355 PMCID: PMC4098743 DOI: 10.14814/phy2.12015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The structure and function of large arteries alters with age leading to increased risk of cardiovascular disease. Age‐related large artery remodeling and arteriosclerosis is associated with increased collagen deposition, inflammation, and endothelial dysfunction. Bioactive sphingolipids are known to regulate these processes, and are also involved in aging and cellular senescence. However, less is known about age‐associated alterations in small artery morphology and function or whether changes in arterial sphingolipids occur in aging. We show that mesenteric small arteries from old sheep have increased lumen diameter and media thickness without a change in media to lumen ratio, indicative of outward hypertrophic remodeling. This remodeling occurred without overt changes in blood pressure or pulse pressure indicating it was a consequence of aging per se. There was no age‐associated change in mechanical properties of the arteries despite an increase in total collagen content and deposition of collagen in a thickened intima layer in arteries from old animals. Analysis of the sphingolipid profile showed an increase in long‐chain ceramide (C14–C20), but no change in the levels of sphingosine or sphingosine‐1‐phosphate in arteries from old compared to young animals. This was accompanied by a parallel increase in acid and neutral sphingomyelinase activity in old arteries compared to young. This study demonstrates remodeling of small arteries during aging that is accompanied by accumulation of long‐chain ceramides. This suggests that sphingolipids may be important mediators of vascular aging. In this study, we have investigated remodeling of small arteries in a large animal model of aging, the sheep. We show that there is age‐related formation of neointima and increased collagen deposition that is accompanied by changes in sphingolipid metabolism resulting in ceramide accumulation in the tissues. These are the first data implicating sphingolipids as important mediators of vascular aging in small arteries. Given that aging is a major risk factor for cardiovascular disease, our study opens a new area for further research into the mechanisms that underlie vascular remodeling in aging.
Collapse
Affiliation(s)
- Jacqueline Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Aiyin Liao
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Simon P Forman
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Vasken Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Matos L, Gouveia A, Almeida H. Copper ability to induce premature senescence in human fibroblasts. AGE (DORDRECHT, NETHERLANDS) 2012; 34:783-94. [PMID: 21695420 PMCID: PMC3682071 DOI: 10.1007/s11357-011-9276-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/27/2011] [Indexed: 05/06/2023]
Abstract
Human diploid fibroblasts (HDFs) exposed to subcytotoxic concentrations of oxidative or stressful agents, such as hydrogen peroxide, tert-butylhydroperoxide, or ethanol, undergo stress-induced premature senescence (SIPS). This condition is characterized by the appearance of replicative senescence biomarkers such as irreversible growth arrest, increase in senescence-associated β-galactosidase (SA β-gal) activity, altered cell morphology, and overexpression of several senescence-associated genes. Copper is an essential trace element known to accumulate with ageing and to be involved in the pathogenesis of some age-related disorders. Past studies using either yeast or human cellular models of ageing provided evidence in favor of the role of intracellular copper as a longevity modulator. In the present study, copper ability to cause the appearance of senescent features in HDFs was assessed. WI-38 fibroblasts exposed to a subcytotoxic concentration of copper sulfate presented inhibition of cell proliferation, cell enlargement, increased SA β-gal activity, and mRNA overexpression of several senescence-associated genes such as p21, apolipoprotein J (ApoJ), fibronectin, transforming growth factor β-1 (TGF β1), insulin growth factor binding protein 3, and heme oxygenase 1. Western blotting results confirmed enhanced intracellular p21, ApoJ, and TGF β1 in copper-treated cells. Thus, similar to other SIPS-inducing agents, HDF exposure to subcytotoxic concentration of copper results in premature senescence. Further studies will unravel molecular mechanisms and the biological meaning of copper-associated senescence and lead to a better understanding of copper-related disorder establishment and progression.
Collapse
Affiliation(s)
- Liliana Matos
- />Faculty of Nutrition and Food Sciences, University of Porto, Rua Dr. Roberto Frias, 4200–465 Oporto, Portugal
- />Laboratory for Cell and Molecular Biology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200–319 Oporto, Portugal
- />IBMC-Instituto de Biologia Molecular e Celular, Rua do Campo Alegre no.823, 4150–180 Oporto, Portugal
| | - Alexandra Gouveia
- />Faculty of Nutrition and Food Sciences, University of Porto, Rua Dr. Roberto Frias, 4200–465 Oporto, Portugal
- />Laboratory for Cell and Molecular Biology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200–319 Oporto, Portugal
- />IBMC-Instituto de Biologia Molecular e Celular, Rua do Campo Alegre no.823, 4150–180 Oporto, Portugal
| | - Henrique Almeida
- />Laboratory for Cell and Molecular Biology, Faculty of Medicine, University of Porto, Al. Prof. Hernâni Monteiro, 4200–319 Oporto, Portugal
- />IBMC-Instituto de Biologia Molecular e Celular, Rua do Campo Alegre no.823, 4150–180 Oporto, Portugal
| |
Collapse
|
8
|
Rhein C, Tripal P, Seebahn A, Konrad A, Kramer M, Nagel C, Kemper J, Bode J, Mühle C, Gulbins E, Reichel M, Becker CM, Kornhuber J. Functional implications of novel human acid sphingomyelinase splice variants. PLoS One 2012; 7:e35467. [PMID: 22558155 PMCID: PMC3338701 DOI: 10.1371/journal.pone.0035467] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/16/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acid sphingomyelinase (ASM) hydrolyses sphingomyelin and generates the lipid messenger ceramide, which mediates a variety of stress-related cellular processes. The pathological effects of dysregulated ASM activity are evident in several human diseases and indicate an important functional role for ASM regulation. We investigated alternative splicing as a possible mechanism for regulating cellular ASM activity. METHODOLOGY/PRINCIPAL FINDINGS We identified three novel ASM splice variants in human cells, termed ASM-5, -6 and -7, which lack portions of the catalytic- and/or carboxy-terminal domains in comparison to full-length ASM-1. Differential expression patterns in primary blood cells indicated that ASM splicing might be subject to regulatory processes. The newly identified ASM splice variants were catalytically inactive in biochemical in vitro assays, but they decreased the relative cellular ceramide content in overexpression studies and exerted a dominant-negative effect on ASM activity in physiological cell models. CONCLUSIONS/SIGNIFICANCE These findings indicate that alternative splicing of ASM is of functional significance for the cellular stress response, possibly representing a mechanism for maintaining constant levels of cellular ASM enzyme activity.
Collapse
Affiliation(s)
- Cosima Rhein
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Philipp Tripal
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Angela Seebahn
- Institute of Biochemistry, Emil-Fischer-Centre, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Alice Konrad
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Marcel Kramer
- Leibniz Institute for Age Research – Fritz Lipmann Institute and Center for Sepsis Control and Care at Jena University Hospital, Jena, Germany
| | - Christine Nagel
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jonas Kemper
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Jens Bode
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Martin Reichel
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Cord-Michael Becker
- Institute of Biochemistry, Emil-Fischer-Centre, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
9
|
Abstract
SPARC (secreted protein acidic and rich in cysteine, also known as osteonectin or BM-40) is a widely expressed profibrotic protein with pleiotropic roles, which have been studied in a variety of conditions. Notably, SPARC is linked to human obesity; SPARC derived from adipose tissue is associated with insulin resistance and secretion of SPARC by adipose tissue is increased by insulin and the adipokine leptin. Furthermore, SPARC is associated with diabetes complications such as diabetic retinopathy and nephropathy, conditions that are ameliorated in the Sparc-knockout mouse model. As a regulator of the extracellular matrix, SPARC also contributes to adipose-tissue fibrosis. Evidence suggests that adipose tissue becomes increasingly fibrotic in obesity. Fibrosis of subcutaneous adipose tissue may restrict accumulation of triglycerides in this type of tissue. These triglycerides are, therefore, diverted and deposited as ectopic lipids in other tissues such as the liver or as intramyocellular lipids in skeletal muscle, which predisposes to insulin resistance. Hence, SPARC may represent a novel and important link between obesity and diabetes mellitus. This Review is focused on whether SPARC could be a key player in the pathology of obesity and its related metabolic complications.
Collapse
Affiliation(s)
- Katarina Kos
- Department of Diabetes and Vascular Medicine, Peninsula College of Medicine and Dentistry, University of Exeter, Exeter EX2 5DW, UK.
| | | |
Collapse
|
10
|
Bradshaw AD, Baicu CF, Rentz TJ, Van Laer AO, Bonnema DD, Zile MR. Age-dependent alterations in fibrillar collagen content and myocardial diastolic function: role of SPARC in post-synthetic procollagen processing. Am J Physiol Heart Circ Physiol 2010; 298:H614-22. [PMID: 20008277 PMCID: PMC2822576 DOI: 10.1152/ajpheart.00474.2009] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 12/04/2009] [Indexed: 01/19/2023]
Abstract
Advanced age, independent of concurrent cardiovascular disease, can be associated with increased extracellular matrix (ECM) fibrillar collagen content and abnormal diastolic function. However, the mechanisms causing this left ventricular (LV) remodeling remain incompletely defined. We hypothesized that one determinant of age-dependent remodeling is a change in the extent to which newly synthesized procollagen is processed into mature collagen fibrils. We further hypothesized that secreted protein acidic and rich in cysteine (SPARC) plays a key role in the changes in post-synthetic procollagen processing that occur in the aged myocardium. Young (3 mo old) and old (18-24 mo old) wild-type (WT) and SPARC-null mice were studied. LV collagen content was measured histologically by collagen volume fraction, collagen composition was measured by hydroxyproline assay as soluble collagen (1 M NaCl extractable) versus insoluble collagen (mature cross-linked), and collagen morphological structure was examined by scanning electron microscopy. SPARC expression was measured by immunoblot analysis. LV and myocardial structure and function were assessed using echocardiographic and papillary muscle experiments. In WT mice, advanced age increased SPARC expression, myocardial diastolic stiffness, fibrillar collagen content, and insoluble collagen. In SPARC-null mice, advanced age also increased myocardial diastolic stiffness, fibrillar collagen content, and insoluble collagen but significantly less than those seen in WT old mice. As a result, insoluble collagen and myocardial diastolic stiffness were lower in old SPARC-null mice (1.36 +/- 0.08 mg hydroxyproline/g dry wt and 0.04 +/- 0.005) than in old WT mice (1.70 +/- 0.10 mg hydroxyproline/g dry wt and 0.07 +/- 0.005, P < 0.05). In conclusion, the absence of SPARC reduced age-dependent alterations in ECM fibrillar collagen and diastolic function. These data support the hypothesis that SPARC plays a key role in post-synthetic procollagen processing and contributes to the increase in collagen content found in the aged myocardium.
Collapse
Affiliation(s)
- Amy D Bradshaw
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Acid sphingomyelinase occupies a prominent position in sphingolipid catabolism, catalyzing the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Enzymatic dysfunction of acid sphingomyelinase results in Niemann-Pick disease, a lysosomal storage disorder characterized at the cellular level by accumulation of sphingomyelin within the endo-lysosomal compartment. Over the past decade interest in the role of acid sphingomyelinase has moved beyond its "housekeeping" function in constitutive turnover of sphingomyelin in the lysosome to include study of regulated ceramide generation. Ceramide functions as a bioactive sphingolipid with pleiotropic signaling properties, and has been implicated in diverse cellular processes of physiologic and pathophysiologic importance. Though many cellular enzymes have the capacity to generate ceramide,there is growing appreciation that "all ceramides are not created equal." Ceramides likely exert distinct effects in different cellular/subcellular compartments by virtue of access to other sphingolipid enzymes (e.g.ceramidases), effector molecules (e.g. ceramide-activated protein phosphatases), and neighboring lipids and proteins (e.g. cholesterol, ion channels). One of the unique features of acid sphingomyelinase is that it has been implicated in the hydrolysis of sphingomyelin in three different settings--the endo-lysosomal compartment,the outer leaflet of the plasma membrane, and lipoproteins. How a single gene product has the capacity to function in these diverse settings, and the subsequent impact on downstream ceramide-mediated biology is the subject of this review.
Collapse
Affiliation(s)
- Russell W Jenkins
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | |
Collapse
|
12
|
Davy P, Nagata M, Bullard P, Fogelson NS, Allsopp R. Fetal growth restriction is associated with accelerated telomere shortening and increased expression of cell senescence markers in the placenta. Placenta 2009; 30:539-42. [PMID: 19359039 DOI: 10.1016/j.placenta.2009.03.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/06/2009] [Accepted: 03/10/2009] [Indexed: 01/01/2023]
Abstract
A hallmark of fetal growth restriction (FGR) is restricted placental development and insufficient nutrient supply to the fetus. It has previously been shown that activity levels of telomerase, the enzyme responsible for completing replication of telomeric DNA during cell division, is suppressed in FGR placenta samples as compared to control placenta samples from donors of the same gestational age. Here we examine whether telomere length maintenance is also compromised in FGR placenta samples. Southern analysis of telomere length for placenta and cord blood samples from 32 FGR and 36 control donors, ranging in gestational age from 37 to 40 weeks, revealed significantly shorter telomeres (P<or=0.001) in FGR placenta samples, but not cord blood samples. Furthermore, analysis of telomerase extracts, RNA and DNA placental samples from donors with and without idiopathic FGR confirmed a direct association between suppression of telomerase activity and reduced telomere length in FGR placenta. In addition, expression levels of markers of telomere-induced senescence, p21, p16 and EF-1 alpha, were significantly elevated in FGR placenta samples (P<or=0.01). These observations support a direct affect of reduced telomerase activity levels on the placental pathology associated with FGR.
Collapse
Affiliation(s)
- P Davy
- John A Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | | | | | | | | |
Collapse
|
13
|
Nikolova-Karakashian M, Karakashian A, Rutkute K. Role of neutral sphingomyelinases in aging and inflammation. Subcell Biochem 2008; 49:469-86. [PMID: 18751923 DOI: 10.1007/978-1-4020-8831-5_18] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging is characterized by changes in the organism's immune functions and stress response, which in the elderly leads to increased incidence of complications and mortality following inflammatory stress. Alterations in the neuro-endocrine axes and overall decline in the immune system play an essential role in this process. Overwhelming evidence however suggests that many cellular cytokine signaling pathways are also affected, thus underscoring the idea that both, "cellular" and "systemic" changes contribute to aging. IL-1beta for example, induces more potent cellular responses in hepatocytes isolated from aged animals then in hepatocytes from young rats. This phenomenon is referred to as IL-1b hyperresponsiveness and is linked to abnormal regulation of various acute phase proteins during aging.Evidence has consistently indicated that activation of neutral sphingomyelinase and the resulting accumulation of ceramide mediate cellular responses to LPS, IL-1beta, and TNFalpha in young animals. More recent studies identified the cytokine-inducible neutral sphingomyelinase with nSMase2 (smpd3) that is localized in the plasma membrane and mediates cellular responses to IL-1beta and TNFalpha. Intriguingly, constitutive up-regulation of nSMase2 occurs in aging and it underlies the hepatic IL-1b hyperresponsiveness. The increased activity of nSMases2 in aging is caused by a substantial decline in hepatic GSH content linking thereby oxidative stress to the onset of pro-inflammatory state in liver. nSMase2 apparently follows a pattern of regulation consisting with "developmental-aging" continuum, since in animal models of delayed aging, like calorie-restricted animals, the aging-associated changes in NSMase activity and function are reversed.
Collapse
|
14
|
Fridman AL, Tainsky MA. Critical pathways in cellular senescence and immortalization revealed by gene expression profiling. Oncogene 2008; 27:5975-87. [PMID: 18711403 DOI: 10.1038/onc.2008.213] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bypassing cellular senescence and becoming immortal is a prerequisite step in the tumorigenic transformation of a cell. It has long been known that loss of a key tumor suppressor gene, such as p53, is necessary, but not sufficient, for spontaneous cellular immortalization. Therefore, there must be additional mutations and/or epigenetic alterations required for immortalization to occur. Early work on these processes included somatic cell genetic studies to estimate the number of senescence genes, and microcell-mediated transfer of chromosomes into immortalized cells to identify putative senescence-inducing genetic loci. These principal studies laid the foundation for the field of senescence/immortalization, but were labor intensive and the results were somewhat limited. The advent of gene expression profiling and bioinformatics analysis greatly facilitated the identification of genes and pathways that regulate cellular senescence/immortalization. In this review, we present the findings of several gene expression profiling studies and supporting functional data, where available. We identified universal genes regulating senescence/immortalization and found that the key regulator genes represented six pathways: the cell cycle pRB/p53, cytoskeletal, interferon-related, insulin growth factor-related, MAP kinase and oxidative stress pathway. The identification of the genes and pathways regulating senescence/immortalization could provide novel molecular targets for the treatment and/or prevention of cancer.
Collapse
Affiliation(s)
- A L Fridman
- Department of Pathology, Program in Molecular Biology and Genetics, Barbara Ann Karmanos Cancer Institute, Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | |
Collapse
|
15
|
Borlon C, Weemaels G, Godard P, Debacq-Chainiaux F, Lemaire P, Deroanne C, Toussaint O. Expression profiling of senescent-associated genes in human dermis from young and old donors. Proof-of-concept study. Biogerontology 2008; 9:197-208. [PMID: 18270802 DOI: 10.1007/s10522-008-9127-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 01/29/2008] [Indexed: 11/26/2022]
Abstract
It is often described that it is difficult to really discriminate the cause of intrinsic skin aging. The aim of this study was to compare the profiles of expression of senescence-associated genes in biopsies of dermis from young and old human donors. TGF-beta1 was up-regulated in the dermis of old donors as well as the TGF-beta1-regulated genes. The anti-oxidant enzymes Selenium-dependent Glutathione peroxidase and Glutatione S-Transferase Theta 1 were also up-regulated in old dermis as well as Tumor Necrosis Factor Receptor Superfamily 1A. None of these genes had altered expression level in skin fibroblasts embedded in a collagen matrix and exposed to sublethal doses of UVB, suggesting their involvement in intrinsic aging. This study represents a proof-of-concept of larger whole transcriptome studies where all avenues should be used to subtract changes in gene expression due to extrinsic aging from changes potentially due to intrinsic aging.
Collapse
Affiliation(s)
- Céline Borlon
- Research Unit on Cellular Biology (URBC), Department of Biology, Faculty of Sciences, University of Namur (FUNDP), Rue de Bruxelles, 61, 5000 Namur, Belgium
| | | | | | | | | | | | | |
Collapse
|
16
|
Chen JH, Ozanne SE, Hales CN. Analysis of expression of growth factor receptors in replicatively and oxidatively senescent human fibroblasts. FEBS Lett 2005; 579:6388-94. [PMID: 16263123 DOI: 10.1016/j.febslet.2005.09.102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 09/23/2005] [Indexed: 01/24/2023]
Abstract
Replicatively and oxidatively senescent human fibroblasts demonstrate an impaired response to mitogens. To investigate whether this is due to downregulation of growth factor receptors we examined their expression in these two types of senescence. mRNA and protein levels of the insulin receptor and platelet-derived growth factor (PDGF) alpha-receptor decreased in replicatively senescent cells. The PDGF beta-receptor and insulin-like growth factor 1 receptor at the protein level also decreased but remained readily detectable. However, these major growth factor receptors remained unchanged in oxidatively premature senescent cells. This suggests that mechanisms underlying diminished responsiveness to mitogens might be different in replicative senescence and oxidatively premature senescence.
Collapse
MESH Headings
- Cell Division
- Cellular Senescence
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Fibroblasts/physiology
- Humans
- Oxidative Stress
- RNA, Messenger/analysis
- RNA, Messenger/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/genetics
- Receptor, Insulin/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Jian-Hua Chen
- Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Level 4, Hills Road, Cambridge CB2 2QR, United Kingdom.
| | | | | |
Collapse
|
17
|
Jensen JM, Förl M, Winoto-Morbach S, Seite S, Schunck M, Proksch E, Schütze S. Acid and neutral sphingomyelinase, ceramide synthase, and acid ceramidase activities in cutaneous aging. Exp Dermatol 2005; 14:609-18. [PMID: 16026583 DOI: 10.1111/j.0906-6705.2005.00342.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In aged skin, decreased levels of stratum corneum ceramides have been described. Epidermal ceramides are generated by sphingomyelin hydrolysis or synthesis from sphingosin and fatty acids and are degraded by ceramidase. We recently showed that epidermal acid sphingomyelinase (A-SMase) generates ceramides with structural function in the stratum corneum lipid bilayers, which provide for the permeability barrier function of the skin. Here, we examined the activities of epidermal A-SMase, ceramide synthase, and ceramidase in chronologically aged versus young hairless mouse skin. We found reduced A-SMase and ceramide synthase activities in the epidermis of aged mice. However, studies on enzyme localization revealed unchanged, ongoing high A-SMase activity in the outer epidermis, which correlated with reported normal barrier function found in aged skin under basal conditions. Reduced A-SMase and ceramide synthase activity was noted in the inner epidermis, correlating with reduced capacity for permeability barrier repair in aging. Ceramidase activity was not age dependent. In summary, we found reduced activities of ceramide-generating SMase and ceramide synthase in the inner epidermis of aged skin, explaining its reduced capacity in barrier repair. In contrast, A-SMase activity in the outer epidermis was unchanged, indicating that this enzyme is crucially involved in basal permeability barrier homeostasis.
Collapse
|
18
|
Zhao L, Tong T, Zhang Z. Expression of the Leo1‐like domain of replicative senescence down‐regulated Leo1‐like (RDL) protein promotes senescence of 2BS fibroblasts. FASEB J 2005; 19:521-32. [PMID: 15791002 DOI: 10.1096/fj.04-2689com] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Replicative senescence is thought to relate to aging in vivo and tumor suppression. In this report, we isolated a gene and designated it as RDL (replicative senescence down-regulated Leo1-like gene). RDL's expression decreased upon replicative senescence of human diploid 2BS fibroblasts. Overexpression of RDL slightly delayed 2BS fibroblast senescence, whereas suppression of RDL expression imposed no obvious effects on senescence. However, introduction of cDNA fragment encoding the Leo1-like domain of RDLp (Leo) alone shortened the replicative life span of 2BS fibroblasts and promoted several senescent features; the introduction of truncated RDL cDNA fragment resulting from deletion of Leo (RDL-Leo-) significantly prolonged 2BS life span and caused a noticeable delay of these senescent features. We demonstrated that introduction of Leo obviously increased the expression of p16INK4a, p21WAF1, and PTEN, whereas introduction of RDL-Leo- distinctly decreased p16INK4a expression. Taken together, our results suggest that the Leo1-like domain of RDLp is a senescence-associated domain that accelerates the senescence of 2BS fibroblasts and that there should be another counteractive domain in the remaining part of RDLp.
Collapse
Affiliation(s)
- Liang Zhao
- Peking University Research Center on Aging, Peking University Health Science Center, Beijing, People's Republic of China
| | | | | |
Collapse
|
19
|
Debacq-Chainiaux F, Borlon C, Pascal T, Royer V, Eliaers F, Ninane N, Carrard G, Friguet B, de Longueville F, Boffe S, Remacle J, Toussaint O. Repeated exposure of human skin fibroblasts to UVB at subcytotoxic level triggers premature senescence through the TGF-β1 signaling pathway. J Cell Sci 2005; 118:743-58. [PMID: 15671065 DOI: 10.1242/jcs.01651] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Premature senescence of human diploid fibroblasts (HDFs) can be induced by exposures to a variety of oxidative stress and DNA damaging agents. In this study we developed a robust model of UVB-induced premature senescence of skin HDFs. After a series of 10 subcytotoxic (non-proapoptotic) exposures to UVB at 250 mJ/cm2, the so-called biomarkers of senescence were markedly expressed: growth arrest, senescence-associated β-galactosidase activity, senescence-associated gene overexpression, deletion in mitochondrial DNA. A set of 44 stress- and senescence-associated genes were found to be differentially expressed in this model, among which clusterin/apolipoprotein J (apo J) and transforming growth factor-β1 (TGF-β1). Transfection of apo J cDNA provided protection against premature senescence-inducing doses of UVB and other stressful agents. Neutralizing antibodies against TGF-β1 or its receptor II (TβRII) sharply attenuated the senescence-associated features, suggesting a role for TGF-β1 in UVB-induced premature senescence. Both the latent and active forms of TGF-β1 were increased with time after the last UVB stress. Proteasome inhibition was ruled out as a potential mechanism of UVB-induced stress-induced premature senescence (SIPS). This model represents an alternative in vitro model in photoaging research for screening potential anti-photoaging compounds.
Collapse
Affiliation(s)
- Florence Debacq-Chainiaux
- Laboratory of Biochemistry and Cellular Biology, Department of Biology, University of Namur (FUNDP), Rue de Bruxelles, 61, 5000 Namur, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Reed MJ, Bradshaw AD, Shaw M, Sadoun E, Han N, Ferara N, Funk S, Puolakkainen P, Sage EH. Enhanced angiogenesis characteristic of SPARC-null mice disappears with age. J Cell Physiol 2005; 204:800-7. [PMID: 15795937 DOI: 10.1002/jcp.20348] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The impairment of angiogenesis in aging has been attributed, in part, to alterations in proteins associated with the extracellular matrix (ECM). SPARC (secreted protein acidic and rich in cysteine/osteonectin/BM-40) is a matricellular protein that regulates endothelial cell function as well as cell-ECM interactions. We have previously shown that angiogenesis, as reflected by fibrovascular invasion into subcutaneously implanted polyvinyl alcohol (PVA) sponges, is increased in SPARC-null mice (6-9 months of age) relative to their wild-type (WT) counterparts. In this study, we define the influence of aging on (a) the expression of SPARC and (b) fibrovascular invasion into sponge implants in SPARC-null and WT mice. The expression of SPARC in fibroblasts and endothelial cells derived from young donors (humans mean age less than 30 years and mice 4-6 months of age) and old donors (humans mean age over 65 years and mice 22-27 months of age) decreased 1.6 to 2.3-fold with age. Analysis of fibrovascular invasion into sponges implanted into old (22-27 months) SPARC-null and WT mice showed no differences in percent area of invasion or collagenous ECM. Moreover, sponges from old SPARC-null and WT mice contained similar levels of VEGF that were significantly lower than those from young (4-6 months) mice. In contrast to fibroblasts from young SPARC-null mice, dermal fibroblasts from old SPARC-null mice did not migrate farther, proliferate faster, or produce greater amounts of VEGF relative to their old WT counterparts. However, when stimulated with TGF-beta1, primary cells isolated from the sponge implants, and dermal fibroblasts from both old SPARC-null and WT mice, showed marked increases in VEGF secretion. These data indicate that aging results in a loss of enhanced angiogenesis in SPARC-null mice, as a result of the detrimental impact of age on cellular functions, collagen deposition, and VEGF synthesis. However, the influence of aging on these processes may be reversed, in part, by growth factor stimulation.
Collapse
Affiliation(s)
- May J Reed
- Department of Medicine, The University of Washington, Seattle, WA 98104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kipling D, Davis T, Ostler EL, Faragher RGA. What can progeroid syndromes tell us about human aging? Science 2004; 305:1426-31. [PMID: 15353794 DOI: 10.1126/science.1102587] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human genetic diseases that resemble accelerated aging provide useful models for gerontologists. They combine known single-gene mutations with deficits in selected tissues that are reminiscent of changes seen during normal aging. Here, we describe recent progress toward linking molecular and cellular changes with the phenotype seen in two of these disorders. One in particular, Werner syndrome, provides evidence to support the hypothesis that the senescence of somatic cells may be a causal agent of normal aging.
Collapse
Affiliation(s)
- David Kipling
- Department of Pathology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | | | | | | |
Collapse
|
22
|
Argraves WS, Greene LM, Cooley MA, Gallagher WM. Fibulins: physiological and disease perspectives. EMBO Rep 2004; 4:1127-31. [PMID: 14647206 PMCID: PMC1326425 DOI: 10.1038/sj.embor.7400033] [Citation(s) in RCA: 239] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Accepted: 10/24/2003] [Indexed: 01/03/2023] Open
Abstract
The fibulins are a family of proteins that are associated with basement membranes and elastic extracellular matrix fibres. This review summarizes findings from studies of animal models of fibulin deficiency, human fibulin gene mutations, human tumours and injury models that have advanced our understanding of the normal and pathological roles of members of this formerly obscure family.
Collapse
Affiliation(s)
- W. Scott Argraves
- Medical University of South Carolina, Department
of Cell Biology, 173 Ashley Avenue,
Charleston, South Carolina 29425,
USA
- Tel: +1 843 792 5482; Fax: +1 843 792 0664;
| | - Lisa M. Greene
- Department of Pharmacology, Conway Institute of
Biomolecular and Biomedical Research, University College Dublin,
Belfield, Dublin 4, Ireland
| | - Marion A. Cooley
- Medical University of South Carolina, Department
of Cell Biology, 173 Ashley Avenue,
Charleston, South Carolina 29425,
USA
| | - William M. Gallagher
- Department of Pharmacology, Conway Institute of
Biomolecular and Biomedical Research, University College Dublin,
Belfield, Dublin 4, Ireland
- Tel: +353 1 7166743; Fax: +353 1 2692749;
| |
Collapse
|
23
|
Walker PR, Smith B, Liu QY, Famili AF, Valdés JJ, Liu Z, Lach B. Data mining of gene expression changes in Alzheimer brain. Artif Intell Med 2004; 31:137-54. [PMID: 15219291 DOI: 10.1016/j.artmed.2004.01.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2003] [Revised: 07/22/2003] [Accepted: 01/16/2004] [Indexed: 11/28/2022]
Abstract
Genome-wide transcription profiling is a powerful technique for studying the enormous complexity of cellular states. Moreover, when applied to disease tissue it may reveal quantitative and qualitative alterations in gene expression that give information on the context or underlying basis for the disease and may provide a new diagnostic approach. However, the data obtained from high-density microarrays is highly complex and poses considerable challenges in data mining. The data requires care in both pre-processing and the application of data mining techniques. This paper addresses the problem of dealing with microarray data that come from two known classes (Alzheimer and normal). We have applied three separate techniques to discover genes associated with Alzheimer disease (AD). The 67 genes identified in this study included a total of 17 genes that are already known to be associated with Alzheimer's or other neurological diseases. This is higher than any of the previously published Alzheimer's studies. Twenty known genes, not previously associated with the disease, have been identified as well as 30 uncharacterized expressed sequence tags (ESTs). Given the success in identifying genes already associated with AD, we can have some confidence in the involvement of the latter genes and ESTs. From these studies we can attempt to define therapeutic strategies that would prevent the loss of specific components of neuronal function in susceptible patients or be in a position to stimulate the replacement of lost cellular function in damaged neurons. Although our study is based on a relatively small number of patients (four AD and five normal), we think our approach sets the stage for a major step in using gene expression data for disease modeling (i.e. classification and diagnosis). It can also contribute to the future of gene function identification, pathology, toxicogenomics, and pharmacogenomics.
Collapse
Affiliation(s)
- P Roy Walker
- NeuroGenomics Group, Institute for Biological Sciences, National Research Council of Canada, 1200 Montreal Rd., Ottawa, Ont., Canada K1A 0R6.
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Replicative senescence, the irreversible loss of proliferative capacity, is a common feature of somatic cells derived from many different species. The molecular mechanisms controlling senescence in mammals, and especially in humans, have now been substantively elucidated. However, to date, attempts to link the senescence of cells with the ageing of the organisms they comprise has not met with any similar degree of success, largely due to a lack of systematic investigation and the absence of the necessary biochemical tools. This review will summarise current data linking replicative senescence and organismal ageing. It will also suggest some essential tests of the cell senescence hypothesis and some necessary ground work which must be carried out before such tests can be fruitfully performed. It will not discuss the detailed molecular 'clockwork' controlling the decision to exit the cell cycle irreversibly because this is covered by other authors in this special issue.
Collapse
Affiliation(s)
- Joseph Bird
- School of Pharmacy and Biomolecular Sciences, University of Brighton Sciences, Cockcroft Building, Lewes Road, Moulsecoomb, Brighton, East Sussex BN2 4GJ, UK
| | | | | |
Collapse
|
25
|
Bose C, Bhuvaneswaran C, Udupa KB. Altered mitogen-activated protein kinase signal transduction in human skin fibroblasts during in vitro aging: differential expression of low-density lipoprotein receptor. J Gerontol A Biol Sci Med Sci 2004; 59:126-35. [PMID: 14999025 DOI: 10.1093/gerona/59.2.b126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The purpose of the study was to investigate the correlation of low-density lipoprotein receptor (LDLr) and mitogen-activated protein kinases (MAPK) in fibroblasts after serial passage in vitro. We used early-passage ( approximately 20 mean population division, MPD) and late-passage ( approximately 60 MPD) human skin fibroblasts to study the LDLr expression and MAPK at basal and after interleukin-1beta (IL-1beta) stimulation. We found a reduced LDLr expression in late-passage fibroblasts in comparison with early-passage fibroblasts, and late-passage fibroblasts showed a delayed induction of MAPK after IL-1beta stimulation, confirmed by the delay in translocation of MAPK from cytoplasmic to nuclear fraction. Using two specific inhibitors of MAPK, we could show a reduced LDLr expression in early-passage fibroblasts, indicating a direct relationship between MAPK signaling and LDLr expression. We conclude that one of the reasons for reduced LDLr gene expression in late passage fibroblast is related to MAPK signaling.
Collapse
Affiliation(s)
- Chhanda Bose
- Donald W. Reynolds Department of Geriatrics, University of Arkansas for Medical Sciences and Medical Research, Central Arkansas Veterans Healthcare System, Little Rock, USA
| | | | | |
Collapse
|
26
|
Wang H, Mahadevappa M, Yamamoto K, Wen Y, Chen B, Warrington JA, Polan ML. Distinctive proliferative phase differences in gene expression in human myometrium and leiomyomata. Fertil Steril 2003; 80:266-76. [PMID: 12909484 DOI: 10.1016/s0015-0282(03)00730-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To gain a comprehensive view of the gene expression and regulation involved in uterine leiomyomata and matched normal myometrium using oligonucleotide microarray-based hybridization analysis. DESIGN Retrospective analyses of tissue obtained in a prospective randomized clinical study. SETTING Academic institution. PATIENT(S) Seven patients with leiomyomata scheduled for surgery during the proliferative phase. INTERVENTIONS(S) Seven paired samples of leiomyomata and adjacent myometrium were obtained from patients undergoing hysterectomy. MAIN OUTCOME MEASURE(S) The total RNA extracted from leiomyomata and myometrium was used for gene expression profiling of 6800 human genes using high-density oligonucleotide microarrays. In addition, reverse transcriptase-semiquantitative polymerase chain reaction and immunohistochemistry were used to validate tumor-specific gene expression. RESULT(S) A comparison of expression patterns in each paired sample revealed 68 genes significantly up- or down-regulated in each paired tissue sample, of which 23 genes showed increased expression and 45 showed decreased expression in leiomyomata compared with normal myometrium. Cluster analysis supported the relevance of these candidate genes for distinguishing between normal myometrium and leiomyomata biologic activity. CONCLUSION(S) Expression profiling of uterine leiomyomata using high-density oligonucleotide microarrays yields signature patterns that reflect the distinctive differences between normal human myometrium and leiomyomata during the proliferative phase. These observations suggest that a number of genes are involved in the tumorigenesis of leiomyomata.
Collapse
Affiliation(s)
- Hongbo Wang
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Werner's syndrome is a genetic progeria disorder caused by mutation of the Werner gene (WRN). The presence of mutations in the WRN gene is believed to result in a deleterious loss of normal WRN function, which has been best characterized for its role as a DNA helicase and exonuclease. The WRN gene is known to be expressed within the central nervous system, with Werner's syndrome associated with several neuropathological abnormalities including brain atrophy, gliosis and extensive cytoskeletal abnormalities. While WRN has been intensely investigated in primary fibroblast and fibroblast cell lines, at present little is known about the normal expression pattern of the WRN protein in the brain or primary neuronal cultures. In the present study we demonstrate that WRN is expressed throughout the brain, and is present in both neurons and glia. Similarly, WRN is present in both primary neurons and glia in cell culture, with extensive immunoreactivity present in the neuritic processes or neurons. Analysis of WRN RNA revealed that WRN was expressed at its highest levels in brain tissue from embryonic tissue, undergoing a biphasic pattern expression from early post-natal period into adulthood. Taken together, these data indicate that WRN is present in the cells of the brain, expressed throughout primary neuronal cells in culture, possibly playing a developmental role in the central nervous system.
Collapse
Affiliation(s)
- Jillian Gee
- Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536-0230, USA
| | | | | |
Collapse
|
28
|
Lin R, Nagai Y, Sladek R, Bastien Y, Ho J, Petrecca K, Sotiropoulou G, Diamandis EP, Hudson TJ, White JH. Expression profiling in squamous carcinoma cells reveals pleiotropic effects of vitamin D3 analog EB1089 signaling on cell proliferation, differentiation, and immune system regulation. Mol Endocrinol 2002; 16:1243-56. [PMID: 12040012 DOI: 10.1210/mend.16.6.0874] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The active form of vitamin D3, 1alpha,25-dihydroxyvitamin D3 [1,25-(OH)2D3] is key mediator of calcium homeostasis and is a component of the complex homeostatic system of the skin. 1,25-(OH)2D3 regulates cellular differentiation and proliferation and has broad potential as an anticancer agent. Oligonucleotide microarrays were used to assess profiles of target gene regulation at several points over a 48 h period by the low calcemic 1,25-(OH)2D3 analog EB1089 in human SCC25 head and neck squamous carcinoma cells. One hundred fifty-two targets were identified, composed of 89 up- and 63 down-regulated genes distributed in multiple profiles of regulation. Results are consistent with EB1089 driving SCC25 cells toward a less malignant phenotype, similar to that of basal keratinocytes. Targets identified control inter- and intra-cellular signaling, G protein-coupled receptor function, intracellular redox balance, cell adhesion, and extracellular matrix composition, cell cycle progression, steroid metabolism, and more than 20 genes modulating immune system function. The data indicate that EB1089 performs three key functions of a cancer chemoprevention agent; it is antiproliferative, it induces cellular differentiation, and has potential genoprotective effects. While no evidence was found for gene-specific differences in efficacy of 1,25-(OH)2D3 and EB1089, gene regulation by 1,25-(OH)2D3 was generally more transient. Treatment of cells with 1,25-(OH)2D3 and the cytochrome P450 inhibitor ketoconazole produced profiles of regulation essentially identical to those observed with EB1089 alone, indicating that the more sustained regulation by EB1089 was due to its resistance to inactivation by induced 24-hydroxylase activity. This suggests that differences in action of the two compounds arise more from their relative sensitivities to metabolism than from differing effects on VDR function.
Collapse
Affiliation(s)
- Roberto Lin
- Department of Physiology, McGill University, Montréal, Québec H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Horikawa I, Parker ES, Solomon GG, Barrett JC. Upregulation of the gene encoding a cytoplasmic dynein intermediate chain in senescent human cells. J Cell Biochem 2001; 82:415-21. [PMID: 11500918 DOI: 10.1002/jcb.1169] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Normal human somatic cells, unlike cancer cells, stop dividing after a limited number of cell divisions through the process termed cellular senescence or replicative senescence, which functions as a tumor-suppressive mechanism and may be related to organismal aging. By means of the cDNA subtractive hybridization, we identified eight genes upregulated during normal chromosome 3-induced cellular senescence in a human renal cell carcinoma cell line. Among them is the DNCI1 gene encoding an intermediate chain 1 of the cytoplasmic dynein, a microtubule motor that plays a role in chromosome movement and organelle transport. The DNCI1 mRNA was also upregulated during in vitro aging of primary human fibroblasts. In contrast, other components of cytoplasmic dynein showed no significant change in mRNA expression during cellular aging. Cell growth arrest by serum starvation, contact inhibition, or gamma-irradiation did not induce the DNCI1 mRNA, suggesting its specific role in cellular senescence. The DNCI1 gene is on the long arm of chromosome 7 where tumor suppressor genes and a senescence-inducing gene for a group of immortal cell lines (complementation group D) are mapped. This is the first report that links a component of molecular motor complex to cellular senescence, providing a new insight into molecular mechanisms of cellular senescence.
Collapse
Affiliation(s)
- I Horikawa
- Laboratory of Biosystems and Cancer, Cancer and Aging Section, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
30
|
Choi D, Whittier PS, Oshima J, Funk WD. Telomerase expression prevents replicative senescence but does not fully reset mRNA expression patterns in Werner syndrome cell strains. FASEB J 2001. [DOI: 10.1096/fsb2fj000104com] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Donghee Choi
- Geron Corporation Menlo Park California 94025 USA
| | | | - Junko Oshima
- Department of Pathology University of Washington Seattle Washington 98195 USA
| | | |
Collapse
|
31
|
Choi D, Whittier PS, Oshima J, Funk WD. Telomerase expression prevents replicative senescence but does not fully reset mRNA expression patterns in Werner syndrome cell strains. FASEB J 2001; 15:1014-20. [PMID: 11292662 DOI: 10.1096/fj.00-0104com] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reduced replicative capacity is a consistent characteristic of cells derived from patients with Werner syndrome. This premature senescence is phenotypically similar to replicative senescence observed in normal cell strains and includes altered cell morphology and gene expression patterns. Telomeres shorten with in vitro passaging of both WRN and normal cell strains; however, the rate of shortening has been reported to be faster in WRN cell strains, and the length of telomeres in senescent WRN cells appears to be longer than that observed in normal strains, leading to the suggestion that senescence in WRN cell strains may not be exclusively associated with telomere effects. We report here that the telomere restriction fragment length in senescent WRN fibroblasts cultures is within the size range observed for normal fibroblasts strains and that the expression of a telomerase transgene in WRN cell strains results in lengthened telomeres and replicative immortalization, thus indicating that telomere effects are the predominant trigger of premature senescence in WRN cells. Microarray analyses showed that mRNA expression patterns induced in senescent WRN cells appeared similar to those in normal strains and that hTERT expression could prevent the induction of most of these genes. However, substantial differences in expression were seen in comparisons of early-passage and telomerase-immortalized derivative lines, indicating that telomerase expression does not prevent the phenotypic drift, or destabilized genotype, resulting from the WRN defect.
Collapse
Affiliation(s)
- D Choi
- Geron Corporation, Menlo Park, California 94025, USA.
| | | | | | | |
Collapse
|
32
|
Lightle SA, Oakley JI, Nikolova-Karakashian MN. Activation of sphingolipid turnover and chronic generation of ceramide and sphingosine in liver during aging. Mech Ageing Dev 2000; 120:111-25. [PMID: 11087909 DOI: 10.1016/s0047-6374(00)00191-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Aging leads to a decreased ability of liver to metabolize drugs and increased expression and secretion of acute phase proteins, such as serum amyloid A (SAA), C-reactive protein (CRP), and alpha-1-acid glycoprotein (AGP). This phenomenon resembles some aspects of the acute phase response of host to inflammation; however, the molecular basis for the similarity is unclear. Ceramide and sphingosine are second messenger mediators of cellular responses to stress and inflammation. In liver, they play important role in mediating acute phase responses to IL1-beta. In this study, we use HPLC and thin layer chromatography to evaluate the effects of aging on steady-state levels of ceramide and sphingosine. We report that both lipids are elevated in liver of old (24 months) as compared to young (5 months) male Fisher 344 rats. To elucidate the mechanism(s) for ceramide elevation, we test the acidic (ASMase) and neutral sphingomyelinase (NSMase) in vitro using NBD-sphingomyelin as an exogenous substrate. SM synthase is also analyzed in vitro using NBD-ceramide and [3H]-dipalmitoylphosphatidylcholine (DPPC) as exogenous substrates. In accordance with the increases in the mass of ceramide, the activity of acid and neutral SMase is elevated in old animals. Michaelis-Menten analysis of NSMase implies that the apparent activation of this enzyme is caused by an increase in the Vmax of the enzyme. In contrast, SM synthase activity is lower in old animals as compared to young ones. These results show that aging is accompanied by an elevation in SM turnover and a decrease in its synthesis, resulting in accumulation of pro-inflammatory and growth inhibitory second messenger ceramide. Ceramidase, the only enzyme leading to sphingosine generation, is also measured in vitro using NBD-ceramide as a substrate and liver homogenate as an enzyme source. Its activity is higher in the old rats, as compared to young ones. The acid and neutral forms of the enzyme are affected the most, while the changes in the alkaline enzyme are not significant. The increases in the basal levels of ceramide and sphingosine in old animals may contribute to the onset of an inflammatory like state in liver during aging, exemplified by decreased P4502C11 mRNA expression and chronic induction of acute phase protein expression.
Collapse
Affiliation(s)
- S A Lightle
- Department of Physiology, University of Kentucky College of Medicine, Chandler Medical Center, MS 579, 800 Rose Street, Lexington, KY 40536, USA
| | | | | |
Collapse
|
33
|
Ohsugi I, Imamura O, Satoh M, Sugawara M, Goto M, Sugimoto M, Furuichi Y. Overexpression of mRNAs of TGFbeta-1 and related genes in fibroblasts of Werner syndrome patients. Mech Ageing Dev 2000; 115:189-98. [PMID: 10906512 DOI: 10.1016/s0047-6374(00)00122-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
We analyzed mRNAs that were up- or down-regulated in fibroblasts from Werner syndrome (WS) patients compared with those from normal individuals. The mRNAs from normal and WS cells were first screened by differential display, and those mRNAs that were apparently up- or down-regulated were selected except for mRNAs related to extra-cellular matrix (ECM) proteins that are already known to be up-regulated in WS fibroblasts. Then, the expression levels of these mRNAs were semiquantified by northern blot analysis, and six up-regulated and two down-regulated mRNAs were identified in WS cell lines. Among the six up-regulated mRNAs were three mRNAs that coded TGFbeta-1 and two proteins, their expressions of which were increased by TGFbeta-1. These results together with the fact that TGFbeta-1 up-regulates the expression of ECM proteins strongly suggest that TGFbeta-1 has a key role in accelerated cellular senescence of fibroblasts of WS patients.
Collapse
Affiliation(s)
- I Ohsugi
- AGENE Research Institute, Kajiwara 200, Kamakura, 247-0063, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Petropoulou C, Chondrogianni N, Simões D, Agiostratidou G, Drosopoulos N, Kotsota V, Gonos ES. Aging and longevity. A paradigm of complementation between homeostatic mechanisms and genetic control? Ann N Y Acad Sci 2000; 908:133-42. [PMID: 10911954 DOI: 10.1111/j.1749-6632.2000.tb06642.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aging is a universal and inevitable phenomenon that affects nearly all animal species. It can be considered the product of an interaction between genetic, environmental, and lifestyle factors, which in turn influence longevity that varies between and within species. It has been proposed not only that the aging process is under genetic control, but that it can also be considered a result of the failure of homeostasis due to the accumulation of damage. This review article discusses these issues, focusing on the function of genes that associate with aging and longevity, as well as on the molecular mechanisms that control cell survival and maintenance during aging.
Collapse
Affiliation(s)
- C Petropoulou
- Laboratory of Molecular and Cellular Aging, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
35
|
Dumont P, Burton M, Chen QM, Gonos ES, Frippiat C, Mazarati JB, Eliaers F, Remacle J, Toussaint O. Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Radic Biol Med 2000; 28:361-73. [PMID: 10699747 DOI: 10.1016/s0891-5849(99)00249-x] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We tested the long-term effects of sublethal oxidative stresses on replicative senescence. WI-38 human diploid fibroblasts (HDFs) at early cumulative population doublings (CPDs) were exposed to five stresses with 30 microM tert-butylhydroperoxide (t-BHP). After at least 2 d of recovery, the cells developed biomarkers of replicative senescence: loss of replicative potential, increase in senescence-associated beta-galactosidase activity, overexpression of p21(Waf-1/SDI-1/Cip1), and inability to hyperphosphorylate pRb. The level of mRNAs overexpressed in senescent WI-38 or IMR-90 HDFs increased after five stresses with 30 microM t-BHP or a single stress under 450 microM H(2)O(2). These corresponding genes include fibronectin, osteonectin, alpha1(I)-procollagen, apolipoprotein J, SM22, SS9, and GTP-alpha binding protein. The common 4977 bp mitochondrial DNA deletion was detected in WI-38 HDFs at late CPDs and at early CPDs after t-BHP stresses. In conclusion, sublethal oxidative stresses lead HDFs to a state close to replicative senescence.
Collapse
Affiliation(s)
- P Dumont
- The University of Namur (FUNDP), Department of Biology, Laboratory of Cellular Biochemistry and Biology, Namur, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hadshiew IM, Eller MS, Gilchrest BA. Age-associated decreases in human DNA repair capacity: Implications for the skin. AGE 1999; 22:45-57. [PMID: 23604396 PMCID: PMC3455240 DOI: 10.1007/s11357-999-0006-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Multiple pathways are involved in accurate synthesis and distribution of DNA during replication, repair and maintenance of genomic integrity. An increased error rate, abovethe spontaneous mutation baseline, has been implicated in carcinogenesis and aging. Moreover, cytogenetic abnormalities are increased in Down's, Edwards', Patau's, and Klinefelter's syndromes with increasing maternal age, and in Marfan's and Apert's syndromes with paternal age. In response to DNA damage, multiple overlapping systems of DNA repair have evolved, preferentially repairing the transcribed strand within transcriptionally-active regions of the genome. These include direct reversal of dimers and specific adducts and pathways for base excision, nucleotide excision, and mismatch repair. A consensus has emerged that some DNA repair capacities decline with organism age, contradictory reports notwithstanding. As is the case for inborn defects in humans, knockout mice lacking components of nucleotide excision repair or DNA-damage checkpoint arrest have increased frequencies of skin and internal cancers, whereas mice overexpressing DNA repair genes have fewer spontaneous cancers. Oxidative stress and resultant free radicals can damage genomic and mitochondrial DNA; damage increases with age but decreases with caloric restriction. We review recent studies of long-lived C. elegans mutants which appear to involve metabolic attenuation, the role of telomere shortening and telomerase in cellular senescence, and the genetic bases of progeroid syndromes in humans. Finally, we discuss roles of extrinsic and intrinsic factors in skin aging, and their association with DNA damage, emphasizing preventive and protective measures and prospects for intervention by modulating DNA repair pathways in the skin.
Collapse
Affiliation(s)
- Ina M. Hadshiew
- Department of Dermatology, Boston University, 609 Albany St., J-501, Boston, MA 02118
| | - Mark S. Eller
- Department of Dermatology, Boston University, 609 Albany St., J-501, Boston, MA 02118
| | - Barbara A. Gilchrest
- Department of Dermatology, Boston University, 609 Albany St., J-501, Boston, MA 02118
| |
Collapse
|
37
|
Ye L, Nakura J, Morishima A, Miki T. Transcriptional activation by the Werner syndrome gene product in yeast. Exp Gerontol 1998; 33:805-12. [PMID: 9951624 DOI: 10.1016/s0531-5565(98)00044-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Werner syndrome (WS) is characterized by the premature occurrence of many age-related features. Before the cloning of the gene for WS (WRN), several reports suggested that transcriptional defects of genes may relate to the mechanisms of the occurrence of WS and natural aging. Because WRN, which encodes a helicase (WRN-H), has been cloned, we are attempting to clarify the mechanism of the transcriptional abnormalities found in WS cells, using WRN and WRN-H. In this article, we studied transcriptional activation of a promoter by WRN-H in a yeast assay system as a first step. The results showed that WRN-H functions as a transcriptional activator in the system. Furthermore, we performed additional transcriptional assays using various parts of WRN to define the critical region of WRN-H for transcriptional activation in yeast. The results revealed the critical region for the activation most likely mapped to the region of 315 to 403 aa. The region of 404 to 1309 aa may also effect activation in the presence of the critical region. The two regions contain an acidic domain, and the region of 404 to 1309 aa also contains a helicase domain. If this transcriptional activation by WRN-H occurs also in human cells in vivo, direct activation of the promoters by WRN-H could explain the results of somatic cell hybrid studies as well as the overexpressed genes detected in WS cells. However, our results should be interpreted with caution, because thus far, the transcriptional activation by WRN-H were only demonstrated using one promoter in a yeast system.
Collapse
Affiliation(s)
- L Ye
- Department of Geriatric Medicine, School of Medicine, Ehime University, Japan
| | | | | | | |
Collapse
|
38
|
Mendez MV, Stanley A, Park HY, Shon K, Phillips T, Menzoian JO. Fibroblasts cultured from venous ulcers display cellular characteristics of senescence. J Vasc Surg 1998; 28:876-83. [PMID: 9808856 DOI: 10.1016/s0741-5214(98)70064-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE A well-recognized characteristic of venous ulcers is impaired healing. Fibroblasts cultured from venous ulcers (wound-fb) have been shown to have reduced growth rates and are larger than normal fibroblasts (normal-fb) from the ipsilateral limb. Reduced growth capacity and morphologic changes are 2 well-known traits of cellular senescence. Other molecular changes are overexpression of matrix proteins, such as cellular fibronectin (cFN), and enhanced activity of beta-galactosidase at pH of 6.0 (senescence associated beta-Gal, or SA-beta-Gal). Senescence, an irreversible arrest of cell proliferation with maintenance of metabolic functions, may represent in vivo aging and thus may be related to impaired healing. METHODS Cultured normal-fb and wound-fb from 7 venous ulcer patients (average age, 51 years) were obtained by taking punch biopsies of the perimeter of the ulcer and from the ipsilateral thigh of the same patient. Growth rates, SA-beta-Gal activity, and level of cFN protein (immunoblot) and message (Northern blot) were measured. RESULTS In all patients, wound-fb growth rates were significantly lower than those of normal-fb (P =.006). A higher percentage of SA-beta-Gal positive cells were found in all wound-fb (average, 6.3% vs. 0.21%; P =.016). The level of cFN, was consistently higher in all wound-fb tested. Also, in 4 patients, the level of cFN messenger RNA (mRNA) was increased. CONCLUSION Fibroblasts cultured from venous ulcers exhibited characteristics associated with senescent cells. Accumulation of senescent cell in ulcer environment may be associated with impaired healing.
Collapse
Affiliation(s)
- M V Mendez
- Department of Surgery, Section of Vascular Surgery, and the Department of Dermatology, Boston University Medical Center, MA, USA
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
Werner's syndrome (WS) is an inherited disease with clinical symptoms which resemble premature aging. The Werner's syndrome gene (WRN), which is located on human chromosome 8p12, encodes a predicted protein of 1432 amino acids and shows significant similarity to DNA helicases. We have cloned the full-length mouse cDNA homologue of the human WRN gene encoding a predicted protein of 1320 amino acids and have obtained a full-length 70 kb genomic clone containing the moWRN gene. This gene has been mapped to chromosome 8A3 in mice. The expression of the moWRN gene was increased during apoptosis after IL-2 deprivation, and decreased in the spleen of aged mice. Lymphoid cells isolated from a patient with WS exhibited increased apoptosis after incubation with anti-Fas but not after incubation with the topoisomerase inhibitor VP16. RNase protection reviled dysregulation of the ICE family of apoptosis molecules in the WS cell line. These results indicate that the WS helicase is involved in certain pathways of apoptosis, and defective WS gene expression leads to accumulation of cells that are highly susceptibility to Fas-induced apoptosis.
Collapse
Affiliation(s)
- J Wu
- University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, 35294-0007, USA
| | | | | |
Collapse
|
40
|
Gonos ES, Derventzi A, Kveiborg M, Agiostratidou G, Kassem M, Clark BF, Jat PS, Rattan SI. Cloning and identification of genes that associate with mammalian replicative senescence. Exp Cell Res 1998; 240:66-74. [PMID: 9570922 DOI: 10.1006/excr.1998.3948] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular senescence and limited proliferative capacity of normal diploid cells has a dominant phenotype over immortality of cancerous cells, suggesting its regulation by the expression of a set of genes. In order to isolate the genes that associate with senescence, we have employed a clonal system of conditional SV40 T antigen rat embryo fibroblast cell lines which undergo senescence upon T antigen inactivation. Construction of cDNA libraries from two conditional cell lines and application of differential screening and subtractive hybridization techniques have resulted in the cloning of eight senescence-induced genes (SGP-2/Apo J, alpha 1-procollagen, osteonectin, fibronectin, SM22, cytochrome C oxidase, GTP-alpha, and a novel gene) and a senescence-repressed gene (FRS-2). Three of these genes encode for extracellular matrix proteins, others are involved in the calcium-dependent signal transduction pathways, while the SGP-2/Apo J gene may have a cellular protective function. RNA analysis has shown that the senescence-associated genes are overexpressed in both normal rat embryonic fibroblasts and human osteoblasts cell cultures undergoing aging in vitro. In comparison, the expression of these genes in a rat fibroblast immortalized cell line (208F cells) was down-regulated after both its partial and its full transformation by ras oncogenes. Thus, cloning of senescence-associated genes opens up new ways to elucidate and/or to modulate aging and cancer.
Collapse
Affiliation(s)
- E S Gonos
- National Hellenic Research Foundation, Institute of Biological Research and Biotechnology, Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
A valid method of studying age related degenerative pathologies is to study human genetic diseases that appear to accelerate many, though not necessarily all, features of the aging process. Such diseases are described as progeroid syndromes because of their possible relevance to many aspects of aging and age related disease. This article describes the recent progress made at the cellular and molecular levels in understanding the pathogenesis of one of the best characterised of these disorders, Werner's syndrome. These observations are related to some of the less well characterised progeroid syndromes within the context of the cell senescence hypothesis of aging, a theory formulated to explain the aging of regenerative tissue in normal individuals.
Collapse
Affiliation(s)
- D Kipling
- Department of Pathology, University of Wales College of Medicine, Cardiff, UK
| | | |
Collapse
|
42
|
|