1
|
Yamanaka K, Haraguchi Y, Takahashi H, Kawashima I, Shimizu T. Development of serum-free and grain-derived-nutrient-free medium using microalga-derived nutrients and mammalian cell-secreted growth factors for sustainable cultured meat production. Sci Rep 2023; 13:498. [PMID: 36627406 PMCID: PMC9832167 DOI: 10.1038/s41598-023-27629-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Considering the amount of global resources and energy consumed, and animal welfare issues associated with traditional meat production, cultured meat production has been proposed as a solution to these problems and is attracting worldwide attention. Cultured meat is produced by culturing/proliferating animal muscle cells in vitro. This process requires significant amounts of culture medium, which accounts to a major portion of the production cost. Furthermore, it is composed of nutrients derived from grains and heterotrophic microorganisms and fetal bovine serum (FBS), which will impact the sustainability of cultured meat in future. Here, we developed a novel medium containing nutrients extracted from microalga and cell-secreted growth factors. First, rat liver epithelial RL34 cells were cultured by adding Chlorella vulgaris extract (CVE) to inorganic salt solution. The supernatant, containing the RL34 cell-secreted growth factors, was used as the conditioned medium (CM). This CM, with CVE added as a nutrient source, was applied to primary bovine myoblast cultures. This serum-free and grain-derived-nutrient-free medium promoted the proliferation of bovine myoblasts, the main cell source for cultured beef. Our findings will allow us to take a major step toward reducing production costs and environmental impacts, leading to an expansion of the cultured meat market.
Collapse
Affiliation(s)
- Kumiko Yamanaka
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Ikko Kawashima
- IntegriCulture Inc., The Advanced Technology Research Laboratory, Tokyo Women's Medical University, TWIns N101, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
2
|
Stout AJ, Mirliani AB, Rittenberg ML, Shub M, White EC, Yuen JSK, Kaplan DL. Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Commun Biol 2022; 5:466. [PMID: 35654948 PMCID: PMC9163123 DOI: 10.1038/s42003-022-03423-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
Cell-cultured meat offers the potential for a more sustainable, ethical, resilient, and healthy food system. However, research and development has been hindered by the lack of serum-free media that enable the robust expansion of relevant cells (e.g., muscle satellite cells) over multiple passages. Recently, a low-cost serum-free media (B8) was described for pluripotent stem cells. Here, B8 is adapted for bovine satellite cells through the addition of a single component, recombinant albumin, which renders it suitable for long-term satellite cell expansion without sacrificing myogenicity. This new media (Beefy-9) maintains cell growth over the entire period tested (seven passages), with an average doubling time of 39 h. Along with demonstrated efficacy for bovine cells, Beefy-9 offers a promising starting-point for developing serum-free media for other meat-relevant species. Ultimately, this work offers a foundation for escaping cultured meat research's reliance on serum, thereby accelerating the field.
Collapse
Affiliation(s)
- Andrew J Stout
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
| | - Addison B Mirliani
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
| | - Miriam L Rittenberg
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
- Biological Engineering Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michelle Shub
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
| | - Eugene C White
- Tufts Veterinary Field Service, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - John S K Yuen
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, Medford, MA, USA.
| |
Collapse
|
3
|
Jairath G, Mal G, Gopinath D, Singh B. A holistic approach to access the viability of cultured meat: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Eibl R, Senn Y, Gubser G, Jossen V, van den Bos C, Eibl D. Cellular Agriculture: Opportunities and Challenges. Annu Rev Food Sci Technol 2021; 12:51-73. [PMID: 33770467 DOI: 10.1146/annurev-food-063020-123940] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cellular agriculture is the controlled and sustainable manufacture of agricultural products with cells and tissues without plant or animal involvement. Today, microorganisms cultivated in bioreactors already produce egg and milk proteins, sweeteners, and flavors for human nutrition as well as leather and fibers for shoes, bags, and textiles. Furthermore, plant cell and tissue cultures provide ingredients that stimulate the immune system and improve skin texture, with another precommercial cellular agriculture product, in vitro meat, currently receiving a great deal of attention. All these approaches could assist traditional agriculture in continuing to provide for the dietary requirements of a growing world population while freeing up important resources such as arable land. Despite early successes, challenges remain and are discussed in this review, with a focus on production processes involving plant and animal cell and tissue cultures.
Collapse
Affiliation(s)
- Regine Eibl
- Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil 8820, Switzerland;
| | - Yannick Senn
- Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil 8820, Switzerland;
| | - Géraldine Gubser
- Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil 8820, Switzerland;
| | - Valentin Jossen
- Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil 8820, Switzerland;
| | | | - Dieter Eibl
- Institute of Chemistry and Biotechnology, Department of Life Sciences and Facility Management, Zurich University of Applied Sciences, Wädenswil 8820, Switzerland;
| |
Collapse
|
5
|
The Impact of Polyamine Precursors, Polyamines, and Steroid Hormones on Temporal Messenger RNA Abundance in Bovine Satellite Cells Induced to Differentiate. Animals (Basel) 2021; 11:ani11030764. [PMID: 33801966 PMCID: PMC8001141 DOI: 10.3390/ani11030764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In the U.S., approximately 90% of all cattle on feed receive an anabolic implant at some point during production. Despite the widespread use, how they operate to increase growth of cattle remains unknown. Polyamines are amino acid derivatives, which are potent growth stimulants, produced through the polyamine biosynthetic pathway. Emerging research suggests that the hormones in anabolic implants interact with the polyamine biosynthetic pathway. The purpose of this research was to investigate the effects of steroidal hormones, polyamine precursors, and polyamines on mRNA abundance of bovine satellite cells, muscle precursor cells. The results from this study suggest that polyamine precursors and polyamines alter transcription factors involved in induction of differentiation of bovine satellite cells and the polyamine biosynthetic pathway, while the hormones in anabolic implants alter genes involved in the polyamine biosynthetic pathway. These results mean that polyamines may impact differentiation of bovine satellite cells, ultimately affecting growth of cattle. Abstract Emerging research suggests that hormones found in anabolic implants interact with polyamine biosynthesis. The objective of this study was to determine the effects of steroidal hormones, polyamines and polyamine precursors on bovine satellite cell (BSC) differentiation and polyamine biosynthesis temporally. Primary BSCs were induced to differentiate in 3% horse serum (CON) and treated with 10 nM trenbolone acetate (TBA), 10 nM estradiol (E2), 10 nM TBA and 10 nM E2, 10 mM methionine, 8 mM ornithine, 2 mM putrescine, 1.5 mM spermidine, or 0.5 mM spermine. Total mRNA was isolated 0, 2, 4, 8, 12, 24, and 48 h post-treatment. Abundance of mRNA for genes associated with induction of BSC differentiation: paired box transcription factor 7, myogenic factor 5, and myogenic differentiation factor 1 and genes in the polyamine biosynthesis pathway: ornithine decarboxylase and S-adenosylmethionine—were analyzed. Overall, steroidal hormones did not impact (p > 0.05) mRNA abundance of genes involved in BSC differentiation, but did alter (p = 0.04) abundance of genes involved in polyamine biosynthesis. Polyamine precursors influenced (p < 0.05) mRNA of genes involved in BSC differentiation. These results indicate that polyamine precursors and polyamines impact BSC differentiation and abundance of mRNA involved in polyamine biosynthesis, while steroidal hormones altered the mRNA involved in polyamine biosynthesis.
Collapse
|
6
|
Zidarič T, Milojević M, Vajda J, Vihar B, Maver U. Cultured Meat: Meat Industry Hand in Hand with Biomedical Production Methods. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09253-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Hassan Q, Ahmadi S, Kerman K. Recent Advances in Monitoring Cell Behavior Using Cell-Based Impedance Spectroscopy. MICROMACHINES 2020; 11:E590. [PMID: 32545753 PMCID: PMC7345285 DOI: 10.3390/mi11060590] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/24/2022]
Abstract
Cell-based impedance spectroscopy (CBI) is a powerful tool that uses the principles of electrochemical impedance spectroscopy (EIS) by measuring changes in electrical impedance relative to a voltage applied to a cell layer. CBI provides a promising platform for the detection of several properties of cells including the adhesion, motility, proliferation, viability and metabolism of a cell culture. This review gives a brief overview of the theory, instrumentation, and detection principles of CBI. The recent applications of the technique are given in detail for research into cancer, neurodegenerative diseases, toxicology as well as its application to 2D and 3D in vitro cell cultures. CBI has been established as a biophysical marker to provide quantitative cellular information, which can readily be adapted for single-cell analysis to complement the existing biomarkers for clinical research on disease progression.
Collapse
Affiliation(s)
| | | | - Kagan Kerman
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (Q.H.); (S.A.)
| |
Collapse
|
8
|
Long-term changes in performance and meat quality of Danish Landrace pigs: a study on a current compared with an unimproved genotype. ACTA ACUST UNITED AC 2016. [DOI: 10.1017/s1357729800054916] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractAn experiment was conducted in 1995 in order to examine muscle growth, muscle histochemical properties, muscle metabolism and meat quality of two types of Danish Landrace pigs representing the growth potential of years 1976 and 1995, respectively. Danish Landrace pigs representing 1976 (slow-growing, SG) originated from a breeding station where the population was maintained without being selected for production traits such as daily gain, food conversion ratio and meat content. Pigs representing Danish Landrace of 1995 (fast-growing, FG) were bought from certified Danish pig breeders. The pigs were simultaneously tested for performance from 40 to 95 kg live weight. The daily gain, food conversion ratio and meat content of the carcass were improved proportionately by 0·43, 0·24 and 0·03 in FG pigs compared with SG pigs. In m. longissimus dorsi (LD), the cross-sectional area of muscle fibres was smaller in FG pigs compared with SG pigs indicating increased muscle fibre number. Data further suggest increased satellite cell proliferation in muscles of FG pigs. Serum from FG pigs stimulated the proliferation of C2C12 muscle cells to a greater extent than serum from SG pigs, although the serum level of insulin-like growth factor 1 did not differ between pig types. The effect of serum on protein turn-over of C2C12 myotubes did not depend on pig type. The glycogen concentration in the LD did not differ significantly between pig types, while the activity of citrate synthase, 3-OH-acyl-CoA-dehydrogenase, and lactate dehydrogenase were higher in the LD of SG pigs compared with FG pigs. Pork chop colour of FG pigs was proportionately 0·09 lighter (L⋆) and 0·13 less red (a⋆) than pork chops of SG pigs. The total muscle pigment concentration in the LD, m. biceps femoris and m. vastus intermedius was proportionately reduced by 0·17, 0·19 and 0·11, respectively, in FG pigs compared with SG pigs. In the LD, the concentration of myoglobin was proportionately reduced by 0·17 in FG pigs. The chemical composition of the LD differed between pig types such that the water content was higher and protein content lower in LD from FG pigs compared with SG pigs. The pH of the LD measured 45 min and 24 h post mortem, drip loss and thawing loss were similar for both pig types. Meat tenderness of conditioned pork chops of FG pigs was slightly reduced in accordance with a decreased intensity of the 31 kDa peptide band and increased cooking loss. The present study suggests that increased muscle fibre number and rate of muscle DNA deposition (satellite cell proliferation) have contributed to the increased muscle growth as a result of selection for performance in pigs under Danish conditions. However, the increase in growth performance was accompanied by deterioration in muscle colour and slightly reduced tenderness.
Collapse
|
9
|
Dodson MV, Allen RE, Du M, Bergen WG, Velleman SG, Poulos SP, Fernyhough-Culver M, Wheeler MB, Duckett SK, Young MRI, Voy BH, Jiang Z, Hausman GJ. INVITED REVIEW: Evolution of meat animal growth research during the past 50 years: Adipose and muscle stem cells. J Anim Sci 2016; 93:457-81. [PMID: 26020737 DOI: 10.2527/jas.2014-8221] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
If one were to compare today's animal growth research to research from a mere 50 yr ago, one would see programs with few similarities. The evolution of this research from whole-animal through cell-based and finally molecular and genomic studies has been enhanced by the identification, isolation, and in vitro evaluation of adipose- and muscle-derived stem cells. This paper will highlight the struggles and the milestones that make this evolving area of research what it is today. The contribution of adipose and muscle stem cell research to development and growth, tissue regeneration, and final carcass composition are reviewed.
Collapse
|
10
|
Myostatin knockout using zinc-finger nucleases promotes proliferation of ovine primary satellite cells in vitro. J Biotechnol 2015; 192 Pt A:268-80. [PMID: 25449018 DOI: 10.1016/j.jbiotec.2014.10.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 11/22/2022]
Abstract
Myostatin (MSTN) has previously been shown to negatively regulate the proliferation and differentiation of skeletal muscle cells. Satellite cells are quiescent muscle stem cells that promote muscle growth and repair. Because the mechanism of MSTN in the biology of satellite cells is not well understood, this study was conducted to generate MSTN mono-allelic knockout satellite cells using the zinc-finger nuclease mRNA (MSTN-KO ZFN mRNA) and also to investigate the effect of this disruption on the proliferation and differentiation of sheep primary satellite cells (PSCs). Nineteen biallelic and four mono-allelic knockout cell clones were obtained after sequence analysis. The homologous mono-allelic knockout cells with 5-bp deletion were used to further evaluations. The results demonstrated that mono-allelic knockout of MSTN gene leads to translation inhibition. Real-time quantitative PCR results indicated that knockout of MSTN contributed to an increase in CDK2 and follistatin and a decrease in p21 at the transcript level in proliferation conditions. Moreover, MSTN knockout significantly increased the proliferation of mutant clones (P < 0.01). Consistent with the observed increase in CDK2 and decrease in p21 in cells lacking MSTN, cell cycle analysis showed that MSTN negatively regulated the G1 to S progression. In addition, knockout of myostatin resulted in a remarkable increase in MyoD and MyoG expression under differentiating conditions but had no effect on Myf5 expression. These results expanded our understanding of the regulation mechanism of MSTN. Furthermore, the MSTN-KO ZFN mRNA system in PSCs could be used to generate transgenic sheep in the future.
Collapse
|
11
|
Fernyhough ME, Bucci LR, Feliciano J, Dodson MV. The Effect of Nutritional Supplements on Muscle-Derived Stem Cells in vitro. Int J Stem Cells 2014; 3:63-7. [PMID: 24855542 DOI: 10.15283/ijsc.2010.3.1.63] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2010] [Indexed: 11/09/2022] Open
Abstract
Postnatal muscle stem cells, recognized as myogenic satellite cells, were isolated from sheep skeletal muscle and used in these experiments. Forty-one different metabolic compounds that are commonly found in commercially-available oral supplements were exposed to primary muscle stem cell cultures, in an effort to ascertain whether any one compound could alter satellite cell proliferation or differentiation (a first step towards elucidating the metabolomics or nutrigenomics of these stem cells). These compounds included energetic moieties, amino acid analogs, fatty acids and analogs including different forms of conjugated linoleic acid, minerals and mineral conjugates, insect hormones, caffeine, plant extracts, and extracts from over-the-counter supplements, and were obtained by key manufacturers in a form that would be commercially available. The compounds were sterilized and then exposed to myogenic satellite cell cultures at different levels (ranging from toxic to physiologic) to ascertain if there would be an effect. The results suggested that exposure of satellite cells to only a few compounds resulted in any measurable effect(s). Ten compounds elicited increases in proliferation, and four compounds promoted increases in differentiation. These results suggest avenues for the exploration of enhancing muscle stem cell activity of interest for muscle wasting disorders, sarcopenia of aging and physical performance.
Collapse
Affiliation(s)
| | - Luke R Bucci
- Schiff Nutrition International, Salt Lake City, UT 84104, USA
| | - Jeff Feliciano
- Schiff Nutrition International, Salt Lake City, UT 84104, USA
| | - Michael V Dodson
- Muscle Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
12
|
Targeted suppression of μ-calpain and caspase 9 expression and its effect on caspase 3 and caspase 7 in satellite cells of Korean Hanwoo cattle. Cell Biol Int 2014; 36:843-9. [PMID: 22657938 DOI: 10.1042/cbi20120050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The calpains play an important role in cell death and cell signalling. Caspases catalyse wholesale destruction of cellular proteins which is a major cause of cellular death. The current study looks at the function of μ-calpain and caspase 9, using RNAi (RNA interference)-mediated silencing, and to observe the mRNA expression level of caspase genes during satellite cell growth. The satellite cells were treated with siRNA (small interfering RNA) of μ-calpain and caspase 9 separately. There was reduction of 16 and 24% in CAPN1 (calpain1)-siRNA2 and CAPN1-siRNA3 transfected cells respectively, whereas it was 60 and 56% in CAPN1-siRNA1 and CAPN1-siRNA4 transfected cells respectively. CAPN1-siRNA4 and CAPN1-siRNA1 treated cells showed more reduction in caspase 3 and 7 gene expression. CARD9 (caspase recruitment domain 9)-siRNA1 and CARD9-siRNA2-treated cells showed reduction of 40 and 49% respectively. CARD9-siRNA1 and CARD9-siRNA2 showed an increase in caspase 3 gene expression, whereas CARD9-siRNA2 showed reduction in caspase 7 gene expression. These results suggest a strong cross-talk between μ-calpain and the caspase enzyme systems. Suppression of target genes, such as μ-calpain and caspase 9, might have genuine potential in the treatment of skeletal muscle atrophy.
Collapse
|
13
|
Van Ba H, Hwang I. Role of caspase-9 in the effector caspases and genome expressions, and growth of bovine skeletal myoblasts. Dev Growth Differ 2013; 56:131-42. [PMID: 24289185 DOI: 10.1111/dgd.12098] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 12/21/2022]
Abstract
Caspase-9 has been reported as the key regulator of apoptosis, however, its role in skeletal myoblast development and molecular involvements during cell growth still remains unknown. The current study aimed to present the key role of caspase-9 in the expressions of apoptotic caspases and genome, and cell viability during myoblast growth using RNA interference mediated silencing. Three small interference RNA sequences (siRNAs) targeting caspase-9 gene was designed and ligated into pSilencer plasmid vector to construct shRNA expression constructs. Cells were transfected with the constructs for 48 h. Results indicated that all three siRNAs could silence the caspase-9 mRNA expression significantly. Particularly, the mRNA expression level of caspase-9 in the cells transfected by shRNA1, shRNA2 and shRNA3 constructs were reduced by 37.85%, 68.20% and 58.14%, respectively. Suppression of caspase-9 led to the significant increases in the mRNA and protein expressions of effector caspase-3, whereas the reduction in mRNA and protein expressions of caspase-7. The microarray results showed that the suppression of caspase-9 resulted in significant upregulations of cell proliferation-, adhesion-, growth-, development- and division-regulating genes, whereas the reduction in the expressions of cell death program- and stress response-regulating genes. Furthermore, cell viability was significantly increased following the transfection. These data suggest that caspase-9 could play an important role in the control of cell growth, and knockdown of caspase-9 may have genuine potential in the treatment of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Hoa Van Ba
- Department of Animal Science and Biotechnology, Chonbuk National University, Jeonju, 561-756, Korea
| | | |
Collapse
|
14
|
Schenk HC, Krampfl K, Baumgärtner W, Tipold A. Canine muscle cell culture and consecutive patch-clamp measurements - a new approach to characterize muscular diseases in dogs. BMC Vet Res 2012; 8:227. [PMID: 23171640 PMCID: PMC3539935 DOI: 10.1186/1746-6148-8-227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 11/18/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The recognition of functional muscular disorders, (e.g. channelopathies like Myotonia) is rising in veterinary neurology. Morphologic (e.g. histology) and even genetic based studies in these diseases are not able to elucidate the functional pathomechanism. As there is a deficit of knowledge and skills considering this special task, the aim of the current pilot study was to develop a canine muscle cell culture system derived from muscle biopsies of healthy client-owned dogs, which allows sampling of the biopsies under working conditions in the daily veterinary practise. RESULTS Muscular biopsies from 16 dogs of different age and breed were taken during standard surgical procedures and were stored for one to three days at 4°C in a transport medium in order to simulate shipping conditions. Afterwards biopsies were professionally processed, including harvesting of satellite cells, inducing their proliferation, differentiating them into myotubes and recultivating myotubes after long-term storage in liquid nitrogen. Myogenic origin of cultured cells was determined by immunofluorescence, immunohistology and by their typical morphology after inducing differentiation. Subsequent to the differentiation into myotubes feasibility of patch-clamp recordings of voltage gated ion channels was successfully. CONCLUSION We have developed a canine muscle cell culture system, which allows sampling of biopsies from young and old dogs of different breeds under practical conditions. Patch clamp measurements can be carried out with the cultured myotubes demonstrating potential of these cells as source for functional research.
Collapse
Affiliation(s)
- Henning Christian Schenk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany.
| | | | | | | |
Collapse
|
15
|
Li Y, Yang X, Ni Y, Decuypere E, Buyse J, Everaert N, Grossmann R, Zhao R. Early-age feed restriction affects viability and gene expression of satellite cells isolated from the gastrocnemius muscle of broiler chicks. J Anim Sci Biotechnol 2012; 3:33. [PMID: 23127173 PMCID: PMC3546929 DOI: 10.1186/2049-1891-3-33] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 11/01/2012] [Indexed: 11/10/2022] Open
Abstract
Background Muscle growth depends on the fusion of proliferate satellite cells to existing myofibers. We reported previously that 0–14 day intermittent feeding led to persistent retardation in myofiber hypertrophy. However, how satellite cells respond to such nutritional insult has not been adequately elucidated. Results One-day-old broiler chicks were allocated to control (Con, ad libitum feeding), intermittent feeding (IF, feed provided on alternate days) and re-feeding (RF, 2 days ad libitum feeding after 12 days of intermittent feeding) groups. Chickens were killed on Day 15 and satellite cells were isolated. When cultured, satellite cells from the IF group demonstrated significant retardation in proliferation and differentiation potential, while RF partly restored the proliferation rate and differentiation potential of the satellite cells. Significant up-regulation of insulin like growth factor I receptor (IGF-IR) (P<0.05) and thyroid hormone receptor α (TRα) (P<0.05), and down-regulation of growth hormone receptor (GHR) (P<0.01) and IGF-I (P<0.01) mRNA expression was observed in freshly isolated IF satellite cells when compared with Con cells. In RF cells, the mRNA expression of IGF-I was higher (P<0.05) and of TRα was lower (P<0.01) than in IF cells, suggesting that RF restored the mRNA expression of TRα and IGF-I, but not of GHR and IGF-IR. The Bax/Bcl-2 ratio tended to increase in the IF group, which was reversed in the RF group (P<0.05), indicating that RF reduced the pro-apoptotic influence of IF. Moreover, no significant effect of T3 was detected on cell survival in IF cells compared with Con (P<0.001) or RF (P<0.05) cells. Conclusions These data suggest that early-age feed restriction inhibits the proliferation and differentiation of satellite cells, induces changes in mRNA expression of the GH/IGF-I and thyroid hormone receptors in satellite cells, as well as blunted sensitivity of satellite cells to T3, and that RF partially reverses these effects. Thus, a moderate nutritional strategy for feed restriction should be chosen in early chick rearing systems.
Collapse
Affiliation(s)
- Yue Li
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing 210095, China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Baquero-Perez B, Kuchipudi SV, Nelli RK, Chang KC. A simplified but robust method for the isolation of avian and mammalian muscle satellite cells. BMC Cell Biol 2012; 13:16. [PMID: 22720831 PMCID: PMC3432597 DOI: 10.1186/1471-2121-13-16] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 06/11/2012] [Indexed: 11/14/2022] Open
Abstract
Background Current methods of isolation of muscle satellite cells from different animal species are highly variable making inter-species comparisons problematic. This variation mainly stems from the use of different proteolytic enzymes to release the satellite cells from the muscle tissue (sometimes a single enzyme is used but often a combination of enzymes is preferred) and the different extracellular matrix proteins used to coat culture ware. In addition, isolation of satellite cells is frequently laborious and sometimes may require pre-plating of the cell preparation on uncoated flasks or Percoll centrifugation to remove contaminating fibroblasts. The methodology employed to isolate and culture satellite cells in vitro can critically determine the fusion of myoblasts into multi-nucleated myotubes. These terminally differentiated myotubes resemble mature myofibres in the muscle tissue in vivo, therefore optimal fusion is a keystone of in vitro muscle culture. Hence, a simple method of muscle satellite cell isolation and culture of different vertebrate species that can result in a high fusion rate is highly desirable. Results We demonstrate here a relatively simple and rapid method of isolating highly enriched muscle satellite cells from different avian and mammalian species. In brief, muscle tissue was mechanically dissociated, digested with a single enzyme (pronase), triturated with a 10-ml pipette, filtered and directly plated onto collagen coated flasks. Following this method and after optimization of the cell culture conditions, excellent fusion rates were achieved in the duck, chicken, horse and cow (with more than 50% cell fusion), and to a lesser extent pig, pointing to pronase as a highly suitable enzyme to release satellite cells from muscle tissue. Conclusions Our simplified method presents a quick and simple alternative to isolating highly enriched muscle satellite cell cultures which can subsequently rapidly differentiate into well developed primary myotubes. The use of the same isolation protocol allows better inter-species comparisons of muscle satellite cells. Of all the farm animal species investigated, harvested chicken muscle cells showed the highest percentage of muscle satellite cells, and equine muscle cells presented the highest fusion index, an impressive ≈ 77%. Porcine cells displayed the lowest amount of satellite cells but still achieved a modest fusion rate of ≈ 41%.
Collapse
Affiliation(s)
- Belinda Baquero-Perez
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Leicestershire, LE12 5RD, UK.
| | | | | | | |
Collapse
|
17
|
Bhat ZF, Fayaz H. Prospectus of cultured meat—advancing meat alternatives. Journal of Food Science and Technology 2010. [DOI: 10.1007/s13197-010-0198-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Tripathi AK, Ramani UV, Ahir VB, Rank DN, Joshi CG. A modified enrichment protocol for adult caprine skeletal muscle stem cell. Cytotechnology 2010; 62:483-8. [PMID: 20865326 PMCID: PMC2995141 DOI: 10.1007/s10616-010-9306-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 09/03/2010] [Indexed: 11/28/2022] Open
Abstract
To establish an adequate model to study the proliferation and differentiation of adult caprine skeletal muscle in response to bioactive compounds, a pool of satellite cells (SC) was derived from the rectus abdominis muscle of adult goat. Skeletal muscle contains a population of adult stem cells, named as satellite cells that reside beneath the basal lamina of skeletal muscle fiber and other populations of cells. These SC are multipotent stem cells, since cells cultured in the presence of specific cell lineage inducing cocktails can differentiate into several types of mesenchymal lineage, such as osteocytes and adipocytes. In the present study, we have developed a modified protocol for isolating satellite cells (>90%) and examined their myogenic and contractile properties in vitro.
Collapse
Affiliation(s)
- Ajai K Tripathi
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388001, India,
| | | | | | | | | |
Collapse
|
19
|
Dodson MV, Hausman GJ, Guan L, Du M, Rasmussen TP, Poulos SP, Mir P, Bergen WG, Fernyhough ME, McFarland DC, Rhoads RP, Soret B, Reecy JM, Velleman SG, Jiang Z. Skeletal muscle stem cells from animals I. Basic cell biology. Int J Biol Sci 2010; 6:465-74. [PMID: 20827399 PMCID: PMC2935669 DOI: 10.7150/ijbs.6.465] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/27/2010] [Indexed: 01/14/2023] Open
Abstract
Skeletal muscle stem cells from food-producing animals are of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding of muscle stem cell biology and function is essential for developing technologies and strategies to augment the metabolic efficiency and muscle hypertrophy of growing animals potentially leading to greater efficiency and reduced environmental impacts of animal production, while concomitantly improving product uniformity and consumer acceptance and enjoyment of muscle foods.
Collapse
Affiliation(s)
- Michael V Dodson
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
FERNYHOUGH MELINDAE, VIERCK JANL, HELTERLINE DERIL, DODSON MICHAELV, BUCCI LUKER, FELICIANO JEFF. Commonly Consumed Oral Herbal Supplements Do Not Influence Satellite Cell Activity. Res Sports Med 2010. [DOI: 10.1080/15438620490460440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Rehfeldt C, Renne U, Sawitzky M, Binder G, Hoeflich A. Increased fat mass, decreased myofiber size, and a shift to glycolytic muscle metabolism in adolescent male transgenic mice overexpressing IGFBP-2. Am J Physiol Endocrinol Metab 2010; 299:E287-98. [PMID: 20501873 DOI: 10.1152/ajpendo.00492.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elucidate the functional role of insulin-like growth factor (IGF)-binding protein-2 (IGFBP-2) for in vivo skeletal muscle growth and function, skeletal muscle cellularity and metabolism, expression of signal molecules, and body growth and composition were studied in a transgenic mouse model overexpressing IGFBP-2. Postnatal growth rate of transgenic mice was reduced from day 21 of age by 6-8% compared with nontransgenic controls. At 10 wk of age body lean protein and moisture percentages were lower, whereas fat percentage was higher in IGFBP-2 transgenic mice. Muscle weights were reduced (-13% on day 30 of age, -14% on day 72), which resulted from slower growth of myofibers in size but not from decreases in myofiber number. The reduction in muscle mass was associated with lower total DNA, RNA, and protein contents as well as greater DNA/RNA and protein/RNA ratios. The percentage of proliferating (Ki-67-positive) nuclei within myofibers was reduced (3.4 vs. 5.8%) in 30-day-old transgenic mice. These changes were accompanied by slight reductions in specific p44/42 MAPK activity (-18% on day 72) and, surprisingly, by increased levels of phosphorylated Akt (Ser(473)) (+25% on day 30, +66% on day 72). The proportion of white glycolytic fibers (55.9 vs. 53.5%) and the activity of lactate dehydrogenase (+8%) were elevated in 72-day-old transgenic mice. Most of the differences observed between transgenic and nontransgenic mice were more pronounced in males. The results suggest that IGFBP-2 significantly inhibits postnatal skeletal myofiber growth by decreasing myogenic proliferation and protein accretion and enhances glycolytic muscle metabolism.
Collapse
Affiliation(s)
- Charlotte Rehfeldt
- Research Divisions-Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology, Wilhelm-Stahl-Allee 2, Dummerstorf, Germany.
| | | | | | | | | |
Collapse
|
22
|
Gabillard JC, Rallière C, Sabin N, Rescan PY. The production of fluorescent transgenic trout to study in vitro myogenic cell differentiation. BMC Biotechnol 2010; 10:39. [PMID: 20478014 PMCID: PMC2887378 DOI: 10.1186/1472-6750-10-39] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Accepted: 05/17/2010] [Indexed: 12/03/2022] Open
Abstract
Background Fish skeletal muscle growth involves the activation of a resident myogenic stem cell population, referred to as satellite cells, that can fuse with pre-existing muscle fibers or among themselves to generate a new fiber. In order to monitor the regulation of myogenic cell differentiation and fusion by various extrinsic factors, we generated transgenic trout (Oncorhynchus mykiss) carrying a construct containing the green fluorescent protein reporter gene driven by a fast myosin light chain 2 (MlC2f) promoter, and cultivated genetically modified myogenic cells derived from these fish. Results In transgenic trout, green fluorescence appeared in fast muscle fibers as early as the somitogenesis stage and persisted throughout life. Using an in vitro myogenesis system we observed that satellite cells isolated from the myotomal muscle of transgenic trout expressed GFP about 5 days post-plating as they started to fuse. GFP fluorescence persisted subsequently in myosatellite cell-derived myotubes. Using this in vitro myogenesis system, we showed that the rate of muscle cell differentiation was strongly dependent on temperature, one of the most important environmental factors in the muscle growth of poikilotherms. Conclusions We produced MLC2f-gfp transgenic trout that exhibited fluorescence in their fast muscle fibers. The culture of muscle cells extracted from these trout enabled the real-time monitoring of myogenic differentiation. This in vitro myogenesis system could have numerous applications in fish physiology to evaluate the myogenic activity of circulating growth factors, to test interfering RNA and to assess the myogenic potential of fish mesenchymal stem cells. In ecotoxicology, this system could be useful to assess the impact of environmental factors and marine pollutants on fish muscle growth.
Collapse
Affiliation(s)
- Jean-Charles Gabillard
- National Institute for Agricultural Research, Joint Research Unit for Fish Physiology, Biodiversity and the Environment, INRA Scribe, IFR140, Campus de Beaulieu, 35042 Rennes, France
| | | | | | | |
Collapse
|
23
|
|
24
|
Rajesh RV, Kim SK, Park MR, Park MA, Jang EJ, Hong SG, Chang JS, Yoon DH, Kim TH, Lee HJ. Differential Proteome Expression of In vitro Proliferating Bovine Satellite Cells from Longissimus Dorsi, Deep Pectoral and Semitendinosus Muscle Depots in Response to Hormone Deprivation and Addition. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2009. [DOI: 10.5187/jast.2009.51.6.459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Rhoads RP, Fernyhough ME, Liu X, McFarland DC, Velleman SG, Hausman GJ, Dodson MV. Extrinsic regulation of domestic animal-derived myogenic satellite cells II. Domest Anim Endocrinol 2009; 36:111-26. [PMID: 19261429 DOI: 10.1016/j.domaniend.2008.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 12/12/2022]
Abstract
The existence of myogenic satellite cells was reported some 47 years ago, and, since that time, satellite cell research has flourished. So much new information is generated (daily) on these cells that it can be difficult for individuals to keep abreast of important issues related to their activation and proliferation, the modulation of the activity of other cell types, the differentiation of the cells to facilitate normal skeletal muscle growth and development, or to the repair of damaged myofibers. The intent of this review is to summarize new information about the extrinsic regulation of myogenic satellite cells and to provide specific mechanisms involved in altering satellite cell physiology. Where possible, examples from agriculturally important animals are used for illustrative purposes.
Collapse
Affiliation(s)
- R P Rhoads
- Department of Animal Sciences, University of Arizona, Tucson, AZ 85719, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Wilschut KJ, Jaksani S, Van Den Dolder J, Haagsman HP, Roelen BAJ. Isolation and characterization of porcine adult muscle-derived progenitor cells. J Cell Biochem 2009; 105:1228-39. [PMID: 18821573 DOI: 10.1002/jcb.21921] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we report the isolation of progenitor cells from pig skeletal muscle tissue fragments. Muscle progenitor cells were stimulated to migrate from protease-digested tissue fragments and cultured in the presence of 5 ng/ml basic fibroblast growth factor. The cells showed a sustained long-term expansion capacity (>120 population doublings) while maintaining a normal karyotype. The proliferating progenitor cells expressed PAX3, DESMIN, SMOOTH MUSCLE ACTIN, VIMENTIN, CD31, NANOG and THY-1, while MYF5 and OCT3/4 were only expressed in the lower or higher cell passages. Myogenic differentiation of porcine progenitor cells was induced in a coculture system with murine C2C12 myoblasts resulting in the formation of myotubes. Further, the cells showed adipogenic and osteogenic lineage commitment when exposed to specific differentiation conditions. These observations were determined by Von Kossa and Oil-Red-O staining and confirmed by quantitative RT-PCR analysis. In conclusion, the porcine muscle-derived progenitor cells possess long-term expansion capacity and a multilineage differentiation capacity.
Collapse
Affiliation(s)
- Karlijn J Wilschut
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Dodson MV, Kinkel A, Vierck JL, Cain K, Wick M, Ottobre J. Unidentified cells reside in fish skeletal muscle. Cytotechnology 2008; 56:171-8. [PMID: 19002855 DOI: 10.1007/s10616-008-9140-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 02/15/2008] [Indexed: 10/22/2022] Open
Abstract
Cell cultures were established from the skeletal muscle tissue of 6-13 months old rainbow trout and 12-14 months old yellow perch. Approximately 27,000 +/- 5,000 cells/g (trout; N = 5) and 5,000 +/- 1,200 cells/g of tissue (perch; N = 4) were obtained. Isolation and propagation were qualitatively greater for both species when the cells (younger fish producer more cells than older fish) were exposed to DMEM + 15% FBS, rather than L-15 + 15% FBS, at 20 degrees C (trout) and at 24 degrees C (yellow perch). Two morphologically distinct cell types were observed in cultures of both species, some of which eventually formed very small myotubes, which displayed immunocytological reactivity for myogenin, myosin heavy chain, and alpha-actinin; the second population of cells remained unstained. Successful cryopreservation was achieved using a 5% DMSO and 95% serum mixture, but post-thawing viabilities were low 5-27% (trout) and 14-30% (perch). Further research is needed in order to determine cell type specificity of isolated cells.
Collapse
Affiliation(s)
- M V Dodson
- Muscle Biology Laboratory, Department of Animal Sciences, Washington State University, P.O. Box 646310, Pullman, WA, 99164-6310, USA,
| | | | | | | | | | | |
Collapse
|
28
|
Mau M, Kalbe C, Wollenhaupt K, Nürnberg G, Rehfeldt C. IGF-I- and EGF-dependent DNA synthesis of porcine myoblasts is influenced by the dietary isoflavones genistein and daidzein. Domest Anim Endocrinol 2008; 35:281-9. [PMID: 18635334 DOI: 10.1016/j.domaniend.2008.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 11/16/2022]
Abstract
Soy-derived isoflavones have been reported to be specific inhibitors of protein tyrosine kinases like the type 1 insulin-like growth factor receptor (IGF-1R) and the epidermal growth factor receptor (EGFR). This study was conducted to investigate, whether IGF-I and EGF stimulate porcine myoblast growth and whether the responses are influenced by isoflavones. Satellite cell-born myoblasts derived from the semimembranosus muscle of newborn piglets were treated for 26 h with IGF-I or EGF alone and in combination with genistein or daidzein. The DNA amount was measured and DNA synthesis was recorded as 6 h-[(3)H]thymidine incorporation during exponential growth in serum-free basal medium. IGF-I and EGF synergistically stimulated DNA synthesis of porcine myoblast with EGF causing a greater response. Genistein (100 micromol/l) effectively reduced the growth factor-mediated DNA synthesis, which was associated with an inhibition of growth factor receptor protein expression. In response to daidzein no reduction in growth factor-mediated DNA synthesis was found. Daidzein (1; 10 micromol/l) combined with IGF-I caused even a slight increase in DNA amount compared with the untreated control. The expression of the IGF-1R precursor protein was reduced with 10 and 100 micromol/l daidzein, whereas the EGFR expression remained unchanged with daidzein. The results suggest that dietary isoflavones may interact with growth factor-induced stimulation of pig skeletal muscle growth.
Collapse
Affiliation(s)
- Marcus Mau
- Research Unit Muscle Biology and Growth, Research Institute for the Biology of Farm Animals, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | | | | | | | | |
Collapse
|
29
|
Pang WJ, Yu TY, Bai L, Yang YJ, Yang GS. Tissue expression of porcine FoxO1 and its negative regulation during primary preadipocyte differentiation. Mol Biol Rep 2008; 36:165-76. [PMID: 18293098 DOI: 10.1007/s11033-007-9163-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2007] [Accepted: 10/02/2007] [Indexed: 11/30/2022]
Abstract
The Forkhead transcription factor O 1 (FoxO1) gene plays an important role in the integration of hormone-activated signaling pathways with the complex transcriptional cascade that promotes clonal cell line differentiation. However, tissue expression of porcine FoxO1 and its function during porcine preadipocyte differentiation remained poorly understood. In the present study, we investigated tissue expressions of FoxO1 in pig by real time quantitative RT-PCR (qRT-PCR) and western blotting, and explored its role in porcine preadipocytes differentiation by RNA interference technique and qRT-PCR. FoxO1 gene expressions were highly in subcutaneous adipose and visceral adipose tissues, and higher in piglets than those in adults (P < 0.05). We showed that expression of endogenous FoxO1 in preadipocytes transfected with pBS/U6-siFoxO1-1748 expression vector was inhibited efficiently. After reducing expression of FoxO1, glycerol-3-phosphate dehydrogenase (GPDH) activity and triglyceride (TG) content increased from day 1 to 9, and the time-course expressions of several key adipogenic genes mRNA, including peroxisome proliferator-activated receptor gamma on day 3, 5, and 7, adipocyte fatty acid binding protein on day 1, 3, and 5, and sirtuin1 on day 1, 3, and 5, were increased significantly (P < 0.05). Lipoprotein lipase was unrelevant to FoxO1. By using insulin-like growth factor-I treating, expression of FoxO1 reduced at day 3 and 5 (P < 0.05), and significant differentiation of porcine preadipocyte with increasing number of filled-lipid cell and size of lipid droplets, GPDH activity and TG content were promoted. These results suggested that porcine FoxO1 gene took part in the regulation of adipose and was a negative transcription regulation factor in preadipocyte differentiation.
Collapse
Affiliation(s)
- Wei-Jun Pang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | |
Collapse
|
30
|
Velleman SG, Coy CS, McFarland DC. Effect of syndecan-1, syndecan-4, and glypican-1 on turkey muscle satellite cell proliferation, differentiation, and responsiveness to fibroblast growth factor 2. Poult Sci 2007; 86:1406-13. [PMID: 17575189 DOI: 10.1093/ps/86.7.1406] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The membrane-associated heparan sulfate proteoglycan families consisting of the syndecans and glypicans are low-affinity receptors for fibroblast growth factor 2 (FGF2). Fibroblast growth factor 2 is a potent stimulator of skeletal muscle cell proliferation and a strong inhibitor of differentiation. Because syndecan-1, syndecan-4, and glypican-1 potentially play unique, but pivotal, roles in muscle cell proliferation and differentiation, these proteoglycans were examined for their effect on muscle cell proliferation and differentiation and FGF2 responsiveness. In the present study, turkey Randombred Control 2 line myogenic satellite cells were transfected with expression vector constructions of syndecan-1, syndecan-4, or glypican-1 to assay their role during muscle development and the effect on FGF2 responsiveness. During proliferation, only syndecan-1 increased proliferation. Both syndecan-4 and glypican-1 decreased proliferation at 72 h but generally did not affect the proliferation process. There was no interaction between the transfected gene and cell proliferation response to FGF2. Glypican-1 increased differentiation early in the process (24 h), and at later times differentiation was decreased by glypican-1. Both syndecan-1 and syndecan-4 overexpression decreased differentiation. During differentiation, except for glypican-1 at 48 h of differentiation, there was no interaction between gene treatment and FGF2 responsiveness. This result indicates that FGF2 responsiveness was not affected by the overexpression of syndecan-1, syndecan-4, and glypican-1 during differentiation. These data demonstrate that syndecan-1, syndecan-4, or glypican-1 differentially affect the processes of turkey muscle cell proliferation and differentiation, and can regulate these developmental stages in an FGF2-independent manner.
Collapse
Affiliation(s)
- S G Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691, USA. USA.
| | | | | |
Collapse
|
31
|
Zhou X, Li D, Yin J, Ni J, Dong B, Zhang J, Du M. CLA differently regulates adipogenesis in stromal vascular cells from porcine subcutaneous adipose and skeletal muscle. J Lipid Res 2007; 48:1701-9. [PMID: 17496270 DOI: 10.1194/jlr.m600525-jlr200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Conjugated linoleic acid (CLA), a mixture of isomers of linoleic acid, has previously been shown to be able to decrease porcine subcutaneous (SC) adipose tissue levels while increasing the count of intramuscular (IM) adipose tissue in vivo. However, the underlying mechanisms through which it acts are poorly understood. The objective of this study was to investigate the different effects of CLA on adipogenesis in cultured SC adipose tissue and IM stromal vascular cells obtained from neonatal pigs. As shown here, trans-10, cis-12 CLA decreased the expression of adipocyte-specific genes as well as adipose precursor cell numbers and the accumulation of lipid in cultured SC adipose tissue stromal vascular cells. However, the cis-9, trans-11 CLA did not alter adipogenesis in SC cultures. On the other hand, both CLA isomers increased the expression of adipocyte-specific genes in IM cultures, together with the increasing accumulation of lipid and Oil Red O-stained cells. Collectively, these data show that CLA decreases SC adipose tissue but increases IM adipose tissue by different regulation of adipocyte-specific gene expression. These results suggest that adipogenesis in IM adipocytes differs from that in SC adipocytes.
Collapse
Affiliation(s)
- Xuan Zhou
- National Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100094, China
| | | | | | | | | | | | | |
Collapse
|
32
|
THEIL PK, SORENSEN IL, NISSEN PM, OKSBJERG N. Temporal expression of growth factor genes of primary porcine satellite cells during myogenesis. Anim Sci J 2006. [DOI: 10.1111/j.1740-0929.2006.00356.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Oksbjerg N, Nissen PM, Vestergaard M. Serum from heifer calves treated with bovine growth hormone affects the rate of proliferation of C2C12 myogenic cells dependent on the plane of nutrition: the role of insulin-like growth factor-I and IGF-binding proteins-2 and -3. J Anim Physiol Anim Nutr (Berl) 2006; 90:177-84. [PMID: 16684137 DOI: 10.1111/j.1439-0396.2005.00587.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present in vitro experiments were carried out in order to study whether variations in the bovine growth hormone (bGH)/insulin-like growth factor (IGF)-I axis induced by plane of nutrition and bGH treatment of heifer calves caused variations in serum-induced proliferation of C2C12 myoblasts. Serum was obtained from two groups each of six heifer calves (195 +/- 8 kg) before (d -1) and after treatment with 15 mg/day of bGH for 6 days (d 6) fed either a low (GHL) or a high plane (GHH) of nutrition. Preceding the experiment all 12 heifer calves were fed at the low plane of nutrition. At d 6, serum concentrations of insulin and IGF-I were increased while that of IGF-binding proteins (IGFBP)-2 was decreased in GHH, but unchanged in GHL calves. Serum-induced proliferation of C2C12 myoblasts, was elevated at d 6 by GHH treatment. Especially human IGFBP-3 but also bovine IGFBP-2 added to cell cultures inhibited the rate of proliferation of C2C12 myoblasts stimulated by human IGF-I. The present results showed that GH treatment causes changes in the GH/IGF axis, which leads to changes in serum-induced growth of C2C12 muscle cells dependent on the plane of nutrition that mimic in vivo effects of GH treatment, which indicate an endocrine contribution of the IGF system. However, drawbacks of this suggestion are discussed.
Collapse
Affiliation(s)
- N Oksbjerg
- Danish Institute of Agricultural Sciences, Research Centre Foulum, Tjele.
| | | | | |
Collapse
|
34
|
Moore DT, Ferket PR, Mozdziak PE. The effect of early nutrition on satellite cell dynamics in the young turkey. Poult Sci 2005; 84:748-56. [PMID: 15913187 DOI: 10.1093/ps/84.5.748] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Early posthatch satellite cell mitotic activity is an important aspect of muscle development. An understanding of the interplay between nutrition and satellite cell mitotic activity will lead to more efficient meat production. The objective of this study was to test the influence of the leucine metabolite, beta-hydroxy beta-methylbutyrate (HMB), and feed deprivation on muscle development in the early posthatch poult. Male Nicholas poults were placed on 1 of 4 treatments: immediately fed a starter diet with 0.1% HMB (IF-HMB), immediately fed a starter diet containing 0.1% Solka-Floc for a control (IF-No HMB), feed and water withheld for 48 h immediately posthatch and then fed the HMB diet (WF-HMB), and feed and water withheld for 48 h immediately posthatch and then fed the control starter diet (WF-No HMB). 5-bromo-2'-deoxyuridine (BrdU) was injected intra-abdominally into all poults to label mitotically active satellite cells. The pectoralis thoracicus was harvested 2 h after the BrdU injection. Immunohistochemistry for BrdU, Pax7, and laminin along with computer-based image analysis was used to study muscle development. IF-HMB poults had higher body weights (P < 0.01) at 48 h and 1 wk of age and had higher satellite cell mitotic activity at 48 h of age (P < 0.01) compared with the IF-No HMB and WF poults. Therefore, dietary supplementation of HMB may have an anabolic effect on early posthatch muscle.
Collapse
Affiliation(s)
- D T Moore
- Department of Poultry Science, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|
35
|
Hausman GJ, Poulos SP. A method to establish co-cultures of myotubes and preadipocytes from collagenase digested neonatal pig semitendinosus muscles1. J Anim Sci 2005; 83:1010-6. [PMID: 15827245 DOI: 10.2527/2005.8351010x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The relationships between adipocyte and muscle cell development within muscle are important in the study of factors or agents that may improve meat quality. Neonatal porcine muscle has the potential to yield both cell types for cell culture because it contains developing adipocytes and a high number of muscle satellite cells. Therefore, we modified a conventional collagenase-based procedure to digest neonatal porcine muscle and subsequently cultured the resultant muscle stromal-vascular (SV) cells on several substrata in basal and dexamethasone (DEX)-containing media. Developing myotubes and preadipocytes were present in muscle SV cell cultures on laminin substrata following seeding and plating with fetal bovine serum (FBS) with or without DEX. Myotube number was much higher (P < 0.05) on laminin substrata compared with all other substrata, whereas preadipocyte number in muscle SV cell cultures was independent of substrata, as we have shown previously. This approach can be used to establish co-cultures of differentiating adipocytes and myotubes from collagenase-digested neonatal pig muscle. Because the comparison is within the same culture dish, this method allows for a direct comparison of the responses of adipogenic and myogenic cells to growth and differentiation factors. For example, DEX did not alter myogenesis (i.e., 11 +/- 3 vs. 11 +/- 4 myotubes per unit area for control and DEX-treated cultures, respectively), but it has been shown to markedly increase preadipocyte number in muscle SV cell cultures.
Collapse
Affiliation(s)
- G J Hausman
- Animal Physiology Research Unit, ARS, USDA Richard B. Russell Agricultural Research Center, Athens, GA 30605-2720, USA.
| | | |
Collapse
|
36
|
Velleman SG, Mozdziak PE. Effects of posthatch feed deprivation on heparan sulfate proteoglycan, syndecan-1, and glypican expression: implications for muscle growth potential in chickens. Poult Sci 2005; 84:601-6. [PMID: 15844817 DOI: 10.1093/ps/84.4.601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The heparan sulfate proteoglycans, syndecan-1 and glypican-1 (glypican), are low affinity receptors for fibroblast growth factor 2 (FGF2). Because FGF2 stimulates skeletal muscle cell proliferation but inhibits differentiation, changes in FGF2 signaling due to early posthatch feed deprivation may play a significant role in modulating muscle growth. To study the effect of early posthatch feed deprivation in chickens on heparan sulfate proteoglycan relative protein concentration, syndecan-1 expression, and glypican mRNA expression, pectoralis major muscle tissue was isolated from pretreatment d 0 chicks and chicks fed or feed deprived for 3 d, and after d 3 feeding was resumed in the feed-deprived birds until d 7. Heparan sulfate proteoglycan protein concentration was measured by ELISA analysis and was significantly decreased in the feed-deprived birds beginning at d 2 (P < 0.05). The expression of syndecan-1 and glypican was measured by semi-quantitative reverse transcription PCR. Syndecan-1 expression was unaffected by feed withdrawal and refeeding (P > 0.05). Glypican mRNA expression was decreased in the muscle tissue from feed-deprived birds at d 3 (P < 0.05), but by d 7, after initiating feeding on d 4, it was significantly elevated compared with in muscle tissue from chicks maintained on feed (P < 0.05). The results from the present study demonstrate that the heparan sulfate proteoglycan protein concentration and syndecan-1 and glypican mRNA expressions are differentially affected by early posthatch feed deprivation, which may alter signaling events associated with muscle growth.
Collapse
Affiliation(s)
- S G Velleman
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA.
| | | |
Collapse
|
37
|
Kokta TA, Dodson MV, Gertler A, Hill RA. Intercellular signaling between adipose tissue and muscle tissue. Domest Anim Endocrinol 2004; 27:303-31. [PMID: 15519037 DOI: 10.1016/j.domaniend.2004.05.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2003] [Accepted: 05/12/2004] [Indexed: 11/22/2022]
Abstract
Adipose and muscle tissues undergo regulated growth and differentiation processes that are modulated by a wide range of factors. The interactions between myogenic cells and adipocytes play a significant role in growth and development, including the rate and extent of myogenesis, muscle growth, adipogenesis, lipogenesis/lipolysis, and in the utilization of energy substrates. Important hormones and growth factors involved in the regulation of these processes include glucocorticoids, insulin-like growth factors, various cytokines, insulin, and leptin. Interactions among these axes have important implications in their influence on relative fat and lean deposition and the efficiency of energy utilization in growth and development. As research progresses to better clarify the interactions among adipose tissue depots and muscle of different fiber types, pathways will become better understood, ultimately leading to the optimized management of fat and lean growth in domestic livestock species. This review will focus on elements of intercellular signaling, using data from cell culture studies to illustrate specific examples of signaling pathways between cells.
Collapse
Affiliation(s)
- T A Kokta
- Department of Animal and Veterinary Science, University of Idaho, 311 Agricultural Biotechnology Building, P.O. Box 442330, Moscow, ID 83844-2330, USA
| | | | | | | |
Collapse
|
38
|
Oksbjerg N, Gondret F, Vestergaard M. Basic principles of muscle development and growth in meat-producing mammals as affected by the insulin-like growth factor (IGF) system. Domest Anim Endocrinol 2004; 27:219-40. [PMID: 15451071 DOI: 10.1016/j.domaniend.2004.06.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 06/21/2004] [Indexed: 11/21/2022]
Abstract
This presentation aims to describe how the basic events in prenatal muscle development and postnatal muscle growth are controlled by the insulin-like growth factor system (IGF). The prenatal events (myogenesis) cover the rate of proliferation, the rate and extent of fusion, and the differentiation of three myoblast populations, giving rise to primary fibers, secondary fibers, and a satellite cell population, respectively. The number of muscle fibers, a key determinant of the postnatal growth rate, is fixed late in gestation. The postnatal events contributing to myofiber hypertrophy comprise satellite cell proliferation and differentiation, and protein turnover. Muscle cell cultures produce IGFs and IGF binding proteins (IGFBPs) in various degrees depending on the origin (species, muscle type) and state of development of these cells, suggesting an autocrine/paracrine mode of action of IGF-related factors. In vivo studies and results based on cell lines or primary cell cultures show that IGF-I and IGF-II stimulate both proliferation and differentiation of myoblasts and satellite cells in a time and concentration-dependent way, via interaction with type I IGF receptors. However, IGF binding proteins (IGFBP) may either inhibit or potentiate the stimulating effects of IGFs on proliferation or differentiation. During postnatal growth in vivo or in fully differentiated muscle cells in culture, IGF-I stimulates the rate of protein synthesis and inhibits the rate of protein degradation, thereby enhancing myofiber hypertrophy. The possible roles and actions of the IGF system in regulating and determining muscle growth as affected by developmental stage and age, muscle type, feeding levels, treatment with growth hormone and selection for growth performance are discussed.
Collapse
Affiliation(s)
- Niels Oksbjerg
- Department of Animal Nutrition and Physiology, Research Centre Foulum, Danish Institute of Agricultural Sciences, Blichers Alle 1, PO Box 50, DK-8830 Tjele.
| | | | | |
Collapse
|
39
|
Compensatory growth in slaughter pigs—in vitro muscle protein turnover at slaughter, circulating IGF-I, performance and carcass quality. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.livprodsci.2003.10.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Pophal S, Evans JJ, Mozdziak PE. Myonuclear apoptosis occurs during early posthatch starvation. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:677-81. [PMID: 12892759 DOI: 10.1016/s1096-4959(03)00148-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Apoptosis is a naturally occurring process; it is important for the final shape and size of developing tissues, and it is characterized by some morphological features such as plasma membrane blebbing, nuclear breakdown, chromosomal fragmentation and apoptotic bodies followed by phagocytosis. The objective of the study was to evaluate the occurrence of apoptosis in chickens immediately posthatch under fed and starved conditions. Male broiler chickens were or were not provided feed for the first 3 days posthatch. Chickens were killed immediately after hatch, at 1 day of age, at 2 days of age and at 3 days of age. The Pectoralis thoracicus was removed, fixed, dehydrated, cleared and embedded in paraffin. Muscle sections were labeled using terminal deoxynucleotidyl transferase (TdT)-mediated dUTP Nick-End Labeling (TUNEL) for detection of apoptotic nuclei. Body weights were lower (P<0.05) in the starved compared to the fed group at 2 and 3 days posthatch. Myofiber cross-sectional area was only smaller (P<0.05) in the starved compared to the fed birds at 3 days posthatch. TUNEL-positive nuclei were present at all days for the fed and starved groups. The proportion of TUNEL-positive nuclei was higher (P<0.05) for the starved group at day 2 and day 3 posthatch compared to the fed group at 3 days posthatch. Apoptosis is a mechanism that contributes to the smaller myofiber size observed at 3 days posthatch.
Collapse
Affiliation(s)
- Simone Pophal
- Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
41
|
Liu X, McFarland DC, Nestor KE, Velleman SG. Expression of fibroblast growth factor 2 and its receptor during skeletal muscle development from turkeys with different growth rates. Domest Anim Endocrinol 2003; 25:215-29. [PMID: 12972377 DOI: 10.1016/s0739-7240(03)00061-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is a key regulator of muscle cell proliferation and differentiation. To address how FGF2 and fibroblast growth factor receptor 1 (FGFR1) gene expression influences skeletal muscle development and growth, pectoralis major muscle was isolated at embryonic days (ED) 14, 16, 18, 20, 22, and 24, and at 1-, 8-, 12-, and 16-week posthatch from a turkey line (F) selected only for increased 16-week body weight and its genetic control line (RBC2). The mRNA levels of FGF2 and FGFR1 were measured by semi-quantitative reverse transcription polymerase chain reaction. Compared to the RBC2 line males, the F line males had higher FGF2 mRNA levels at ED 14 and 16, and higher FGFR1 mRNA levels at ED 18, but down-regulated FGF2 and FGFR1 gene expression at ED 22. Although no FGF2 mRNA was detected in posthatch muscle tissue, the F line turkeys had more FGFR1 gene expression at 8-, 12-, and 16-week posthatch than the RBC2 line turkeys. During myogenic satellite cell proliferation, the F line cells had higher FGF2 and FGFR1 mRNA levels than the RBC2 line cells. The satellite cell responsiveness to FGF2 treatment was evaluated by the ability of the cells to proliferate. The male satellite cells were more responsive to FGF2 stimulation than the female cells in both lines. These results suggest that the F line turkeys have increased FGF2 signaling that may affect muscle cell proliferation and differentiation, which may also lead to an enhancement in muscle development and growth rate.
Collapse
MESH Headings
- Animals
- Cell Division/physiology
- Cells, Cultured
- Data Interpretation, Statistical
- Female
- Fibroblast Growth Factor 2/genetics
- Fibroblast Growth Factor 2/metabolism
- Male
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- RNA, Messenger/analysis
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/genetics
- Receptors, Fibroblast Growth Factor/metabolism
- Satellite Cells, Skeletal Muscle/metabolism
- Sex Characteristics
- Species Specificity
- Turkeys/growth & development
- Turkeys/metabolism
Collapse
Affiliation(s)
- X Liu
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, 1680 Madison Avenue, Wooster, OH 44691, USA
| | | | | | | |
Collapse
|
42
|
Vierck JL, Icenoggle DL, Bucci L, Dodson MV. The effects of ergogenic compounds on myogenic satellite cells. Med Sci Sports Exerc 2003; 35:769-76. [PMID: 12750586 DOI: 10.1249/01.mss.0000065005.96298.01] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE A series of studies were conducted in which compounds commonly shown to be ergogenic aids for strength athletes if taken orally were evaluated for their ability to directly induce postnatal muscle stem cell proliferation or differentiation/fusion in vitro. METHODS Compounds tested were creatine monohydrate, creatine pyruvate, L-glutamine, dehydroepiandrosterone (DHEA), androstenedione, Ma Huang (Ephedra sinensis) extract, and Zhi Shi (Citrus aurantium) extract. Dulbecco's modified eagle medium, supplemented with minimal levels of serum and antibiotics, was used as the initial vehicle for the test compounds. Subsequently, a defined treatment medium termed ITTC was used. Satellite cells were exposed to the test compounds for the indicated times and then evaluated by counting mononucleated and multinucleated (fused) cells. RESULTS In serum-containing media, none of the treatment groups displayed increased proliferation over that of the control. However, in the differentiation cultures, 0.10% creatine monohydrate increased differentiation over that of the control cultures. When 0.10% creatine monohydrate was added to defined media formulations, all treatments but one demonstrated increased differentiation over the 0.5% serum control. Time course experiments, which followed the effect of 0.10% creatine monohydrate contained in ITTC defined media over 120 h, suggested that cells exposed to this treatment differentiated earlier and to a greater level than cells exposed to ITTC alone. CONCLUSIONS Creatine in the monohydrate form induced differentiation of myogenic satellite cells. Other agents examined did not increase satellite cell proliferation or differentiation. These results provide initial evidence for a mechanistic understanding of observed effects in vivo of increased muscular size and strength from creatine supplementation.
Collapse
Affiliation(s)
- Janet L Vierck
- Muscle Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | | | | | | |
Collapse
|
43
|
Mozdziak PE, Walsh TJ, McCoy DW. The effect of early posthatch nutrition on satellite cell mitotic activity. Poult Sci 2002; 81:1703-8. [PMID: 12455598 DOI: 10.1093/ps/81.11.1703] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Myofiber growth is dependent upon the contribution of new nuclei from the mitotically active satellite cell population. The objective of this study was to examine satellite cell mitotic activity in conjunction with different nutritional paradigms during the early posthatch period. Turkey poults were provided a standard turkey starter diet; the starter diet top-dressed with a hydrated low-fat, highly digestible protein and carbohydrate nutritional hatchling supplement, Oasis; the starter diet top-dressed with Solka-floc dyed green; or no food for the first 3 d posthatch. All birds were fed a standard starter diet during the experimental period. 5-Bromo-2'-deoxyuridine (BrdU) was continuously infused into all treatments (n = 5 all groups) between hatch and 3 d of age. A second group of identically treated poults housed in separate pens (n = 3 to 5) was continuously infused with BrdU between 2 and 9 d of age. Mitotically active satellite cells were identified in the pectoralis thoracicus and quantitated using BrdU immunohistochemistry in combination with computer-based image analysis. Satellite cell mitotic activity was significantly higher (P < or = 0.05) in the birds fed a standard starter diet compared to all other treatments at 3 d posthatch. However, there were no (P > or = 0.05) differences in satellite cell mitotic activity among treatments at 9 d posthatch. The results of the current study suggest that any improvements in meat yield through early nutritional supplementation do not appear to occur through a satellite cell pathway and that there is no compensatory response in the satellite cell population following refeeding after early posthatch starvation.
Collapse
Affiliation(s)
- P E Mozdziak
- Department of Poultry Science, North Carolina State University, Raleigh North Carolina, USA.
| | | | | |
Collapse
|
44
|
Kocamis H, McFarland DC, Killefer J. Temporal expression of growth factor genes during myogenesis of satellite cells derived from the biceps femoris and pectoralis major muscles of the chicken. J Cell Physiol 2001; 186:146-52. [PMID: 11147809 DOI: 10.1002/1097-4652(200101)186:1<146::aid-jcp1014>3.0.co;2-q] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The expression of mRNAs for transforming growth factors (TGF-beta2, myostatin, activin-B, and follistatin), insulin-like growth factors (IGF-I and -II), and fibroblast growth factor (basic, bFGF) was investigated in satellite cells derived from chicken pectoralis major (PM) and biceps femoris (BF) muscles in the stages from initiation of proliferation to fusion. These growth factor gene cDNAs were synthesized by reverse transcriptase polymerase chain reaction (RT-PCR). No myostatin, activin-B, follistatin or bFGF expression was detected in either cell culture at 0 h. TGF-beta2 mRNA level increased at 48 h (P < 0.01) and remained constant through 144 h in both PM and BF satellite cell cultures. The ontogeny of myostatin gene expression with the exception of a sharp increase in BF culture at 72 h (P < 0.01), was nearly identical in both cell cultures. Activin-B mRNA level in PM satellite cells was higher than that in BF satellite cells at 72 h and 120 h (P < 0.01). Follistatin mRNA in PM satellite cells was higher than that in BF satellite cells at 24, 96, and 120 h culture (P < 0.01). No IGF-I gene expression was detected in cell cultures at any time point. IGF-II gene expression in BF satellite cells declined at 96 h (P < 0.01) and remained reduced until 144 h. bFGF mRNA in both satellite cell cultures increased at 24 h (P < 0.05) and remained at this level in BF satellite cells through 144 h.
Collapse
Affiliation(s)
- H Kocamis
- Division of Animal and Veterinary Sciences, West Virginia University, Morgantown 26506-6108, USA
| | | | | |
Collapse
|
45
|
Yamanouchi K, Soeta C, Suzuki S, Hasegawa T, Naito K, Tojo H. Identification of skeletal muscle satellite cells by transfecting EGFP driven by skeletal alpha-actin promoter. J Vet Med Sci 2000; 62:1213-6. [PMID: 11129869 DOI: 10.1292/jvms.62.1213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In isolating skeletal muscle satellite cells, sometimes a problem is encountered in removing contaminating nonmyogenic cells. In the present study, we constructed a novel vector, pSKA-EGFP, which achieves the expression of enhanced green fluorescent protein (EGFP) exclusively in myogenic cells under the control of skeletal alpha-actin promoter when transfected to primary cultured cells from skeletal muscle. Cells from rat skeletal muscle positive for EGFP after transfecting with pSKA-EGFP were all positive for desmin and none of the nonmyogenic cells expressed EGFP, indicating that the expression of EGFP is specific to myogenic cells. Among the cells positive for EGFP were proliferating cells, presumably satellite cells. In addition, EGFP positive cells derived from horse skeletal muscle after transfecting pSKA-EGFP in vitro formed multinuclear myotubes, indicating that myogenic expression of EGFP driven by skeletal alpha-actin was achieved also in the equine cells. These results indicated that pSKA-EGFP vector will be useful in identifying and following up the satellite cells in real time, and also permit us to isolate satellite cells in combination with fluorescence-activated cell sorting (FACS).
Collapse
Affiliation(s)
- K Yamanouchi
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
5-Bromo-2'-deoxyuridne (BrdU) and 3H-thymidine label mitotically active cells, but they do not adequately mark the progeny of dividing cells for long term study. An alternative method is to label cells using the replication-defective CXL retroviral vector, which carries the lacZ gene encoding beta-galactosidase; however, the ability of the CXL retroviral vector to pulse-label mitotically active cells selectively is not known. Cultures of proliferating muscle cells were simultaneously incubated with the CXL retrovirus and BrdU (10 microM) for 2 hr. After removing the retrovirus containing medium, the cells were maintained for an additional 24 hr in vitro before they were stained to detect beta-galactosidase and BrdU simultaneously. More than 95% of beta-galactosidase positive cells were also BrdU positive suggesting that the majority of beta-galactosidase positive cells were in the S-phase of the cell cycle at the time of CXL retroviral administration. Therefore, the CXL retroviral vector is an appropriate pulse marker for dividing cells, and it is useful when it is desirable to know the fate of the progeny of a particular cell following a mitotic event.
Collapse
Affiliation(s)
- P Mozdziak
- Department of Poultry Science, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | |
Collapse
|
47
|
te Pas MF, de Jong PR, Verburg FJ, Duin M, Henning RH. Gender related and dexamethasone induced differences in the mRNA levels of the MRF genes in rat anterior tibial skeletal muscle. Mol Biol Rep 1999; 26:277-84. [PMID: 10634511 DOI: 10.1023/a:1007042414993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Muscle formation and postnatal growth is under the control of the muscle regulatory factors (MRF) gene family, consisting of four genes: MyoD1, myogenin, myf-5, and myf-6. Muscle mass is also known to be affected by specific drugs, like glucocorticoids. Glucocorticoids have also been characterized as muscle atrophying agents. However, glucocorticoids are also the only drugs reported to have a beneficial effect on the treatment of muscle degenerative disorders. Since muscle mass relates to gender, this may be partially caused by gender. The aim of this study is to investigate gender-related basal and dexamethasone-induced expression of the MRF genes. Gender-specific MRF mRNA levels were investigated in anterior tibial muscles of the rat. Myogenin, myf-5, and myf-6 mRNA level was significantly higher in female rats than in male rats. Since muscle mass is usually higher in males, we conclude that the development of gender-related differences in muscle mass is not primarily under the control of the mRNA levels of the MRF genes. Male rats treated with dexamethasone for 14 days (1 mg per kg body weight) showed increased levels of MyoD1, myogenin and myf-5 compared to control male rats. Female rats treated with dexamethasone showed decreased expression of myf-6 compared to control female rats. These results suggest that dexamethasone increase satellite cell-specific MRF activity in male muscle tissue, which is suggested to be associated with muscle hypertrophy, while maintenance of muscle tissue is affected in female muscle tissue. Therefore, we conclude that both basal and dexamethasone-induced MRF gene mRNA levels are regulated gender-specific.
Collapse
Affiliation(s)
- M F te Pas
- Department of Animal Breeding and Genetics, DLO Institute for Animal Science and Health, Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Cassar-Malek I, Langlois N, Picard B, Geay Y. Regulation of bovine satellite cell proliferation and differentiation by insulin and triiodothyronine. Domest Anim Endocrinol 1999; 17:373-88. [PMID: 10628428 DOI: 10.1016/s0739-7240(99)00055-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Satellite cells activity contributes to postnatal muscle growth. Herein, we have studied the respective influence of insulin and triiodothyronine (T3) on the proliferation and differentiation of primary bovine satellite cells isolated from Semitendinosus muscle of Montbéliard steers. Under basal conditions, satellite cells proliferated until the fifth day of culture, began to fuse into myotubes and expressed differentiation markers such as connectin, myogenin, and myosin heavy chain (MHC) isoforms. Insulin behaved as an effective mitogen. Moreover, it promoted extensive myotube formation and enhanced differentiation as shown by an increase in the accumulation of differentiation markers. Maximal differentiation occurred with insulin physiological range concentrations. A delay in the stimulation of differentiation was registered with a high dose that promoted maximal proliferation. Conversely, T3 decreased cell proliferation in a dose-dependent manner. In addition, fusion and biochemical differentiation (accumulation of connectin, MyoD1, myogenin, and myosin heavy chain isoforms) were also enhanced. Bovine satellite cells seemed to respond differentially to insulin and T3 for proliferation. Interestingly, both hormones displayed a myogenic influence. Our observations suggest that both hormones could influence bovine satellite cells in vivo and contribute to the regulation of postnatal muscle growth.
Collapse
Affiliation(s)
- I Cassar-Malek
- Equipe Croissance et Métabolismes du Muscle, Unité de Recherches sur les Herbivores, INRA Centre de Clermont-Ferrand/Theix, St Genès-Champanelle, France.
| | | | | | | |
Collapse
|
49
|
Abstract
Growth hormone (GH) clearly has the potential to dramatically enhance skeletal muscle accretion in red meat animals such as swine. It is generally accepted that this anabolic effect is mediated by insulin-like growth factor-I (IGF-I), a potent stimulator of proliferation and differentiation of satellite cells that are important for myofiber hypertrophy and for regeneration in postnatal muscle tissue. All available evidence suggests that the capacity for IGF-I-mediated actions of GH on avian myogenic cells is intact, and recent evidence is accumulating that GH may even have direct effects on avian skeletal muscle satellite cell proliferation and differentiation. However, with little exception, exogenous GH does not improve skeletal muscle mass, carcass protein, or any measure of muscle anabolism in domestic poultry. A primary lesion would appear to be the inability of GH to induce significant increases in circulating IGF-I concentrations in sexually immature, growing poultry. This is the case despite clear evidence of GH binding to hepatic receptors, GH-induced tyrosine phosphorylation of Janus kinase 2 (JAK2), and GH-induced expression of hepatic IGF-I mRNA and protein. Factors that should be explored with respect to this apparent discrepancy are discussed, including the regulation of IGF-I release, uptake, and interaction with cell-associated IGF binding proteins or receptors. In addition to its growth-promoting effects via IGF-I, GH has direct metabolic effects that are expressed as changes in circulating regulatory hormone and metabolite concentrations. The possibility that such changes may influence IGF-I release and action is also proposed.
Collapse
Affiliation(s)
- R Vasilatos-Younken
- Department of Poultry Sciences, The Pennsylvania State University, University Park 16802, USA.
| |
Collapse
|
50
|
Abstract
Skeletal muscle development in avian and mammalian embryos depends on the proliferation, differentiation, and fusion of embryonic myoblasts. During the late fetal period and following birth or hatching, myogenic satellite cells are responsible for this developmental function. Satellite cells, which are found adjacent to existing skeletal muscle fibers fuse with these fibers and their nuclei direct the synthesis of new protein and function in the maturation of muscle. These events are controlled by specific growth factors that are produced locally by satellite cells and other cells in the muscle. Progress in our understanding of the early events in myogenesis has been made possible by the development of satellite cell cultures and media formulations that allow the assessment of the role of growth factors in skeletal muscle growth and development. Because of the key role that satellite cells play in skeletal muscle growth, development, and regeneration, many scientists in both the agricultural and medical communities have focused their research on understanding the physiology of this cell. From an agricultural perspective, a better understanding of the mechanisms regulating satellite cell activity may lead to procedures to increase the deposition and efficiency of lean muscle (meat) accretion and, perhaps, improve the nutrient composition of meat products.
Collapse
Affiliation(s)
- D C McFarland
- Department of Animal and Range Sciences, South Dakota State University, Brookings 57007-0392, USA.
| |
Collapse
|