1
|
Kuhn HM, Serrano LC, Stys GA, Smith BL, Speckmaier J, Dawson BD, Murray BR, He J, Robison AJ, Eagle AL. Lateral entorhinal cortex neurons that project to nucleus accumbens mediate contextual associative memory. Learn Mem 2024; 31:a054026. [PMID: 39592189 PMCID: PMC11606517 DOI: 10.1101/lm.054026.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024]
Abstract
The lateral entorhinal cortex (LEC) contains glutamatergic projections that innervate the nucleus accumbens (NAc) and may be involved in the encoding of contextual associations with both positive and negative valences, such as those encountered in drug cues or fear conditioning. To determine whether LEC-NAc neurons are activated by the encoding and recall of contexts associated with cocaine or footshock, we measured c-fos expression in these neurons and found that LEC-NAc neurons are activated in both contexts. Specifically, activation patterns of the LEC-NAc were observed in a novel context and reexposure to the same context, highlighting the specific role for LEC-NAc neurons in encoding rather than the valence of a specific event-related memory. Using a combination of circuit-specific chemogenetic tools and behavioral assays, we selectively inactivated LEC-NAc neurons in mice during the encoding and retrieval of memories of contexts associated with cocaine or footshock. Chemogenetic inactivation of LEC-NAc neurons impaired the formation of both positive and negative context-associated memories without affecting the retrieval of an established memory. This finding suggests a critical role for this circuit in the initial encoding of contextual associations. In summary, LEC-NAc neurons facilitate the encoding of contextual information, guiding motivational behaviors without directly mediating the hedonic or aversive properties of these associations.
Collapse
Affiliation(s)
- Hayley M Kuhn
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | - Grace A Stys
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Brianna L Smith
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | - Brooklynn R Murray
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Jin He
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Andrew L Eagle
- Department of Neuroscience, The University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
2
|
Oberto V, Gao H, Biondi A, Sara SJ, Wiener SI. Activation of prefrontal cortex and striatal regions in rats after shifting between rules in a T-maze. Learn Mem 2023; 30:133-138. [PMID: 37487709 PMCID: PMC10519402 DOI: 10.1101/lm.053795.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023]
Abstract
Prefrontal cortical and striatal areas have been identified by inactivation or lesion studies to be required for behavioral flexibility, including selecting and processing of different types of information. In order to identify these networks activated selectively during the acquisition of new reward contingency rules, rats were trained to discriminate orientations of bars presented in pseudorandom sequence on two video monitors positioned behind the goal sites on a T-maze with return arms. A second group already trained in the visual discrimination task learned to alternate left and right goal arm visits in the same maze while ignoring the visual cues still being presented. In each experimental group, once the rats reached criterion performance, the brains were prepared after a 90-min delay for later processing for c-fos immunohistochemistry. While both groups extinguished a prior strategy and acquired a new rule, they differed by the identity of the strategies and previous learning experience. Among the 28 forebrain areas examined, there were significant increases in the relative density of c-fos immunoreactive cell bodies after learning the second rule in the prefrontal cortex cingulate, the prelimbic and infralimbic areas, the dorsomedial striatum and the core of the nucleus accumbens, the ventral subiculum, and the central nucleus of the amygdala. These largely correspond to structures previously identified in inactivation studies, and their neurons fire synchronously during learning and strategy shifts. The data suggest that this dynamic network may underlie reward-based selection for action-a type of cognitive flexibility.
Collapse
Affiliation(s)
- Virginie Oberto
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris 75005, France
| | - Hongying Gao
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris 75005, France
| | - Ana Biondi
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris 75005, France
| | - Susan J Sara
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris 75005, France
- Department of Child and Adolescent Psychiatry, New York University Medical School, New York, New York 10016, USA
| | - Sidney I Wiener
- Center for Interdisciplinary Research in Biology (CIRB), College de France, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paris Sciences et Lettres (PSL), Paris 75005, France
| |
Collapse
|
3
|
Griffin WC, Lopez MF, Woodward JJ, Becker HC. Alcohol dependence and the ventral hippocampal influence on alcohol drinking in male mice. Alcohol 2023; 106:44-54. [PMID: 36328184 PMCID: PMC9868110 DOI: 10.1016/j.alcohol.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/26/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
Abstract
Examining neural circuits underlying persistent, heavy drinking provides insight into the neurobiological mechanisms driving alcohol use disorder. Facilitated by its connectivity with other parts of the brain such as the nucleus accumbens (NAc), the ventral hippocampus (vHC) supports many behaviors, including those related to reward seeking and addiction. These studies used a well-established mouse model of alcohol (ethanol) dependence. After surgery to infuse DREADD-expressing viruses (hM4Di, hM3Dq, or mCherry-only) into the vHC and position guide cannula above the NAc, male C57BL/6J mice were treated in the CIE drinking model that involved repeated cycles of chronic intermittent alcohol (CIE) vapor or air (CTL) exposure alternating with weekly test drinking cycles in which mice were offered alcohol (15% v/v) 2 h/day. Additionally, smaller groups of mice were evaluated for either cFos expression or glutamate release using microdialysis procedures. In CIE mice expressing inhibitory (hM4Di) DREADDs in the vHC, drinking increased as expected, but CNO (3 mg/kg intraperitoneally [i.p.]) given 30 min before testing did not alter alcohol intake. However, in CTL mice expressing hM4Di, CNO significantly increased alcohol drinking (∼30%; p < 0.05) to levels similar to the CIE mice. The vHC-NAc pathway was targeted by infusing CNO into the NAc (3 or 10 μM/side) 30 min before testing. CNO activation of the pathway in mice expressing excitatory (hM3Dq) DREADDs selectively reduced consumption in CIE mice back to CTL levels (∼35-45%; p < 0.05) without affecting CTL alcohol intake. Lastly, activating the vHC-NAc pathway increased cFos expression and evoked significant glutamate release from the vHC terminals in the NAc. These data indicate that reduced activity of the vHC increases alcohol consumption and that targeted, increased activity of the vHC-NAc pathway attenuates excessive drinking associated with alcohol dependence. Thus, these findings indicate that the vHC and its glutamatergic projections to the NAc are involved in excessive alcohol drinking.
Collapse
Affiliation(s)
- William C Griffin
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, United States.
| | - Marcelo F Lopez
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, United States
| | - John J Woodward
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, United States; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Science, Medical University of South Carolina, Charleston, SC, United States; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC 29425-0742, United States
| |
Collapse
|
4
|
Vasilev DS, Dubrovskaya NМ, Tumanova NL, Nalivaeva NN. Analysis of Expression of the Amyloid-Degrading Enzyme Neprilysin in Brain Structures of 5xFAD Transgenic Mice. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022010173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Chronic social defeat stress increases burst firing of nucleus accumbens-projecting ventral subicular neurons in stress-susceptible mice. Biochem Biophys Res Commun 2019; 515:468-473. [PMID: 31167722 DOI: 10.1016/j.bbrc.2019.05.180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 11/22/2022]
Abstract
The ventral subiculum (vSub) is the major output structure of the hippocampus and serves as a main limbic region in mediating the brain's response to stress. Previously, we reported that there are three subtypes of vSub neurons based on their firing patterns: regular-spiking (RS), weak-bursting (WB) and strong-bursting (SB) neurons and chronic social defeat stress (CSDS) increased SB neurons especially in the proximal vSub. Here, we found that neurons in the proximal vSub projected to the nucleus accumbens (NAc). CSDS significantly increased SB neurons but decreased RS neurons among the NAc-projecting vSub neuronal population. Interestingly, these changes were only apparent in mice susceptible to CSDS, but not in CSDS-resilient ones. Given that ventral hippocampal inputs to the NAc regulate susceptibility to CSDS, the bursting activity of NAc-projecting vSub neurons might be functionally relevant to behavioral susceptibility to CSDS.
Collapse
|
6
|
Chronic social defeat stress-induced enhancement of T-type calcium channels increases burst-firing neurons in the ventral subiculum. Biochem Biophys Res Commun 2019; 508:1182-1187. [PMID: 30554654 DOI: 10.1016/j.bbrc.2018.12.073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/11/2018] [Indexed: 11/22/2022]
Abstract
The ventral subiculum (vSub), a representative output structure of the hippocampus, serves as a main limbic region in mediating the brain's response to stress. There are three subtypes of subicular pyramidal neurons based on their firing patterns: regular-spiking (RS), weak-bursting (WB) and strong-bursting (SB) neurons, located differently along proximal-distal axis. Here, we found that chronic social defeat stress (CSDS) in mice increased the population of SB neurons but decreased RS neurons in the proximal vSub. Specific blockers of T-type calcium channels inhibited the burst firings with a concomitant reduction of afterdepolarization, suggesting that T-type calcium channels underlie the burst-spiking activity. Consistently, CSDS increased both T-type calcium currents and expression of Cav3.1 proteins, a subtype of T-type calcium channels, in the proximal vSub. Therefore, we conclude that CSDS-induced enhancement of Cav3.1 expression increased bursting neuronal population in the vSub, which may contribute to stress-related behaviors.
Collapse
|
7
|
Lehner M, Gryz M, Wisłowska-Stanek A, Turzyńska D, Sobolewska A, Skórzewska A, Płaźnik A. The amphetamine-associated context exerts a stronger motivational effect in low-anxiety rats than in high-anxiety rats. Behav Brain Res 2017; 330:97-107. [PMID: 28479265 DOI: 10.1016/j.bbr.2017.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 11/28/2022]
Abstract
This study used the conditioned place preference test to explore the effects of subchronic amphetamine administration on drug-associated cues in rats with different emotional reactivity. We also examined the changes in markers of dopaminergic activity in brain regions in response to the amphetamine-paired context, after a withdrawal period preceded by subchronic amphetamine treatment. We used low-anxiety (LR) and high-anxiety (HR) rats, which are known to exhibit distinct levels of susceptibility to amphetamine. Compared to HR rats, LR rats spent significantly more time in the amphetamine-paired compartment after the withdrawal period preceded by subchronic amphetamine treatment. Compared to HR control rats, LR control rats showed higher expression of the D1 receptor in the nucleus accumbens core (NAC core) and basolateral amygdala and higher expression of the D2 receptor in the NAC core. After the amphetamine treatment and withdrawal period, the LR rats showed higher D1 receptor expression in the NAC core, an increased level of homovanilic acid (HVA) in the prefrontal cortex, the NAC and the central amygdala than HR rats, as well as lower D2 receptor expression in the NAC core and the amygdala than LR control rats. These results indicate that the differences in the activity of the dopaminergic mesolimbic system in the HR and LR rats are maintained and even enhanced after a multi-day break in the use of the drug, indicating the occurrence of sensitisation. These findings show that the innate reactivity of the limbic dopaminergic innervations, dependent on the level of emotional reactivity, may significantly and chronically modify the development and maintenance of sensitisation to amphetamine.
Collapse
Affiliation(s)
- Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland.
| | - Marek Gryz
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CEPT, 1B Banacha Streeet, 02-097 Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Adam Płaźnik
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre for Preclinical Research and Technology CEPT, 1B Banacha Streeet, 02-097 Warsaw, Poland
| |
Collapse
|
8
|
Fajardo-Serrano A, Liu L, Mott DD, McDonald AJ. Evidence for M 2 muscarinic receptor modulation of axon terminals and dendrites in the rodent basolateral amygdala: An ultrastructural and electrophysiological analysis. Neuroscience 2017. [PMID: 28629847 DOI: 10.1016/j.neuroscience.2017.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The basolateral amygdala receives a very dense cholinergic innervation from the basal forebrain that is important for memory consolidation. Although behavioral studies have shown that both M1 and M2 muscarinic receptors are critical for these mnemonic functions, there have been very few neuroanatomical and electrophysiological investigations of the localization and function of different types of muscarinic receptors in the amygdala. In the present study we investigated the subcellular localization of M2 muscarinic receptors (M2Rs) in the anterior basolateral nucleus (BLa) of the mouse, including the localization of M2Rs in parvalbumin (PV) immunoreactive interneurons, using double-labeling immunoelectron microscopy. Little if any M2R-immunoreactivity (M2R-ir) was observed in neuronal somata, but the neuropil was densely labeled. Ultrastructural analysis using a pre-embedding immunogold-silver technique (IGS) demonstrated M2R-ir in dendritic shafts, spines, and axon terminals forming asymmetrical (excitatory) or symmetrical (mostly inhibitory) synapses. In addition, about one-quarter of PV+ axon terminals and half of PV+ dendrites, localized using immunoperoxidase, were M2R+ when observed in single thin sections. In all M2R+ neuropilar structures, including those that were PV+, about one-quarter to two-thirds of M2R+ immunoparticles were plasma-membrane-associated, depending on the structure. The expression of M2Rs in PV+ and PV-negative terminals forming symmetrical synapses indicates M2R modulation of inhibitory transmission. Electrophysiological studies in mouse and rat brain slices, including paired recordings from interneurons and pyramidal projection neurons, demonstrated M2R-mediated suppression of GABA release. These findings suggest cell-type-specific functions of M2Rs and shed light on organizing principles of cholinergic modulation in the BLa.
Collapse
Affiliation(s)
- Ana Fajardo-Serrano
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Lei Liu
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - David D Mott
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Alexander J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| |
Collapse
|
9
|
Neonatal ventral hippocampus lesion changes nuclear restricted protein/brain (NRP/B) expression in hippocampus, cortex and striatum in developmental periods of rats. Neuroscience 2016; 319:59-68. [PMID: 26812035 DOI: 10.1016/j.neuroscience.2016.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 11/20/2022]
Abstract
Schizophrenia is conceptualized as a neurodevelopmental disorder in which developmental alterations in immature brain systems are not clear. Rats with neonatal ventral hippocampal lesions (NVHL) can exhibit schizophrenia-like behaviors, and these rats have been widely used to study the developmental mechanisms of schizophrenia. The nuclear restricted protein/brain (NRP/B) is a nuclear matrix protein that is critical for the normal development of the neuronal system. This study assessed the effect of NVHL induced by the administration of ibotenic acid on the protein expression of NRP/B in the hippocampus, cortex and striatum in pre- and post-pubertal rats. The expressions of NeuN in various developmental periods were assessed accordingly. Sprague-Dawley rat pups were administered ibotenic acid at postnatal day (PD) 7. Western blotting and an immunofluorescence staining analysis showed that the expression of NRP/B was significantly decreased in the hippocampus, cortex and striatum of the NVHL rats at PD14, 28 and 42. The expressions of NeuN were decreased accordingly. In vitro experiment showed the NRP/B knockdown can decrease the Tuj1 expression in cultured cortical neurons. The data suggest that NVHL induces a change in NRP/B expression that affects neurons in the developmental period.
Collapse
|
10
|
Muller JF, Mascagni F, Zaric V, Mott DD, McDonald AJ. Localization of the M2 muscarinic cholinergic receptor in dendrites, cholinergic terminals, and noncholinergic terminals in the rat basolateral amygdala: An ultrastructural analysis. J Comp Neurol 2016; 524:2400-17. [PMID: 26779591 DOI: 10.1002/cne.23959] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 02/04/2023]
Abstract
Activation of M2 muscarinic receptors (M2Rs) in the rat anterior basolateral nucleus (BLa) is critical for the consolidation of memories of emotionally arousing events. The present investigation used immunocytochemistry at the electron microscopic level to determine which structures in the BLa express M2Rs. In addition, dual localization of M2R and the vesicular acetylcholine transporter protein (VAChT), a marker for cholinergic axons, was performed to determine whether M2R is an autoreceptor in cholinergic axons innervating the BLa. M2R immunoreactivity (M2R-ir) was absent from the perikarya of pyramidal neurons, with the exception of the Golgi complex, but was dense in the proximal dendrites and axon initial segments emanating from these neurons. Most perikarya of nonpyramidal neurons were also M2R-negative. About 95% of dendritic shafts and 60% of dendritic spines were M2 immunoreactive (M2R(+) ). Some M2R(+) dendrites had spines, suggesting that they belonged to pyramidal cells, whereas others had morphological features typical of nonpyramidal neurons. M2R-ir was also seen in axon terminals, most of which formed asymmetrical synapses. The main targets of M2R(+) terminals forming asymmetrical (putative excitatory) synapses were dendritic spines, most of which were M2R(+) . The main targets of M2R(+) terminals forming symmetrical (putative inhibitory or neuromodulatory) synapses were unlabeled perikarya and M2R(+) dendritic shafts. M2R-ir was also seen in VAChT(+) cholinergic terminals, indicating a possible autoreceptor role. These findings suggest that M2R-mediated mechanisms in the BLa are very complex, involving postsynaptic effects in dendrites as well as regulating release of glutamate, γ-aminobutyric acid, and acetylcholine from presynaptic axon terminals. J. Comp. Neurol. 524:2400-2417, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jay F Muller
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| | - Franco Mascagni
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| | - Violeta Zaric
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| | - David D Mott
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| | - Alexander J McDonald
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, 29208
| |
Collapse
|
11
|
Zhang J, Muller JF, McDonald AJ. Mu opioid receptor localization in the basolateral amygdala: An ultrastructural analysis. Neuroscience 2015; 303:352-63. [PMID: 26164501 DOI: 10.1016/j.neuroscience.2015.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Receptor binding studies have shown that the density of mu opioid receptors (MORs) in the basolateral amygdala is among the highest in the brain. Activation of these receptors in the basolateral amygdala is critical for stress-induced analgesia, memory consolidation of aversive events, and stress adaptation. Despite the importance of MORs in these stress-related functions, little is known about the neural circuits that are modulated by amygdalar MORs. In the present investigation light and electron microscopy combined with immunohistochemistry was used to study the expression of MORs in the anterior basolateral nucleus (BLa). At the light microscopic level, light to moderate MOR-immunoreactivity (MOR-ir) was observed in a small number of cell bodies of nonpyramidal interneurons and in a small number of processes and puncta in the neuropil. At the electron microscopic level most MOR-ir was observed in dendritic shafts, dendritic spines, and axon terminals. MOR-ir was also observed in the Golgi apparatus of the cell bodies of pyramidal neurons (PNs) and interneurons. Some of the MOR-positive (MOR+) dendrites were spiny, suggesting that they belonged to PNs, while others received multiple asymmetrical synapses typical of interneurons. The great majority of MOR+ axon terminals (80%) that formed synapses made asymmetrical (excitatory) synapses; their main targets were spines, including some that were MOR+. The main targets of symmetrical (inhibitory and/or neuromodulatory) synapses were dendritic shafts, many of which were MOR+, but some of these terminals formed synapses with somata or spines. All of our observations were consistent with the few electrophysiological studies which have been performed on MOR activation in the basolateral amygdala. Collectively, these findings suggest that MORs may be important for filtering out weak excitatory inputs to PNs, allowing only strong inputs or synchronous inputs to influence pyramidal neuronal firing.
Collapse
Affiliation(s)
- J Zhang
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - J F Muller
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States
| | - A J McDonald
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, United States.
| |
Collapse
|
12
|
Horovitz O, Richter-Levin G. Dorsal periaqueductal gray simultaneously modulates ventral subiculum induced-plasticity in the basolateral amygdala and the nucleus accumbens. Front Behav Neurosci 2015; 9:53. [PMID: 25788880 PMCID: PMC4349162 DOI: 10.3389/fnbeh.2015.00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 02/12/2015] [Indexed: 11/25/2022] Open
Abstract
The ventral subiculum of the hippocampus projects both to the basolateral amygdala (BLA), which is typically, associated with a response to aversive stimuli, as well as to the nucleus accumbens (NAcc), which is typically associated with a response to appetitive stimuli. Traditionally, studies of the responses to emotional events focus on either negative or positive affect-related processes, however, emotional experiences often affect both. The ability of high-level processing brain regions (e.g., medial prefrontal cortex) to modulate the balance between negative and positive affect-related regions was examined extensively. In contrast, the ability of low-level processing areas (e.g., periaqueductal gray—PAG) to do so, has not been sufficiently studied. To address whether midbrain structures have the ability to modulate limbic regions, we first examined the ventral subiculum stimulation’s (vSub) ability to induce plasticity in the BLA and NAcc simultaneously in rats. Further, dorsal PAG (dPAG) priming ability to differentially modulate vSub stimulation induced plasticity in the BLA and the NAcc was subsequently examined. vSub stimulation resulted in plasticity in both the BLA and the NAcc simultaneously. Moreover, depending on stimulus intensity, differential dPAG priming effects on LTP in these two regions were observed. The results demonstrate that negative and positive affect-related processes may be simultaneously modulated. Furthermore, under some conditions lower-level processing areas, such as the dPAG, may differentially modulate plasticity in these regions and thus affect the long-term emotional outcome of the experience.
Collapse
Affiliation(s)
- Omer Horovitz
- The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa Haifa, Israel
| | - Gal Richter-Levin
- The Institute for the Study of Affective Neuroscience (ISAN), University of Haifa Haifa, Israel ; Department of Psychology, University of Haifa Haifa, Israel ; Sagol Department of Neurobiology, University of Haifa Haifa, Israel
| |
Collapse
|
13
|
Muller JF, Mascagni F, Zaric V, McDonald AJ. Muscarinic cholinergic receptor M1 in the rat basolateral amygdala: ultrastructural localization and synaptic relationships to cholinergic axons. J Comp Neurol 2013; 521:1743-59. [PMID: 23559406 DOI: 10.1002/cne.23254] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/20/2012] [Accepted: 10/25/2012] [Indexed: 02/02/2023]
Abstract
Muscarinic neurotransmission in the anterior basolateral amygdalar nucleus (BLa) mediated by the M1 receptor (M1R) is critical for memory consolidation. Although knowledge of the subcellular localization of M1R in the BLa would contribute to an understanding of cholinergic mechanisms involved in mnemonic function, there have been no ultrastructural studies of this receptor in the BLa. In the present investigation, immunocytochemistry at the electron microscopic level was used to determine which structures in the BLa express M1R. The innervation of these structures by cholinergic axons expressing the vesicular acetylcholine transporter (VAChT) was also studied. All perikarya of pyramidal neurons were labeled, and about 90% of dendritic shafts and 60% of dendritic spines were M1R+. Some dendrites had spines suggesting that they belonged to pyramidal cells, whereas others had morphological features typical of interneurons. M1R immunoreactivity (M1R-ir) was also seen in axon terminals, most of which formed asymmetrical synapses. The main targets of M1R+ terminals forming asymmetrical synapses were dendritic spines, most of which were M1R+. The main targets of M1R+ terminals forming symmetrical synapses were M1R+ perikarya and dendritic shafts. About three-quarters of VAChT+ cholinergic terminals formed synapses; the main postsynaptic targets were M1R+ dendritic shafts and spines. In some cases M1R-ir was seen near the postsynaptic membrane of these processes, but in other cases it was found outside of the active zone of VAChT+ synapses. These findings suggest that M1R mechanisms in the BLa are complex, involving postsynaptic effects as well as regulating release of neurotransmitters from presynaptic terminals.
Collapse
Affiliation(s)
- Jay F Muller
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA
| | | | | | | |
Collapse
|
14
|
Monroy E, Hernández-Torres E, Flores G. Maternal separation disrupts dendritic morphology of neurons in prefrontal cortex, hippocampus, and nucleus accumbens in male rat offspring. J Chem Neuroanat 2010; 40:93-101. [DOI: 10.1016/j.jchemneu.2010.05.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 05/17/2010] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
|
15
|
Martínez-Téllez RI, Hernández-Torres E, Gamboa C, Flores G. Prenatal stress alters spine density and dendritic length of nucleus accumbens and hippocampus neurons in rat offspring. Synapse 2009; 63:794-804. [PMID: 19489049 DOI: 10.1002/syn.20664] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Prenatal stress alters neuronal morphology of mesocorticolimbic structures such as frontal cortex and hippocampus in the adult offspring. We investigated here the effects of prenatal stress on the spine density and the dendrite morphology of hippocampal pyramidal neurons and medium spiny cells from nucleus accumbens in prepubertal and adult male offsprings. Sprague-Dawley pregnant dams were stressed by restraining movement daily for 2 hours from gestational day 11 until delivery. Control mothers remained free in their home cage without water and food during the stressful event. Male offsprings from immobilized and control rats were left to grow until postnatal day (PD) 35 for the prepubertal group, and until PD 65 for the adult group. Spontaneous locomotor activity was assessed and then brains were removed to study the dendritic morphology by the Golgi-Cox stain method followed by Sholl analysis. Prenatally stressed animals demonstrated increased locomotion and alterations in spine density in the hippocampus and nucleus accumbens at both ages. However, prepubertal males showed an increase in spine density in the CA1 hippocampus with a decrease in CA3 hippocampus, whereas the adult group showed a decrease in the spine density in both of the regions studied. These results suggest that prenatal stress carried out during the middle of pregnancy affect the spine density and basal dendrites of pyramidal neurons of hippocampus, as well as the dendritic morphology of nucleus accumbens which may reflect important changes in the mesocorticolimbic dopaminergic transmission and behaviors associated with the development of psychiatric diseases such as schizophrenia.
Collapse
|
16
|
Juárez I, Gratton A, Flores G. Ontogeny of altered dendritic morphology in the rat prefrontal cortex, hippocampus, and nucleus accumbens following Cesarean delivery and birth anoxia. J Comp Neurol 2008; 507:1734-47. [PMID: 18253967 DOI: 10.1002/cne.21651] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We used a delayed Cesarean birth model and the Golgi-Cox staining method to investigate the effects of perinatal anoxia on prefrontal cortex (PFC) and hippocampal (CA1) pyramidal neurons as well as nucleus accumbens (NAcc) medium spiny neurons. Dendritic morphology in these regions was studied on postnatal days (P) 2, 7, 14, 21, 35, and 70 in male Sprague-Dawley rats born either vaginally (VAG) or by Cesarean section either with (C + anoxia) or without (C-only) anoxia. The most striking birth group differences seen were at the level of dendritic spine densities on P35. During this postnatal period the dendritic spine density of PFC neurons was significantly lower in C + anoxia and C-only animals than in VAG controls; however, by P70 PFC spine densities in all birth groups were comparable. In contrast, hippocampal spine densities on P35 were comparably greater in C + anoxia animals than in VAG controls, whereas in C-only animals spine densities were lower than controls; here again, by P70 all groups had comparable hippocampal spine densities. In NAcc greater spine densities were seen on medium spiny neurons of C + anoxia animals on P35. These findings provide evidence that perinatal insult in the form of Cesarean birth with or without anoxia alters the dendritic development of PFC and hippocampal pyramidal neurons and to some extent also of NAcc medium spiny neurons. They also suggest that perinatal anoxia can alter the neuronal development of key structures thought to be affected in such late-onset dopamine-related disorders as schizophrenia and Attention Deficit Hyperactivity Disorder (ADHD).
Collapse
Affiliation(s)
- Ismael Juárez
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Universidad Autónoma de Puebla, Puebla 72570, México
| | | | | |
Collapse
|
17
|
Alquicer G, Morales-Medina JC, Quirion R, Flores G. Postweaning social isolation enhances morphological changes in the neonatal ventral hippocampal lesion rat model of psychosis. J Chem Neuroanat 2008; 35:179-87. [DOI: 10.1016/j.jchemneu.2007.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 10/11/2007] [Accepted: 10/12/2007] [Indexed: 10/22/2022]
|
18
|
Palomo T, Beninger RJ, Kostrzewa RM, Archer T. Comorbidity implications in brain disease: Neuronal substrates of symptom profiles. Neurotox Res 2007; 12:1-15. [PMID: 17513196 DOI: 10.1007/bf03033897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The neuronal substrates underlying aspects of comorbidity in brain disease states may be described over psychiatric and neurologic conditions that include affective disorders, cognitive disorders, schizophrenia, obsessive-compulsive disorder, substance abuse disorders as well as the neurodegenerative disorders. Regional and circuitry analyses of biogenic amine systems that are implicated in neural and behavioural pathologies are elucidated using neuroimaging, electrophysiological, neurochemical, neuropharmacological and neurobehavioural methods that present demonstrations of the neuropathological phenomena, such as behavioural sensitisation, cognitive impairments, maladaptive reactions to environmental stress and serious motor deficits. Considerations of neuronal alterations that may or may not be associated with behavioural abnormalities examine differentially the implications of discrete areas within brains that have been assigned functional significance; in the case of the frontal lobes, differential deficits of ventromedial and dorsolateral prefrontal cortex may be associated with different aspects of cognition, affect, remission or response to medication thereby imparting a varying aspect to any investigation of comorbidity.
Collapse
Affiliation(s)
- Tomas Palomo
- Psychiatry Service, 12 de Octubre, University Hospital, Madrid 28041, Spain
| | | | | | | |
Collapse
|
19
|
Totterdell S. The anatomy of co-morbid neuropsychiatric disorders based on cortico-limbic synaptic interactions. Neurotox Res 2007; 10:65-85. [PMID: 17062369 DOI: 10.1007/bf03033236] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Many brain disorders appear to involve dysfunctions of aminergic systems. Alterations in dopamine activity may underpin both schizophrenia and the establishment and maintenance of drug dependence while disruption of serotonergic signalling may be crucial in both depression and schizophrenia. The co-existence of nicotine and alcohol abuse with depression and schizophrenia is well-documented as is the particular vulnerability of adolescents. At the same time, a common group of brain structures is increasingly implicated in neuropathological studies. For example, depression may involve a lack of serotonin signalling, particularly in the prefrontal cortex, while in schizophrenia there is evidence for reduced dopamine signalling in the same brain region, co-existing with hyperactivity in the mesolimbic dopamine pathway. Increased dopamine release from the mesolimbic dopamine pathway is also a common factor of drugs of abuse. Furthermore, the control of motivational behaviour and dopamine release is apparently modified by hippocampal and amygdala activity, both brain regions showing pathological changes in schizophrenia and depression. Our work has focused on the intricate synaptic interactions of aminergic terminals and cortical and subcortical neurons in order to unravel the anatomical basis for these disorders and their treatments. We show convergence of dopamine and cortical inputs onto single neurons in the nucleus accumbens, and between different cortical inputs to individual neurons, providing a basis for the gating mechanisms attributed to these interactions. We have also examined local and extrinsic connections in the prefrontal cortex and the basis for regulation of both cortical neurons and midbrain dopamine neurons by serotonin from the raph é nucleus. Together with data concerning subcellular receptor distributions, this information provides a detailed synaptic framework for interpreting behavioural, pharmacological and physiological data and enhances our understanding of possible circuitry underlying comorbidity of disorders such as schizophrenia and depression with drug abuse, information invaluable in the introduction of enhanced therapies.
Collapse
Affiliation(s)
- S Totterdell
- Department of Pharmacology, Oxford University, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
20
|
Muller JF, Mascagni F, McDonald AJ. Pyramidal cells of the rat basolateral amygdala: synaptology and innervation by parvalbumin-immunoreactive interneurons. J Comp Neurol 2006; 494:635-50. [PMID: 16374802 PMCID: PMC2562221 DOI: 10.1002/cne.20832] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The generation of emotional responses by the basolateral amygdala is determined largely by the balance of excitatory and inhibitory inputs to its principal neurons, the pyramidal cells. The activity of these neurons is tightly controlled by gamma-aminobutyric acid (GABA)-ergic interneurons, especially a parvalbumin-positive (PV(+)) subpopulation that constitutes almost half of all interneurons in the basolateral amygdala. In the present semiquantitative investigation, we studied the incidence of synaptic inputs of PV(+) axon terminals onto pyramidal neurons in the rat basolateral nucleus (BLa). Pyramidal cells were identified by using calcium/calmodulin-dependent protein kinase II (CaMK) immunoreactivity as a marker. To appreciate the relative abundance of PV(+) inputs compared with excitatory inputs and other non-PV(+) inhibitory inputs, we also analyzed the proportions of asymmetrical (presumed excitatory) synapses and symmetrical (presumed inhibitory) synapses formed by unlabeled axon terminals targeting pyramidal neurons. The results indicate that the perisomatic region of pyramidal cells is innervated almost entirely by symmetrical synapses, whereas the density of asymmetrical synapses increases as one proceeds from thicker proximal dendritic shafts to thinner distal dendritic shafts. The great majority of synapses with dendritic spines are asymmetrical. PV(+) axon terminals form mainly symmetrical synapses. These PV(+) synapses constitute slightly more than half of the symmetrical synapses formed with each postsynaptic compartment of BLa pyramidal cells. These data indicate that the synaptology of basolateral amygdalar pyramidal cells is remarkably similar to that of cortical pyramidal cells and that PV(+) interneurons provide a robust inhibition of both the perisomatic and the distal dendritic domains of these principal neurons.
Collapse
Affiliation(s)
- Jay F Muller
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
21
|
Muller JF, Mascagni F, McDonald AJ. Postsynaptic targets of somatostatin-containing interneurons in the rat basolateral amygdala. J Comp Neurol 2006; 500:513-29. [PMID: 17120289 DOI: 10.1002/cne.21185] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The basolateral amygdala contains several subpopulations of inhibitory interneurons that can be distinguished on the basis of their content of calcium-binding proteins or peptides. Although previous studies have shown that interneuronal subpopulations containing parvalbumin (PV) or vasoactive intestinal peptide (VIP) innervate distinct postsynaptic domains of pyramidal cells as well as other interneurons, very little is known about the synaptic outputs of the interneuronal subpopulation that expresses somatostatin (SOM). The present study utilized dual-labeling immunocytochemical techniques at the light and electron microscopic levels to analyze the innervation of pyramidal cells, PV+ interneurons, and VIP+ interneurons in the anterior basolateral amygdalar nucleus (BLa) by SOM+ axon terminals. Pyramidal cell somata and dendrites were selectively labeled with antibodies to calcium/calmodulin-dependent protein kinase II (CaMK); previous studies have shown that the vast majority of dendritic spines, whether CAMK+ or not, arise from pyramidal cells. Almost all SOM+ axon terminals formed symmetrical synapses. The main postsynaptic targets of SOM+ terminals were small-caliber CaMK+ dendrites and dendritic spines, some of which were CaMK+. These SOM+ synapses with dendrites were often in close proximity to asymmetrical (excitatory) synapses to these same structures formed by unlabeled terminals. Few SOM+ terminals formed synapses with CaMK+ pyramidal cell somata or large-caliber (proximal) dendrites. Likewise, only 15% of SOM+ terminals formed synapses with PV+, VIP+, or SOM+ interneurons. These findings suggest that inhibitory inputs from SOM+ interneurons may interact with excitatory inputs to pyramidal cell distal dendrites in the BLa. These interactions might affect synaptic plasticity related to emotional learning.
Collapse
Affiliation(s)
- Jay F Muller
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
22
|
Martínez-Tellez R, Gómez-Villalobos MDJ, Flores G. Alteration in dendritic morphology of cortical neurons in rats with diabetes mellitus induced by streptozotocin. Brain Res 2005; 1048:108-15. [PMID: 15916754 DOI: 10.1016/j.brainres.2005.04.048] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 04/16/2005] [Accepted: 04/19/2005] [Indexed: 12/17/2022]
Abstract
The animal model of streptozotocin-induced diabetes mellitus is used to study the changes produced by an increase in glucemia. The morphology of the pyramidal neurons of the prefrontal cortex, occipital cortex, and hippocampus was investigated in rats. The level of glucose in the blood was evaluated at 2 months, and the animals that exhibited more than 200 mg/dL were used. After 2 months of increasing blood-glucose level, the animals were sacrificed by an overdose of sodium pentobarbital and perfused intracardially with a 0.9% saline solution. The brains were removed, processed by the Golgi-Cox stain method, and analyzed by the Sholl method. Clearly, the rats with diabetes mellitus induced by streptozotocin showed a decrease in the dendritic length of pyramidal cells from all the analyzed regions (20% to 45%). Furthermore, the density of dendritic spines was decreased in all the pyramidal cells from the diabetic animals (36% to 58%). However, the pyramidal neurons of the CA1 hippocampus region were the most affected (58%). In addition, the Sholl analyses showed that the diabetic rats exhibited a decrease in the number of Sholl intersections when compared with the control group. The present results suggest that diabetes mellitus may in part affect the dendritic morphology in the limbic structures, such as prefrontal cortex, occipital cortex, and hippocampus, which are implicated in cognitive disorders.
Collapse
|
23
|
Flores G, Alquicer G, Silva-Gómez AB, Zaldivar G, Stewart J, Quirion R, Srivastava LK. Alterations in dendritic morphology of prefrontal cortical and nucleus accumbens neurons in post-pubertal rats after neonatal excitotoxic lesions of the ventral hippocampus. Neuroscience 2005; 133:463-70. [PMID: 15878241 DOI: 10.1016/j.neuroscience.2005.02.021] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 02/03/2005] [Accepted: 02/12/2005] [Indexed: 11/17/2022]
Abstract
Neonatal ventral hippocampal (nVH) lesions in rats result in adult onset of a number of behavioral and cognitive abnormalities analogous to those seen in schizophrenia, including hyperresponsiveness to stress and psychostimulants and deficits in working memory, sensorimotor gating and social interaction. Molecular and neurochemical alterations in the prefrontal cortex (PFC) and nucleus accumbens (NAcc) of nVH-lesioned animals suggest developmental reorganization of these structures following neonatal lesions. To determine whether nVH lesions lead to neuronal morphological changes, we investigated the effect of nVH lesion on dendritic structure and spine density of pyramidal neurons of the PFC and medium spiny neurons of the NAcc. Bilateral ibotenic acid-induced lesion of the VH was made in Sprague-Dawley pups at postnatal day 7 (P7); and at P70, neuronal morphology was quantified by modified Golgi-Cox staining. The results show that length of basilar dendrites and branching and the density of dendritic spines on layer 3 pyramidal neurons were significantly decreased in rats with nVH lesions. Medium spiny neurons from the NAcc showed a decrease in the density of dendritic spines without significant changes in dendritic length or arborization. The data, comparable to those observed in the PFC of schizophrenic patients, suggest that developmental loss of excitatory projections from the VH may lead to altered neuronal plasticity in the PFC and the NAcc that may contribute to the behavioral changes in these animals.
Collapse
Affiliation(s)
- G Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Universidad Autónoma de Puebla, 14 Sur 6301, San Manuel, Puebla, Mexico CP. 72570.
| | | | | | | | | | | | | |
Collapse
|
24
|
McDonald AJ, Mascagni F. Immunohistochemical characterization of somatostatin containing interneurons in the rat basolateral amygdala. Brain Res 2002; 943:237-44. [PMID: 12101046 DOI: 10.1016/s0006-8993(02)02650-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There are discrete subpopulations of GABAergic interneurons in the basolateral amygdala (ABL) that contain particular neuropeptides or calcium-binding proteins (calbindin-D28k, parvalbumin (PV), or calretinin). The present study employed a dual-labeling immunofluorescence technique combined with confocal laser scanning microscopy to investigate the neurochemical characteristics of the interneuronal subpopulation containing somatostatin (SOM). The great majority of SOM+ neurons in the ABL exhibited GABA immunoreactivity (66-82% depending on the nucleus). These SOM+ neurons constituted 11-18% of the GABA+ population. There was also extensive colocalization of SOM with calbindin (CB) in all nuclei of the ABL, but no colocalization of SOM with parvalbumin, calretinin, or vasoactive intestinal polypeptide. In the basolateral nucleus more than 90% of SOM+ neurons also exhibited CB immunoreactivity, whereas in the lateral nucleus about two-thirds of SOM+ neurons contained significant levels of CB. These SOM/CB neurons constituted about one quarter of the CB+ population in the basolateral nucleus and about one third of the CB+ population in the lateral nucleus. These results, in conjunction with the findings of previous studies, indicate that there are at least three major subpopulations of GABAergic interneurons in the ABL: (i) SOM+ neurons (most of which also contain CB and/or neuropeptide Y); (ii) PV+ neurons (most of which also contain CB); and (iii) CR+ neurons (most of which also contain vasoactive intestinal polypeptide).
Collapse
Affiliation(s)
- Alexander J McDonald
- Department of Cell Biology and Neuroscience, University of South Carolina School of Medicine, Bldg 1, Columbia, SC 29208, USA.
| | | |
Collapse
|
25
|
McDonald AJ, Mascagni F. Colocalization of calcium-binding proteins and GABA in neurons of the rat basolateral amygdala. Neuroscience 2001; 105:681-93. [PMID: 11516833 DOI: 10.1016/s0306-4522(01)00214-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The basolateral amygdala contains subpopulations of non-pyramidal neurons that express the calcium-binding proteins parvalbumin, calbindin-D28k (calbindin) or calretinin. Although little is known about the exact functions of these proteins, they have provided useful markers of specific neuronal subpopulations in studies of the neuronal circuitry of the cerebral cortex and other brain regions. The purpose of the present study was to investigate whether basolateral amygdalar non-pyramidal neurons containing parvalbumin, calbindin, or calretinin exhibit immunoreactivity for GABA, and to determine if calretinin is colocalized with parvalbumin or calbindin in the rat basolateral amygdala. Pyramidal neurons were distinguished from non-pyramidal neurons on the basis of staining intensity. Using immunofluorescence confocal laser scanning microscopy, as well as the 'mirror technique' on immunoperoxidase-stained sections, it was found that there was virtually no colocalization of calretinin with parvalbumin or calbindin, but that the great majority of basolateral amygdalar non-pyramidal neurons containing parvalbumin, calbindin, or calretinin exhibited GABA immunoreactivity. Calbindin-positive neurons constituted almost 60% of the GABA-containing population in both subdivisions of the basolateral nucleus and more than 40% of the GABA-containing population in the lateral nucleus. Parvalbumin-positive neurons constituted 19-43% of GABA-immunoreactive neurons in the basolateral amygdala, depending on the nucleus. Calretinin-positive non-pyramidal neurons constituted about 20% of the GABA-positive neuronal population in each nucleus of the basolateral amygdala. These findings indicate that non-pyramidal neurons containing parvalbumin, calbindin, or calretinin comprise the majority of GABA-containing neurons in the basolateral amygdala, and that the calretinin subpopulation is distinct from non-pyramidal subpopulations containing parvalbumin and calbindin. These separate neuronal populations may play unique roles in the inhibitory circuitry of the amygdala.
Collapse
Affiliation(s)
- A J McDonald
- Department of Cell Biology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | |
Collapse
|
26
|
Greene JR, Kerkhoff JE, Guiver L, Totterdell S. Structural and functional abnormalities of the hippocampal formation in rats with environmentally induced reductions in prepulse inhibition of acoustic startle. Neuroscience 2001; 103:315-23. [PMID: 11246147 DOI: 10.1016/s0306-4522(00)00560-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of social isolation on prepulse inhibition of acoustic startle (PPI), electrophysiology and morphology of subicular pyramidal neurons and the densities of interneuronal sub-types in the hippocampal formation were examined. Wistar rats (male weanlings) were housed socially (socials, n=8) or individually (isolates, n=7). When tested eight weeks later, PPI was lower in isolates. Rats then received terminal anaesthesia before slices of hippocampal formation were made in which the electrophysiological properties of a total of 108 subicular neurons were characterized. There were no differences in neuronal sub-types recorded in socials compared with isolates. Intrinsically burst-firing and regular spiking pyramidal neurons were examined in detail. There were no differences in resting membrane potential or input resistance in isolates compared with socials but action potential height was reduced and action potential threshold raised in isolates. A limited morphological examination of Neurobiotin-filled intrinsically burst-firing neurons did not reveal differences in cell-body area or in number of primary dendrites. Sections from the contralateral hemispheres of the same rats were stained with antibodies to calretinin, parvalbumin and the neuronal isoform of nitric oxide synthase (nNOS). In isolates, the density of calretinin positive neurons was increased in the dentate gyrus but unchanged in areas CA3, CA1 and subiculum. Parvalbumin and nNOS positive neuronal densities were unchanged. Hence in rats with environmentally induced reductions in PPI there are structural and functional abnormalities in the hippocampal formation. If the reduction in PPI stems from these abnormalities, and reduced PPI in rats is relevant to schizophrenia, then drugs that correct the reported electrophysiological changes might have antipsychotic effects.
Collapse
Affiliation(s)
- J R Greene
- University Department of Pharmacology, The University of Oxford, Mansfield Road, OX1 3QT, Oxford, UK
| | | | | | | |
Collapse
|
27
|
Abstract
We review the neuroanatomical, neurophysiological and functional properties of the mammalian subiculum in this paper. The subiculum is a pivotal structure positioned between the hippocampus proper and entorhinal and other cortices, as well as a range of subcortical structures. It is an under-investigated region that plays a key role in the mediation of hippocampal-cortical interaction. We argue that on neuroanatomical, physiological and functional grounds, the subiculum is properly part of the hippocampal formation, given its pivotal role in the hippocampal circuit. We suggest that the term "subicular complex" embraces a heterogenous range of distinct structures and this phrase does not connote a functionally or anatomically meaningful grouping of structures. The subiculum has a range of electrophysiological and functional properties which are quite distinct from its input areas; given the widespread set of cortical and subcortical areas with which it interacts, it is able to influence activity in quite disparate brain regions. The rules which govern the plasticity of synaptic transmission are not well-specified; it shares some properties in common with the hippocampus proper, but behaves quite differently in other respects. Equally, its functional properties are not well-understood, it plays an important but ill-defined role both in spatial navigation and in mnemonic processing. The important challenges for the future revolve around the theoretical specification of its unique contribution to hippocampal formation processing on the one hand, and the experimental investigation of the many open questions (anatomical, physiological, pharmacological, functional) regarding its properties, on the other.
Collapse
Affiliation(s)
- S M O'Mara
- Department of Psychology, Trinity College, University of Dublin, Dublin 2, Ireland.
| | | | | | | |
Collapse
|
28
|
Zahm DS, Williams EA, Latimer MP, Winn P. Ventral mesopontine projections of the caudomedial shell of the nucleus accumbens and extended amygdala in the rat: Double dissociation by organization and development. J Comp Neurol 2001. [DOI: 10.1002/cne.1057] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
29
|
Abstract
There is evidence to suggest that medium spiny neurons (MSNs) in the nucleus accumbens (NAS) should be sensitive to opiate compounds. However, neuronal responses in the NAS evoked by fimbria stimulation (F-D) are insensitive to systemically or iontophoretically administered morphine. The hypothesis of this study was that fimbria-evoked NAS responses may fail to demonstrate sensitivity to morphine because they are under tonic opioid inhibition and can't be further inhibited by opiates. If correct, then pharmacological inhibition of opioid actions on these NAS neuronal responses should result in an increase of response to fimbria stimulation. The effects of systemic and iontophoretic administrations of naloxone on NAS responses evoked by fimbria stimulation were observed. Systemically and locally administered naloxone selectively increased the excitability of accumbens single-unit responses to fimbria stimulation. Conversely, systemic or iontophoretic administration of morphine was without effect on the same types of NAS responses. These observations are consistent with the hypothesis that a tonic opioid inhibition may regulate this pathway. In contrast, naloxone and morphine effect other NAS circuit responses differently than F-D NAS responses. In some cases naloxone and morphine tests have been conducted on different evoked responses from the same neuron. Those results have shown that different responses from the same cell may be differentially affected. Consequently, opioid modulation of activity in the NAS is probably pathway-specific rather than neuron-specific.
Collapse
Affiliation(s)
- R L Hakan
- Department of Psychology, University of North Carolina at Wilmington, USA.
| |
Collapse
|
30
|
Rudkin TM, Sadikot AF. Thalamic input to parvalbumin-immunoreactive GABAergic interneurons: organization in normal striatum and effect of neonatal decortication. Neuroscience 1999; 88:1165-75. [PMID: 10336127 DOI: 10.1016/s0306-4522(98)00265-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The neocortex and thalamus send dense glutaminergic projections to the neostriatum. The neocortex makes synaptic contact with spines of striatal projection neurons, and also targets a distinct class of GABAergic interneurons immunoreactive for the calcium-binding protein parvalbumin. We determined whether the parafascicular thalamic nucleus also targets striatal parvalbumin-immunoreactive interneurons. The anterograde tracer biotinylated dextranamine was injected into the parafascicular nucleus of adult rats. Double-labeled histochemistry/immunohistochemistry revealed overlapping thalamic fibers and parvalbumin-immunoreactive neurons in the neostriatum. Areas of overlap within the sensorimotor striatum were analysed by electron microscopy. Of 311 synaptic boutons originating from the parafascicular nucleus, 75.9% synapsed with unlabeled dendrites, 22.5% with unlabeled spines, and 1.3% had parvalbumin-immunoreactive dendrites as a postsynaptic target. Only 4% of all asymmetric synapses on parvalbumin-immunoreactive dendrites were derived from the parafascicular nucleus. A separate group of animals underwent bilateral neocortical deafferentation on the third postnatal day, prior to injection of anterograde tracer into the parafascicular nucleus of adult animals. These experiments were performed with the dual purpose of (i) reducing the possibility that thalamic inputs to parvalbumin-immunoreactive neurons are the result of transsynaptic uptake of tracer by a thalamo-cortico-striatal route, and (ii) determining whether competitive interactions between developing corticostriatal and thalamostriatal fibers may account for the relatively sparse thalamic input onto parvalbumin-immunoreactive interneurons. In decorticates, 219 striatal synaptic contacts derived from the parafascicular nucleus, out of which 77.2% were on unlabeled dendrites, 20.9% were upon unlabeled spines, and 0.9% targeted parvalbumin-immunoreactive dendrites. We conclude that the thalamic parafascicular nucleus indeed sends synaptic input to parvalbumin-immunoreactive striatal neurons. Parafascicular nucleus inputs to striatal parvalbumin-immunoreactive interneurons are sparse in comparison to other asymmetric inputs, most of which are likely to be of cortical origin. The synaptic profile of thalamostriatal inputs to parvalbumin-immunoreactive neurons and unlabeled elements is unchanged following neonatal decortication. This suggests that competitive interaction between developing thalamostriatal and corticostriatal projections is not a major mechanism determining synaptic input to striatal subpopulations.
Collapse
Affiliation(s)
- T M Rudkin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Canada
| | | |
Collapse
|
31
|
Katona I, Acsády L, Freund TF. Postsynaptic targets of somatostatin-immunoreactive interneurons in the rat hippocampus. Neuroscience 1999; 88:37-55. [PMID: 10051188 DOI: 10.1016/s0306-4522(98)00302-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Two characteristic interneuron types in the hippocampus, the so-called hilar perforant path-associated cells in the dentate gyrus and stratum oriens/lacunosum-moleculare neurons in the CA3 and CA1 regions, were suggested to be involved in feedback circuits. In the present study, interneurons identical to these cell populations were visualized by somatostatin-immunostaining, then reconstructed, and processed for double-immunostaining and electron microscopy to establish their postsynaptic target selectivity. A combination of somatostatin-immunostaining with immunostaining for GABA or other interneuron markers revealed a quasi-random termination pattern. The vast majority of postsynaptic targets were GABA-negative dendritic shafts and spines of principal cells (76%), whereas other target elements contained GABA (8%). All of the examined neurochemically defined interneuron types (parvalbumin-, calretinin-, vasoactive intestinal polypeptide-, cholecystokinin-, substance P receptor-immunoreactive neurons) received innervation from somatostatin-positive boutons. Recent anatomical and electrophysiological data showed that the main excitatory inputs of somatostatin-positive interneurons originate from local principal cells. The present data revealed a massive GABAergic innervation of distal dendrites of local principal cells by these feedback driven neurons, which are proposed to control the efficacy and plasticity of entorhinal synaptic input as a function of local principal cell activity and synchrony.
Collapse
Affiliation(s)
- I Katona
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest
| | | | | |
Collapse
|
32
|
Abstract
Organisms exposed to a stimulus which has no significant consequences, show subsequently latent inhibition (LI), namely, retarded conditioning to this stimulus. LI is considered to index the capacity to ignore irrelevant stimuli and its disruption has recently received increasing interest as an animal model of cognitive deficits in schizophrenia. Initial studies indicated that LI is disrupted by systemic or intra-accumbens injections of amphetamine and hippocampal lesions, and potentiated by systemic administration of neuroleptics. On the basis of these findings, the switching model of LI proposed that LI depends on the subicular input to the nucleus accumbens (NAC). Subsequent studies supported and refined this proposition. Lesion studies show that LI is indeed disrupted by severing the subicular input to the NAC, and further implicate the entorhinal/ventral subicular portion of this pathway projecting to the shell subterritory of the NAC. There is a functional dissociation between the shell and core subterritories of the NAC, with lesions of the former but not of the latter disrupting LI. This suggests that the shell is necessary for the expression and the core for the disruption of LI. The involvement of the NAC has been also demonstrated by findings that LI is disrupted by intra-accumbens injection of amphetamine and potentiated by DA depletion or blockade in this structure. Disruption and potentiation of LI by systemic administration of amphetamine and neuroleptics, respectively, have been firmly established, and in addition, have been shown to be sensitive to parametric manipulations of the LI procedure. LI is unaffected by lesions and DA manipulations of medial prefrontal cortex and lesions of basolateral amygdala. The implications of these findings for LI as an animal model of schizophrenia are discussed.
Collapse
Affiliation(s)
- I Weiner
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Israel.
| | | |
Collapse
|
33
|
Interconnected parallel circuits between rat nucleus accumbens and thalamus revealed by retrograde transynaptic transport of pseudorabies virus. J Neurosci 1997. [PMID: 9045740 DOI: 10.1523/jneurosci.17-06-02143.1997] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One of the primary outputs of the nucleus accumbens is directed to the mediodorsal thalamic nucleus (MD) via its projections to the ventral pallidum (VP), with the core and shell regions of the accumbens projecting to the lateral and medial aspects of the VP, respectively. In this study, the multisynaptic organization of nucleus accumbens projections was assessed using intracerebral injections of an attenuated strain of pseudorabies virus, a neurotropic alpha herpesvirus that replicates in synaptically linked neurons. Injection of pseudorabies virus into different regions of the MD or reticular thalamic nucleus (RTN) produced retrograde transynaptic infections that revealed multisynaptic interactions between these areas and the basal forebrain. Immunohistochemical localization of viral antigen at short postinoculation intervals confirmed that the medial MD (m-MD) receives direct projections from the medial VP, rostral RTN, and other regions previously shown to project to this region of the thalamus. At longer survival intervals, injections confined to the m-MD resulted in transynaptic infection of neurons in the accumbens shell but not in the core. Injections that also included the central segment of the MD produced retrograde infection of neurons in the lateral VP and the polymorph (pallidal) region of the olfactory tubercle (OT) and transynaptic infection of a small number of neurons in the rostral accumbens core. Injections in the lateral MD resulted in retrograde infection in the globus pallidus (GP) and in transynaptic infection in the caudate-putamen. Viral injections into the rostroventral pole of the RTN infected neurons in the medial and lateral VP and at longer postinoculation intervals, led to transynaptic infection of scattered neurons in the shell and core. Injection of virus into the intermediate RTN resulted in infection of medial VP neurons and second-order infection of neurons in the accumbens shell. Injections in the caudal RTN or the lateral MD resulted in direct retrograde labeling of cells within the GP and transynaptic infection of neurons in the caudate-putamen. These results indicate that the main output of VP neurons receiving inputs from the shell of the accumbens is heavily directed to the m-MD, whereas a small number of core neurons appear to influence the central MD via the lateral VP. Further segregation in the flow of information to the MD is apparent in the organization of VP and GP projections to subdivisions of the RTN that give rise to MD afferents. Collectively, these data provide a morphological basis for the control of the thalamocortical system by ventral striatal regions, in which parallel connections to the RTN may exert control over activity states of cortical regions.
Collapse
|
34
|
Brudzynski SM, Gibson CJ. Release of dopamine in the nucleus accumbens caused by stimulation of the subiculum in freely moving rats. Brain Res Bull 1997; 42:303-8. [PMID: 9043717 DOI: 10.1016/s0361-9230(96)00290-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Stimulation of the ventral subiculum of the hippocampus activates the hippocampal-accumbens pathway and increases locomotor activity. Dopaminergic terminals in the nucleus accumbens have also been implicated in initiation of locomotor activity, and the release of dopamine in the nucleus accumbens is critical for locomotor responses initiated from the subiculum to occur. We have demonstrated release of dopamine in the nucleus accumbens using in vivo microdialysis after stimulation of the ventral subiculum with NMDA. Extracellular dopamine level in the nucleus accumbens was significantly increased by 40% over baseline as a result of NMDA stimulation of the ventral subiculum. This stimulation also caused more than a 40-fold increase in horizontal activity and total distance covered by the rats. Injection of saline into the subiculum caused neither a change in the dopamine level nor an increase in animal's activity. The dynamics of the measured changes in dopamine overflow correlated with the time course of locomotor changes. The results demonstrate that stimulation of the ventral subiculum causes release of dopamine in the nucleus accumbens which parallels the increase in locomotor activity.
Collapse
Affiliation(s)
- S M Brudzynski
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Canada
| | | |
Collapse
|
35
|
Modulation of high voltage-activated calcium channels by somatostatin in acutely isolated rat amygdaloid neurons. J Neurosci 1996. [PMID: 8815883 DOI: 10.1523/jneurosci.16-19-06000.1996] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated actions of somatostatin (Som) on voltagegated calcium channels in acutely isolated rat amygdaloid neurons. Somatostatin caused a dose-dependent inhibition of the high voltage-activated (HVA) Ca2+ current, with little or no effect on the low voltage-activated (LVA) current. Nifedipine (2-10 microM) reduced the peak current by approximately 15% without reducing inhibition of current by Som significantly, ruling out L-type channels as the target of modulation. The modulation appears to involve N- and P/Q-type calcium channels. After pretreatment with omega-conotoxin-GVIA (omega-CgTx) or omega-agatoxin-IVA, the inhibition was reduced but not abolished, whereas the combined application of both toxins nearly abolished the modulation. The Som analog BIM-23060 mimicked the effects of Som, whereas BIM-23058 had no effect, implicating Som type-2 receptors (SSTR-2). The inhibition was voltage-dependent, being minimal for small depolarizations, and was often accompanied by a slowing of the activation time course. Strong depolarizing prepulses partially relieved the inhibition and restored the time course of activation. Intracellular dialysis with GTP gamma S led to spontaneous inhibition and a slowing of the current like that with Som and occluded the effects of the peptide. Dialysis with GDP beta S also diminished the inhibition. A short preincubation with 50 microM of the alkylating agent N-ethylmaleimide (NEM) prevented the action of somatostatin. These results suggest a role for NEM-sensitive G-proteins in the Som inhibition. Application of 8-CPT-cAMP and IBMX did not mimic or prevent the effects of Som.
Collapse
|
36
|
Kronthaler UO, Schmidt WJ. 1S,3R-ACPD has cataleptogenic effects and reverses MK-801-, and less pronounced, D,L-amphetamine-induced locomotion. Eur J Pharmacol 1996; 316:129-36. [PMID: 8982678 DOI: 10.1016/s0014-2999(96)00673-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The purpose of this study was to examine the motor effects of (1S,3R)-1-amino-cyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD), an agonist at metabotropic glutamate receptors, its interaction with dizocilpine (MK-801), a NMDA receptor antagonist, and with D,L-amphetamine, an indirect dopamine receptor agonist. 1S,3R-ACPD (20, 30, 40, 80 micrograms) evoked prominent locomotor and exploratory deficits in an open-field hole-board test and a moderate akinesia and rigidity in a catalepsy test (30, 40, 80 micrograms). MK-801 (0.08, 0.16, 0.32 mg/kg i.p.) as well as D,L-amphetamine (1.0, 2.0, 3.0 mg/kg i.p.) potently reversed 1S,3R-ACPD-induced (80 micrograms) catalepsy. MK-801 and D,L-amphetamine, administered alone, induced motor stimulation. 1S,3R-ACPD (80 micrograms) reversed the effects of the two lower doses of MK-801. 1S,3R-ACPD reversed D,L-amphetamine-induced motor stimulation to a minor extent than that of MK-801. Thus motor deficits induced by 1S,3R-ACPD were reversed by both, NMDA receptor blockade and dopamine receptor activation. 1S,3R-ACPD reversed motor stimulation, induced by NMDA receptor blockade and, however less pronounced, that by dopamine receptor activation.
Collapse
Affiliation(s)
- U O Kronthaler
- Department Neuropharmacology, Zoological Institute, University Tübingen, Germany. @www.uni-tuebingen.de/uni/bzn/index.html
| | | |
Collapse
|
37
|
Tuunanen J, Halonen T, Pitkänen A. Status epilepticus causes selective regional damage and loss of GABAergic neurons in the rat amygdaloid complex. Eur J Neurosci 1996; 8:2711-25. [PMID: 8996821 DOI: 10.1111/j.1460-9568.1996.tb01566.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In human epilepsy, the amygdala is often a primary focus for seizures. To analyse the status epilepticus-induced alterations in the amygdaloid circuitries which may later underlie epileptogenesis, we studied the amygdaloid damage in kainic acid and perforant pathway stimulation models of status epilepticus in the rat. We also studied the damage to inhibitory GABAergic neurons. In both models, the medial division of the lateral nucleus, the parvicellular division of the basal nucleus and portions of the anterior cortical and medical nuclei were damaged. In the kainate model, where the seizure activity was more severe, the accessory basal nucleus, amygdalohippocampal area, posterior cortical nucleus and periamygdaloid cortex were also damaged. Two weeks after kainate-induced seizures, 56% of the GABA-immunoreactive neurons remained in the lateral nucleus (P < 0.05) and 25% in the basal nucleus (P < 0.01). Further analysis showed that one subpopulation of damaged GABAergic neurons was immunoreactive for somatostatin (48% remaining in the lateral nucleus, P < 0.01; 33% in the basal nucleus, P < 0.01). In the perforant pathway stimulation model, the damage to somatostatin neurons was milder. According to our data, the initial insult, such as status epilepticus, selectively damages amygdaloid nuclei. The loss of inhibition may underlie the spontaneous generation of seizures and epileptogenesis. On the other hand, many amygdaloid output nuclei (magnocellular and intermediate division of the basal nucleus, the central nucleus) remained relatively undamaged, providing pathways for seizures spread and generation of seizure-related behavioural manifestations such as motor convulsions and fear response.
Collapse
Affiliation(s)
- J Tuunanen
- A.I. Virtanen Institute, University of Kuopio, Finland
| | | | | |
Collapse
|
38
|
Vezzani A, Monhemius R, Tutka P, Milani R, Samanin R. Functional activation of somatostatin- and neuropeptide Y-containing neurons in the entorhinal cortex of chronically epileptic rats. Neuroscience 1996; 75:551-7. [PMID: 8931018 DOI: 10.1016/0306-4522(96)00261-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The in vitro release of somatostatin and neuropeptide Y, their tissue concentration and immunocytochemical pattern were examined in the entorhinal cortex of chronically epileptic rats. A systemic administration of 12 mg/kg kainic acid causing generalized tonic-clonic seizures for at least 3 h after injection was used to induce, 60 days later, a chronically enhanced susceptibility to seizures in the rats. The release of both peptides under depolarizing conditions was significantly reduced by 15% on average from slices of the entorhinal cortex two days after kainic acid-induced status epilepticus. At 60 days, the spontaneous and 30 mM KCl-induced release of somatostatin was significantly enhanced by 30% on average. The release induced by 100 mM KCl was raised by 70%. The spontaneous, 30 mM and 100 mM KCl-induced release of neuropeptide Y from the same slices was increased, respectively, by 120%, 76% and 36%. The late changes were associated with an increased tissue concentration of neuropeptide Y but not of somatostatin. This was confirmed by immunocytochemical evidence showing that neuropeptide Y-, but not somatostatin-immunoreactive neurons were increased in the entorhinal cortex of kainic acid-treated rats. These results indicate that neurotransmission mediated by somatostatin and neuropeptide Y, two peptides previously shown to play a role in limbic epileptogenesis, is enhanced in the entorhinal cortex of chronically epileptic rats.
Collapse
Affiliation(s)
- A Vezzani
- Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | | | | | | | |
Collapse
|
39
|
Weiner I, Gal G, Rawlins JN, Feldon J. Differential involvement of the shell and core subterritories of the nucleus accumbens in latent inhibition and amphetamine-induced activity. Behav Brain Res 1996; 81:123-33. [PMID: 8950008 DOI: 10.1016/s0166-4328(96)00051-4] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Latent inhibition (LI) consists of retardation in conditioning to a stimulus as a consequence of its prior non-reinforced pre-exposure. In view of findings that LI is disrupted in acute schizophrenic patients and evidence from animal experiments pointing to the involvement of the mesolimbic dopamine (DA) system in this phenomenon, the present study investigated the effects of electrolytic lesions to the shell and core subterritories of the nucleus accumbens on LI in rats (Expt. 1). LI was indexed by the amount of suppression of drinking in the presence of a tone that was either pre-exposed or not prior to its pairing with reinforcement (a foot shock). Expt.2 tested the effects of the DA antagonist, haloperidol, on LI in shell- and core-lesioned animals. Expt. 3 tested the effects of shell and core lesions on spontaneous and amphetamine-induced locomotion. In Expt. 1, LI, i.e., lower suppression of drinking in the pre-exposed as compared to the non-pre-exposed animals, was obtained in the sham-operated condition. Core and shell lesions produced distinct effects on LI. Animals with core lesions developed LI, but exhibited an overall lower suppression of drinking in comparison to the sham-operated animals. In contrast, shell lesions led to a disappearance of LI. Expt. 2 replicated the differential effects of shell and core lesions on LI, although in this experiment, core lesion did not attenuate suppression of drinking. Haloperidol prevented shell-induced abolition of LI. In Expt. 3, shell- but not core-lesioned animals were more active than sham controls following amphetamine administration. These results provide evidence for functional differences between the shell and core subregions, as well as for the involvement of the mesolimbic DA system in LI.
Collapse
Affiliation(s)
- I Weiner
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Israel.
| | | | | | | |
Collapse
|
40
|
Abstract
Latent inhibition (LI) is a measure of retarded conditioning to a previously presented non-reinforced stimulus that is impaired in schizophrenic patients and in rats treated with amphetamine, and is restored in both by neuroleptic drugs. In terms of neural substrates, LI depends on the integrity of the nucleus accumbens (NAC) and the inputs to this structure from the hippocampal formation and adjacent cortical areas. The present experiments investigated the effects of electrolytic lesions to the basolateral amygdala (BLA), which is another major source of input to the NAC, on the LI effect. LI was assessed in a conditioned emotional response (CER) procedure in rats licking for water, consisting of three stages: pre-exposure, in which the to-be-conditioned stimulus (a tone) was repeatedly presented without being followed by reinforcement; conditioning, in which the pre-exposed stimulus was paired with reinforcement (a foot shock); and test, in which LI was indexed by the animal's degree of suppression of licking during tone presentation. In Expt. 1, which used a lesion at a more posterior location, no effect on either LI or CER conditioning was seen. In Expt. 2, lesion at a more anterior location reduced the magnitude of CER conditioning in both the pre-exposed and the non-pre-exposed animals, but left the LI effect intact. The latter lesion did not affect spontaneous and amphetamine-induced activity (Expt. 3). These results suggest that the development of LI is not dependent on the amygdalar input to the NAC, but that the input from the anterior aspects of BLA to the NAC is involved in the establishment of stimulus-reinforcement associations.
Collapse
Affiliation(s)
- I Weiner
- Department of Psychology, Tel-Aviv University, Israel
| | | | | |
Collapse
|
41
|
Bardgett ME, Jackson JL, Taylor GT, Csernansky JG. Kainic acid decreases hippocampal neuronal number and increases dopamine receptor binding in the nucleus accumbens: an animal model of schizophrenia. Behav Brain Res 1995; 70:153-64. [PMID: 8561906 DOI: 10.1016/0166-4328(95)80005-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intracerebroventricular (i.c.v.) administration of kainic acid (KA) produces graded neuronal loss in the hippocampus and other regions of the medial temporal lobe. Many of these brain regions send excitatory projections to the nucleus accumbens, a dopaminergic brain area implicated in psychotomimetic and antipsychotic drug action. In the present study, neurochemical function in the nucleus accumbens and anterior caudate-putamen was examined one week after i.c.v. administration of 1.5, 4.5, or 6.6 nmol of KA. As expected, i.c.v. KA produced dose-dependent neuronal loss in the dorsal and ventral hippocampus. Extrahippocampal neuronal loss was also observed in the thalamus and piriform cortex in some of the KA-treated rats. While ambient levels of dopamine turnover and excitatory amino acids in the nucleus accumbens were unaltered by KA, administration of the highest KA dose elevated [3H]spiperone binding exclusively in the accumbens. Finally, behavioral hyperactivity was observed in KA-treated rats over a five-week period following i.c.v. administration. The pattern of neuronal loss, receptor upregulation, and behavioral hyperactivity found after i.c.v. KA administration may provide a useful animal model of the limbic neuropathology and neurochemical dysfunction associated with schizophrenia.
Collapse
Affiliation(s)
- M E Bardgett
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | | | | | | |
Collapse
|
42
|
Atoji Y, Watanabe H, Yamamoto Y, Suzuki Y. Distribution of neurotensin-containing neurons in the central nervous system of the dog. J Comp Neurol 1995; 353:67-88. [PMID: 7714250 DOI: 10.1002/cne.903530108] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The distribution of neurotensin-containing cell bodies and fibers was examined in the central nervous system of the dog using light microscopic immunohistochemistry. A very large population of neurotensin-containing cell bodies was observed in the septal nuclei, nucleus accumbens septi, preoptic areas, bed nucleus of the stria terminalis, olfactory tubercle, entorhinal cortex, ventral subiculum, anterodorsal thalamic nucleus, anteroventral thalamic nucleus, nucleus reuniens, lateral habenular nucleus, parabrachial nucleus, and nucleus of the solitary tract. Extremely dense networks of neurotensin-containing fibers were found in the globus pallidus, hypothalamus, infundibular stalk, ventral tegmental area, periaqueductal gray, interpeduncular nucleus, and spinal nucleus of the trigeminal nerve and substantia gelatinosa. However, the cerebral neocortex and cerebellum were negative for neurotensin in the present study. When the present findings are compared with those in other animals, it is clear that the major species-specific differences in distribution involve three immunonegative regions and four immunopositive regions in the dog: The former are the cerebral neocortex, mammillary body, and hippocampus; the latter are the cell bodies in the pyramidal layer of the olfactory tubercle, the superficial and middle layers of the entorhinal cortex and ventral subiculum, and the nerve fibers in the interpeduncular nucleus. The present study indicates a rather extensive network of neurotensin neurons in the central nervous system of the dog.
Collapse
Affiliation(s)
- Y Atoji
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, Gifu University, Japan
| | | | | | | |
Collapse
|
43
|
Johnson LR, Aylward RL, Hussain Z, Totterdell S. Input from the amygdala to the rat nucleus accumbens: its relationship with tyrosine hydroxylase immunoreactivity and identified neurons. Neuroscience 1994; 61:851-65. [PMID: 7530817 DOI: 10.1016/0306-4522(94)90408-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Both tyrosine hydroxylase-positive fibres from the mesolimbic dopamine system and amygdala projection fibres from the basolateral nucleus are known to terminate heavily in the nucleus accumbens. Caudal amygdala fibres travelling dorsally via the stria terminalis project densely to the nucleus accumbens shell, especially in the dopamine rich septal hook. The amygdala has been associated with the recognition of emotionally relevant stimuli while the mesolimbic dopamine system is implicated with reward mechanisms. There is behavioural and electrophysiological evidence that the amygdala input to the nucleus accumbens is modulated by the mesolimbic dopamine input, but it is not known how these pathways interact anatomically within the nucleus accumbens. Using a variety of neuroanatomical techniques including anterograde and retrograde tracing, immunocytochemistry and intracellular filling, we have demonstrated convergence of these inputs on to medium-sized spiny neurons. The terminals of the basolateral amygdala projection make asymmetrical synapses predominantly on the heads of spines which also receive on their necks or adjacent dendrites, symmetrical synaptic input from the mesolimbic dopamine system. Some of these neurons have also been identified as projection neurons, possibly to the ventral pallidum. We have shown a synaptic level how dopamine is positioned to modulate excitatory limbic input in the nucleus accumbens.
Collapse
Affiliation(s)
- L R Johnson
- University Department of Pharmacology, Oxford, U.K
| | | | | | | |
Collapse
|
44
|
Lavoie AM, Mizumori SJ. Spatial, movement- and reward-sensitive discharge by medial ventral striatum neurons of rats. Brain Res 1994; 638:157-68. [PMID: 8199856 DOI: 10.1016/0006-8993(94)90645-9] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Previous behavioral and acute electrophysiological data have lead researchers to speculate that the nucleus accumbens integrates limbic, reward and motor information. The present study examined the behavioral correlates to single unit activity of the nucleus accumbens and surrounding ventral striatum as a means of evaluating the integrative functioning of this region in an awake animal. Medial ventral striatum (mVS) activity was recorded as rats completed multiple trials on an eight arm radial maze. Neuronal activity was found to correlate with spatial, reward- and movement-related behavioral conditions. While the majority of cells demonstrated correlates of a single type (i.e. either spatial or reward correlates), 6 cells encoded multiple correlates of different types (i.e. spatial and reward correlates). The data suggests that this integrative process can be active both at the level of the individual neuron, and at the structural level. These results are consistent with the hypothesis that the mVS integrates spatial and reward-related information, which in turn influences voluntary motor output structures in order to achieve accurate navigational behavior.
Collapse
Affiliation(s)
- A M Lavoie
- Department of Psychology, University of Utah, Salt Lake City 84112
| | | |
Collapse
|