1
|
Ming F, Sun Q. Epigenetically silenced PTPRO functions as a prognostic marker and tumor suppressor in human lung squamous cell carcinoma. Mol Med Rep 2017; 16:746-754. [PMID: 28586036 PMCID: PMC5482203 DOI: 10.3892/mmr.2017.6665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 03/16/2017] [Indexed: 12/18/2022] Open
Abstract
Protein tyrosine phosphatase receptor-type O (PTPRO), a member of the PTP family, has been frequently reported as potential tumor suppressor in many types of cancer. However, the exact function of PTPRO in lung squamous cell carcinoma (LSCC) remains unclear. Bisulfite sequencing and methylation specific polymerase chain reaction (PCR) were used to identify the methylation status of PTPRO in LSCC cells, and quantitative methylation specific PCR was used to evaluate the methylation levels of PTPRO in LSCC patients. Stably expressing PTPRO vectors were constructed and transfected into H520 and SK-MES-1 cells, followed by MTT and colony formation assays, and analysis of tumor weight and volume in in vivo mouse xenograft models. The present study demonstrated that the CpG island of PTPRO exon 1 was obviously hypermethylated in LSCC cells and tissues. The mRNA expression of PTPRO could be restored by treatment with a demethylation agent. Increased methylation and decreased mRNA levels of PTPRO were observed in LSCC samples compared with adjacent healthy tissues, and were associated with poor prognosis of patients. The mRNA expression of PTPRO was negatively correlated with its methylation level in tumors. Functionally, ectopic PTPRO expression in LSCC cells significantly inhibited the proliferation rates, and colony formation, in comparison with control and non-transfected cells. In vivo assays confirmed the inhibitory effect of PTPRO on LSCC cell growth. In conclusion, these data provided evidence that epigenetic regulation of PTPRO impairs its tumor suppressor role in LSCC, and restoration of PTPRO may be a potential therapeutic strategy.
Collapse
Affiliation(s)
- Fei Ming
- Department of Thoracic Surgery, Hubei Cancer Hospital, Wuhan, Hubei 430000, P.R. China
| | - Qianqiang Sun
- Department of Thoracic Surgery, Hubei Cancer Hospital, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
2
|
Kono T, Imai Y, Yasuda SI, Ohmori K, Fukui H, Ichikawa K, Tomita S, Imura J, Kuroda Y, Ueda Y, Fujimori T. The CD155/poliovirus receptor enhances the proliferation of ras-mutated cells. Int J Cancer 2008; 122:317-24. [PMID: 17893876 DOI: 10.1002/ijc.23080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stimulation of the CD155/poliovirus receptor, which localizes in the cell-matrix and at cell-cell junctions, inhibits cell adhesion and enhances cell migration. Necl-5, a mouse homolog of CD155, is implicated in the formation of adherence junctions. Recently, Necl-5 has also been found to enhance cell proliferation via the stimulation of serum and platelet-derived growth factor through the Ras-Raf-MEK-ERK signaling pathway. In our present study, we find that CD155 significantly enhances the serum-induced cell proliferation of NIH3T3 cells which have been transformed by an oncogenic Ras (V12Ras-NIH3T3), but not the parental cells. CD155 expression in V12Ras-NIH3T3 cells is also found to upregulate cyclin D2, downregulate p27(Kip1) and shorten the G0/G1 phase of the cell cycle. An inhibitor of focal adhesion kinase does not reduce this CD155-mediated enhancement of V12Ras-NIH3T3 cell proliferation. The expression of CD155DeltaCP, which lacks the cytoplasmic region including the immunoreceptor tyrosine-based inhibitory motif (ITIM), has a reduced ability to enhance the serum responsiveness of V12Ras-NIH3T3 cells, suggesting that the ITIM might be required for this effect of CD155. In addition, the overexpression of exogenous CD155 enhances the serum responsiveness of HT1080 cells, which harbor a mutant N-ras gene. On the other hand, siRNA-induced knockdown of endogenous CD155 and/or CD155DeltaCP expression significantly repress the serum responsiveness of DLD-1 cells, which express endogenous CD155 and harbor a mutant K-ras gene, suggesting that this mutant may function in a dominant negative manner. Taken together, our present data suggest that CD155, at least in part, enhances the proliferation of ras-mutated cells.
Collapse
Affiliation(s)
- Tokuyuki Kono
- Department of Surgical and Molecular Pathology, Dokkyo Medical University School of Medicine, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zapata PD, Colas B, López-Ruiz P, Ropero RM, Martín RM, Rodríguez FJ, González FJ, López JI, Angulo JC. [Phosphotyrosine phosphatase SHP-1, somatostatin and prostate cancer]. Actas Urol Esp 2004; 28:269-85. [PMID: 15248398 DOI: 10.1016/s0210-4806(04)73075-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We review the mechanisms involved in prostatic growth based on androgens and product of neuroendocrine secretion, with special reference to the role of somatostatin (SS) in the inhibition of neoplastic growth. Our contributions in the field confirm the antiproliferative effect of SS on the prostate is mediated by phosphotyrosine phosphatase SHP-1, that is present in human prostate. This enzyme plays a role in the control of prostatic cell proliferation and in the progression of prostate cancer. Besides, we consider its presence may determine the therapeutic potential of SS in the control of prostate cancer.
Collapse
Affiliation(s)
- P D Zapata
- Departamento de Bioquímica, Universidad de Alcalá, Servicio de Urología, Hospital Príncipe de Asturias, Alcalá de Henares, Madrid
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Oda T, Ohka S, Nomoto A. Ligand stimulation of CD155alpha inhibits cell adhesion and enhances cell migration in fibroblasts. Biochem Biophys Res Commun 2004; 319:1253-64. [PMID: 15194502 DOI: 10.1016/j.bbrc.2004.05.111] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Indexed: 11/17/2022]
Abstract
CD155 (poliovirus receptor) localizes in cell-matrix adhesions and cell-cell junctions, but its role in the regulation of cell adhesion and cell motility has not been investigated. We identified a conserved immunoreceptor tyrosine-based inhibitory motif (ITIM) in the cytoplasmic domain of human CD155alpha. The ITIM was tyrosine-phosphorylated upon binding of anti-CD155 monoclonal antibody D171, poliovirus, and DNAM-1 (CD226) to human CD155alpha, and recruited SH2-domain-containing tyrosine phosphatase-2 (SHP-2). After CD155alpha stimulation with its ligands, cell adhesion was inhibited and cell motility was enhanced, effects that were associated with the phosphorylation of ITIM by Src kinases and accompanied by dephosphorylation of focal adhesion kinase and paxillin. These effects were abolished by introducing a point-mutation in Y398F into the ITIM of CD155alpha and by coexpression of a dominant negative SHP-2 mutant with CD155alpha. These results suggest that CD155alpha plays a role in the regulation of cell adhesion and cell motility.
Collapse
Affiliation(s)
- Toshiyuki Oda
- Department of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
5
|
Sato R, Ohnishi H, Kobayashi H, Kiuchi D, Hayashi A, Kaneko Y, Honma N, Okazawa H, Hirata Y, Matozaki T. Regulation of multiple functions of SHPS-1, a transmembrane glycoprotein, by its cytoplasmic region. Biochem Biophys Res Commun 2003; 309:584-90. [PMID: 12963030 DOI: 10.1016/j.bbrc.2003.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SHPS-1 is a receptor-type transmembrane glycoprotein, which contains four tyrosine residues in its cytoplasmic region, and the phosphorylation of these tyrosine residues serves the binding sites for SHP-2 protein-tyrosine phosphatase. Its extracellular region interacts with another membrane protein, CD47, thereby constituting a cell-cell communication system. We analyzed this ligand-receptor interaction using Chinese hamster ovary (CHO) cells expressing wild-type (WT) or mutant SHPS-1. The binding affinity of an SHPS-1 mutant such as deltaCyto, that lacked most of cytoplasmic region, or 4F, in which all four tyrosine residues in cytoplasmic region were substituted with phenylalanine, for a recombinant CD47-Fc was greater than that of WT. In addition, oligomerization of deltaCyto or 4F mutant by binding of CD47-Fc was greater than WT. Chemical cross-linking of SHPS-1 indicated that SHPS-1 formed a cis-dimer. Furthermore, WT cells exhibited a less polarized cell shape with decreased formation of actin stress fibers, compared with parental CHO cells and mutant SHPS-1 expressing cells. Prominent lamellipodium formation and membrane ruffling were also observed at leading edges of migrating WT cells but not at those of other mutant SHPS-1 expressing cells. These results suggest that the binding affinity of SHPS-1 to CD47, clustering ability of SHPS-1, and cytoskeletal reorganization are regulated by the cytoplasmic region of SHPS-1.
Collapse
Affiliation(s)
- Ryuji Sato
- Biosignal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ito T, Okazawa H, Maruyama K, Tomizawa K, Motegi SI, Ohnishi H, Kuwano H, Kosugi A, Matozaki T. Interaction of SAP-1, a transmembrane-type protein-tyrosine phosphatase, with the tyrosine kinase Lck. Roles in regulation of T cell function. J Biol Chem 2003; 278:34854-63. [PMID: 12837766 DOI: 10.1074/jbc.m300648200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SAP-1 is a transmembrane-type protein-tyrosine phosphatase that is expressed in most tissues but whose physiological functions remain unknown. The cytoplasmic region of SAP-1 has now been shown to bind directly the tyrosine kinase Lck. Overexpression of wild-type SAP-1, but not that of a catalytically inactive mutant of SAP-1, inhibited both the basal and the T cell antigen receptor (TCR)-stimulated activity of Lck in human Jurkat T cell lines. Lck served as a direct substrate for dephosphorylation by SAP-1 in vitro. Overexpression of wild-type SAP-1 in Jurkat cells also: (i) inhibited both the activation of mitogen-activated protein kinase and the increase in cell surface expression of CD69 induced by TCR stimulation; (ii) reduced the extent of the TCR-induced increase in the tyrosine phosphorylation of ZAP-70 or that of LAT; (iii) reduced both the basal level of tyrosine phosphorylation of p62dok, as well as the increase in the phosphorylation of this protein induced by CD2 stimulation; and (iv) inhibited cell migration. These results thus suggest that the direct interaction of SAP-1 with Lck results in inhibition of the kinase activity of the latter and a consequent negative regulation of T cell function.
Collapse
Affiliation(s)
- Tomokazu Ito
- Biosignal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Motegi SI, Okazawa H, Ohnishi H, Sato R, Kaneko Y, Kobayashi H, Tomizawa K, Ito T, Honma N, Bühring HJ, Ishikawa O, Matozaki T. Role of the CD47-SHPS-1 system in regulation of cell migration. EMBO J 2003; 22:2634-44. [PMID: 12773380 PMCID: PMC156773 DOI: 10.1093/emboj/cdg278] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
SHPS-1 is a transmembrane protein whose extracellular region interacts with CD47 and whose cytoplasmic region undergoes tyrosine phosphorylation and there by binds the protein tyrosine phosphatase SHP-2. Formation of this complex is implicated in regulation of cell migration by an unknown mechanism. A CD47-Fc fusion protein or antibodies to SHPS-1 inhibited migration of human melanoma cells or of CHO cells overexpressing SHPS-1. Overexpression of wild-type SHPS-1 promoted CHO cell migration, whereas expression of the SHPS-1-4F mutant, which lacks the phosphorylation sites required for SHP-2 binding, had no effect. Antibodies to SHPS-1 failed to inhibit migration of CHO cells expressing SHPS-1-4F. SHPS-1 ligands induced the dephosphorylation of SHPS-1 and dissociation of SHP-2. Antibodies to SHPS-1 also enhanced Rho activity and induced both formation of stress fibers and adoption of a less polarized morphology in melanoma cells. Our results suggest that engagement of SHPS-1 by CD47 prevents the positive regulation of cell migration by this protein. The CD47- SHPS-1 system and SHP-2 might thus contribute to the inhibition of cell migration by cell-cell contact.
Collapse
Affiliation(s)
- Sei-Ichiro Motegi
- Biosignal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-Machi, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Takada T, Noguchi T, Inagaki K, Hosooka T, Fukunaga K, Yamao T, Ogawa W, Matozaki T, Kasuga M. Induction of apoptosis by stomach cancer-associated protein-tyrosine phosphatase-1. J Biol Chem 2002; 277:34359-66. [PMID: 12101188 DOI: 10.1074/jbc.m206541200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Stomach cancer-associated protein-tyrosine phosphatase-1 (SAP-1), a transmembrane-type protein-tyrosine phosphatase, is thought to inhibit integrin signaling by mediating the dephosphorylation of focal adhesion-associated proteins. Adenovirus-mediated overexpression of wild-type SAP-1, but not that of a catalytically inactive mutant of this enzyme, has now been shown to induce apoptosis in NIH 3T3 fibroblasts. This effect of SAP-1 was dependent on cellular caspase activities and was preceded by inactivation of two serine-threonine protein kinases, Akt and integrin-linked kinase (ILK), both of which function downstream of phosphoinositide (PI) 3-kinase to promote cell survival. Coexpression of constitutively active forms of PI 3-kinase or Akt (which fully restored Akt and ILK activities) resulted in partial inhibition of SAP-1-induced cell death. Furthermore, expression of a dominant negative mutant of PI 3-kinase did not induce cell death as efficiently as did SAP-1, although this mutant inhibited Akt and ILK activities more effectively than did SAP-1. Overexpression of SAP-1 had no substantial effect on Ras activity. These results suggest that SAP-1 induces apoptotic cell death by at least two distinct mechanisms: inhibition of cell survival signaling mediated by PI 3-kinase, Akt, and ILK and activation of a caspase-dependent proapoptotic pathway.
Collapse
Affiliation(s)
- Toshiyuki Takada
- Division of Diabetes and Digestive and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
A new family of cytokine-inducible proteins, termed "suppressors of cytokine signaling" (SOCS), was discovered recently; these proteins function as negative regulators of signaling pathways involved in the cellular actions of many cytokines, growth factors, and hormones. Gene manipulation studies in mice point to the central importance of individual SOCS proteins in maintaining homeostasis by limiting cellular responses to specific cytokines or growth factors in a variety of different physiological systems. Cytokines modulate a wide variety of biological responses in the CNS, so members of the SOCS family might play crucial roles in regulating intracellular signaling by these effectors in both normal and disease states. Although to date studies of the neurobiology of the SOCS family have been limited, we know that many SOCS genes are constitutively expressed in the developing and adult brain, whereas the expression of others, particularly the SOCS1 and SOCS3 genes, can be highly regulated. Furthermore, roles for the SOCS are now evident in the modulation of neuroimmunoendocrine functions affected by a variety of cytokines, including leptin and members of the growth hormone and the interleukin-6/gp130 superfamilies. Overall, these findings point to the SOCS as likely crucial negative modulators in the temporal and spatial regulation and intensity of cytokine signaling and therefore actions in the CNS.
Collapse
Affiliation(s)
- Jianping Wang
- The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
10
|
Kodama A, Matozaki T, Shinohara M, Fukuhara A, Tachibana K, Ichihashi M, Nakanishi H, Takai Y. Regulation of Ras and Rho small G proteins by SHP-2. Genes Cells 2001; 6:869-76. [PMID: 11683915 DOI: 10.1046/j.1365-2443.2001.00467.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Hepatocyte growth factor/scatter factor (HGF/SF) induces cell scattering through the tyrosine kinase-type HGF/SF receptor, c-Met. We have previously shown that SHP-2, a protein tyrosine phosphatase, positively regulates the HGF/SF-induced cell scattering through modulating the activity of Rho to form stress fibres and focal adhesions. To further investigate the role of SHP-2 in HGF/SF-induced cell scattering, we have now examined the effect of a dominant active mutant of SHP-2 (SHP-2-DA). RESULTS Expression of SHP-2-DA markedly increased the formation of lamellipodia with ruffles, while it decreased the accumulation of E-cadherin and beta-catenin at cell-cell adhesion sites in MDCK cells. In addition, expression of SHP-2-DA markedly enhanced cell scattering of MDCK cells in response to HGF/SF. Expression of SHP-2-DA induced the activation of MAP kinase without HGF/SF stimulation, whereas an inhibitor of MEK partly reversed the SHP-2-DA-induced morphological phenotypes. Furthermore, expression of either a dominant-active mutant of Rho or Vav2 also reversed the SHP-2-DA-induced morphological phenotypes. CONCLUSION These results indicate that SHP-2 plays a crucial role in the HGF/SF-induced cell scattering through the regulation of two distinct small G proteins, Ras and Rho.
Collapse
Affiliation(s)
- A Kodama
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhan XL, Wishart MJ, Guan KL. Nonreceptor tyrosine phosphatases in cellular signaling: regulation of mitogen-activated protein kinases. Chem Rev 2001; 101:2477-96. [PMID: 11749384 DOI: 10.1021/cr000245u] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- X L Zhan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
12
|
Noguchi T, Tsuda M, Takeda H, Takada T, Inagaki K, Yamao T, Fukunaga K, Matozaki T, Kasuga M. Inhibition of cell growth and spreading by stomach cancer-associated protein-tyrosine phosphatase-1 (SAP-1) through dephosphorylation of p130cas. J Biol Chem 2001; 276:15216-24. [PMID: 11278335 DOI: 10.1074/jbc.m007208200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SAP-1 (stomach cancer-associated protein-tyrosine phosphatase-1) is a transmembrane-type protein-tyrosine phosphatase that is abundant in the brain and certain cancer cell lines. With the use of a "substrate-trapping" approach, p130(cas), a major focal adhesion-associated phosphotyrosyl protein, has now been identified as a likely physiological substrate of SAP-1. Expression of recombinant SAP-1 induced the dephosphorylation of p130(cas) as well as that of two other components of the integrin-signaling pathway (focal adhesion kinase and p62(dok)) in intact cells. In contrast, expression of a substrate-trapping mutant of SAP-1 induced the hyperphosphorylation of these proteins, indicating a dominant negative effect of this mutant. Overexpression of SAP-1 induced disruption of the actin-based cytoskeleton as well as inhibited various cellular responses promoted by integrin-mediated cell adhesion, including cell spreading on fibronectin, growth factor-induced activation of extracellular signal-regulated kinase 2, and colony formation. Finally, the enzymatic activity of SAP-1, measured with an immunocomplex phosphatase assay, was substantially increased by cell-cell adhesion. These results suggest that SAP-1, by mediating the dephosphorylation of focal adhesion-associated substrates, negatively regulates integrin-promoted signaling processes and, thus, may contribute to contact inhibition of cell growth and motility.
Collapse
Affiliation(s)
- T Noguchi
- Second Department of Internal Medicine, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Inagaki K, Yamao T, Noguchi T, Matozaki T, Fukunaga K, Takada T, Hosooka T, Akira S, Kasuga M. SHPS-1 regulates integrin-mediated cytoskeletal reorganization and cell motility. EMBO J 2000; 19:6721-31. [PMID: 11118207 PMCID: PMC305898 DOI: 10.1093/emboj/19.24.6721] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The transmembrane glycoprotein SHPS-1 binds the protein tyrosine phosphatase SHP-2 and serves as its substrate. Although SHPS-1 has been implicated in growth factor- and cell adhesion-induced signaling, its biological role has remained unknown. Fibroblasts homozygous for expression of an SHPS-1 mutant lacking most of the cytoplasmic region of this protein exhibited increased formation of actin stress fibers and focal adhesions. They spread more quickly on fibronectin than did wild-type cells, but they were defective in subsequent polarized extension and migration. The extent of adhesion-induced activation of Rho, but not that of Rac, was also markedly reduced in the mutant cells. Activation of the Ras-extracellular signal-regulated kinase signaling pathway and of c-Jun N-terminal kinases by growth factors was either unaffected or enhanced in the mutant fibroblasts. These results demonstrate that SHPS-1 plays crucial roles in integrin-mediated cytoskeletal reorganization, cell motility and the regulation of Rho, and that it also negatively modulates growth factor-induced activation of mitogen-activated protein kinases.
Collapse
Affiliation(s)
- K Inagaki
- Second Department of Internal Medicine, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Araki T, Yamada M, Ohnishi H, Sano SI, Hatanaka H. BIT/SHPS-1 enhances brain-derived neurotrophic factor-promoted neuronal survival in cultured cerebral cortical neurons. J Neurochem 2000; 75:1502-10. [PMID: 10987830 DOI: 10.1046/j.1471-4159.2000.0751502.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) activates a variety of signaling molecules to exert various functions in the nervous system, including neuronal differentiation, survival, and regulation of synaptic plasticity. Previously, we have suggested that BIT/SHPS-1 (brain immunoglobulin-like molecule with tyrosine-based activation motifs/SHP substrate 1) is a substrate of Shp-2 and is involved in BDNF signaling in cultured cerebral cortical neurons. To elucidate the biological function of BIT/SHPS-1 in cultured cerebral cortical neurons in connection with its role in BDNF signaling, we generated recombinant adenovirus vectors expressing the wild type of rat BIT/SHPS-1 and its 4F mutant in which all tyrosine residues in the cytoplasmic domain of BIT/SHPS-1 were replaced with phenylalanine. Overexpression of wild-type BIT/SHPS-1, but not the 4F mutant, in cultured cerebral cortical neurons induced tyrosine phosphorylation of BIT/SHPS-1 itself and an association of Shp-2 with BIT/SHPS-1 even without addition of BDNF. We found that BDNF-promoted survival of cultured cerebral cortical neurons was enhanced by expression of the wild type and also 4F mutant, indicating that this enhancement by BIT/SHPS-1 does not depend on its tyrosine phosphorylation. BDNF-induced activation of mitogen-activated protein kinase was not altered by the expression of these proteins. In contrast, BDNF-induced activation of Akt was enhanced in neurons expressing wild-type or 4F mutant BIT/SHPS-1. In addition, LY294002, a specific inhibitor of phosphatidylinositol 3-kinase, blocked the enhancement of BDNF-promoted neuronal survival in both neurons expressing wild-type and 4F mutant BIT/SHPS-1. These results indicate that BIT/SHPS-1 contributes to BDNF-promoted survival of cultured cerebral cortical neurons, and that its effect depends on the phosphatidylinositol 3-kinase-Akt pathway. Our results suggest that a novel action of BIT/SHPS-1 does not occur through tyrosine phosphorylation of BIT/SHPS-1 in cultured cerebral cortical neurons.
Collapse
Affiliation(s)
- T Araki
- Division of Protein Biosynthesis, Institute for Protein Research, Osaka University, Osaka, Japan
| | | | | | | | | |
Collapse
|
15
|
Kodama A, Matozaki T, Fukuhara A, Kikyo M, Ichihashi M, Takai Y. Involvement of an SHP-2-Rho small G protein pathway in hepatocyte growth factor/scatter factor-induced cell scattering. Mol Biol Cell 2000; 11:2565-75. [PMID: 10930454 PMCID: PMC14940 DOI: 10.1091/mbc.11.8.2565] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) induces cell scattering through the tyrosine kinase-type HGF/SF receptor c-Met. We have previously shown that Rho small G protein (Rho) is involved in the HGF/SF-induced scattering of Madin-Darby canine kidney (MDCK) cells by regulating at least the assembly and disassembly of stress fibers and focal adhesions, but it remains unknown how c-Met regulates Rho activity. We have found here a novel signaling pathway of c-Met consisting of SHP-2-Rho that regulates the assembly and disassembly of stress fibers and focal adhesions in MDCK cells. SHP-2 is a protein-tyrosine phosphatase that contains src homology-2 domains. Expression of a dominant negative mutant of SHP-2 (SHP-2-C/S) markedly increased the formation of stress fibers and focal adhesions in MDCK cells and inhibited their scattering. C3, a Clostridium botulinum ADP-ribosyltransferase, and Y-27632, a specific inhibitor for ROCK, reversed the stimulatory effect of SHP-2-C/S on stress fiber formation and the inhibitory effect on cell scattering. Vav2 is a GDP/GTP exchange protein for Rho. Expression of a dominant negative mutant of Vav2 blocked the stimulatory effect of SHP-2-C/S on stress fiber formation. Conversely, expression of mutants of Vav2 that increased stress fiber formation inhibited HGF/SF-induced cell scattering. These results indicate that SHP-2 physiologically modulates the activity of Rho to form stress fibers and focal adhesions and thereby regulates HGF/SF-induced cell scattering. In addition, Vav2 may be involved in the SHP-2-Rho pathway.
Collapse
Affiliation(s)
- A Kodama
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine/Faculty of Medicine, Suita, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Due to the limited efficacy of cytotoxic chemotherapy in the treatment of advanced malignancy and its excessive toxicity precluding its use in chemoprevention, new therapeutic and preventive strategies have been sought. One of the most interesting of these new approaches is the manipulation of signal transduction pathways. Among the approaches being considered to eventuate such a strategy is the inhibition of autophosphorylation, a critical first step in the signal transduction pathways of many cell surface receptor tyrosine kinases, as well as of non-receptor tyrosine kinases. This article is intended to review those tyrosine kinase inhibitors that are currently in preclinical development, for which there are data to support consideration for their use in chemoprevention or cancer treatment. We will focus upon those agents that have received attention in the past several years.
Collapse
Affiliation(s)
- M L Levitt
- Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | |
Collapse
|
17
|
Araki T, Yamada M, Ohnishi H, Sano S, Uetsuki T, Hatanaka H. Shp-2 specifically regulates several tyrosine-phosphorylated proteins in brain-derived neurotrophic factor signaling in cultured cerebral cortical neurons. J Neurochem 2000; 74:659-68. [PMID: 10646517 DOI: 10.1046/j.1471-4159.2000.740659.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophins, promotes differentiation and survival and regulates plasticity of various types of neurons. BDNF binds to TrkB, a receptor tyrosine kinase, which results in the activation of a variety of signaling molecules to exert the various functions of BDNF. Shp-2, a Src homology 2 domain-containing cytoplasmic tyrosine phosphatase, is involved in neurotrophin signaling in PC12 cells and cultured cerebral cortical neurons. To examine the roles of Shp-2 in BDNF signaling in cultured rat cerebral cortical neurons, the wild-type and phosphatase-inactive mutant (C/S mutant) forms of Shp-2 were ectopically expressed in cultured neurons using recombinant adenovirus vectors. We found that several proteins tyrosine-phosphorylated in response to BDNF showed enhanced levels of tyrosine phosphorylation in cultured neurons infected with C/S mutant adenovirus in comparison with those infected with the wild-type Shp-2 adenovirus. In addition, in immunoprecipitates with anti-Shp-2 antibody, we also observed at least four proteins that displayed enhanced phosphorylation in response to BDNF in cultured neurons infected with the C/S mutant adenovirus. We found that the Shp-2-binding protein, brain immunoglobulin-like molecule with tyrosine-based activation motifs (BIT), was strongly tyrosine-phosphorylated in response to BDNF in cultured neurons expressing the C/S mutant of Shp-2. In contrast, the level of BDNF-induced phosphorylation of mitogen-activated protein kinase and coprecipitated proteins with anti-Trk and Grb2 antibodies did not show any difference between neurons infected with these two types of Shp-2. Furthermore, the survival effect of BDNF was enhanced by the wild type of Shp-2, although it was not influenced by the C/S mutant of Shp-2. These results indicated that in cultured cerebral cortical neurons Shp-2 is specifically involved in the regulation of several tyrosine-phosphorylated proteins, including BIT, in the BDNF signaling pathway. In addition, the phosphatase Shp-2 may not influence the level of BDNF-induced activation of mitogen-activated protein kinase in cultured cortical neurons. Further, Shp-2 may have potential to positively regulate BDNF-promoting neuronal survival.
Collapse
Affiliation(s)
- T Araki
- Division of Protein Biosynthesis, Institute for Protein Research, Osaka University, Suita, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Inagaki K, Noguchi T, Matozaki T, Horikawa T, Fukunaga K, Tsuda M, Ichihashi M, Kasuga M. Roles for the protein tyrosine phosphatase SHP-2 in cytoskeletal organization, cell adhesion and cell migration revealed by overexpression of a dominant negative mutant. Oncogene 2000; 19:75-84. [PMID: 10644982 DOI: 10.1038/sj.onc.1203204] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SHP-2, a SRC homology 2 domain-containing protein tyrosine phosphatase, mediates activation of Ras and mitogen-activated protein kinase by various mitogens and cell adhesion. Inhibition of endogenous SHP-2 by overexpression of a catalytically inactive (dominant negative) mutant in Chinese hamster ovary cells or Rat-1 fibroblasts has now been shown to induce a marked change in cell morphology (from elongated to less polarized) that is accompanied by substantial increases in the numbers of actin stress fibers and focal adhesion contacts. Overexpression of the SHP-2 mutant also increased the strength of cell-substratum adhesion and resulted in hyperphosphorylation of SHPS-1, a substrate of SHP-2 that contributes to cell adhesion-induced signaling. Inhibition of SHP-2 also markedly increased the rate of cell attachment to and cell spreading on extracellular matrix proteins such as fibronectin and vitronectin, effects that were accompanied by enhancement of adhesion-induced tyrosine phosphorylation of paxillin and p130Cas. In addition, cell migration mediated by fibronectin or vitronectin, but not that induced by insulin, was impaired by overexpression of the SHP-2 mutant. These results suggest that SHP-2 plays an important role in the control of cell shape by contributing to cytoskeletal organization, and that it is an important regulator of integrin-mediated cell adhesion, spreading, and migration as well as of tyrosine phosphorylation of focal adhesion contact-associated proteins.
Collapse
Affiliation(s)
- K Inagaki
- Second Department of Internal Medicine, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Some members of the CIS/SOCS/JAB/SSI family have been demonstrated to be cytokine-inducible inhibitors of cytokine signaling. Steps have now been made towards clarifying the biological function of two of these proteins, revealing that these inhibitors are essential for the correct maintenance of cytokine signaling.
Collapse
Affiliation(s)
- P E Kovanen
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, 20892-1674, USA
| | | |
Collapse
|
20
|
Yamada M, Ohnishi H, Sano S, Araki T, Nakatani A, Ikeuchi T, Hatanaka H. Brain-derived neurotrophic factor stimulates interactions of Shp2 with phosphatidylinositol 3-kinase and Grb2 in cultured cerebral cortical neurons. J Neurochem 1999; 73:41-9. [PMID: 10386953 DOI: 10.1046/j.1471-4159.1999.0730041.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Shp2, a protein tyrosine phosphatase possessing SH2 domains, is utilized in the intracellular signaling of various growth factors. Shp2 is highly expressed in the CNS. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, which also shows high levels of expression in the CNS, exerts neurotrophic and neuromodulatory effects in CNS neurons. We examined how BDNF utilizes Shp2 in its signaling pathway in cultured cerebral cortical neurons. We found that BDNF stimulated coprecipitation of several tyrosine-phosphorylated proteins with anti-Shp2 antibody and that Grb2 and phosphatidylinositol 3-kinase (PI3-K) were coprecipitated with anti-Shp2 antibody in response to BDNF. In addition, both anti-Grb2 and anti-PI3-K antibodies coprecipitated Shp2 in response to BDNF. The BDNF-stimulated coprecipitation of the tyrosine-phosphorylated proteins, Grb2, and PI3-K with anti-Shp2 antibody was completely inhibited by K252a, an inhibitor of TrkB receptor tyrosine kinase. This BDNF-stimulated Shp2 signaling was markedly sustained as well as BDNF-induced phosphorylation of TrkB and mitogen-activated protein kinases. In PC12 cells stably expressing TrkB, both BDNF and nerve growth factor stimulated Shp2 signaling similarly to that by BDNF in cultured cortical neurons. These results indicated that Shp2 shows cross-talk with various signaling molecules including Grb2 and PI3-K in BDNF-induced signaling and that Shp2 may be involved in the regulation of various actions of BDNF in CNS neurons.
Collapse
Affiliation(s)
- M Yamada
- Institute for Protein Research, Osaka University, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Park CY, Hayman MJ. The tyrosines in the bidentate motif of the env-sea oncoprotein are essential for cell transformation and are binding sites for Grb2 and the tyrosine phosphatase SHP-2. J Biol Chem 1999; 274:7583-90. [PMID: 10066827 DOI: 10.1074/jbc.274.11.7583] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transforming gene product of the S13 avian erythroblastosis virus, the env-sea protein, is a member of the hepatocyte growth factor receptor family of tyrosine kinases comprising Met, Ron, and Sea. Like all three members of this family, the env-sea protein has a so-called bidentate motif (Y557INMAVTY564VNL) composed of two tandemly arranged tyrosines in the carboxyl terminus. To investigate whether the tyrosine residues in this motif are essential for the env-sea-mediated transformation, we generated tyrosine to phenylalanine mutations. Substitutions of both tyrosine residues resulted in complete loss of the transforming activity. In contrast, single mutations at either tyrosine did not inhibit transformation of Rat1 cells, and mutation of tyrosine 564 actually increased transformation of Rat 1 cells. To define signaling pathways activated by the env-sea protein, we looked for protein-protein interactions mediated by these tyrosine residues. We show that the bidentate motif is responsible for interaction with the adapter protein Grb2, phosphatidylinositol 3-kinase, and the tyrosine phosphatase SHP-2. Furthermore, we show that microinjected Src homology 2 domains from either Grb2 or SHP-2 blocked the transforming activity of the env-sea protein. Together, these results suggest that the tyrosines within the bidentate motif are essential for the env-sea transformation.
Collapse
Affiliation(s)
- C Y Park
- Department of Molecular Genetics and Microbiology, State University of New York at Stony Brook, New York 11794-5222, USA
| | | |
Collapse
|
22
|
Abstract
The recent identification of many different protein tyrosine phosphatases (PTPs) has led to the recognition that these enzymes match protein tyrosine kinases (PTKs) in importance for intracellular signalling. The total number of PTPs encoded by the mammalian genome has been estimated at between 500 and approx. 2000. These estimates are imprecise due to the large number of sequence database entries that represent different splice forms, or duplicates of the same PTP sequence. A careful analysis of these entries, grouped by identical catalytic domain shows that no more than 48 full-length PTP sequences are currently known, and that their total number in the human genome may not exceed 100. An alignment of all catalytic domains also suggests that during evolution intragenic catalytic domain duplication, as seen in most membrane-bound PTPs, preceded gene duplication.
Collapse
Affiliation(s)
- R Hooft van Huijsduijnen
- Serono Pharmaceutical Research Institute, 14 chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland.
| |
Collapse
|
23
|
Adams S, van der Laan LJW, Vernon-Wilson E, Renardel de Lavalette C, Döpp EA, Dijkstra CD, Simmons DL, van den Berg TK. Signal-Regulatory Protein Is Selectively Expressed by Myeloid and Neuronal Cells. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.4.1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Signal-regulatory proteins (SIRP) are transmembrane glycoproteins with three extracellular Ig-like domains, closely related to Ag receptors Ig, TCR, and MHC, and a cytoplasmic domain with two immunoreceptor with tyrosine-based inhibition motifs that can interact with src homology 2 domain-containing phosphatases. SIRP have previously been shown to inhibit signaling through receptor tyrosine kinases, but their physiologic function is unknown. Here we demonstrate by expression cloning that the mAbs ED9, ED17, and MRC-OX41 recognize rat SIRP. In addition, we show for the first time that rat SIRP is selectively expressed by myeloid cells (macrophages, monocytes, granulocytes, dendritic cells) and neurons. Moreover, SIRP ligation induces nitric oxide production by macrophages. This implicates SIRP as a putative recognition/signaling receptor in both immune and nervous systems.
Collapse
Affiliation(s)
- Susan Adams
- *Cell Adhesion Laboratory, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Luc J. W. van der Laan
- †Department of Cell Biology and Immunology, Faculty of Medicine, Vrije University, Amsterdam, The Netherlands; and
| | - Elizabeth Vernon-Wilson
- *Cell Adhesion Laboratory, Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | - Ed A. Döpp
- †Department of Cell Biology and Immunology, Faculty of Medicine, Vrije University, Amsterdam, The Netherlands; and
| | - Christine D. Dijkstra
- †Department of Cell Biology and Immunology, Faculty of Medicine, Vrije University, Amsterdam, The Netherlands; and
| | - David L. Simmons
- ‡Department of Neuroscience, SmithKline Beecham, Harlow, United Kingdom
| | - Timo K. van den Berg
- †Department of Cell Biology and Immunology, Faculty of Medicine, Vrije University, Amsterdam, The Netherlands; and
| |
Collapse
|
24
|
Tsuda M, Matozaki T, Fukunaga K, Fujioka Y, Imamoto A, Noguchi T, Takada T, Yamao T, Takeda H, Ochi F, Yamamoto T, Kasuga M. Integrin-mediated tyrosine phosphorylation of SHPS-1 and its association with SHP-2. Roles of Fak and Src family kinases. J Biol Chem 1998; 273:13223-9. [PMID: 9582366 DOI: 10.1074/jbc.273.21.13223] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
SHPS-1 is a receptor-like glycoprotein that undergoes tyrosine phosphorylation and binds SHP-2, an Src homology 2 domain containing protein tyrosine phosphatase, in response to various mitogens. Cell adhesion to extracellular matrix proteins such as fibronectin and laminin also induced the tyrosine phosphorylation of SHPS-1 and its association with SHP-2. These responses were markedly reduced in cells overexpressing the Csk kinase or in cells that lack focal adhesion kinase or the Src family kinases Src or Fyn. However, unlike Src, focal adhesion kinase did not catalyze phosphorylation of the cytoplasmic domain of SHPS-1 in vitro. Overexpression of a catalytically inactive SHP-2 markedly inhibited activation of mitogen-activated protein (MAP) kinase in response to fibronectin stimulation without affecting the extent of tyrosine phosphorylation of focal adhesion kinase or its interaction with the docking protein Grb2. Overexpression of wild-type SHPS-1 did not enhance fibronectin-induced activation of MAP kinase. These results indicate that the binding of integrins to the extracellular matrix induces tyrosine phosphorylation of SHPS-1 and its association with SHP-2, and that such phosphorylation of SHPS-1 requires both focal adhesion kinase and an Src family kinase. In addition to its role in receptor tyrosine kinase-mediated MAP kinase activation, SHP-2 may play an important role, partly through its interaction with SHPS-1, in the activation of MAP kinase in response to the engagement of integrins by the extracellular matrix.
Collapse
Affiliation(s)
- M Tsuda
- Second Department of Internal Medicine, Kobe University School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ni R, Nishikawa Y, Carr BI. Cell growth inhibition by a novel vitamin K is associated with induction of protein tyrosine phosphorylation. J Biol Chem 1998; 273:9906-11. [PMID: 9545333 DOI: 10.1074/jbc.273.16.9906] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that a synthetic vitamin K analog, 2-(2-mercaptoethanol)-3-methyl-1,4-naphthoquinone or compound 5 (Cpd 5), potently inhibits cell growth and suggested that the analog exerts its effects mainly via sulfhydryl arylation rather than redox cycling. Since protein-tyrosine phosphatases (PTPases), which have pivotal roles in many cellular functions, have a critical cysteine in their active site, we have proposed PTPases as likely targets for Cpd 5. To test this hypothesis, we examined the effects of Cpd 5 on protein tyrosine phosphorylation of cellular proteins and on the activity of PTPases. We found that Cpd 5 rapidly induced protein tyrosine phosphorylation in a human hepatocellular carcinoma cell line (Hep3B) at growth inhibitory doses, and the effect was blocked by thiols but not by non-thiol antioxidants or tyrosine kinase inhibitors. Cpd 5 inhibited PTPase activity, which was also significantly antagonized by reduced glutathione. Furthermore, the well studied PTPase inhibitor orthovanadate also induced protein tyrosine phosphorylation and growth inhibition in Hep3B cells. These results suggest that inhibition of cellular PTPases by sulfhydryl arylation and subsequent perturbation of protein tyrosine phosphorylation may be involved in the mechanisms of Cpd 5-induced cell growth inhibition.
Collapse
Affiliation(s)
- R Ni
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
26
|
Takada T, Matozaki T, Takeda H, Fukunaga K, Noguchi T, Fujioka Y, Okazaki I, Tsuda M, Yamao T, Ochi F, Kasuga M. Roles of the complex formation of SHPS-1 with SHP-2 in insulin-stimulated mitogen-activated protein kinase activation. J Biol Chem 1998; 273:9234-42. [PMID: 9535915 DOI: 10.1074/jbc.273.15.9234] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SHPS-1 is a receptor-like protein that undergoes tyrosine phosphorylation and binds SHP-2, an SH2 domain-containing protein tyrosine phosphatase, in response to insulin and other mitogens. The overexpression of wild-type SHPS-1, but not of a mutant SHPS-1 in which all four tyrosine residues in its cytoplasmic region were mutated to phenylalanine, markedly enhanced insulin-induced activation of mitogen-activated protein kinase in Chinese hamster ovary cells that overexpress the human insulin receptor. Mutation of each tyrosine residue individually revealed that the major sites of tyrosine phosphorylation of SHPS-1 in response to insulin are Tyr449 and Tyr473. In addition, mutation of either Tyr449 or Tyr473 abolished the insulin-induced tyrosine phosphorylation of SHPS-1 and its association with SHP-2. Surface plasmon resonance analysis showed that glutathione S-transferase fusion proteins containing the NH2-terminal or COOH-terminal SH2 domains of SHP-2 bound preferentially to phosphotyrosyl peptides corresponding to the sequences surrounding Tyr449 or Tyr473, respectively, of SHPS-1. Furthermore, phosphotyrosyl peptides containing Tyr449 or Tyr473 were effective substrates for the phosphatase activity of recombinant SHP-2 in vitro. Together, these results suggest that insulin may induce phosphorylation of SHPS-1 at Tyr449 and Tyr473, to which SHP-2 then binds through its NH2-terminal and COOH-terminal SH2 domains, respectively. SHPS-1 may play a crucial role both in the recruitment of SHP-2 from the cytosol to a site near the plasma membrane and in increasing its catalytic activity, thereby positively regulating the RAS-mitogen-activated protein kinase signaling cascade in response to insulin.
Collapse
Affiliation(s)
- T Takada
- Second Department of Internal Medicine, Kobe University School of Medicine, Kusunoki-cho, Chuo-ku, Kobe 650, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang J, Riedel H. Insulin-like growth factor-I receptor and insulin receptor association with a Src homology-2 domain-containing putative adapter. J Biol Chem 1998; 273:3136-9. [PMID: 9452421 DOI: 10.1074/jbc.273.6.3136] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Insulin receptor (IR) and the related insulin-like growth factor-I (IGF-I) receptor (IGF-IR) mediate a variety of metabolic and mitogenic cellular responses, some of which may involve unidentified receptor targets. A Src homology-2 (SH2) domain-coding region of a mouse protein was cloned based on its interaction with IR. It was designated mSH2-B based on its high similarity to an earlier reported rat sequence SH2-B. A role of mSH2-B in IGF-I and insulin action was suggested by the interaction of the SH2 domain with activated IGF-IR and IR catalytic fragments but not with an inactive IR catalytic fragment in the yeast two-hybrid system in vivo and by the hormone-dependent association of a glutathione S-transferase (GST) SH2 domain fusion protein of mSH2-B with both receptors in cell extracts. A comparison of IGF-IR and IR mutants lacking individual Tyr autophosphorylation sites for association with GST mSH2-B showed that homologous juxtamembrane (IR960/IGF-IR950) and C-terminal (IR1322/IGF-IR1316) receptor motifs were required. Synthetic phosphopeptides representing IR960 and IR1322 competed for GST mSH2-B binding to the receptor, suggesting that both motifs participate in the association with mSH2-B. Antibodies raised against GST mSH2-B identified a cellular protein of 92 kDa that was not found to be phosphorylated on Tyr. It co-immunoprecipitated with IGF-IR or IR, which was strictly dependent on receptor activation. IR and IGF-IR Tyr phosphorylation motifs were not identified in the complete SH2-B primary structure, suggesting that it may participate as an adapter rather than a substrate in the IGF-I and insulin signaling pathways.
Collapse
Affiliation(s)
- J Wang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | |
Collapse
|
28
|
Kolibaba KS, Druker BJ. Protein tyrosine kinases and cancer. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1333:F217-48. [PMID: 9426205 DOI: 10.1016/s0304-419x(97)00022-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- K S Kolibaba
- Division of Hematology and Medical Oncology, Oregon Health Sciences University, Portland 97201, USA
| | | |
Collapse
|
29
|
Ochi F, Matozaki T, Noguchi T, Fujioka Y, Yamao T, Takada T, Tsuda M, Takeda H, Fukunaga K, Okabayashi Y, Kasuga M. Epidermal growth factor stimulates the tyrosine phosphorylation of SHPS-1 and association of SHPS-1 with SHP-2, a SH2 domain-containing protein tyrosine phosphatase. Biochem Biophys Res Commun 1997; 239:483-7. [PMID: 9344856 DOI: 10.1006/bbrc.1997.7489] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
SHPS-1 is a 120 kDa glycosylated receptor-like protein that contains immunoglobulin-like domains in its extracellular region and four potential tyrosine phosphorylation for SH2 domain binding sites in its cytoplasmic region. Epidermal growth factor (EGF) stimulated the rapid tyrosine phosphorylation of SHPS-1 and subsequent association of SHPS-1 with SHP-2, a protein tyrosine phosphatase containing SH2 domains, in Chinese hamster ovary cells overexpressing human EGF receptors. In the cells overexpressing SHPS-1, the tyrosine phosphorylation of SHPS-1 was more evident than that observed in parent cells. However, overexpression of SHPS-1 alone did not affect the activation of MAP kinase in response to EGF. These results suggest that SHPS-1 may be involved in the recruitment of SHP-2 from the cytosol to the plasma membrane in response to EGF.
Collapse
Affiliation(s)
- F Ochi
- Second Department of Internal Medicine, Kobe University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Nanney LB, Davidson MK, Gates RE, Kano M, King LE. Altered distribution and expression of protein tyrosine phosphatases in normal human skin as compared to squamous cell carcinomas. J Cutan Pathol 1997; 24:521-32. [PMID: 9404849 DOI: 10.1111/j.1600-0560.1997.tb01456.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Amounts and subcellular localizations of 4 protein tyrosine phosphatases (PTPs) were compared in cultured normal human keratinocytes, an immortalized keratinocyte cell line, and 2 squamous cell carcinoma (SCC) lines. Cellular localizations for PTPs were determined in biopsies of normal human skin and SCCs. Compared to normal keratinocytes, SCC cell lines had higher levels of PTP-1B and T-cell PTP and comparable levels of PTP-1C or PTP-1D. The subcellular localization of each PTP was similar in the 3 types of keratinocytes with PTP-1B localizing to the endoplasmic reticulum, T-cell PTP exclusively found in the nucleus, PTP-1C localized to the plasma membrane, cytosol and nucleus, and PTP-1D present in both cytosol and nucleus. Compared to normal skin, immunoreactive PTP-1B was markedly increased in the invasive margins of SCCs while T-cell PTP was generally increased in tumors. PTP-1C immunostaining varied between cells with no obvious difference between normal and neoplastic tissues. The intensity and distribution of immunoreactive PTP-1D varied greatly between cells within tumors. These differences in amounts and in cellular and subcellular localization of these PTPs, especially those differences in invasive margins of SCCs, may reflect the diverse roles these PTPs play in the proliferation and invasive potential of neoplastic keratinocytes.
Collapse
Affiliation(s)
- L B Nanney
- Department of Plastic Surgery, Vanderbilt School of Medicine, Department of Veterans Affairs, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
31
|
Altin JG, Sloan EK. The role of CD45 and CD45-associated molecules in T cell activation. Immunol Cell Biol 1997; 75:430-45. [PMID: 9429890 DOI: 10.1038/icb.1997.68] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
CD45 (lymphocyte common antigen) is a receptor-linked protein tyrosine phosphatase that is expressed on all leucocytes, and which plays a crucial role in the function of these cells. On T cells the extracellular domain of CD45 is expressed in several different isoforms, and the particular isoform(s) expressed depends on the particular subpopulation of cell, their state of maturation, and whether or not they have previously been exposed to antigen. It has been established that the expression of CD45 is essential for the activation of T cells via the TCR, and that different CD45 isoforms display a different ability to support T cell activation. Although the tyrosine phosphatase activity of the intracellular region of CD45 has been shown to be crucial for supporting signal transduction from the TCR, the nature of the ligands for the different isoforms of CD45 have been elusive. Moreover, the precise mechanism by which potential ligands may regulate CD45 function is unclear. Interestingly, in T cells CD45 has been shown to associate with numerous molecules, both membrane associated and intracellular; these include components of the TCR-CD3 complex and CD4/CD8. In addition, CD45 is reported to associate with several intracellular protein tyrosine kinases including p56lck and p59fyn of the src family, and ZAP-70 of the Syk family, and with numerous proteins of 29-34 kDa. These CD45-associated molecules may play an important role in regulating CD45 tyrosine phosphatase activity and function. However, although the role of some of the CD45-associated molecules (e.g. CD45-AP and LPAP) has become better understood in recent years, the role of others still remains obscure. This review aims to summarize recent findings on the role of CD45 and CD45-associated molecules in T cell activation, and to highlight issues that seem relevant to ongoing research in this area.
Collapse
Affiliation(s)
- J G Altin
- Division of Biochemistry and Molecular Biology, School of Life Sciences, Faculty of Science, Australian National University, Canberra, Australia.
| | | |
Collapse
|
32
|
van Hoek ML, Allen CS, Parsons SJ. Phosphotyrosine phosphatase activity associated with c-Src in large multimeric complexes isolated from adrenal medullary chromaffin cells. Biochem J 1997; 326 ( Pt 1):271-7. [PMID: 9337879 PMCID: PMC1218665 DOI: 10.1042/bj3260271] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chromaffin cells, which secrete catecholamines in response to acetylcholine, express high levels of the Src-family tyrosine kinases. These kinases contain protein-protein interaction domains which bind signal transduction proteins that participate in a variety of cellular processes. To determine if signalling proteins bind c-Src in chromaffin cells, we examined c-Src immunocomplexes for co-precipitating proteins. We discovered a phosphotyrosine phosphatase (PTPase; EC 3.1.3.48) activity which associates with specific subcellular pools of c-Src in vivo and which preferentially binds the SH2 (Src homology 2) domain of c-Src in vitro. Known PTPases were not identified by blotting of c-Src immunocomplexes with a panel of anti-PTPase antibodies, suggesting that the PTPase may be a novel family member. The c-Src-PTPase complex is enriched in the plasma membrane fraction and exists in several large complexes, as revealed by gel-filtration analysis. This PTPase activity is altered rapidly following stimulation by secretagogues, decreasing within 30 s and returning to basal levels by 60 s of stimulation. Both the subcellular localization and rapid activity changes suggest that the c-Src-associated PTPase may function in early signalling events emanating from the nicotinic acetylcholine receptor. In support of this is the co-precipitation of a PTPase activity with the nicotinic acetylcholine receptor and co-chromatography of this receptor with one or the c-Src-PTPase complexes.
Collapse
Affiliation(s)
- M L van Hoek
- Department of Microbiology, University of Virginia, Charlottesville 22908, USA
| | | | | |
Collapse
|
33
|
Schiemann WP, Bartoe JL, Nathanson NM. Box 3-independent signaling mechanisms are involved in leukemia inhibitory factor receptor alpha- and gp130-mediated stimulation of mitogen-activated protein kinase. Evidence for participation of multiple signaling pathways which converge at Ras. J Biol Chem 1997; 272:16631-6. [PMID: 9195977 DOI: 10.1074/jbc.272.26.16631] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chimeric receptors containing the entire or various cytoplasmic domains of either gp130 or leukemia inhibitory factor receptor alpha (LIFR) were used to identify signaling molecules and regions of these polypeptides required for the stimulation of mitogen-activated protein kinase (MAPK). Coexpression of dominant-negative Jak2 inhibited chimeric receptor-stimulated MAPK activity by approximately 70%, while expression of dominant-negative Ras completely blocked MAPK activation by either receptor polypeptide. Deletion analysis identified a 24-amino acid region of gp130 that was necessary for maximal stimulation of MAPK, and contained box 3 (positions 120-129) and a consensus tyrosine binding motif (Tyr-118) for the protein-tyrosine phosphatase, SHP2. Expression of receptors lacking this region or of chimeric gp130(Y118F) point mutants inhibited MAPK activity by approximately 55%, suggesting that Tyr-118, but not box 3, was required during activation of MAPK by gp130. Similarly, expression of chimeric LIFR constructs lacking box 3 maximally stimulated MAPK activity, while those lacking Tyr-115, a putative SHP2 binding site, inhibited stimulation of MAPK by this polypeptide. Our results demonstrate that gp130 and LIFR stimulate MAPK activity through box 3-independent mechanisms involving: (i) effects at Tyr-118 and Tyr-115, respectively, for maximal stimulation of MAPK activity and (ii) a Jak/Tyk-dependent pathway that, together with Tyr-118- or Tyr-115-generated signals, converges at the level of Ras during activation of MAPK by cytokine.
Collapse
Affiliation(s)
- W P Schiemann
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
34
|
Kharitonenkov A, Chen Z, Sures I, Wang H, Schilling J, Ullrich A. A family of proteins that inhibit signalling through tyrosine kinase receptors. Nature 1997; 386:181-6. [PMID: 9062191 DOI: 10.1038/386181a0] [Citation(s) in RCA: 512] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phosphotyrosine phosphatases are critical negative or positive regulators in the intracellular signalling pathways that result in growth-factor-specific cell responses such as mitosis, differentiation, migration, survival, transformation or death. The SH2-domain-containing phosphotyrosine phosphatase SHP-2 is a positive signal transducer for several receptor tyrosine kinases (RTKs) and cytokine receptors. To investigate its mechanism of action we purified a tyrosine-phosphorylated glycoprotein which in different cell types associates tightly with SHP-2 and appears to serve as its substrate. Peptide sequencing in conjunction with complementary DNA cloning revealed a new gene family of at least fifteen members designated signal-regulatory proteins (SIRPs). They consist of two subtypes distinguished by the presence or absence of a cytoplasmic SHP-2-binding domain. The transmembrane polypeptide SIRP alpha1 is a substrate of activated RTKs and in its tyrosine-phosphorylated form binds SHP-2 through SH2 interactions and acts as its substrate. It also binds SHP-1 and Grb2 in vitro and has negative regulatory effects on cellular responses induced by growth factors, oncogenes or insulin. Our findings indicate that proteins belonging to the SIRP family generally regulate signals defining different physiological and pathological processes.
Collapse
Affiliation(s)
- A Kharitonenkov
- Department of Molecular Biology, Max-Planck-Institute für Biochemie, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Yamao T, Matozaki T, Amano K, Matsuda Y, Takahashi N, Ochi F, Fujioka Y, Kasuga M. Mouse and human SHPS-1: molecular cloning of cDNAs and chromosomal localization of genes. Biochem Biophys Res Commun 1997; 231:61-7. [PMID: 9070220 DOI: 10.1006/bbrc.1996.6047] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
SHPS-1 (SHP substrate-1) is a glycosylated receptor-like protein with three immunoglobulin-like domains in its extracellular region and four YXX(L/V/I) motifs, potential tyrosine phosphorylation and SRC homology 2 (SH2) domain binding sites, in its cytoplasmic region. Various mitogens and cell adhesion induce tyrosine phosphorylation of SHPS-1 and its subsequent association with SHP-2, and SH2 domain-containing protein tyrosine phosphatase, suggesting that SHPS-1 plays a role in cell signaling in response to both growth factors and cell adhesion. The mouse and human cDNAs encoding SHPS-1 have now been isolated. The deduced amino acid sequences of rat, human, and mouse SHPS-1 show identities of 65 to 81%. In addition to the SH2 domain binding sites, a proline-rich putative SH3 domain binding site was detected in the cytoplasmic region of SHPS-1. Northern blot analysis revealed that human SHPS-1 mRNA is most abundant in brain and that the mouse mRNA is present in embryos as early as day 7. Fluorescence in situ hybridization localized the SHPS-1 gene to human chromosome 20p13 and the F3 band of mouse chromosome 2. Furthermore, interspecific backcross analysis placed the mouse SHPS-1 locus 5.0 centimorgans distal and 1.4 centimorgans proximal to the microsatellite markers D2Mit63 and D2Mit19, respectively, in a region associated with the mutations coloboma (Cm), lethal milk (lm), and well-haarig (we).
Collapse
Affiliation(s)
- T Yamao
- Second Department of Internal Medicine, Kobe University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fujioka Y, Matozaki T, Noguchi T, Iwamatsu A, Yamao T, Takahashi N, Tsuda M, Takada T, Kasuga M. A novel membrane glycoprotein, SHPS-1, that binds the SH2-domain-containing protein tyrosine phosphatase SHP-2 in response to mitogens and cell adhesion. Mol Cell Biol 1996; 16:6887-99. [PMID: 8943344 PMCID: PMC231692 DOI: 10.1128/mcb.16.12.6887] [Citation(s) in RCA: 362] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Protein tyrosine phosphatases (PTPases), such as SHP-1 and SHP-2, that contain Src homology 2 (SH2) domains play important roles in growth factor and cytokine signal transduction pathways. A protein of approximately 115 to 120 kDa that interacts with SHP-1 and SHP-2 was purified from v-src-transformed rat fibroblasts (SR-3Y1 cells), and the corresponding cDNA was cloned. The predicted amino acid sequence of the encoded protein, termed SHPS-1 (SHP substrate 1), suggests that it is a glycosylated receptor-like protein with three immunoglobulin-like domains in its extracellular region and four YXX(L/V/I) motifs, potential tyrosine phosphorylation and SH2-domain binding sites, in its cytoplasmic region. Various mitogens, including serum, insulin, and lysophosphatidic acid, or cell adhesion induced tyrosine phosphorylation of SHPS-1 and its subsequent association with SHP-2 in cultured cells. Thus, SHPS-1 may be a direct substrate for both tyrosine kinases, such as the insulin receptor kinase or Src, and a specific docking protein for SH2-domain-containing PTPases. In addition, we suggest that SHPS-1 may be a potential substrate for SHP-2 and may function in both growth factor- and cell adhesion-induced cell signaling.
Collapse
Affiliation(s)
- Y Fujioka
- Second Department of Internal Medicine, Kobe University School of Medicine, Chuo-ku, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Pulmonary hypertension is associated with pulmonary vascular remodelling, rendering the vessels unresponsive to vasodilators. An understanding of the mechanisms which cause this remodelling is required, which is likely to be linked to changes in vascular tone whether stimulated by hypoxia or other factors. One way to approach this is to try to understand the intracellular signalling pathways associated with hypoxia in pulmonary artery cells. This understanding could provide opportunities for therapeutic intervention using agents which will interfere with the signalling systems.
Collapse
Affiliation(s)
- P H Scott
- Department of Respiratory Medicine, Western Infirmary, Glasgow, UK
| | | |
Collapse
|