1
|
Sebastià C, Gallopin M, Ramayo-Caldas Y, Estellé J, Valdés-Hernández J, Castelló A, Sánchez A, Crespo-Piazuelo D, Folch JM. Gene co-expression network analysis for porcine intramuscular fatty acid composition. Animal 2024; 18:101259. [PMID: 39137614 DOI: 10.1016/j.animal.2024.101259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/15/2024] Open
Abstract
In pigs, meat quality depends markedly on the fatty acid (FA) content and composition of the intramuscular fat, which is partly determined by the gene expression in this tissue. The aim of this work was to identify the link between muscle gene expression and its FA composition. In an (Iberian × Duroc) × Duroc backcrossed pig population, we identified modules of co-expressed genes, and correlation analyses were performed for each of them versus the phenotypes, finding four relevant modules. Two of the modules were positively correlated with saturated FAs (SFAs) and monounsaturated FAs (MUFAs), while negatively correlated with polyunsaturated FAs (PUFAs) and the omega-6/omega-3 ratio. The gene-enrichment analysis showed that these modules had over-representation of pathways related with the biosynthesis of unsaturated FAs, the Peroxisome proliferator-activated receptor signalling pathway and FA elongation. The two other relevant modules were positively correlated with PUFA and the n-6/n-3 ratio, but negatively correlated with SFA and MUFA. In this case, they had an over-representation of pathways related with fatty and amino acid degradation, and with oxidative phosphorylation. Using a graphical Gaussian model, we inferred a network of connections between the genes within each module. The first module had 52 genes with 87 connections, and the most connected genes were ADIPOQ, which is related with FA oxidation, and ELOVL6 and FABP4, both involved in FA metabolism. The second module showed 196 genes connected by 263 edges, being FN1 and MAP3K11 the most connected genes. On the other hand, the third module had 161 genes connected by 251 edges and ATG13 was the top neighbouring gene, while the fourth module had 224 genes and 655 connections, and its most connected genes were related with mitochondrial pathways. Overall, this work successfully identified relevant muscle gene networks and modules linked with FA composition, providing further insights on how the physiology of the pigs influences FA composition.
Collapse
Affiliation(s)
- C Sebastià
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain.
| | - M Gallopin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1, Avenue de la Terrasse, Bâtiment 21, 91190 Gif-sur-Yvette, France
| | - Y Ramayo-Caldas
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain
| | - J Estellé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Domaine de Vilvert, 78350 Jouy-en-Josas, France
| | - J Valdés-Hernández
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain
| | - A Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain
| | - A Sánchez
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain
| | - D Crespo-Piazuelo
- Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Spain; R&D Department, Cuarte S.L., Grupo Jorge, Autov. Zaragoza-Logroño, km.9, 50120 Monzalbarba, Spain
| | - J M Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, C. de la Vall Moronta, 08193 Bellaterra, Spain; Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Edifici V, Travessera dels Turons, 08193 Bellaterra, Spain
| |
Collapse
|
2
|
Shammas MK, Huang X, Wu BP, Fessler E, Song I, Randolph NP, Li Y, Bleck CK, Springer DA, Fratter C, Barbosa IA, Powers AF, Quirós PM, Lopez-Otin C, Jae LT, Poulton J, Narendra DP. OMA1 mediates local and global stress responses against protein misfolding in CHCHD10 mitochondrial myopathy. J Clin Invest 2022; 132:157504. [PMID: 35700042 PMCID: PMC9282932 DOI: 10.1172/jci157504] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial stress triggers a response in the cell’s mitochondria and nucleus, but how these stress responses are coordinated in vivo is poorly understood. Here, we characterize a family with myopathy caused by a dominant p.G58R mutation in the mitochondrial protein CHCHD10. To understand the disease etiology, we developed a knockin (KI) mouse model and found that mutant CHCHD10 aggregated in affected tissues, applying a toxic protein stress to the inner mitochondrial membrane. Unexpectedly, the survival of CHCHD10-KI mice depended on a protective stress response mediated by the mitochondrial metalloendopeptidase OMA1. The OMA1 stress response acted both locally within mitochondria, causing mitochondrial fragmentation, and signaled outside the mitochondria, activating the integrated stress response through cleavage of DAP3-binding cell death enhancer 1 (DELE1). We additionally identified an isoform switch in the terminal complex of the electron transport chain as a component of this response. Our results demonstrate that OMA1 was critical for neonatal survival conditionally in the setting of inner mitochondrial membrane stress, coordinating local and global stress responses to reshape the mitochondrial network and proteome.
Collapse
Affiliation(s)
- Mario K Shammas
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| | - Xiaoping Huang
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| | - Beverly P Wu
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| | - Evelyn Fessler
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Insung Song
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| | - Nicholas P Randolph
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, United States of America
| | - Christopher Ke Bleck
- Electron Microscopy Core Facility, National Heart, Lung, and Blood Institute, Bethesda, United States of America
| | - Danielle A Springer
- Mouse Phenotyping Core, National Heart, Lung, and Blood Institute, Bethesda, United States of America
| | - Carl Fratter
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Ines A Barbosa
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | | | - Pedro M Quirós
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, Oviedo, Spain
| | - Lucas T Jae
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Joanna Poulton
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Derek P Narendra
- Inherited Movement Disorders Unit, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, United States of America
| |
Collapse
|
3
|
Rcf proteins and their differential specificity for respiratory chain complexes: A unique role for Rcf2 on oxygen sensitive supercomplexes? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119133. [PMID: 34450214 DOI: 10.1016/j.bbamcr.2021.119133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022]
Abstract
The respiratory chain, embedded in the inner mitochondrial membrane, is organized as a network of individual complexes, as well as large supercomplex structures. In the yeast S. cerevisiae, these supercomplexes consist of a dimeric cytochrome bc1-complex adjoined by one or two copies of cytochrome c oxidase. The formation of these complexes is a dynamic process and is regulated by various factors in order to adapt to environmental and metabolic changes. These adaptions occur at the level of enzyme regulation, complex assembly, as well as altered nuclear and mitochondrial transcription and translation. Members of the Rcf protein family (Rcf1, Rcf2 and Rcf3) are required for respiratory complex biogenesis and act mainly by regulating the assembly and enzyme activity of complex IV within supercomplexes. Rcf1 functions in the assembly process via the COX3 module, whereas Rcf2 and Rcf3 are responsible for enzymatic regulation. In this study, we have extended this knowledge to show that Rcf2 and Rcf3 can also associate with newly synthesized mitochondrial encoded proteins, such as Cox3, and therefore contribute to complex IV assembly. Since the Rcf proteins have overlapping regions of sequence similarities, we engineered novel fusion proteins of Rcf1 and Rcf3, with parts of Rcf2, to probe which of the Rcf protein domains can be attributed to their functions. The fusion proteins could compensate for the individual phenotypes of the complexIV assembly defect and the lack of complex IV regulation. Finally, the role of Rcf proteins for defined species of respiratory chain complexes in a hypoxic model was investigated, uncovering a unique association of Rcf2 with the hypoxic III2IV supercomplex. We therefore suggest an involvement of Rcf2 for adaption of the respiratory chain to altering oxygen levels.
Collapse
|
4
|
Nagai Y, Matsuoka TA, Shimo N, Miyatsuka T, Miyazaki S, Tashiro F, Miyazaki JI, Katakami N, Shimomura I. Glucotoxicity-induced suppression of Cox6a2 expression provokes β-cell dysfunction via augmented ROS production. Biochem Biophys Res Commun 2021; 556:134-141. [PMID: 33839409 DOI: 10.1016/j.bbrc.2021.03.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress is a deteriorating factor for pancreatic β-cells under chronic hyperglycemia in diabetes. However, the molecular mechanism underlying the increase in oxidative stress in β-cells under diabetic conditions remains unclear. We demonstrated previously that the selective alleviation of glucotoxicity ameliorated the downregulation of several β-cell factors, including Cox6a2. Cox6a2 encodes a subunit of the respiratory chain complex IV in mitochondria. In this study, we analyzed the role of Cox6a2 in pancreatic β-cell function and its pathophysiological significance in diabetes mellitus. Cox6a2-knockdown experiments in MIN6-CB4 cells indicated an increased production of reactive oxygen species as detected by CellROX Deep Red reagent using flow cytometry. In systemic Cox6a2-knockout mice, impaired glucose tolerance was observed under a high-fat high-sucrose diet. However, insulin resistance was reduced when compared with control littermates. This indicates a relative insufficiency of β-cell function. To examine the transcriptional regulation of Cox6a2, ATAC-seq with islet DNA was performed and an open-chromatin area within the Cox6a2 enhancer region was detected. Reporter gene analysis using this area revealed that MafA directly regulates Cox6a2 expression. These findings suggest that the decreased expression of Cox6a2 increases the levels of reactive oxygen species and that Mafa is associated with decreased Cox6a2 expression under glucotoxic conditions.
Collapse
Affiliation(s)
- Yasuki Nagai
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Taka-Aki Matsuoka
- First Department of Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Naoki Shimo
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| | - Takeshi Miyatsuka
- Department of Metabolism and Endocrinology, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Satsuki Miyazaki
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fumi Tashiro
- Division of Stem Cell Regulation Research, Center for Medical Research and Education, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun-Ichi Miyazaki
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Naoto Katakami
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan; Department of Metabolism and Atherosclerosis, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
5
|
Balnis J, Drake LA, Vincent CE, Korponay TC, Singer DV, Lacomis D, Lee CG, Elias JA, Jourd'heuil D, Singer HA, Jaitovich A. Succinate Dehydrogenase (SDH)-subunit C Regulates Muscle Oxygen Consumption and Fatigability in an Animal Model of Pulmonary Emphysema. Am J Respir Cell Mol Biol 2021; 65:259-271. [PMID: 33909984 DOI: 10.1165/rcmb.2020-0551oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Patients with pulmonary emphysema often develop locomotor muscle dysfunction, which is independently associated with disability and higher mortality in that population. Muscle dysfunction entails reduced force-generation capacity which partially depends on fibers' oxidative potential, yet very little mechanistic research has focused on muscle respiration in pulmonary emphysema. Using a recently established animal model of pulmonary emphysema-driven skeletal muscle dysfunction, we found downregulation of succinate dehydrogenase (SDH) subunit C in association with lower oxygen consumption and fatigue-tolerance in locomotor muscles. Reduced SDH activity has been previously observed in muscles from patients with pulmonary emphysema and we found that SDHC is required to support respiration in cultured muscle cells. Moreover, in-vivo gain of SDH function in emphysema animals muscles resulted in better oxygen consumption rate (OCR) and fatigue tolerance. These changes correlated with a larger number of relatively more oxidative type 2-A and 2X fibers, and a reduced amount of 2B fibers. Our data suggests that SDHC is a key regulator of respiration and fatigability in pulmonary emphysema-driven skeletal muscles, which could be impactful to develop strategies aimed at attenuating this comorbidity.
Collapse
Affiliation(s)
- Joseph Balnis
- Albany Medical College, 1092, Albany, New York, United States
| | - Lisa A Drake
- Albany Medical Center, 138207, Albany, New York, United States
| | | | | | - Diane V Singer
- Albany Medical College, 1092, Albany, New York, United States
| | - David Lacomis
- University of Pittsburgh, 6614, Pittsburgh, Pennsylvania, United States
| | - Chun Geun Lee
- Brown University, 6752, Molecular Microbiology and Immunology, Providence, Rhode Island, United States
| | - Jack A Elias
- Brown University, 6752, Medicine and Biologic Science, Providence, Rhode Island, United States
| | | | - Harold A Singer
- Albany Medical College, 1092, Albany, New York, United States
| | - Ariel Jaitovich
- Albany Medical College Center for Cardiovascular Sciences, 150554, Medicine, Albany, New York, United States;
| |
Collapse
|
6
|
Blackout in the powerhouse: clinical phenotypes associated with defects in the assembly of OXPHOS complexes and the mitoribosome. Biochem J 2021; 477:4085-4132. [PMID: 33151299 PMCID: PMC7657662 DOI: 10.1042/bcj20190767] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Mitochondria produce the bulk of the energy used by almost all eukaryotic cells through oxidative phosphorylation (OXPHOS) which occurs on the four complexes of the respiratory chain and the F1–F0 ATPase. Mitochondrial diseases are a heterogenous group of conditions affecting OXPHOS, either directly through mutation of genes encoding subunits of OXPHOS complexes, or indirectly through mutations in genes encoding proteins supporting this process. These include proteins that promote assembly of the OXPHOS complexes, the post-translational modification of subunits, insertion of cofactors or indeed subunit synthesis. The latter is important for all 13 of the proteins encoded by human mitochondrial DNA, which are synthesised on mitochondrial ribosomes. Together the five OXPHOS complexes and the mitochondrial ribosome are comprised of more than 160 subunits and many more proteins support their biogenesis. Mutations in both nuclear and mitochondrial genes encoding these proteins have been reported to cause mitochondrial disease, many leading to defective complex assembly with the severity of the assembly defect reflecting the severity of the disease. This review aims to act as an interface between the clinical and basic research underpinning our knowledge of OXPHOS complex and ribosome assembly, and the dysfunction of this process in mitochondrial disease.
Collapse
|
7
|
Sanz‐Morello B, Pfisterer U, Winther Hansen N, Demharter S, Thakur A, Fujii K, Levitskii SA, Montalant A, Korshunova I, Mammen PPA, Kamenski P, Noguchi S, Aldana BI, Hougaard KS, Perrier J, Khodosevich K. Complex IV subunit isoform COX6A2 protects fast-spiking interneurons from oxidative stress and supports their function. EMBO J 2020; 39:e105759. [PMID: 32744742 PMCID: PMC7507454 DOI: 10.15252/embj.2020105759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/01/2023] Open
Abstract
Parvalbumin-positive (PV+ ) fast-spiking interneurons are essential to control the firing activity of principal neuron ensembles, thereby regulating cognitive processes. The high firing frequency activity of PV+ interneurons imposes high-energy demands on their metabolism that must be supplied by distinctive machinery for energy generation. Exploring single-cell transcriptomic data for the mouse cortex, we identified a metabolism-associated gene with highly restricted expression to PV+ interneurons: Cox6a2, which codes for an isoform of a cytochrome c oxidase subunit. Cox6a2 deletion in mice disrupts perineuronal nets and enhances oxidative stress in PV+ interneurons, which in turn impairs the maturation of their morphological and functional properties. Such dramatic effects were likely due to an essential role of COX6A2 in energy balance of PV+ interneurons, underscored by a decrease in the ATP-to-ADP ratio in Cox6a2-/- PV+ interneurons. Energy disbalance and aberrant maturation likely hinder the integration of PV+ interneurons into cortical neuronal circuits, leading to behavioral alterations in mice. Additionally, in a human patient bearing mutations in COX6A2, we found a potential association of the mutations with mental/neurological abnormalities.
Collapse
Affiliation(s)
- Berta Sanz‐Morello
- Biotech Research and Innovation Centre (BRIC)Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ulrich Pfisterer
- Biotech Research and Innovation Centre (BRIC)Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | | | - Samuel Demharter
- Biotech Research and Innovation Centre (BRIC)Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ashish Thakur
- Biotech Research and Innovation Centre (BRIC)Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Katsunori Fujii
- Department of PediatricsChiba University Graduate School of MedicineChibaJapan
| | | | - Alexia Montalant
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
| | - Irina Korshunova
- Biotech Research and Innovation Centre (BRIC)Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Pradeep PA Mammen
- Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Piotr Kamenski
- Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
| | - Satoru Noguchi
- Department of Neuromuscular ResearchNational Institute of NeuroscienceNational Center of Neurology and PsychiatryTokyoJapan
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Blanca Irene Aldana
- Department of Drug Design and PharmacologyUniversity of CopenhagenCopenhagenDenmark
| | - Karin Sørig Hougaard
- Section of Environmental HealthNational Research Centre for the Working EnvironmentCopenhagenDenmark
- Department of Public HealthUniversity of CopenhagenCopenhagenDenmark
| | | | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC)Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
8
|
Bai Y, Carrillo JA, Li Y, He Y, Song J. Diet induced the change of mtDNA copy number and metabolism in Angus cattle. J Anim Sci Biotechnol 2020; 11:84. [PMID: 32699629 PMCID: PMC7372754 DOI: 10.1186/s40104-020-00482-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Background Grass-fed and grain-fed Angus cattle differ in the diet regimes. However, the intricate mechanisms of different beef quality and other phenotypes induced by diet differences are still unclear. Diet affects mitochondrial function and dynamic behavior in response to changes in energy demand and supply. In this study, we examined the mtDNA copy number, mitochondria-related genes expression, and metabolic biomarkers in grass-fed and grain-fed Angus cattle. Results We found that the grass-fed group had a higher mtDNA copy number than the grain-fed group. Among different tissues, the mtDNA copy number was the highest in the liver than muscle, rumen, and spleen. Based on the transcriptome of the four tissues, a lower expression of mtDNA-encoded genes in the grass-fed group compared to the grain-fed group was discovered. For the mitochondria-related nuclear genes, however, most of them were significantly down-regulated in the muscle of the grass-fed group and up-regulated in the other three tissues. In which, COX6A2, POLG2, PPIF, DCN, and NDUFA12, involving in ATP synthesis, mitochondrial replication, transcription, and maintenance, might contribute to the alterations of mtDNA copy number and gene expression. Meanwhile, 40 and 23 metabolic biomarkers were identified in the blood and muscle of the grain-fed group compared to a grass-fed group, respectively. Integrated analysis of the altered metabolites and gene expression revealed the high expression level of MDH1 in the grain-fed group might contribute to the mitochondrial NADH oxidation and spermidine metabolism for adapting the deletion mtDNA copy number. Conclusions Overall, the study may provide further deep insight into the adaptive and regulatory modulations of the mitochondrial function in response to different feeding systems in Angus cattle.
Collapse
Affiliation(s)
- Ying Bai
- College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038 China.,Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - José A Carrillo
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742 USA.,Council on Dairy Cattle Breeding, Bowie, MD 20716 USA
| | - Yaokun Li
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742 USA
| | - Yanghua He
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742 USA.,Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822 USA
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
9
|
Levchenko M, Wuttke JM, Römpler K, Schmidt B, Neifer K, Juris L, Wissel M, Rehling P, Deckers M. Cox26 is a novel stoichiometric subunit of the yeast cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1624-32. [PMID: 27083394 DOI: 10.1016/j.bbamcr.2016.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 11/25/2022]
Abstract
The cytochrome c oxidase (COX) is the terminal enzyme of the respiratory chain. The complex accepts electrons from cytochrome c and passes them onto molecular oxygen. This process contributes to energy capture in the form of a membrane potential across the inner membrane. The enzyme complex assembles in a stepwise process from the three mitochondria-encoded core subunits Cox1, Cox2 and Cox3, which associate with nuclear-encoded subunits and cofactors. In the yeast Saccharomyces cerevisiae, the cytochrome c oxidase associates with the bc1-complex into supercomplexes, allowing efficient energy transduction. Here we report on Cox26 as a protein found in respiratory chain supercomplexes containing cytochrome c oxidase. Our analyses reveal Cox26 as a novel stoichiometric structural subunit of the cytochrome c oxidase. A loss of Cox26 affects cytochrome c oxidase activity and respirasome organization.
Collapse
Affiliation(s)
- Maria Levchenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Jan-Moritz Wuttke
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Katharina Römpler
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Bernhard Schmidt
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Klaus Neifer
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Lisa Juris
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Mirjam Wissel
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| |
Collapse
|
10
|
Boczonadi V, Bansagi B, Horvath R. Reversible infantile mitochondrial diseases. J Inherit Metab Dis 2015; 38:427-35. [PMID: 25407320 DOI: 10.1007/s10545-014-9784-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/09/2014] [Accepted: 10/14/2014] [Indexed: 11/30/2022]
Abstract
Mitochondrial diseases are usually severe and progressive conditions; however, there are rare forms that show remarkable spontaneous recoveries. Two homoplasmic mitochondrial tRNA mutations (m.14674T>C/G in mt-tRNA(Glu)) have been reported to cause severe infantile mitochondrial myopathy in the first months of life. If these patients survive the first year of life by extensive life-sustaining measures they usually recover and develop normally. Another mitochondrial disease due to deficiency of the 5-methylaminomethyl-2-thiouridylate methyltransferase (TRMU) causes severe liver failure in infancy, but similar to the reversible mitochondrial myopathy, within the first year of life these infants may also recover completely. Partial recovery has been noted in some other rare forms of mitochondrial disease due to deficiency of mitochondrial tRNA synthetases and mitochondrial tRNA modifying enzymes. Here we summarize the clinical presentation of these unique reversible mitochondrial diseases and discuss potential molecular mechanisms behind the reversibility. Understanding these mechanisms may provide the key to treatments of potential broader relevance in mitochondrial disease, where for the majority of the patients no effective treatment is currently available.
Collapse
Affiliation(s)
- Veronika Boczonadi
- Institute of Human Genetics, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | | | | |
Collapse
|
11
|
Boczonadi V, Giunta M, Lane M, Tulinius M, Schara U, Horvath R. Investigating the role of the physiological isoform switch of cytochrome c oxidase subunits in reversible mitochondrial disease. Int J Biochem Cell Biol 2015; 63:32-40. [PMID: 25666558 DOI: 10.1016/j.biocel.2015.01.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/17/2015] [Accepted: 01/29/2015] [Indexed: 12/29/2022]
Abstract
Reversible infantile respiratory chain deficiency is characterised by spontaneous recovery of mitochondrial myopathy in infants. We studied whether a physiological isoform switch of nuclear cytochrome c oxidase subunits contributes to the age-dependent manifestation and spontaneous recovery in reversible mitochondrial disease. Some nuclear-encoded subunits of cytochrome c oxidase are present as tissue-specific isoforms. Isoforms of subunits COX6A and COX7A expressed in heart and skeletal muscle are different from isoforms expressed in the liver, kidney and brain. Furthermore, in skeletal muscle both the heart and liver isoforms of subunit COX7A have been demonstrated with variable levels, indicating that the tissue-specific expression of nuclear-encoded subunits could provide a basis for the fine-tuning of cytochrome c oxidase activity to the specific metabolic needs of the different tissues. We demonstrate a developmental isoform switch of COX6A and COX7A subunits in human and mouse skeletal muscle. While the liver type isoforms are more present soon after birth, the heart/muscle isoforms gradually increase around 3 months of age in infants, 4 weeks of age in mice, and these isoforms persist in muscle throughout life. Our data in follow-up biopsies of patients with reversible infantile respiratory chain deficiency indicate that the physiological isoform switch does not contribute to the clinical manifestation and to the spontaneous recovery of this disease. However, understanding developmental changes of the different cytochrome c oxidase isoforms may have implications for other mitochondrial diseases. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.
Collapse
Affiliation(s)
- Veronika Boczonadi
- Institute of Genetic Medicine, Wellcome Trust Mitochondrial Research Centre, Newcastle University, Central Parkway NE1 3BZ Newcastle upon Tyne, UK
| | - Michele Giunta
- Institute of Genetic Medicine, Wellcome Trust Mitochondrial Research Centre, Newcastle University, Central Parkway NE1 3BZ Newcastle upon Tyne, UK
| | - Maria Lane
- Institute of Genetic Medicine, Wellcome Trust Mitochondrial Research Centre, Newcastle University, Central Parkway NE1 3BZ Newcastle upon Tyne, UK
| | - Mar Tulinius
- Department of Paediatrics, The Sahlgrenska Academy, University of Gothenburg, Box 400, Göteborg SE-405 30, Sweden
| | - Ulrike Schara
- Department of Paediatric Neurology, University of Essen, Hufelandstraße 55, Essen 45122, Germany
| | - Rita Horvath
- Institute of Genetic Medicine, Wellcome Trust Mitochondrial Research Centre, Newcastle University, Central Parkway NE1 3BZ Newcastle upon Tyne, UK.
| |
Collapse
|
12
|
Quintens R, Singh S, Lemaire K, De Bock K, Granvik M, Schraenen A, Vroegrijk IOCM, Costa V, Van Noten P, Lambrechts D, Lehnert S, Van Lommel L, Thorrez L, De Faudeur G, Romijn JA, Shelton JM, Scorrano L, Lijnen HR, Voshol PJ, Carmeliet P, Mammen PPA, Schuit F. Mice deficient in the respiratory chain gene Cox6a2 are protected against high-fat diet-induced obesity and insulin resistance. PLoS One 2013; 8:e56719. [PMID: 23460811 PMCID: PMC3584060 DOI: 10.1371/journal.pone.0056719] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/14/2013] [Indexed: 01/07/2023] Open
Abstract
Oxidative phosphorylation in mitochondria is responsible for 90% of ATP synthesis in most cells. This essential housekeeping function is mediated by nuclear and mitochondrial genes encoding subunits of complex I to V of the respiratory chain. Although complex IV is the best studied of these complexes, the exact function of the striated muscle-specific subunit COX6A2 is still poorly understood. In this study, we show that Cox6a2-deficient mice are protected against high-fat diet-induced obesity, insulin resistance and glucose intolerance. This phenotype results from elevated energy expenditure and a skeletal muscle fiber type switch towards more oxidative fibers. At the molecular level we observe increased formation of reactive oxygen species, constitutive activation of AMP-activated protein kinase, and enhanced expression of uncoupling proteins. Our data indicate that COX6A2 is a regulator of respiratory uncoupling in muscle and we demonstrate that a novel and direct link exists between muscle respiratory chain activity and diet-induced obesity/insulin resistance.
Collapse
Affiliation(s)
- Roel Quintens
- Gene Expression Unit, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Sarvjeet Singh
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Katleen Lemaire
- Gene Expression Unit, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Katrien De Bock
- Vesalius Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Vesalius Research Center, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Mikaela Granvik
- Gene Expression Unit, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anica Schraenen
- Gene Expression Unit, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Veronica Costa
- Department of Cell Physiology and Metabolism, University of Geneva, Geneve, Switzerland
| | - Pieter Van Noten
- Physical Activity and Health Laboratory, Biomedical Kinesiology Department, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Dennis Lambrechts
- Department of Metallurgy and Materials Engineering, KU Leuven, Leuven, Belgium
| | - Stefan Lehnert
- Gene Expression Unit, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Leentje Van Lommel
- Gene Expression Unit, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lieven Thorrez
- Gene Expression Unit, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Geoffroy De Faudeur
- Gene Expression Unit, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Johannes Anthonius Romijn
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - John Michael Shelton
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Luca Scorrano
- Department of Cell Physiology and Metabolism, University of Geneva, Geneve, Switzerland
| | - Henri Roger Lijnen
- Center for Molecular and Vascular Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Peter Jacobus Voshol
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Carmeliet
- Vesalius Research Center, Katholieke Universiteit Leuven, Leuven, Belgium
- Vesalius Research Center, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium
| | - Pradeep Puthenveetil Abraham Mammen
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Frans Schuit
- Gene Expression Unit, Department of Molecular and Cellular Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
- * E-mail:
| |
Collapse
|
13
|
Torraco A, Diaz F, Vempati UD, Moraes CT. Mouse models of oxidative phosphorylation defects: powerful tools to study the pathobiology of mitochondrial diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1793:171-80. [PMID: 18601959 PMCID: PMC2652735 DOI: 10.1016/j.bbamcr.2008.06.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 05/28/2008] [Accepted: 06/04/2008] [Indexed: 01/14/2023]
Abstract
Defects in the oxidative phosphorylation system (OXPHOS) are responsible for a group of extremely heterogeneous and pleiotropic pathologies commonly known as mitochondrial diseases. Although many mutations have been found to be responsible for OXPHOS defects, their pathogenetic mechanisms are still poorly understood. An important contribution to investigate the in vivo function of several mitochondrial proteins and their role in mitochondrial dysfunction, has been provided by mouse models. Thanks to their genetic and physiologic similarity to humans, mouse models represent a powerful tool to investigate the impact of pathological mutations on metabolic pathways. In this review we discuss the main mouse models of mitochondrial disease developed, focusing on the ones that directly affect the OXPHOS system.
Collapse
Affiliation(s)
- Alessandra Torraco
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Francisca Diaz
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Uma D. Vempati
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Carlos T. Moraes
- Department of Neurology, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
- Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, FL 33136, USA
| |
Collapse
|
14
|
Ramachandran B, Yu G, Gulick T. Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits. J Biol Chem 2008; 283:11935-46. [PMID: 18222924 DOI: 10.1074/jbc.m707389200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nuclear respiratory factors NRF1 and NRF2 regulate the expression of nuclear genes encoding heme biosynthetic enzymes, proteins required for mitochondrial genome transcription and protein import, and numerous respiratory chain subunits. NRFs thereby coordinate the expression of nuclear and mitochondrial genes relevant to mitochondrial biogenesis and respiration. Only two of the nuclear-encoded respiratory chain subunits have evolutionarily conserved tissue-specific forms: the cytochrome c oxidase (COX) subunits VIa and VIIa heart/muscle (H) and ubiquitous (L) isoforms. We used genome comparisons to conclude that the promoter regions of COX6A(H) and COX7A(H) lack NRF sites but have conserved myocyte enhancer factor 2 (MEF2) elements. We show that MEF2A mRNA is induced with forced expression of NRF1 and that the MEF2A 5'-regulatory region contains an evolutionarily conserved canonical element that binds endogenous NRF1 in chromatin immunoprecipitation (ChIP) assays. NRF1 regulates MEF2A promoter-reporters according to overexpression, RNA interference underexpression, and promoter element mutation studies. As there are four mammalian MEF2 isotypes, we used an isoform-specific antibody in ChIP to confirm MEF2A binding to the COX6A(H) promoter. These findings support a role for MEF2A as an intermediary in coordinating respiratory chain subunit expression in heart and muscle through a NRF1 --> MEF2A --> COX(H) transcriptional cascade. MEF2A also bound the MEF2A and PPARGC1A promoters in ChIP, placing it within a feedback loop with PGC1alpha in controlling NRF1 activity. Interruption of this cascade and loop may account for striated muscle mitochondrial defects in mef2a null mice. Our findings also account for the previously described indirect regulation by NRF1 of other MEF2 targets in muscle such as GLUT4.
Collapse
Affiliation(s)
- Bindu Ramachandran
- Diabetes Research Laboratory, Department of Medicine, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
15
|
Liang HL, Ongwijitwat S, Wong-Riley MTT. Bigenomic functional regulation of all 13 cytochrome c oxidase subunit transcripts in rat neurons in vitro and in vivo. Neuroscience 2006; 140:177-90. [PMID: 16542778 DOI: 10.1016/j.neuroscience.2006.01.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 12/29/2005] [Accepted: 01/06/2006] [Indexed: 10/24/2022]
Abstract
Cytochrome c oxidase is a multisubunit, bigenomically encoded inner mitochondrial membrane protein. Its enzymatic activity and amount in the brain vary with metabolic demands, but the precise regulation of all 13 subunits to form a functional holoenzyme in a 1:1 stoichiometry is not well understood. To determine if all 13 subunit transcripts were coordinately regulated by functional alteration in neurons, cultured primary neurons were depolarized by potassium chloride for 5-24 h, or tetrodotoxin inactivated for 2-6 days. In vivo studies were done on rats monocularly enucleated for 4 days to 2 weeks. Expressions of cytochrome c oxidase subunit mRNAs were measured by real-time quantitative polymerase chain reaction. Results showed that in vitro, all 13 transcripts were significantly up-regulated after 5 h of depolarizing stimulation. With tetrodotoxin blockade, however, the three mitochondrial-encoded transcripts were down-regulated earlier than the 10 nuclear ones (2 days versus 4 days). In vivo, all three mitochondrial-encoded subunit mRNAs were also down-regulated earlier than the nuclear ones in deprived visual cortex (4 days versus 1 week after monocular enucleation). Cytochrome c oxidase activity and protein levels were significantly decreased in parallel after 4 days of deprivation in vitro and 1 week in vivo. Our results are consistent with a coordinated mechanism of up-regulation of all 13 transcripts in response to functional stimulation, but an earlier and more severe down-regulation of the mitochondrial transcripts than the nuclear ones in response to functional deprivation. Thus, the mitochondrial subunits may play a more important role in regulating cytochrome c oxidase protein amount and activity in neurons. Our results also point to the need of all 13 subunits to form a functional holoenzyme.
Collapse
Affiliation(s)
- H L Liang
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
16
|
Sadacharan SK, Singh B, Bowes T, Gupta RS. Localization of mitochondrial DNA encoded cytochrome c oxidase subunits I and II in rat pancreatic zymogen granules and pituitary growth hormone granules. Histochem Cell Biol 2005; 124:409-21. [PMID: 16133117 DOI: 10.1007/s00418-005-0056-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2005] [Indexed: 10/25/2022]
Abstract
Cytochrome c oxidase (COX) complex is an integral part of the electron transport chain. Three subunits of this complex (COX I, COX II and COX III) are encoded by mitochondrial (mit-) DNA. High-resolution immunogold electron microscopy has been used to study the subcellular localization of COX I and COX II in rat tissue sections, embedded in LR Gold resin, using monoclonal antibodies for these proteins. Immunofluorescence labeling of BS-C-1 monkey kidney cells with these antibodies showed characteristic mitochondrial labeling. In immunogold labeling studies, the COX I and COX II antibodies showed strong and specific mitochondrial labeling in the liver, kidney, heart and pancreas. However, in rat pancreatic acinar tissue, in addition to mitochondrial labeling, strong and specific labeling was also observed in the zymogen granules (ZGs). In the anterior pituitary, strong labeling with these antibodies was seen in the growth hormone secretory granules. In contrast to these compartments, the COX I or COX II antibodies showed only minimal labeling (five- to tenfold lower) of the cytoplasm, endoplasmic reticulum and the nucleus. Strong labeling with the COX I or COX II antibodies was also observed in highly purified ZGs from bovine pancreas. The observed labeling, in all cases, was completely abolished upon omission of the primary antibodies. These results provide evidence that, similar to a number of other recently studied mit-proteins, COX I and COX II are also present outside the mitochondria. The presence of mit-DNA encoded COX I and COX II in extramitochondrial compartments, provides strong evidence that proteins can exit, or are exported, from the mitochondria. Although the mechanisms responsible for protein exit/export remain to be elucidated, these results raise fundamental questions concerning the roles of mitochondria and mitochondrial proteins in diverse cellular processes in different compartments.
Collapse
Affiliation(s)
- Skanda K Sadacharan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada, L8N 3Z5
| | | | | | | |
Collapse
|
17
|
Williams SL, Valnot I, Rustin P, Taanman JW. Cytochrome c Oxidase Subassemblies in Fibroblast Cultures from Patients Carrying Mutations in COX10, SCO1, or SURF1. J Biol Chem 2004; 279:7462-9. [PMID: 14607829 DOI: 10.1074/jbc.m309232200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cytochrome c oxidase contains two redox-active copper centers (Cu(A) and Cu(B)) and two redox-active heme A moieties. Assembly of the enzyme relies on several assembly factors in addition to the constituent subunits and prosthetic groups. We studied fibroblast cultures from patients carrying mutations in the assembly factors COX10, SCO1, or SURF1. COX10 is involved in heme A biosynthesis. SCO1 is required for formation of the Cu(A) center. The function of SURF1 is unknown. Immunoblot analysis of native gels demonstrated severely decreased levels of holoenzyme in the patient cultures compared with controls. In addition, the blots revealed the presence of five subassemblies: three subassemblies involving the core subunit MTCO1 but apparently no other subunits; a subassembly containing subunits MTCO1, COX4, and COX5A; and a subassembly containing at least subunits MTCO1, MTCO2, MTCO3, COX4, and COX5A. As some of the subassemblies correspond to known assembly intermediates of human cytochrome c oxidase, we think that these subassemblies are probably assembly intermediates that accumulate in patient cells. The MTCO1.COX4.COX5A subassembly was not detected in COX10-deficient cells, which suggests that heme A incorporation into MTCO1 occurs prior to association of MTCO1 with COX4 and COX5A. SCO1-deficient cells contained accumulated levels of the MTCO1.COX4.COX5A subassembly, suggesting that MTCO2 associates with the MTCO1.COX4.COX5A subassembly after the Cu(A) center of MTCO2 is formed. Assembly in SURF1-deficient cells appears to stall at the same stage as in SCO1-deficient cells, pointing to a role for SURF1 in promoting the association of MTCO2 with the MTCO1.COX4.COX5A subassembly.
Collapse
Affiliation(s)
- Siôn L Williams
- University Department of Clinical Neurosciences, Royal Free and University College Medical School, University College London, London NW3 2PF, United Kingdom
| | | | | | | |
Collapse
|
18
|
Vijayasarathy C, Damle S, Prabu SK, Otto CM, Avadhani NG. Adaptive changes in the expression of nuclear and mitochondrial encoded subunits of cytochrome c oxidase and the catalytic activity during hypoxia. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:871-9. [PMID: 12603320 DOI: 10.1046/j.1432-1033.2003.03447.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of physiologically relevant hypoxia on the catalytic activity of cytochrome c oxidase (CytOX), mitochondrial gene expression, and both nuclear and mitochondrial encoded CytOX mRNA levels were investigated in murine monocyte macrophages, mouse C2C12 skeletal myocytes and rat adrenal pheochromocytoma PC12 cells. Our results suggest a coordinated down regulation of mitochondrial genome-coded CytOX I and II and nuclear genome-coded CytOX IV and Vb mRNAs during hypoxia. Hypoxia also caused a severe decrease in mitochondrial transcription rates, and associated decrease in mitochondrial transcription factor A. The enzyme from hypoxia exposed cells exhibited altered subunit content as revealed by blue native gel electrophoresis. There was a generalized decline in mitochondrial function that led to a decrease in total cellular heme and ATP pools. We also observed a decrease in mitochondrial heme aa3 content and decreased levels of CytOX subunit I, IV and Vb, though the catalytic efficiency of the enzyme (TN for cytochrome c oxidase) remained nearly the same. Increased glycolytic flux and alterations in the kinetic characteristics of the CytOX might be the two mechanisms by which hypoxic cells maintain adequate ATP levels to sustain life processes. Reoxygenation nearly completely reversed hypoxia-mediated changes in CytOX mRNA contents, rate of mitochondrial transcription, and the catalytic activity of CytOX enzyme. Our results show adaptive changes in CytOX structure and activity during physiological hypoxia.
Collapse
Affiliation(s)
- C Vijayasarathy
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
19
|
Radford NB, Wan B, Richman A, Szczepaniak LS, Li JL, Li K, Pfeiffer K, Schägger H, Garry DJ, Moreadith RW. Cardiac dysfunction in mice lacking cytochrome-c oxidase subunit VIaH. Am J Physiol Heart Circ Physiol 2002; 282:H726-33. [PMID: 11788423 DOI: 10.1152/ajpheart.00308.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome-c oxidase subunit VIaH (COXVIaH) has been implicated in the modulation of COX activity. A gene-targeting strategy was undertaken to generate mice that lacked COXVIaH to determine its role in regulation of oxidative energy production and mechanical performance in cardiac muscle. Total COX activity was decreased in hearts from mutant mice, which appears to be a consequence of altered assembly of the holoenzyme COX. However, total myocardial ATP was not significantly different in wild-type and mutant mice. Myocardial performance was examined using the isolated working heart preparation. As left atrial filling pressure increased, hearts from mutant mice were unable to generate equivalent stroke work compared with hearts from wild-type mice. Direct measurement of left ventricular end-diastolic volume using magnetic resonance imaging revealed that cardiac dysfunction was a consequence of impaired ventricular filling or diastolic dysfunction. These findings suggest that a genetic deficiency of COXVIaH has a measurable impact on myocardial diastolic performance despite the presence of normal cellular ATP levels.
Collapse
|
20
|
Hüttemann M, Mühlenbein N, Schmidt TR, Grossman LI, Kadenbach B. Isolation and sequence of the human cytochrome c oxidase subunit VIIaL gene. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:252-8. [PMID: 11004498 DOI: 10.1016/s0167-4781(00)00087-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The gene for human cytochrome c oxidase subunit VIIa liver isoform (COX7AL) was isolated and its sequence determined and analyzed. The three introns of the gene are considerably larger than those of the heart isoform of subunit VIIa (COX7AH), but the position of the introns relative to the cDNA sequences is homologous between the two genes. Comparison with other isolated COX7AL genes suggests that the promoter region binding motifs for transcription factors have evolved along with the coding region. In fibroblasts cultured originally from a Leigh's disease patient, a shortened COX7AL cDNA was identified by RT-PCR, consisting of exon I joined to exon IV, omitting exons II and III. No mutation could be identified in COX7AL of the patient, suggesting that the shortened cDNA is due to an alteration of the genome during cell culture. A surprising transcription of COX7AH was observed in cultured fibroblasts, suggesting a potential utility of these cells for study of its gene expression.
Collapse
Affiliation(s)
- M Hüttemann
- Fachbereich Chemie, Philipps-Universität, D35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
21
|
Hüttemann M, Arnold S, Lee I, Mühlenbein N, Linder D, Lottspeich F, Kadenbach B. Turkey cytochrome c oxidase contains subunit VIa of the liver type associated with low efficiency of energy transduction. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2098-104. [PMID: 10727950 DOI: 10.1046/j.1432-1327.2000.01216.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytochrome c oxidase was isolated from turkey liver, heart and breast skeletal muscle and separated by SDS/PAGE. The N-terminal amino-acid sequence of subunit VIa from all tissues and internal sequences from the skeletal muscle enzyme show homology to the mammalian liver-type subunit VIaL, which was verified by isolation and sequencing of the cDNA of turkey subunit VIa. No cDNA corresponding to subunit VIaH (mammalian heart-type) could be found by RACE-PCR with mRNA from all turkey tissues. Measurement of proton translocation with the reconstituted enzymes from turkey liver and heart revealed H+/e- ratios below 0.5 that were independent of the intraliposomal ATP/ADP ratio, as previously found with the bovine liver enzyme. Under identical conditions, the bovine heart enzyme revealed H+/e- ratios of 0.85 at low and 0.48 at high intraliposomal ATP/ADP ratios. The results suggest that in birds the lower H+/e-ratio of cytochrome c oxidase participates in elevated resting metabolic rate and thermogenesis.
Collapse
Affiliation(s)
- M Hüttemann
- Fachbereich Chemie, Philipps-Universität, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
von Kleist-Retzow JC, Vial E, Chantrel-Groussard K, Rötig A, Munnich A, Rustin P, Taanman JW. Biochemical, genetic and immunoblot analyses of 17 patients with an isolated cytochrome c oxidase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1455:35-44. [PMID: 10524227 DOI: 10.1016/s0925-4439(99)00050-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mitochondrial respiratory chain defects involving cytochrome c oxidase (COX) are found in a clinically heterogeneous group of diseases, yet the molecular basis of these disorders have been determined in only a limited number of cases. Here, we report the clinical, biochemical and molecular findings in 17 patients who all had isolated COX deficiency and expressed the defect in cultured skin fibroblasts. Immunoblot analysis of mitochondrial fractions with nine subunit specific monoclonal antibodies revealed that in most patients, including in a patient with a novel mutation in the SURF1 gene, steady-state levels of all investigated COX subunits were decreased. Distinct subunit expression patterns were found, however, in different patients. The severity of the enzymatic defect matched the decrease in immunoreactive material in these patients, suggesting that the remnant enzyme activity reflects the amount of remaining holo-enzyme. Four patients presented with a clear defect of COX activity but had near normal levels of COX subunits. An increased affinity for cytochrome c was observed in one of these patients. Our findings indicate a genetic heterogeneity of COX deficiencies and are suggestive of a prominent involvement of nuclear genes acting on the assembly and maintenance of cytochrome c oxidase.
Collapse
Affiliation(s)
- J C von Kleist-Retzow
- Unité de Recherches sur les Handicaps Génétiques de l'Enfant (INSERM U393), Hôpital des Enfants-Malades, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Holthöfer H, Kretzler M, Haltia A, Solin ML, Taanman JW, Schägger H, Kriz W, Kerjaschki D, Schlöndorff D. Altered gene expression and functions of mitochondria in human nephrotic syndrome. FASEB J 1999; 13:523-32. [PMID: 10064619 DOI: 10.1096/fasebj.13.3.523] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The molecular basis of glomerular permselectivity remains largely unknown. The congenital nephrotic syndrome of the Finnish type (CNF) characterized by massive proteinuria already present but without extrarenal symptoms is a unique human disease model of pure proteinuria. In search of genes and pathophysiologic mechanisms associated with proteinuria, we used differential display-PCR to identify differences in gene expression between glomeruli from CNF and control kidneys. A distinctly underexpressed PCR product of the CNF kidneys showed over 98% identity with a mitochondrially encoded cytochrome c oxidase (COX I). Using a full-length COX I cDNA probe, we verified down-regulation of COX I mRNA to 1/4 of normal kidney values on Northern blots. In addition, transcripts of other mitochondrially encoded respiratory chain complexes showed a similar down-regulation whereas the respective nuclearly encoded complexes were expressed at comparable levels. Additional studies using histochemical, immunohistochemical, in situ hybridization, RT-PCR, and biochemical and electron microscopic methods all showed a mitochondrial involvement in the diseased kidneys but not in extrarenal blood vessels. As a secondary sign of mitochondrial dysfunction, excess lipid peroxidation products were found in glomerular structures in CNF samples. Our data suggest that mitochondrial dysfunction occurs in the kidneys of patients with CNF, with subsequent lipid peroxidation at the glomerular basement membrane. Our additional studies have revealed similar down-regulation of mitochondrial functions in experimental models of proteinuria. Thus, mitochondrial dysfunction may be a crucial pathophysiologic factor in this symptom.
Collapse
Affiliation(s)
- H Holthöfer
- The Haartman Institute, Division of Bacteriology and Immunology, University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Vijayasarathy C, Biunno I, Lenka N, Yang M, Basu A, Hall IP, Avadhani NG. Variations in the subunit content and catalytic activity of the cytochrome c oxidase complex from different tissues and different cardiac compartments. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1371:71-82. [PMID: 9565657 DOI: 10.1016/s0005-2736(97)00278-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The composition and activity of cytochrome c oxidase (COX) was studied in mitochondria from rat liver, brain, kidney and heart and also in different compartments of the bovine heart to see whether any correlation exists between known oxidative capacity and COX activity. Immunoblot analysis showed that the levels of ubiquitously expressed subunits IV and Vb are about 8-12-fold lower in liver mitochondria as compared to the heart, kidney and brain. The heart enzyme with higher abundance of COX IV and Vb showed lower turnover number (495) while the liver enzyme with lower abundance of these subunits exhibited higher turnover number of 750. In support of the immunoblot results, immunohistochemical analysis of heart and kidney tissue sections showed an intense staining with the COX Vb antibody as compared to the liver sections. COX Vb antibody stained certain tubular regions of the kidney more intensely than the other regions suggesting region specific variation in the subunit level. Bovine heart compartments showed variation in subunit levels and also differed in the kinetic parameters of COX. The right atrium contained relatively more Vb protein, while the left ventricle contained higher level of subunit VIa. COX from both the ventricles showed high Km for cytochrome c (23-37 microM) as compared to the atrial COX (Km 8-15 microM). These results suggest a correlation between tissue specific oxidative capacity/work load and changes in subunit composition and associated changes in the activity of COX complex. More important, our results suggest variations based on the oxidative load of cell types within a tissue.
Collapse
Affiliation(s)
- C Vijayasarathy
- Laboratory of Biochemistry, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Marusich MF, Robinson BH, Taanman JW, Kim SJ, Schillace R, Smith JL, Capaldi RA. Expression of mtDNA and nDNA encoded respiratory chain proteins in chemically and genetically-derived Rho0 human fibroblasts: a comparison of subunit proteins in normal fibroblasts treated with ethidium bromide and fibroblasts from a patient with mtDNA depletion syndrome. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1362:145-59. [PMID: 9540845 DOI: 10.1016/s0925-4439(97)00061-6] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although much progress has been made in identifying genetic defects associated with mitochondrial diseases, the protein expression patterns of most disorders are poorly understood. Here we use immunochemical techniques to describe subunit expression patterns of respiratory chain enzyme complexes II (succinate dehydrogenase: SD) and IV (cytochrome c oxidase: COX) in cultured cells lacking mtDNA (Rho0 cells) derived either chemically by exposure of normal cells to ethidium bromide, or genetically in cells derived from a patient with mtDNA depletion syndrome. Both control cells and early passage patient-derived cells express a normal complement of SD and COX subunit proteins. Ethidium bromide treatment of normal cells and in vitro cell proliferation of patient-derived cells caused both populations to acquire identical Rho0 phenotypes. As expected, they lack mtDNA-encoded subunits COX-I and COX-II. In contrast, nDNA-encoded subunits are affected differentially, with some (COX-VIc) lacking and others (COX-IV, COX-Va, SD 30 and SD 70) maintained at somewhat reduced levels. We suggest that the differential stability of nDNA-encoded subunits in the absence of intact enzyme complexes is due to the ability of some, but not all, subunits to associate as partial complexes in the absence of mtDNA-encoded subunits.
Collapse
Affiliation(s)
- M F Marusich
- Institute of Neuroscience, University of Oregon, Eugene 97403, USA.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
As the terminal component of the mitochondrial respiratory chain, cytochrome c oxidase plays a vital role in cellular energy transformation. Human cytochrome c oxidase is composed of 13 subunits. The three major subunits form the catalytic core and are encoded by mitochondrial DNA (mtDNA). The remaining subunits are nuclear-encoded. The primary sequence is known for all human subunits and the crystal structure of bovine heart cytochrome c oxidase has recently been reported. However, despite this wealth of structural information, the role of the nuclear encoded subunits is still poorly understood. Yeast cytochrome c oxidase is a close model of its human counterpart and provides a means of studying the effects of mutations on the assembly, structure, stability and function of the enzyme complex. Defects in cytochrome c oxidase function are found in a clinically heterogeneous group of disorders. The molecular defects that underlie these diseases may arise from mutations of either mitochondrial or the nuclear genomes or both. A significant number of cytochrome c oxidase deficiencies, often associated with other respiratory chain enzyme defects, are attributed to mutations of mtDNA. Mutations of mtDNA appear, nonetheless, uncommon in early childhood. Pedigree analysis and cell fusion experiments have demonstrated a nuclear involvement in some infantile cases but a specific genomic lesion has not yet been reported. Detailed analyses of the many steps involved in the biogenesis of cytochrome c oxidase, often pioneered in yeast, offer several starting points for further molecular characterizations of cytochrome c oxidase deficiencies observed in clinical practice.
Collapse
Affiliation(s)
- J W Taanman
- Department of Clinical Neurosciences, Royal Free Hospital School of Medicine, London, United Kingdom
| |
Collapse
|
27
|
Wong-Riley MT, Mullen MA, Huang Z, Guyer C. Brain cytochrome oxidase subunit complementary DNAs: isolation, subcloning, sequencing, light and electron microscopic in situ hybridization of transcripts, and regulation by neuronal activity. Neuroscience 1997; 76:1035-55. [PMID: 9027865 DOI: 10.1016/s0306-4522(96)00410-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The goal of the present study was to isolate, for the first time, cytochrome oxidase subunit genes from murine brain complementary DNA library and to characterize the expression of these genes from mitochondrial and nuclear sources at both light and electron microscopic levels. Brain subunit III (mitochondrial) shared 100% identity with that of murine L cells. Subunit VIa (nuclear) was known to have tissue-specific isoforms in other species: the ubiquitous liver isoform and the heart/muscle isoform. Our brain subunit VIa shared 93% homology with that of the rat liver and 100% identity with the recently reported murine liver isoform, which is only 62% identical to that of the rat heart isoform. In situ hybridization with riboprobes revealed messenger RNA labelling that was similar, though not identical, to that of cytochrome oxidase histochemistry. Monocular enucleation in adult mice induced a significant down-regulation of both subunit messages in the contralateral lateral geniculate nucleus. However, the decrease in subunit III messenger RNAs surpassed that of subunit VIa at all time periods examined, suggesting that mitochondrial gene expression is more tightly regulated by neuronal activity than that of nuclear ones. At the electron microscopic level, subunit III messenger RNA was localized to the mitochondrial compartment in both cell bodies and processes, while that of nuclear-encoded subunit VIa was present exclusively in the extramitochondrial compartment of somata and not of dendrites or axons. Surprisingly, the message was primarily associated with the rough endoplasmic reticulum, suggesting a novel pathway for its synthesis and trafficking. Our results indicate that the unique properties of neurons impose special requirements for subunits of a single mitochondrial enzyme with dual genomic origins. At sites of high energy demands (such as postsynaptic dendrites and some axon terminals), mitochondrial-encoded cytochrome oxidase subunits can be locally transcribed and translated, and they provide the framework for the subsequent importation and incorporation of nuclear-encoded subunits, which are strictly synthesized in the cell bodies. Dynamic local energy needs are met when subunits from the two genomic sources are assembled to form functional holoenzymes.
Collapse
Affiliation(s)
- M T Wong-Riley
- Department of Cellular Biology and Anatomy, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | |
Collapse
|
28
|
Lefai E, Vincent A, Boespflug-Tanguy O, Tanguy A, Alziari S. Quantitative decrease of human cytochrome c oxidase during development: evidences for a post-transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1318:191-201. [PMID: 9030264 DOI: 10.1016/s0005-2728(96)00136-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In an earlier study, we showed that cytochrome c oxidase activity, measured in mitochondria isolated from human muscular biopsies, decreased steadily and substantially between the age of four years and adulthood (P < 0.05), whereas complexes I and III activity remained constant. The present study investigates a number of possible causes for this change in activity: although there is a drop in the apparent Vmax, neither the apparent enzyme Km, nor the cellular mtDNA concentration shows any variations over the studied period. Steady-state concentrations of mitochondrial gene transcripts (CO I. CO II, CO III, but also 12S, cytochrome b, or ND4) increase within this age group, indicating an overall increase in mitochondrial genome expression. Concentrations of transcripts of nuclear genes CO IV, CO Vb, and CO VIaH likewise show an increase, albeit less marked. On the other hand, heme aa3 levels and concentrations of mitochondrial (CO II) or nuclear (CO IV, CO VIIaH) subunits, estimated using specific antibodies, correlate closely with enzymatic activity and show a parallel decrease between 4 and 20 years. The observed decrease in complex IV activity is thus quantitative, and subject to post-transcriptional and/or post-translational regulation.
Collapse
Affiliation(s)
- E Lefai
- URA CNRS 1940 Université B. Pascal-Clermont II, Aubiere, France
| | | | | | | | | |
Collapse
|
29
|
Papa S. Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1276:87-105. [PMID: 8816944 DOI: 10.1016/0005-2728(96)00077-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S Papa
- Institute of Medical Biochemistry and Chemistry, University of Bari, Italy.
| |
Collapse
|
30
|
Taanman JW, Burton MD, Marusich MF, Kennaway NG, Capaldi RA. Subunit specific monoclonal antibodies show different steady-state levels of various cytochrome-c oxidase subunits in chronic progressive external ophthalmoplegia. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1315:199-207. [PMID: 8611660 DOI: 10.1016/0925-4439(95)00127-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Monoclonal antibodies recognizing the mitochondrially encoded subunits I and II, and the nuclear-encoded subunits IV, Va, Vb and VIc of human cytochrome-c oxidase were generated. These antibodies are highly specific and allow the assessment of subunit steady-state levels in crude cell extracts and tissue sections. In the experimental human cell line 143B206, which is devoid of mitochondrial DNA, immunovisualization with the antibodies revealed that the nuclear-encoded subunits IV and Va were present in amounts close to that of the parental cell line despite the absence of the mitochondrially encoded subunits. In contrast, the nuclear-encoded subunits Vb and VIc were severely reduced in cell line 143B206, suggesting that unassembled nuclear-encoded subunits are degraded at different rates. In skeletal muscle sections of a patient with chronic progressive external ophthalmoplegia known to harbor the 'common deletion' in a subpopulation of her mitochondrial DNA, most cytochrome-c oxidase activity negative fibers had greatly reduced levels of subunits I, II, Va, Vb and VIc of cytochrome-c oxidase. The steady-state level of subunit IV, however, was less affected. This was particularly evident in cytochrome-c oxidase activity negative fibers with accumulated mitochondria ('ragged-red' fibers) where immunodetection with anti-subunit IV resulted in intense staining. The data presented in this paper demonstrate that the battery of monoclonal antibodies can be employed for diagnostic purposes to analyze steady-state levels of mitochondrially and nuclear-encoded subunits of cytochrome-c oxidase.
Collapse
Affiliation(s)
- J W Taanman
- Institute of Molecular Biology, University of Oregon, Eugene 97403, USA.
| | | | | | | | | |
Collapse
|
31
|
Wan B, Moreadith RW. Structural characterization and regulatory element analysis of the heart isoform of cytochrome c oxidase VIa. J Biol Chem 1995; 270:26433-40. [PMID: 7592858 DOI: 10.1074/jbc.270.44.26433] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In order to investigate the mechanism(s) governing the striated muscle-specific expression of cytochrome c oxidase VIaH we have characterized the murine gene and analyzed its transcriptional regulatory elements in skeletal myogenic cell lines. The gene is single copy, spans 689 base pairs (bp), and is comprised of three exons. The 5'-ends of transcripts from the gene are heterogeneous, but the most abundant transcript includes a 5'-untranslated region of 30 nucleotides. When fused to the luciferase reporter gene, the 3.5-kilobase 5'-flanking region of the gene directed the expression of the heterologous protein selectively in differentiated Sol8 cells and transgenic mice, recapitulating the pattern of expression of the endogenous gene. Deletion analysis identified a 300-bp fragment sufficient to direct the myotube-specific expression of luciferase in Sol8 cells. The region lacks an apparent TATA element, and sequence motifs predicted to bind NRF-1, NRF-2, ox-box, or PPAR factors known to regulate other nuclear genes encoding mitochondrial proteins are not evident. Mutational analysis, however, identified two cis-elements necessary for the high level expression of the reporter protein: a MEF2 consensus element at -90 to -81 bp and an E-box element at -147 to -142 bp. Additional E-box motifs at closely located positions were mutated without loss of transcriptional activity. The dependence of transcriptional activation of cytochrome c oxidase VIaH on cis-elements similar to those found in contractile protein genes suggests that the striated muscle-specific expression is coregulated by mechanisms that control the lineage-specific expression of several contractile and cytosolic proteins.
Collapse
Affiliation(s)
- B Wan
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8573, USA
| | | |
Collapse
|
32
|
el-Migdadi F, Gallant S, Brownie AC. Sex differences in cytochromes oxidase and P-45011 beta in the rat adrenal cortex. Mol Cell Endocrinol 1995; 112:185-94. [PMID: 7489822 DOI: 10.1016/0303-7207(95)03597-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A comparative study of cytochrome c oxidase (COX) activity and expression as well as cytochrome P-45011 beta expression has been carried out on the adrenal cortex of male and female rats. COX has also been examined in rat liver. In addition, the effect of testosterone replacement in orchiectomized male rats on adrenal COX has also been investigated. Adult male rats had higher COX activity in adrenal (255%) and liver (144%) mitochondria compared to adult female rats. Male rat adrenals and liver also had increased levels of COX II, a mitochondria-encoded COX subunit, and of COX IV, a nucleus-encoded COX subunit, as measured by Western analysis. In contrast, cytochrome P-45011 beta levels were lower (48%) in adrenal mitochondria from male rats than those of female rats. There was no significant sex difference in the level COX II and COX IV mRNAs in adrenal or liver, whereas the cytochrome P-45011 beta mRNA was 4-fold higher in female adrenals than in males. In male rats, orchiectomy caused a 23% decrease and testosterone replacement a 66% increase in adrenal COX activity. There were no corresponding changes in the levels of mRNAs encoding for COX subunits, suggesting post-transcriptional effects of testosterone on COX. These results are consistent with a regulatory role of testosterone on the expression of components of the respiratory and steroidogenic electron transport chains.
Collapse
Affiliation(s)
- F el-Migdadi
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University of Buffalo 14214, USA
| | | | | |
Collapse
|
33
|
Schagger H, Noack H, Halangk W, Brandt U, Jagow G. Cytochrome-c Oxidase in Developing Rat Heart Enzymic Properties and Amino-terminal Sequences Suggest Identity of the Fetal Heart and the Adult Liver Isoform. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0235i.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Nijtmans LG, Barth PG, Lincke CR, Van Galen MJ, Zwart R, Klement P, Bolhuis PA, Ruitenbeek W, Wanders RJ, Van den Bogert C. Altered kinetics of cytochrome c oxidase in a patient with severe mitochondrial encephalomyopathy. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1270:193-201. [PMID: 7727543 DOI: 10.1016/0925-4439(95)00044-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Deficiency of cytochrome c oxidase activity was established in a girl born to consanguineous parents. She showed symptoms of dysmaturity, generalized hypotonia, myoclonic seizures and progressive respiratory failure, leading to death on the seventh day of life. Structural abnormalities of the central nervous system consisted of severe cerebellar hypoplasia and optic nerve atrophy. Biochemical analysis of a muscle biopsy specimen demonstrated deficiency of cytochrome c oxidase activity. Cultured fibroblasts from this patient also showed a selective decrease in the activity of cytochrome c oxidase, excluding a muscle-specific type of deficiency. Further investigations in cultured fibroblasts revealed that synthesis, assembly and stability of both the mitochondrial and the nuclear subunits of the enzyme were entirely normal. The steady-state concentration of cytochrome c oxidase in the fibroblasts of the patient was also normal, suggesting that the kinetic properties of the enzyme were altered. Analysis of the kinetic parameters of cytochrome c oxidase demonstrated an aberrant interaction between cytochrome c oxidase and its substrate, cytochrome c, most likely because of a mutation in one of the nuclear subunits of the enzyme.
Collapse
Affiliation(s)
- L G Nijtmans
- Department of Neurology, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim K, Lecordier A, Bowman LH. Both nuclear and mitochondrial cytochrome c oxidase mRNA levels increase dramatically during mouse postnatal development. Biochem J 1995; 306 ( Pt 2):353-8. [PMID: 7887888 PMCID: PMC1136528 DOI: 10.1042/bj3060353] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The steady-state levels of 13 of 16 cytochrome c oxidase (COX) mRNAs and mitochondrial DNA were measured during the postnatal development of mouse skeletal muscle, ventricle, kidney and brain as well as during the differentiation of mouse myoblasts into myofibres in cell culture. These experiments indicate that large co-ordinated increases in COX mRNA levels and isoform switching are important for the elaboration of this enzyme during postnatal development and demonstrate the importance of gene-regulatory mechanisms in controlling COX activity. On a per nucleus basis, the levels of the mitochondrial- and most nuclear-encoded COX mRNAs co-ordinately increase 3-10-fold during postnatal development, with the highest levels obtained in ventricle and skeletal muscle. However, concentrations of mitochondrial and nuclear COX mRNAs remain constant during the differentiation of myoblasts into fibres in cell culture. A gradual change from the liver to the heart isoform of COX subunit VIa mRNA occurs during postnatal development of skeletal muscle and ventricle and is nearly complete 3 days after the formation of myofibres in cell culture. Mitochondrial DNA increases proportionally with COX mRNAs during mouse postnatal development but not during myoblast differentiation in cell culture, in which mitochondrial DNA levels increase 5-fold and mitochondrial mRNA levels remain constant. This suggests that mitochondrial DNA replication may control mitochondrial RNA concentrations during postnatal development but not during myoblast differentiation in cell culture.
Collapse
Affiliation(s)
- K Kim
- Department of Biological Sciences, University of South Carolina, Columbia 29208
| | | | | |
Collapse
|
36
|
Grossman LI, Rosenthal NH, Akamatsu M, Erickson RP. Cloning, sequence analysis, and expression of a mouse cDNA encoding cytochrome c oxidase subunit VIa liver isoform. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1260:361-4. [PMID: 7873616 DOI: 10.1016/0167-4781(94)00232-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A cDNA encoding cytochrome c oxidase (COX) subunit VIa liver isoform (COX6aL) was isolated from a Mus musculus library and sequenced. The protein translated from the nucleotide sequence contains a presequence and is 91% identical to the human cognate sequence over the processed polypeptide region. Northern analysis shows the expression of COX6aL is developmentally regulated in heart, being about equally transcribed with the heart isoform (COX6aH) in 18-day embryos but consisting of less than 25% in adult heart.
Collapse
Affiliation(s)
- L I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | | | | | | |
Collapse
|
37
|
Lefai E, Terrier-Cayre A, Vincent A, Boespflug-Tanguy O, Tanguy A, Alziari S. Enzymatic activities of mitochondrial respiratory complexes from children muscular biopsies. Age-related evolutions. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1228:43-50. [PMID: 7857961 DOI: 10.1016/0005-2728(94)00157-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Measurements were performed to determine maximum enzymatic activities of citrate synthetase and respiratory complexes I, III, and IV of mitochondria obtained from muscular biopsies in control children. The significant number of determinations carried out (43 different biopsies in controls aged 3.8 to 19.1 years) permits the formulation of a table of statistically validated reference values for these activities. These values are independent of sex of the controls, and of the studied muscles. Citrate synthetase activity, which remains stable in this age range, thus constitutes a good internal indicator of mitochondrial activity. Complexes I and III manifest activity which does not vary with age. On the other hand, cytochrome oxidase activity shows a highly significant decrease in this age group. This decrease may be correlated with qualitative changes (subunits VIa and VIIa) in composition of this complex.
Collapse
Affiliation(s)
- E Lefai
- Laboratoire de biochemie, ERS CNRS 63, Université Blaise Pascal, Aubière, France
| | | | | | | | | | | |
Collapse
|
38
|
Capaldi RA, Marusich MF, Taanman JW. Mammalian cytochrome-c oxidase: characterization of enzyme and immunological detection of subunits in tissue extracts and whole cells. Methods Enzymol 1995; 260:117-32. [PMID: 8592440 DOI: 10.1016/0076-6879(95)60134-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- R A Capaldi
- Institute of Molecular Biology, University of Oregon, Eugene 97403, USA
| | | | | |
Collapse
|
39
|
Taanman JW, Turina P, Capaldi RA. Regulation of cytochrome c oxidase by interaction of ATP at two binding sites, one on subunit VIa. Biochemistry 1994; 33:11833-41. [PMID: 7918401 DOI: 10.1021/bi00205a020] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cytochrome c oxidase isolated from a wild-type yeast strain and a mutant in which the gene for subunit VIa had been disrupted were used to study the interaction of adenine nucleotides with the enzyme complex. At low ionic strength (25 mM potassium phosphate), in the absence of nucleotides, the cytochrome c oxidase activity of the mutant enzyme lacking subunit VIa was higher than that of the wild-type enzyme. Increasing concentrations of ATP, in the physiological range, enhanced the cytochrome c oxidase activity of the mutant much more than the activity of the wild-type strain, whereas ADP, in the same concentration range, had no significant effect on the activity of the cytochrome c oxidase of either strain. These results indicate an interaction of ATP with subunit VIa in the wild-type enzyme that prevents the stimulation of the activity observed in the mutant enzyme. The stimulation of the mutant enzyme implies the presence of a second ATP binding site on the enzyme. Quantitative titrations with the fluorescent adenine nucleotide analogues 2'(or 3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate (TNP-ATP) and 2'(or 3')-O-(2,4,6-trinitrophenyl)adenosine 5'-diphosphate (TNP-ADP) confirmed the presence of two binding sites for adenine nucleotides per monomer of wild-type cytochrome c oxidase and one binding site per monomer of mutant enzyme. Covalent photolabeling of yeast cytochrome c oxidase with radioactive 2-azido-ATP further confirmed the presence of an ATP binding site on subunit VIa.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J W Taanman
- Institute of Molecular Biology, University of Oregon, Eugene 97403
| | | | | |
Collapse
|