1
|
Martin LD, Shelton J, Houser LA, MacAllister R, Coleman K. Refinements in Clinical and Behavioral Management for Macaques on Infectious Disease Protocols. Vet Sci 2024; 11:460. [PMID: 39453052 PMCID: PMC11512263 DOI: 10.3390/vetsci11100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
Providing optimal clinical and behavioral care is a key component of promoting animal welfare for macaques and other nonhuman primates (NHPs) in research. This overlap between critical areas of management is particularly important for NHPs on infectious disease protocols, which often have unique challenges. For example, traditionally these NHPs were often housed alone, which can have behavioral and clinical consequences. However, in the past decade or so, considerable effort has been directed at modifying procedures in an effort to improve animal welfare for this group of NHPs. In this review, we examine some refinements that can positively impact the clinical and behavioral management of macaques on infectious disease studies, including increased social housing and the use of positive reinforcement techniques to train animals to cooperate with procedures such as daily injections or awake blood draws. We also discuss ways to facilitate the implementation of these refinements, as well as to identify logistical considerations for their implementation. Finally, we look to the future and consider what more we can do to improve the welfare of these animals.
Collapse
Affiliation(s)
- Lauren Drew Martin
- Division of Comparative Medicine, Oregon National Primate Research Center, Beaverton, OR 97006, USA; (J.S.); (L.A.H.); (R.M.); (K.C.)
| | | | | | | | | |
Collapse
|
2
|
Cordoni G, Norscia I. Nuancing 'Emotional' Social Play: Does Play Behaviour Always Underlie a Positive Emotional State? Animals (Basel) 2024; 14:2769. [PMID: 39409718 PMCID: PMC11475484 DOI: 10.3390/ani14192769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This review focuses on social play, a complex behaviour that is often difficult to categorize. Although play has been typically associated with positive emotional states, a thorough examination of the literature indicates that it may relate to different emotional systems, from attachment to conflict. Play oscillates between competition and cooperation, and includes a spectrum in between; thus, quantitatively identifying and demonstrating the emotional nature of play remains challenging. We considered examples from human and non-human animal studies and explored the emotional and neuro-hormonal systems involved in play. We assessed ethological data possibly indicating the emotional states underlying play, and we focused on the cooperative and competitive elements of play. We investigated the relationship between play and affiliative/aggressive behaviours, the communicative meaning of play signals (especially primate play faces), and the motor and possibly emotional contagion function of rapid motor mimicry during play. From all the literature on play, this review selects and combines studies in an innovative way to present the methods (e.g., play indices and social network analysis), tools (e.g., sequential analysis and facial coding software), and evidence indicative of the emotional states underlying play, which is much more complex than previously thought.
Collapse
Affiliation(s)
- Giada Cordoni
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Ivan Norscia
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Turin, Italy
| |
Collapse
|
3
|
González-Rojas A, Valencia-Narbona M. Neurodevelopmental Disruptions in Children of Preeclamptic Mothers: Pathophysiological Mechanisms and Consequences. Int J Mol Sci 2024; 25:3632. [PMID: 38612445 PMCID: PMC11012011 DOI: 10.3390/ijms25073632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Preeclampsia (PE) is a multisystem disorder characterized by elevated blood pressure in the mother, typically occurring after 20 weeks of gestation and posing risks to both maternal and fetal health. PE causes placental changes that can affect the fetus, particularly neurodevelopment. Its key pathophysiological mechanisms encompass hypoxia, vascular and angiogenic dysregulation, inflammation, neuronal and glial alterations, and disruptions in neuronal signaling. Animal models indicate that PE is correlated with neurodevelopmental alterations and cognitive dysfunctions in offspring and in humans, an association between PE and conditions such as cerebral palsy, autism spectrum disorder, attention deficit hyperactivity disorder, and sexual dimorphism has been observed. Considering the relevance for mothers and children, we conducted a narrative literature review to describe the relationships between the pathophysiological mechanisms behind neurodevelopmental alterations in the offspring of PE mothers, along with their potential consequences. Furthermore, we emphasize aspects pertinent to the prevention/treatment of PE in pregnant mothers and alterations observed in their offspring. The present narrative review offers a current, complete, and exhaustive analysis of (i) the pathophysiological mechanisms that can affect neurodevelopment in the children of PE mothers, (ii) the relationship between PE and neurological alterations in offspring, and (iii) the prevention/treatment of PE.
Collapse
Affiliation(s)
- Andrea González-Rojas
- Laboratorio de Neurociencias Aplicadas, Escuela de Kinesiología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2950, Valparaíso 2340025, Chile;
| | | |
Collapse
|
4
|
Vengeliene V, Foo JC, Kim J. Translational approach to understanding momentary factors associated with alcohol consumption. Br J Pharmacol 2020; 177:3878-3897. [PMID: 32608068 DOI: 10.1111/bph.15180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 01/23/2023] Open
Abstract
Multiple interindividual and intra-individual factors underlie variability in drinking motives, challenging clinical translatability of animal research and limiting treatment success of substance use-related problems. Intra-individual variability refers to time-dependent continuous and discrete changes within the individual and in substance use research is studied as momentary variation in the internal states (craving, stressed, anxious, impulsive and tired) and response to external triggers (stressors, drug-associated environmental cues and social encounters). These momentary stimuli have a direct impact on behavioural decisions and may be triggers and predictors of substance consumption. They also present potential targets for real-time behavioural and pharmacological interventions. In this review, we provide an overview of the studies demonstrating different momentary risk factors associated with increased probability of alcohol drinking in humans and changes in alcohol seeking and consumption in animals. The review also provides an overview of pharmacological interventions related to every individual risk factor.
Collapse
Affiliation(s)
- Valentina Vengeliene
- Department of Neurobiology and Biophysics, Institute of Biosciences, Life Sciences Center, Vilnius, Lithuania
| | - Jerome Clifford Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jinhyuk Kim
- Department of Informatics, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
5
|
Maternal stress during pregnancy induces depressive-like behavior only in female offspring and correlates to their hippocampal Avp and Oxt receptor expression. Behav Brain Res 2018; 353:1-10. [DOI: 10.1016/j.bbr.2018.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/17/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
|
6
|
Baracz SJ, Everett NA, Cornish JL. The impact of early life stress on the central oxytocin system and susceptibility for drug addiction: Applicability of oxytocin as a pharmacotherapy. Neurosci Biobehav Rev 2018; 110:114-132. [PMID: 30172802 DOI: 10.1016/j.neubiorev.2018.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/14/2022]
Abstract
Early life trauma is strongly associated with an increased vulnerability to abuse illicit drugs and the impairment of neural development. This includes alterations to the development of the oxytocin system, which plays a pivotal role in the regulation of social behaviours and emotion. Dysregulation of this important system also contributes to increased susceptibility to develop drug addiction. In this review, we provide an overview of the animal models of early life stress that are widely used, and discuss the impact that early life stress has on drug-taking behaviour in adolescence and adulthood in both sexes. We link this to the changes that early life stress has on the endogenous oxytocin system, and how exogenously administered oxytocin may help to re-establish functioning of the system, and in turn, reduce drug-taking behaviour.
Collapse
Affiliation(s)
- Sarah J Baracz
- Department of Psychology, Macquarie University, North Ryde, NSW, 2109, Australia.
| | - Nicholas A Everett
- Department of Psychology, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Jennifer L Cornish
- Department of Psychology, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
7
|
Intergenerational Sex-Specific Transmission of Maternal Social Experience. Sci Rep 2018; 8:10529. [PMID: 30002484 PMCID: PMC6043535 DOI: 10.1038/s41598-018-28729-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
The social environment is a major determinant of individual stress response and lifetime health. The present study shows that (1) social enrichment has a significant impact on neuroplasticity and behaviour particularly in females; and (2) social enrichment in females can be transmitted to their unexposed female descendants. Two generations (F0 and F1) of male and female rats raised in standard and social housing conditions were examined for neurohormonal and molecular alterations along with changes in four behavioural modalities. In addition to higher cortical neuronal density and cortical thickness, social experience in mothers reduced hypothalamic-pituitary-adrenal (HPA) axis activity in F0 rats and their F1 non-social housing offspring. Only F0 social mothers and their F1 non-social daughters displayed improved novelty-seeking exploratory behaviour and reduced anxiety-related behaviour whereas their motor and cognitive performance remained unchanged. Also, cortical and mRNA measurements in the F1 generation were affected by social experience intergenerationally via the female lineage (mother-to-daughter). These findings indicate that social experience promotes cortical neuroplasticity, neurohormonal and behavioural outcomes, and these changes can be transmitted to the F1 non-social offspring in a sexually dimorphic manner. Thus, a socially stimulating environment may form new biobehavioural phenotypes not only in exposed individuals, but also in their intergenerationally programmed descendants.
Collapse
|
8
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
9
|
Vogel Ciernia A, Laufer BI, Dunaway KW, Mordaunt CE, Coulson RL, Totah TS, Stolzenberg DS, Frahm JC, Singh-Taylor A, Baram TZ, LaSalle JM, Yasui DH. Experience-dependent neuroplasticity of the developing hypothalamus: integrative epigenomic approaches. Epigenetics 2018; 13:318-330. [PMID: 29613827 DOI: 10.1080/15592294.2018.1451720] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Augmented maternal care during the first postnatal week promotes life-long stress resilience and improved memory compared with the outcome of routine rearing conditions. Recent evidence suggests that this programming commences with altered synaptic connectivity of stress sensitive hypothalamic neurons. However, the epigenomic basis of the long-lived consequences is not well understood. Here, we employed whole-genome bisulfite sequencing (WGBS), RNA-sequencing (RNA-seq), and a multiplex microRNA (miRNA) assay to examine the effects of augmented maternal care on DNA cytosine methylation, gene expression, and miRNA expression. A total of 9,439 differentially methylated regions (DMRs) associated with augmented maternal care were identified in male offspring hypothalamus, as well as a modest but significant decrease in global DNA methylation. Differentially methylated and expressed genes were enriched for functions in neurotransmission, neurodevelopment, protein synthesis, and oxidative phosphorylation, as well as known stress response genes. Twenty prioritized genes were identified as highly relevant to the stress resiliency phenotype. This combined unbiased approach enabled the discovery of novel genes and gene pathways that advance our understanding of the epigenomic mechanisms underlying the effects of maternal care on the developing brain.
Collapse
Affiliation(s)
- Annie Vogel Ciernia
- a Department of Medical Microbiology and Immunology , University of California , Davis , CA , USA
| | - Benjamin I Laufer
- a Department of Medical Microbiology and Immunology , University of California , Davis , CA , USA
| | - Keith W Dunaway
- a Department of Medical Microbiology and Immunology , University of California , Davis , CA , USA
| | - Charles E Mordaunt
- a Department of Medical Microbiology and Immunology , University of California , Davis , CA , USA
| | - Rochelle L Coulson
- a Department of Medical Microbiology and Immunology , University of California , Davis , CA , USA
| | - Theresa S Totah
- a Department of Medical Microbiology and Immunology , University of California , Davis , CA , USA
| | | | - Jaime C Frahm
- c Center for Comparative Medicine , University of California , Davis , CA , USA
| | - Akanksha Singh-Taylor
- d Department of Pediatrics and Anatomy/Neurobiology , University of California , Irvine , CA , USA
| | - Tallie Z Baram
- d Department of Pediatrics and Anatomy/Neurobiology , University of California , Irvine , CA , USA
| | - Janine M LaSalle
- a Department of Medical Microbiology and Immunology , University of California , Davis , CA , USA.,e UC Davis Genome Center , UC Davis , Davis , CA , USA.,f UC Davis MIND Institute , UC Davis , Davis , CA , USA
| | - Dag H Yasui
- a Department of Medical Microbiology and Immunology , University of California , Davis , CA , USA
| |
Collapse
|
10
|
de Almeida Magalhães T, Correia D, de Carvalho LM, Damasceno S, Brunialti Godard AL. Maternal separation affects expression of stress response genes and increases vulnerability to ethanol consumption. Brain Behav 2018; 8:e00841. [PMID: 29568676 PMCID: PMC5853632 DOI: 10.1002/brb3.841] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 08/21/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Maternal separation is an early life stress event associated with behavioral alterations and ethanol consumption. We aimed to expand the current understanding on the molecular mechanisms mediating the impact of postnatal stress on ethanol consumption. METHODS In the first experiment (T1), some of the pups were separated from their mothers for 6 hr daily (Maternal Separation group - MS), whereas the other pups remained in the cage with their respective mothers (Control group - C). In the second experiment (T2), mice from both groups were subjected to the model of free-choice between water and sucrose solution or between water and ethanol solution. Maternal behavior was assessed at the end of T1. At the end of both T1 and T2, pups were subjected to the light/dark box behavioral test and blood corticosterone concentrations were analyzed. RESULTS Our maternal separation protocol led to intense maternal care and affected weight gain of the animals. The expression of stress response genes was altered with higher levels of Crh and Pomc being observed in the hypothalamus, and higher levels of Crhr1, Crhr2, Htr2a and lower levels of Nr3c1 and Htr1a being observed in the hippocampus after T1. At the end of T2, we observed higher levels of Avp and Pomc in the hypothalamus, and higher levels of Crhr1, Crhr2, Nr3c1, Slc6a4, Bdnf and lower levels of Htr1a in the hippocampus. Additionally, maternal separation increased vulnerability to ethanol consumption during adolescence and induced changes in anxiety/stress-related behavior after T2. Furthermore, voluntary ethanol consumption attenuated stress response and modified expression of reward system genes: enhancing Drd1 and Drd2, and reducing Gabbr2 in the striatum. CONCLUSION Maternal separation induced behavioral changes and alterations in the expression of key genes involved in HPA axis and in the serotonergic and reward systems that are likely to increase vulnerability to ethanol consumption in adolescence. We demonstrated, for the first time, that ethanol consumption masked stress response by reducing the activity of the HPA axis and the serotonergic system, therefore, suggesting that adolescent mice from the MS group probably consumed ethanol for stress relieving purposes.
Collapse
Affiliation(s)
- Taciani de Almeida Magalhães
- Laboratório de Genética Animal e Humana Departamento de Biologia Geral Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Diego Correia
- Laboratório de Genética Animal e Humana Departamento de Biologia Geral Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Luana Martins de Carvalho
- Laboratório de Genética Animal e Humana Departamento de Biologia Geral Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Samara Damasceno
- Laboratório de Genética Animal e Humana Departamento de Biologia Geral Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
| | - Ana Lúcia Brunialti Godard
- Laboratório de Genética Animal e Humana Departamento de Biologia Geral Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
| |
Collapse
|
11
|
Beyer DKE, Freund N. Animal models for bipolar disorder: from bedside to the cage. Int J Bipolar Disord 2017; 5:35. [PMID: 29027157 PMCID: PMC5638767 DOI: 10.1186/s40345-017-0104-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022] Open
Abstract
Bipolar disorder is characterized by recurrent manic and depressive episodes. Patients suffering from this disorder experience dramatic mood swings with a wide variety of typical behavioral facets, affecting overall activity, energy, sexual behavior, sense of self, self-esteem, circadian rhythm, cognition, and increased risk for suicide. Effective treatment options are limited and diagnosis can be complicated. To overcome these obstacles, a better understanding of the neurobiology underlying bipolar disorder is needed. Animal models can be useful tools in understanding brain mechanisms associated with certain behavior. The following review discusses several pathological aspects of humans suffering from bipolar disorder and compares these findings with insights obtained from several animal models mimicking diverse facets of its symptomatology. Various sections of the review concentrate on specific topics that are relevant in human patients, namely circadian rhythms, neurotransmitters, focusing on the dopaminergic system, stressful environment, and the immune system. We then explain how these areas have been manipulated to create animal models for the disorder. Even though several approaches have been conducted, there is still a lack of adequate animal models for bipolar disorder. Specifically, most animal models mimic only mania or depression and only a few include the cyclical nature of the human condition. Future studies could therefore focus on modeling both episodes in the same animal model to also have the possibility to investigate the switch from mania-like behavior to depressive-like behavior and vice versa. The use of viral tools and a focus on circadian rhythms and the immune system might make the creation of such animal models possible.
Collapse
Affiliation(s)
- Dominik K. E. Beyer
- Experimental and Molecular Psychiatry, LWL University Hospital, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Nadja Freund
- Experimental and Molecular Psychiatry, LWL University Hospital, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
12
|
Maternal treatment with dexamethasone during gestation alters sexual development markers in the F1 and F2 male offspring of Wistar rats. J Dev Orig Health Dis 2016; 8:101-112. [DOI: 10.1017/s2040174416000453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Maternal treatment with dexamethasone (Dex) in threatening preterm delivery alters activities at the hypothalamic–pituitary–adrenal axis in the offspring. This alteration may interfere with reproductive function. The impact of gestational Dex exposure on male reproductive function of the offspring was investigated. A total of 25 pregnant rats randomly assigned to five groups (n=5) were treated with normal saline (control), Dex (100 μg/kg/day sc) during gestation days (GD) 1–7, 8–14, 15–21 and 1–21, respectively. Birth weight, anogenital distance (AGD), pubertal age, sperm parameters, hormonal profile and histopathology of testis and epididymis were determined in the F1 and F2 offspring. Results showed a significant increase (P<0.05) in pubertal age, serum corticosterone and gonadotropin-releasing hormone (GnRH) levels in the male offspring of DexGD 15–21 and 1–21 groups and a significant decrease (P<0.05) in serum testosterone, luteinizing hormone, birth weight and AGD at birth in the male F1 offspring. In the F2 offspring, there was a significant reduction (P<0.05) in serum corticosterone, testosterone, follicle-stimulating hormone and GnRH when compared with the control. Dex treatment at GD 15–21 and 1–21 significantly reduced (P<0.05) sperm motility and normal morphology in the F1 and F2 offspring. Maternal Dex treatment in rats during late gestation may disrupt sexual development markers in the F1 and F2 male offspring.
Collapse
|
13
|
Tractenberg SG, Levandowski ML, de Azeredo LA, Orso R, Roithmann LG, Hoffmann ES, Brenhouse H, Grassi-Oliveira R. An overview of maternal separation effects on behavioural outcomes in mice: Evidence from a four-stage methodological systematic review. Neurosci Biobehav Rev 2016; 68:489-503. [PMID: 27328784 DOI: 10.1016/j.neubiorev.2016.06.021] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/13/2016] [Accepted: 06/16/2016] [Indexed: 01/08/2023]
Abstract
Early life stress (ELS) developmental effects have been widely studied by preclinical researchers. Despite the growing body of evidence from ELS models, such as the maternal separation paradigm, the reported results have marked inconsistencies. The maternal separation model has several methodological pitfalls that could influence the reliability of its results. Here, we critically review 94 mice studies that addressed the effects of maternal separation on behavioural outcomes. We also discuss methodological issues related to the heterogeneity of separation protocols and the quality of reporting methods. Our findings indicate a lack of consistency in maternal separation effects: major studies of behavioural and biological phenotypes failed to find significant deleterious effects. Furthermore, we identified several specific variations in separation methodological procedures. These methodological variations could contribute to the inconsistency of maternal separation effects by producing different degrees of stress exposure in maternal separation-reared pups. These methodological problems, together with insufficient reporting, might lead to inaccurate and unreliable effect estimates in maternal separation studies.
Collapse
Affiliation(s)
- Saulo G Tractenberg
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil
| | - Mateus L Levandowski
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil
| | - Lucas Araújo de Azeredo
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil; Post-Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Rodrigo Orso
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil
| | - Laura G Roithmann
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil
| | - Emerson S Hoffmann
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil
| | - Heather Brenhouse
- Department of Psychology, Northeastern University, 125 Nightingale Hall, 360 Huntington Avenue, Boston, MA 02115, USA
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Post-Graduate Program in Psychology, Pontifical Catholic University of Rio Grande do Sul (PUCRS), 6681 Ipiranga Avenue, Building 11, Room 928 Porto Alegre, RS, Brazil; Post-Graduate Program in Pediatrics and Children Healths, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
Anacker C, Scholz J, O’Donnell KJ, Allemang-Grand R, Diorio J, Bagot RC, Nestler EJ, Hen R, Lerch JP, Meaney MJ. Neuroanatomic Differences Associated With Stress Susceptibility and Resilience. Biol Psychiatry 2016; 79:840-849. [PMID: 26422005 PMCID: PMC5885767 DOI: 10.1016/j.biopsych.2015.08.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND We examined the neurobiological mechanisms underlying stress susceptibility using structural magnetic resonance imaging and diffusion tensor imaging to determine neuroanatomic differences between stress-susceptible and resilient mice. We also examined synchronized anatomic differences between brain regions to gain insight into the plasticity of neural networks underlying stress susceptibility. METHODS C57BL/6 mice underwent 10 days of social defeat stress and were subsequently tested for social avoidance. For magnetic resonance imaging, brains of stressed (susceptible, n = 11; resilient, n = 8) and control (n = 12) mice were imaged ex vivo at 56 µm resolution using a T2-weighted sequence. We tested for behavior-structure correlations by regressing social avoidance z-scores against local brain volume. For diffusion tensor imaging, brains were scanned with a diffusion-weighted fast spin echo sequence at 78 μm isotropic voxels. Structural covariance was assessed by correlating local volume between brain regions. RESULTS Social avoidance correlated negatively with local volume of the cingulate cortex, nucleus accumbens, thalamus, raphe nuclei, and bed nucleus of the stria terminals. Social avoidance correlated positively with volume of the ventral tegmental area (VTA), habenula, periaqueductal gray, cerebellum, hypothalamus, and hippocampal CA3. Fractional anisotropy was increased in the hypothalamus and hippocampal CA3. We observed synchronized anatomic differences between the VTA and cingulate cortex, hippocampus and VTA, hippocampus and cingulate cortex, and hippocampus and hypothalamus. These correlations revealed different structural covariance between brain regions in susceptible and resilient mice. CONCLUSIONS Stress-integrative brain regions shape the neural architecture underlying individual differences in susceptibility and resilience to chronic stress.
Collapse
|
15
|
Lin C, Shao B, Zhou Y, Niu X, Lin Y. Maternal high-fat diet influences stroke outcome in adult rat offspring. J Mol Endocrinol 2016; 56:101-12. [PMID: 26643911 DOI: 10.1530/jme-15-0226] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/03/2015] [Indexed: 12/20/2022]
Abstract
Diet-induced epigenetic modifications in early life could contribute to later health problem. However, it remains to be established whether high-fat diet (HFD) consumption during pregnancy and the suckling period could predispose the offspring to stroke. The present study investigated the influence of maternal HFD on stroke outcome in adult offspring. Female Sprague-Dawley rats were fed a normal diet (5.3% fat) or a HFD (25.7% fat), just before pregnancy until the end of lactation. Male offspring were fed with the control diet or the HFD after weaning, to form four groups (control offspring fed with the control diet (C/C) or the HFD (C/HFD) and offspring of fat-fed dams fed with the control diet (HFD/C) or the HFD (HFD/HFD)). The offspring received middle cerebral artery occlusion on day 120 followed by behavioral tests (neurological deficit score, staircase-reaching test and beam-traversing test), and infarct volumes were also calculated. We found that the HFD/C rats displayed larger infarct volume and aggravated functional deficits (all P<0.05), compared with the C/C rats, indicating that maternal fat-rich diet renders the brain more susceptible to the consequences of ischemic injury. Moreover, maternal HFD offspring displayed elevated glucocorticoid concentrations following stroke, and increased glucocorticoid receptor expression. In addition, adrenalectomy reversed the effects of maternal HFD on stroke outcome when corticosterone was replaced at baseline, but not ischemic, concentrations. Furthermore, expression of brain-derived neurotrophic factor (BDNF) in the ipsilateral hippocampus was decreased in the HFD/C offspring (P<0.05), compared with the C/C offspring. Taken together, maternal diet can substantially influence adult cerebrovascular health, through the programming of central BDNF expression and the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- ChengCheng Lin
- Department of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaFirst Department of Neurology, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, China
| | - Bei Shao
- Department of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaFirst Department of Neurology, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, China
| | - YuLei Zhou
- Department of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaFirst Department of Neurology, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, China
| | - XiaoTing Niu
- Department of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaFirst Department of Neurology, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, China
| | - YuanShao Lin
- Department of Surgery LaboratoryFirst Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, ChinaFirst Department of Neurology, First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, China
| |
Collapse
|
16
|
Newby EA, Myers DA, Ducsay CA. Fetal endocrine and metabolic adaptations to hypoxia: the role of the hypothalamic-pituitary-adrenal axis. Am J Physiol Endocrinol Metab 2015; 309:E429-39. [PMID: 26173460 PMCID: PMC4556885 DOI: 10.1152/ajpendo.00126.2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/10/2015] [Indexed: 11/22/2022]
Abstract
In utero, hypoxia is a significant yet common stress that perturbs homeostasis and can occur due to preeclampsia, preterm labor, maternal smoking, heart or lung disease, obesity, and high altitude. The fetus has the extraordinary capacity to respond to stress during development. This is mediated in part by the hypothalamic-pituitary-adrenal (HPA) axis and more recently explored changes in perirenal adipose tissue (PAT) in response to hypoxia. Obvious ethical considerations limit studies of the human fetus, and fetal studies in the rodent model are limited due to size considerations and major differences in developmental landmarks. The sheep is a common model that has been used extensively to study the effects of both acute and chronic hypoxia on fetal development. In response to high-altitude-induced, moderate long-term hypoxia (LTH), both the HPA axis and PAT adapt to preserve normal fetal growth and development while allowing for responses to acute stress. Although these adaptations appear beneficial during fetal development, they may become deleterious postnatally and into adulthood. The goal of this review is to examine the role of the HPA axis in the convergence of endocrine and metabolic adaptive responses to hypoxia in the fetus.
Collapse
Affiliation(s)
- Elizabeth A Newby
- Center for Perinatal Biology, Loma Linda University, Loma Linda, California; and
| | - Dean A Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Charles A Ducsay
- Center for Perinatal Biology, Loma Linda University, Loma Linda, California; and
| |
Collapse
|
17
|
Newby EA, Kaushal KM, Myers DA, Ducsay CA. Adrenocorticotropic Hormone and PI3K/Akt Inhibition Reduce eNOS Phosphorylation and Increase Cortisol Biosynthesis in Long-Term Hypoxic Ovine Fetal Adrenal Cortical Cells. Reprod Sci 2015; 22:932-41. [PMID: 25656500 DOI: 10.1177/1933719115570899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study was designed to determine the role of the MEK/ERK1/2 and PI3K/Akt pathways in cortisol production and endothelial nitric oxide synthase (eNOS) phosphorylation (peNOS) in the ovine fetal adrenal in response to long-term hypoxia (LTH). Pregnant ewes were maintained at high altitude (3820 m) for the last 100 days of gestation (dGa). At 138 to 142 dGa, fetal adrenal cortical cells (FACs) were collected from LTH and age-matched normoxic fetuses. Cortisol production and peNOS were measured in response to pretreatment with the MEK/ERK1/2 pathway inhibitor UO126 (UO) and adrenocorticotropic hormone (ACTH) stimulation. UO126 reduced ACTH-stimulated cortisol in both normoxic and LTH FACs. UO126 alone or in combination with ACTH reduced peNOS in the normoxic group, while ACTH alone or ACTH + UO inhibited peNOS in LTH FACs. Additionally, cortisol was measured in response to pretreatment with UO and treatment with 22R-hydroxycholesterol (22R-OHC) or water-soluble cholesterol (WSC) with and without ACTH stimulation. UO126 had no effect on 22R-OHC-treated cells, but reduced cortisol in cells treated with WSC and/or ACTH. Cortisol and peNOS were also measured in response to pretreatment with PI3K/Akt pathway inhibitor Wortmannin (WT) and ACTH stimulation. Wortmannin further increased cortisol under ACTH-stimulated conditions and, like ACTH, reduced peNOS in LTH but not normoxic FACs. Together, these data suggest that in LTH FACs MEK/ERK1/2 does not regulate peNOS but that UO acts downstream from eNOS, possibly at cholesterol transport, to affect cortisol production in LTH FACs, while the PI3K/Akt pathway, along with ACTH, regulates peNOS and plays a role in the fetal adaptation to LTH in FACs.
Collapse
Affiliation(s)
- Elizabeth A Newby
- Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA
| | - Kanchan M Kaushal
- Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA
| | - Dean A Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Charles A Ducsay
- Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
18
|
Singh-Taylor A, Korosi A, Molet J, Gunn BG, Baram TZ. Synaptic rewiring of stress-sensitive neurons by early-life experience: a mechanism for resilience? Neurobiol Stress 2015; 1:109-115. [PMID: 25530985 PMCID: PMC4267062 DOI: 10.1016/j.ynstr.2014.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Genes and environment interact to influence cognitive and emotional functions throughout life. Early-life experiences in particular contribute to vulnerability or resilience to a number of emotional and cognitive illnesses in humans. In rodents, early-life experiences directly lead to resilience or vulnerability to stress later in life, and influence the development of cognitive and emotional deficits. The mechanisms for the enduring effects of early-life experiences on cognitive and emotional outcomes are not completely understood. Here, we present emerging information supporting experience-dependent modulation of the number and efficacy of synaptic inputs onto stress-sensitive neurons. This synaptic 'rewiring', in turn, may influence the expression of crucial neuronal genes. The persistent changes in gene expression in resilient versus vulnerable rodent models are likely maintained via epigenetic mechanisms. Thus, early-life experience may generate resilience by altering synaptic input to neurons, which informs them to modulate their epigenetic machinery.
Collapse
Affiliation(s)
- Akanksha Singh-Taylor
- Departments of Pediatrics, University of California-Irvine, Irvine, CA 92697-4475, USA
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam. The Netherlands
| | - Jenny Molet
- Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA 92697-4475, USA
| | - Benjamin G Gunn
- Departments of Pediatrics, University of California-Irvine, Irvine, CA 92697-4475, USA
| | - Tallie Z Baram
- Departments of Pediatrics, University of California-Irvine, Irvine, CA 92697-4475, USA ; Department of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA 92697-4475, USA ; Department of Neurology, University of California-Irvine, Irvine, CA 92697-4475, USA
| |
Collapse
|
19
|
Vetulani J. Early maternal separation: a rodent model of depression and a prevailing human condition. Pharmacol Rep 2014; 65:1451-61. [PMID: 24552992 DOI: 10.1016/s1734-1140(13)71505-6] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/16/2013] [Indexed: 01/28/2023]
Abstract
The early life of most mammals is spent in close contact with the mother, and for the neonate, early maternal separation is a traumatic event that, depending on various conditions, may shape its behavioral and neurochemical phenotype in adulthood. Studies on rodents demonstrated that a very brief separation followed by increased maternal care may positively affect the development of the offspring but that prolonged separation causes significant amounts of stress. The consequences of this stress (particularly the hyperreactivity of the HPA (hypothalamic-pituitary-adrenal) axis are expressed in adulthood and persist for life. Maternal separation in rodents, particularly rats, was used as a model for various psychotic conditions, especially depression. The most popular separation procedure of a 3-h daily separation from the second to the 12th postpartum day yields a depression model of high construct and predictive validity. The results of studies on maternal separation in rats and monkeys prompt a discussion of the consequences of traditional procedures in the maternity wards of developed countries where attention is focused on the hygiene of the neonates and not on their psychological needs. This alternate focus results in a drastic limitation of mother-infant contact and prolonged periods of separation. It is tempting to speculate that differences in the course and severity of various mental disorders, which are usually less prevalent in underdeveloped countries than in developed countries (as noted by Kraepelin), may be related to different modes of infant care. Only recently has so-called kangaroo mother care (establishing mother-infant skin-to-skin contact immediately after birth) become popular in developed countries. In addition to its instant benefits for the neonates, this procedure may also be beneficial for the mental health of the offspring in adulthood.
Collapse
Affiliation(s)
- Jerzy Vetulani
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, PL 31-343 Kraków, Poland.
| |
Collapse
|
20
|
Epigenetic signaling in psychiatric disorders. J Mol Biol 2014; 426:3389-412. [PMID: 24709417 DOI: 10.1016/j.jmb.2014.03.016] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/10/2023]
Abstract
Psychiatric disorders are complex multifactorial illnesses involving chronic alterations in neural circuit structure and function. While genetic factors are important in the etiology of disorders such as depression and addiction, relatively high rates of discordance among identical twins clearly indicate the importance of additional mechanisms. Environmental factors such as stress or prior drug exposure are known to play a role in the onset of these illnesses. Such exposure to environmental insults induces stable changes in gene expression, neural circuit function, and ultimately behavior, and these maladaptations appear distinct between developmental and adult exposures. Increasing evidence indicates that these sustained abnormalities are maintained by epigenetic modifications in specific brain regions. Indeed, transcriptional dysregulation and associated aberrant epigenetic regulation is a unifying theme in psychiatric disorders. Aspects of depression and addiction can be modeled in animals by inducing disease-like states through environmental manipulations (e.g., chronic stress, drug administration). Understanding how environmental factors recruit the epigenetic machinery in animal models reveals new insight into disease mechanisms in humans.
Collapse
|
21
|
Regev L, Baram TZ. Corticotropin releasing factor in neuroplasticity. Front Neuroendocrinol 2014; 35:171-9. [PMID: 24145148 PMCID: PMC3965598 DOI: 10.1016/j.yfrne.2013.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/28/2013] [Accepted: 10/07/2013] [Indexed: 11/26/2022]
Abstract
Stress is among the strongest signals promoting neuroplasticity: Stress signals, indicating real or perceived danger, lead to alterations of neuronal function and often structure, designed to adapt to the changed conditions and promote survival. Corticotropin releasing factor (CRF) is expressed and released in several types of neuronal populations that are involved in cognition, emotion and the regulation of autonomic and endocrine function. CRF expressing neurons undergo functional and structural plasticity during stress and, in addition, the peptide acts via specific receptors to promote plasticity of target neurons.
Collapse
Affiliation(s)
- Limor Regev
- Departments of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Departments of Anatomy/Neurobiology, University of California-Irvine, Irvine, CA, USA; Department of Pediatrics, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
22
|
Limosin F. Neurodevelopmental and environmental hypotheses of negative symptoms of schizophrenia. BMC Psychiatry 2014; 14:88. [PMID: 24670212 PMCID: PMC3986891 DOI: 10.1186/1471-244x-14-88] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/18/2014] [Indexed: 02/06/2023] Open
Abstract
The negative symptoms of schizophrenia, avolition, alogia, apathy and impaired or nonexistent social functioning, are strongly correlated with the progressive course and long-term prognosis of the disease, undermining the patient's ability to integrate socially, interpersonal skills and quality of life. At a time when new drug strategies are being developed, a better understanding of the etiology and pathogenesis underpinning the occurrence of negative symptoms constitutes an essential prerequisite for real therapeutic advances. Approaching this vulnerability from the neurodevelopmental perspective is especially pertinent with regard to the experimental studies conducted in animals. Several models have been put forward, involving a variety of topics such as the deleterious impact of a prenatal infection or of early maternal deprivation on brain development, or else the consequences of trauma and abuse suffered during childhood. These various models are based on biological abnormalities that could guide the identification of new therapeutic targets. They notably include the hyperreactivity of the hypothalamic-pituitary-adrenal axis and dysfunction of corticostriatal glutamatergic transmission. As such, in the traumagenic model, which associates neurodevelopmental and neurodegenerative processes, the dysfunction of corticostriatal glutamatergic transmission, by reducing the tonic dopamine release, could be the cause of an increase in the phasic dopamine release linked to stress. This excessive phasic response to stress may induce cerebral damage by increasing excitotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Frédéric Limosin
- Department of Adult and Geriatric Psychiatry, Hôpitaux Universitaires Paris Ouest (AP-HP), Hôpital Corentin-Celton, 4, parvis Corentin-Celton, 92133 Issy-les-Moulineaux, France.
| |
Collapse
|
23
|
Wu R, Song Z, Wang S, Shui L, Tai F, Qiao X, He F. Early paternal deprivation alters levels of hippocampal brain-derived neurotrophic factor and glucocorticoid receptor and serum corticosterone and adrenocorticotropin in a sex-specific way in socially monogamous mandarin voles. Neuroendocrinology 2014; 100:119-28. [PMID: 25116057 DOI: 10.1159/000366441] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/31/2014] [Indexed: 11/19/2022]
Abstract
In monogamous mammals, fathers play an important role in the development of the brain and typical behavior in offspring, but the exact nature of this process is not well understood. In particular, little research has addressed whether the presence or absence of paternal care alters levels of hippocampal glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF), and basal levels of serum corticosterone (CORT) and adrenocorticotropin (ACTH). Here, we explored this concept using socially monogamous mandarin voles (Microtus mandarinus), a species in which fathers display high levels of paternal care toward their pups. Our immunohistochemical study shows that paternal deprivation (PD) significantly decreased levels of GR and BDNF protein in the CA1 and CA2/3 of the hippocampus. In the dental gyrus, decreases in GR and BDNF induced by PD were evident in females but not in males. Additionally, enzyme-linked immunosorbent assay results show that PD significantly upregulated levels of serum CORT and ACTH in females, but not males. These findings demonstrate that PD alters HPA axis activity in a sex-specific way. The changes in stress hormones documented here may be associated with alteration in hippocampal BDNF and GR levels.
Collapse
Affiliation(s)
- Ruiyong Wu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Jensen CL, Champagne FA. Epigenetic and Neurodevelopmental Perspectives on Variation in Parenting Behavior. PARENTING, SCIENCE AND PRACTICE 2012; 12:202-211. [PMID: 23162380 PMCID: PMC3498455 DOI: 10.1080/15295192.2012.683358] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mother-infant interactions in rodents can be used to explore the biological basis of postnatal parental effects. There is emerging evidence from laboratory studies that variation in early life experiences can induce molecular changes in the developing brain which lead to activation or silencing of genes. These epigenetic effects may account for the stability of the effects of parenting on offspring development and the transmission of parenting from one generation to the next. In this article, we highlight evidence supporting a role for epigenetic mechanisms in the consequences, transmission, and variability in parenting. Although primarily drawn from laboratory studies in rodents, this evidence may also provide some insights into key questions within the study and practice of human parenting. We discuss these questions, highlighting both the challenges and benefits of using translational approaches.
Collapse
Affiliation(s)
| | - Frances A. Champagne
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, Room 406 Schermerhorn Hall, New York NY 10027
| |
Collapse
|
25
|
Gunn BG, Brown AR, Lambert JJ, Belelli D. Neurosteroids and GABA(A) Receptor Interactions: A Focus on Stress. Front Neurosci 2011; 5:131. [PMID: 22164129 PMCID: PMC3230140 DOI: 10.3389/fnins.2011.00131] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/14/2011] [Indexed: 11/13/2022] Open
Abstract
Since the pioneering discovery of the rapid CNS depressant actions of steroids by the "father of stress," Hans Seyle 70 years ago, brain-derived "neurosteroids" have emerged as powerful endogenous modulators of neuronal excitability. The majority of the intervening research has focused on a class of naturally occurring steroids that are metabolites of progesterone and deoxycorticosterone, which act in a non-genomic manner to selectively augment signals mediated by the main inhibitory receptor in the CNS, the GABA(A) receptor. Abnormal levels of such neurosteroids associate with a variety of neurological and psychiatric disorders, suggesting that they serve important physiological and pathophysiological roles. A compelling case can be made to implicate neurosteroids in stress-related disturbances. Here we will critically appraise how brain-derived neurosteroids may impact on the stress response to acute and chronic challenges, both pre- and postnatally through to adulthood. The pathological implications of such actions in the development of psychiatric disturbances will be discussed, with an emphasis on the therapeutic potential of neurosteroids for the treatment of stress-associated disorders.
Collapse
Affiliation(s)
- Benjamin G Gunn
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, Ninewells Hospital, University of Dundee Dundee, UK
| | | | | | | |
Collapse
|
26
|
Curley JP, Jensen CL, Mashoodh R, Champagne FA. Social influences on neurobiology and behavior: epigenetic effects during development. Psychoneuroendocrinology 2011; 36:352-71. [PMID: 20650569 PMCID: PMC2980807 DOI: 10.1016/j.psyneuen.2010.06.005] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 02/04/2023]
Abstract
The quality of the social environment can have profound influences on the development and activity of neural systems with implications for numerous behavioral and physiological responses, including the expression of emotionality. Though social experiences occurring early in development may be particularly influential on the developing brain, there is continued plasticity within these neural circuits amongst juveniles and into early adulthood. In this review, we explore the evidence derived from studies in rodents which illustrates the social modulation during development of neural systems, with a particular emphasis on those systems in which a long-term effect is observed. One possible explanation for the persistence of dynamic changes in these systems in response to the environment is the involvement of epigenetic mechanisms, and here we discuss recent studies which support the role of these mechanisms in mediating the link between social experiences, gene expression, neurobiological changes, and behavioral variation. This literature raises critical questions about the interaction between neural systems, the concordance between neural and behavioral changes, sexual dimorphism in effects, the importance of considering individual differences in response to the social environment, and the potential of an epigenetic perspective in advancing our understanding of the pathways leading to variations in mental health.
Collapse
Affiliation(s)
- J P Curley
- Columbia University, Department of Psychology, 1190 Amsterdam Avenue, New York, NY 10027, USA
| | | | | | | |
Collapse
|
27
|
Early life stress paradigms in rodents: potential animal models of depression? Psychopharmacology (Berl) 2011; 214:131-40. [PMID: 21086114 DOI: 10.1007/s00213-010-2096-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 11/03/2010] [Indexed: 12/13/2022]
Abstract
RATIONALE While human depressive illness is indeed uniquely human, many of its symptoms may be modeled in rodents. Based on human etiology, the assumption has been made that depression-like behavior in rats and mice can be modulated by some of the powerful early life programming effects that are known to occur after manipulations in the first weeks of life. OBJECTIVE Here we review the evidence that is available in literature for early life manipulation as risk factors for the development of depression-like symptoms such as anhedonia, passive coping strategies, and neuroendocrine changes. Early life paradigms that were evaluated include early handling, separation, and deprivation protocols, as well as enriched and impoverished environments. We have also included a small number of stress-related pharmacological models. RESULTS We find that for most early life paradigms per se, the actual validity for depression is limited. A number of models have not been tested with respect to classical depression-like behaviors, while in many cases, the outcome of such experiments is variable and depends on strain and additional factors. CONCLUSION Because programming effects confer vulnerability rather than disease, a number of paradigms hold promise for usefulness in depression research, in combination with the proper genetic background and adult life challenges.
Collapse
|
28
|
Korosi A, Baram TZ. Plasticity of the stress response early in life: mechanisms and significance. Dev Psychobiol 2011; 52:661-70. [PMID: 20862706 DOI: 10.1002/dev.20490] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The concept that early-life experience influences the brain long-term has been extensively studied over the past 50 years, whereas genetic factors determine the sequence and levels of expression of specific neuronal genes, this genetic program can be modified enduringly as a result of experience taking place during critical developmental periods. This programming is of major importance because it appears to govern many behavioral and physiological phenotypes and promote susceptibility or resilience to disease. An established example of the consequences of early-life experience-induced programming includes the effects of maternal care, where patterns of augmented care result in decreased neuroendocrine stress responses, improved cognition and resilience to depression in the recipients of this care. Here, we discuss the nature and mechanisms of this programming phenomenon, focusing on work from our lab that was inspired by Seymour Levine and his fundamental contributions to the field.
Collapse
Affiliation(s)
- Aniko Korosi
- Department of Anatomy/Neurobiology, Pediatrics and Neurology, UC Irvine, CA 92697, USA.
| | | |
Collapse
|
29
|
Vargas VE, Kaushal KM, Monau T, Myers DA, Ducsay CA. Long-term hypoxia enhances cortisol biosynthesis in near-term ovine fetal adrenal cortical cells. Reprod Sci 2010; 18:277-85. [PMID: 21079237 DOI: 10.1177/1933719110386242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study was designed to determine the potential mechanism/mechanisms of previously observed enhanced fetal cortisol secretion following exposure to long-term hypoxia (LTH). Pregnant ewes were maintained at high altitude (3820 m) for approximately the last 100 days of gestation. Between the gestation days of 138 and 141, adrenal glands were collected from LTH and age-matched normoxic control fetuses. Cyclic adenosine monophosphate (cAMP), cortisol, and steroidogenic acute regulatory (StAR) protein were measured in response to adrenocorticotropic hormone (ACTH) stimulation. Cortisol responses to ACTH were also measured in the presence of the protein kinase (PKA) inhibitor H-89, proopiomelanocortin (POMC), or 22-kDa pro-ACTH. Cortisol output was higher in the LTH group compared to the control (P < .05), following ACTH treatment while the cAMP response was similar in both groups. Although PKA inhibition decreased cortisol production in both groups, however no differences were observed between groups. Western analysis revealed a significant increase in protein expression for StAR in the LTH group (P < .05, compared to control). Proopiomelanocortin and 22-kDa pro-ACTH did not alter the cortisol response to ACTH treatment. Results from the present study taken together with those of previous in vivo studies suggest that the enhanced cortisol output in the LTH group is not the result of differences in cAMP generation or PKA. We conclude that enhanced cortisol production in LTH adrenals is the result of enhanced protein expression of StAR and potential downstream signaling pathways.
Collapse
Affiliation(s)
- Vladimir E Vargas
- Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | |
Collapse
|
30
|
Korosi A, Shanabrough M, McClelland S, Liu ZW, Borok E, Gao XB, Horvath TL, Baram TZ. Early-life experience reduces excitation to stress-responsive hypothalamic neurons and reprograms the expression of corticotropin-releasing hormone. J Neurosci 2010. [PMID: 20071535 DOI: 10.1532/jneurosci.4214-09.2010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased sensory input from maternal care attenuates neuroendocrine and behavioral responses to stress long term and results in a lifelong phenotype of resilience to depression and improved cognitive function. Whereas the mechanisms of this clinically important effect remain unclear, the early, persistent suppression of the expression of the stress neurohormone corticotropin-releasing hormone (CRH) in hypothalamic neurons has been implicated as a key aspect of this experience-induced neuroplasticity. Here, we tested whether the innervation of hypothalamic CRH neurons of rat pups that received augmented maternal care was altered in a manner that might promote the suppression of CRH expression and studied the cellular mechanisms underlying this suppression. We found that the number of excitatory synapses and the frequency of miniature excitatory synaptic currents onto CRH neurons were reduced in "care-augmented" rats compared with controls, as were the levels of the glutamate vesicular transporter vGlut2. In contrast, analogous parameters of inhibitory synapses were unchanged. Levels of the transcriptional repressor neuron-restrictive silencer factor (NRSF), which negatively regulates Crh gene transcription, were markedly elevated in care-augmented rats, and chromatin immunoprecipitation demonstrated that this repressor was bound to a cognate element (neuron-restrictive silencing element) on the Crh gene. Whereas the reduced excitatory innervation of CRH-expressing neurons dissipated by adulthood, increased NRSF levels and repression of CRH expression persisted, suggesting that augmented early-life experience reprograms Crh gene expression via mechanisms involving transcriptional repression by NRSF.
Collapse
Affiliation(s)
- Aniko Korosi
- Anatomy/Neurobiology and Pediatrics, University of California Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Early-life experience reduces excitation to stress-responsive hypothalamic neurons and reprograms the expression of corticotropin-releasing hormone. J Neurosci 2010; 30:703-13. [PMID: 20071535 DOI: 10.1523/jneurosci.4214-09.2010] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increased sensory input from maternal care attenuates neuroendocrine and behavioral responses to stress long term and results in a lifelong phenotype of resilience to depression and improved cognitive function. Whereas the mechanisms of this clinically important effect remain unclear, the early, persistent suppression of the expression of the stress neurohormone corticotropin-releasing hormone (CRH) in hypothalamic neurons has been implicated as a key aspect of this experience-induced neuroplasticity. Here, we tested whether the innervation of hypothalamic CRH neurons of rat pups that received augmented maternal care was altered in a manner that might promote the suppression of CRH expression and studied the cellular mechanisms underlying this suppression. We found that the number of excitatory synapses and the frequency of miniature excitatory synaptic currents onto CRH neurons were reduced in "care-augmented" rats compared with controls, as were the levels of the glutamate vesicular transporter vGlut2. In contrast, analogous parameters of inhibitory synapses were unchanged. Levels of the transcriptional repressor neuron-restrictive silencer factor (NRSF), which negatively regulates Crh gene transcription, were markedly elevated in care-augmented rats, and chromatin immunoprecipitation demonstrated that this repressor was bound to a cognate element (neuron-restrictive silencing element) on the Crh gene. Whereas the reduced excitatory innervation of CRH-expressing neurons dissipated by adulthood, increased NRSF levels and repression of CRH expression persisted, suggesting that augmented early-life experience reprograms Crh gene expression via mechanisms involving transcriptional repression by NRSF.
Collapse
|
32
|
Craft TKS, Devries AC. Vulnerability to stroke: implications of perinatal programming of the hypothalamic-pituitary-adrenal axis. Front Behav Neurosci 2009; 3:54. [PMID: 20057937 PMCID: PMC2802556 DOI: 10.3389/neuro.08.054.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 11/23/2009] [Indexed: 12/11/2022] Open
Abstract
Chronic stress is capable of exacerbating each major, modifiable, endogenous risk factor for cerebrovascular and cardiovascular disease. Indeed, exposure to stress can increase both the incidence and severity of stroke, presumably through activation of the hypothalamic-pituitary-adrenal (HPA) axis. Now that characterization of the mechanisms underlying epigenetic programming of the HPA axis is well underway, there has been renewed interest in examining the role of early environment on the evolution of health conditions across the entire lifespan. Indeed, neonatal manipulations in rodents that reduce stress responsivity, and subsequent life-time exposure to glucocorticoids, are associated with a reduction in the development of neuroendocrine, neuroanatomical, and cognitive dysfunctions that typically progress with age. Although improved day to day regulation of the HPA axis also may be accompanied by a decrease in stroke risk, evidence from rodent studies suggest that an associated cost could be increased susceptibility to inflammation and neuronal death in the event that a stroke does occur and the individual is exposed to persistently elevated corticosteroids. Given its importance in regulation of health and disease states, any long-term modulation of the HPA axis is likely to be associated with both benefits and potential risks. The goals of this review article are to examine (1) the clinical and experimental data suggesting that neonatal experiences can shape HPA axis regulation, (2) the influence of stress and the HPA axis on stroke incidence and severity, and (3) the potential for neonatal programming of the HPA axis to impact adult cerebrovascular health.
Collapse
Affiliation(s)
- Tara K S Craft
- Departments of Psychology, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|
33
|
Korosi A, Baram TZ. The pathways from mother's love to baby's future. Front Behav Neurosci 2009; 3:27. [PMID: 19826614 PMCID: PMC2759360 DOI: 10.3389/neuro.08.027.2009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2009] [Accepted: 08/20/2009] [Indexed: 12/30/2022] Open
Abstract
Together with genetic factors, early-life experience governs the expression and function of stress-related genes throughout life. This, in turn, contributes to either resilience or vulnerability to depression and to aging-related cognitive decline. In humans and animal models, both the quality and quantity of early-life maternal care has been shown to be a predominant signal triggering bi-directional and enduring changes in expression profiles of genes including glucocorticoids and corticotropin releasing factor (CRH; hypothalamic and hippocampal), associated with the development of resilient or vulnerable phenotypes. However, many crucial questions remain unresolved. For examples, how is the maternal-derived signal transmitted to specific neuronal populations where enduring (likely epigenetic) regulation of gene expression takes place? What is the nature of this information? In other words, how do neurons know to ‘turn on’ epigenetic machinery? What are the direct functional consequences of altered gene expression? This review describes the voyage of recurrent bursts of sensory input from the mother (‘mother's love’) to CRH-expressing hypothalamic neurons that govern the magnitude of the response to stress. In addition, the acute and enduring effects of both nurturing and fragmented maternal care on the structure, cellular signaling and function of specific hippocampal and hypothalamic neurons are discussed. The evolving understanding of the processes initiated by the early life experience of ‘mother's love’ suggest novel molecular targets for prevention and therapy of stress-related affective and cognitive disorders.
Collapse
Affiliation(s)
- Aniko Korosi
- Anatomy/Neurobiology, Pediatrics and Neurology, University of California at Irvine Irvine, CA 92697-4475, USA
| | | |
Collapse
|
34
|
Abstract
AbstractThe observations of family members as well as the results of past research suggest that a variety of developmental pathways can precede the onset of schizophrenia in early adulthood. In this article, we describe recent findings from our research on the childhood precursors of schizophrenia. Taken together, the results indicate that childhood behavioral, emotional, and motoric dysfunction occur at a higher rate in preschizophrenia subjects when compared to control subjects. Further, there are developmental changes as well as significant variability among schizophrenia patients in the nature and severity of childhood impairment. Drawing on the prevailing diathesis-stress model, we explore the moderating role that stress exposure and reactivity may play in the expression of the organic diathesis for schizophrenia. Specifically, we consider the role of the biological stress response in the production of developmental changes and individual differences in the pathways to schizophrenia. Given extant models of dopamine involvement in the neuropathology of schizophrenia, stress-induced Cortisol release may alter the expression of subcortical abnormalities in dopamine neurotransmission. Thus, we present a neural mechanism for the hypothesized behavioral sensitivity to stress exposure in schizophrenia, and explore the capacity of the model to account for the changing behavioral manifestations of vulnerability.
Collapse
|
35
|
Dawson PA, Gardiner B, Lee S, Grimmond S, Markovich D. Kidney transcriptome reveals altered steroid homeostasis in NaS1 sulfate transporter null mice. J Steroid Biochem Mol Biol 2008; 112:55-62. [PMID: 18790054 DOI: 10.1016/j.jsbmb.2008.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 06/04/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
Sulfate is essential for human growth and development, and circulating sulfate levels are maintained by the NaS1 sulfate transporter which is expressed in the kidney. Previously, we generated a NaS1-null (Nas1(-/-)) mouse which exhibits hyposulfatemia. In this study, we investigated the kidney transcriptome of Nas1(-/-) mice. We found increased (n=25) and decreased (n=60) mRNA levels of genes with functional roles that include sulfate transport and steroid metabolism. Corticosteroid-binding globulin was the most up-regulated gene (110% increase) in Nas1(-/-) mouse kidney, whereas the sulfate anion transporter-1 (Sat1) was among the most down-regulated genes (>or=50% decrease). These findings led us to investigate the circulating and urinary steroid levels of Nas1(-/-) and Nas1(+/+) mice, which revealed reduced blood levels of corticosterone ( approximately 50% decrease), dehydroepiandrosterone (DHEA, approximately 30% decrease) and DHEA-sulfate ( approximately 40% decrease), and increased urinary corticosterone ( approximately 16-fold increase) and DHEA ( approximately 40% increase) levels in Nas1(-/-) mice. Our data suggest that NaS1 is essential for maintaining a normal metabolic state in the kidney and that loss of NaS1 function leads to reduced circulating steroid levels and increased urinary steroid excretion.
Collapse
Affiliation(s)
- Paul Anthony Dawson
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia.
| | | | | | | | | |
Collapse
|
36
|
DeVries AC, Craft TKS, Glasper ER, Neigh GN, Alexander JK. 2006 Curt P. Richter award winner: Social influences on stress responses and health. Psychoneuroendocrinology 2007; 32:587-603. [PMID: 17590276 DOI: 10.1016/j.psyneuen.2007.04.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 03/22/2007] [Accepted: 04/12/2007] [Indexed: 11/24/2022]
Abstract
Both positive and negative social interactions can modulate the hypothalamic-pituitary-adrenal (HPA) axis and influence recovery from injuries and illnesses, such as wounds, stroke, and cardiac arrest. Stress exacerbates neuronal death following stroke and cardiac arrest, and delays cutaneous wound healing, via a common mechanism involving stress-induced increases in corticosterone, acting on glucocorticoid receptors. In contrast, hamsters and mice that form social bonds are buffered against stress and heal cutaneous wounds more quickly than socially isolated animals, presumably because the physical contact experienced by the pairs releases oxytocin, which in turn suppresses the HPA axis and facilitates wound healing. Social housing also decreases stroke-induced neuronal death and improves functional recovery, but the mechanism appears to involve suppressing the inflammatory response that accompanies stroke, rather than alterations in HPA axis activity. An interaction between the HPA axis and immune system determines stroke outcome in neonatally manipulated mice that exhibit life-long dampening of the HPA axis. Taken together, these studies provide support for the detrimental effects of stress and identify potential mechanisms underlying the well-documented clinical observation that social support positively influences human health.
Collapse
Affiliation(s)
- A Courtney DeVries
- Department of Psychology and Neuroscience, The Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
37
|
Tejedor-Real P, Sahagún M, Biguet NF, Mallet J. Neonatal handling prevents the effects of phencyclidine in an animal model of negative symptoms of schizophrenia. Biol Psychiatry 2007; 61:865-72. [PMID: 17125743 DOI: 10.1016/j.biopsych.2006.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 06/23/2006] [Accepted: 08/10/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Environmental factors during the neonatal period have long-lasting effects on the brain. Neonatal handling, an early mild stress, enhances the ability to cope with stress in adult rats. In humans, inappropriate stress responses increase the risk of schizophrenia in genetically predisposed individuals. We studied the effect of neonatal handling on the phencyclidine (PCP)-induced immobility time of rats in the forced swimming test (FST, an animal model of negative symptoms of schizophrenia) and on plasma adrenocorticotropic hormone (ACTH) as a measure of hypothalamic-pituitary-adrenal axis (HPA) reactivity. METHODS Pups were removed from their mothers 15 min/21 days after birth. Postnatal day 65: animals were submitted to restraint stress. Postnatal day 75: after PCP treatment (5 mg/kg/5 days) animals were submitted to the FST. RESULTS Neonatal handling reduced HPA reactivity to passive stress (restraint) but not to active coping stress (forced swimming). Immobilization time was significantly lower in saline- and PCP-treated, handled animals than in non-handled ones. Handling prevented the ACTH increase induced by PCP that was observed in the non-handled rats after FST. CONCLUSIONS First, neonatal handling protects animals from acquiring the schizophrenic-like behavior provoked by sub-chronic PCP treatment, which was associated with a reduced HPA activity. Second, the beneficial properties of handling in stress responses seem to depend on the type of stress.
Collapse
|
38
|
Cavigelli SA, Yee JR, McClintock MK. Infant temperament predicts life span in female rats that develop spontaneous tumors. Horm Behav 2006; 50:454-62. [PMID: 16836996 DOI: 10.1016/j.yhbeh.2006.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/21/2006] [Accepted: 06/01/2006] [Indexed: 01/28/2023]
Abstract
In a recent study, we found that male rats that minimally explored a novel environment as infants died significantly faster than their more exploratory brothers. At death, these males had various complex pathologies, precluding identification of specific hormonal mechanisms underlying adult disease progression and mortality. To minimize the variance of disease processes at the end of life, we conducted a longitudinal study with female Sprague-Dawley rats prone to high rates of spontaneous mammary and pituitary tumors. For females that developed either mammary or pituitary tumors, those that had been neophobic (least exploratory) as infants died approximately 6 months earlier than their neophilic (most exploratory) sisters. In the case of mammary tumors, both benign and malignant, neophobic females developed palpable tumors earlier than neophilic females, whereas the interval between first palpation and death was the same for all females, indicating psychosocial regulation of early rather than later stages of the disease. Neophobic females' ovarian function aged more rapidly than their neophilic sisters. Concomitantly, they had lower corticosterone responses to restraint in late adulthood, ruling out high estrogen or corticosterone levels during senescence as causal factors in their accelerated mortality. During puberty, when mammary tissue is proliferating and differentiating, neophobic females experienced more irregular cycles with prolonged "luteal" phases, suggesting a role for prolactin, prolonged progesterone and fewer estrogen surges during this sensitive period for mammary tumor risk. Thus, we identified prolactin, estrogen, progesterone and possibly corticosterone dynamics as candidates for neuroendocrine mechanisms linking infant temperament with onset of adult neoplastic disease.
Collapse
Affiliation(s)
- Sonia A Cavigelli
- Department of Biobehavioral Health, The Pennsylvania State University, 315 E. Health and Human Development Building-East, University Park, PA 16802, USA.
| | | | | |
Collapse
|
39
|
Cannizzaro C, Plescia F, Martire M, Gagliano M, Cannizzaro G, Mantia G, Cannizzaro E. Single, intense prenatal stress decreases emotionality and enhances learning performance in the adolescent rat offspring: interaction with a brief, daily maternal separation. Behav Brain Res 2006; 169:128-36. [PMID: 16445990 DOI: 10.1016/j.bbr.2005.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 12/19/2005] [Accepted: 12/23/2005] [Indexed: 11/26/2022]
Abstract
Perinatal manipulations can lead to neurobehavioural changes in the progeny. In this study we investigated, in adolescent male rat offspring, the consequences of a single, intense prenatal stress induced by a 120 min-maternal immobilization at gestational day 16, and of a daily, brief maternal separation from postnatal day 2 until 21, on: unconditioned fear/anxiety-like behaviour in open field and in elevated plus-maze; learning performance in the "Can test", a non-aversive spatial and tactile/visual task; corticosterone plasma levels under basal and stress-induced conditions. Our results indicate that both prenatal stress and maternal separation procedures decrease emotionality and enhance learning performance. Maternal separation potentiates prenatal stress-induced effects in enhancing learning performance. Both basal and stress-induced corticosterone plasma levels are reduced following prenatal stress, maternal separation and the combination of two procedures. These findings suggest that a single, intense prenatal stress can enhance the adaptive stress-related responses in the progeny, probably due to the involvement of maternal factors. The synergistic effect of prenatal stress and maternal separation on learning performance may be due to a further damping of hypothalamic-pituitary-adrenal axis response in the progeny that better cope with the task administered.
Collapse
Affiliation(s)
- Carla Cannizzaro
- Dipartimento di Scienze Farmacologiche, Università di Palermo, Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Myers DA, Bell PA, Hyatt K, Mlynarczyk M, Ducsay CA. Long-term hypoxia enhances proopiomelanocortin processing in the near-term ovine fetus. Am J Physiol Regul Integr Comp Physiol 2004; 288:R1178-84. [PMID: 15618345 DOI: 10.1152/ajpregu.00697.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secondary stressors in long-term hypoxic (LTH) fetal sheep lead to altered function of the hypothalamic-pituitary-adrenal axis. Although ACTH is considered the primary mediator of glucocorticoid production in fetal sheep, proopiomelanocortin (POMC) and 22-kDa pro-ACTH (22-kDa ACTH) have been implicated in the regulation of cortisol production in the ovine fetus. This study was designed to determine whether POMC expression and processing are altered after LTH. Pregnant ewes were maintained at high altitude (3,820 m) from day 30 of gestation to near term, when the animals were transported to the laboratory. Reduced Po2 was maintained by nitrogen infusion through a maternal tracheal catheter. On days 139-141, fetal anterior pituitaries were collected from normoxic control and LTH fetuses. We measured POMC and corticotrophin-releasing factor type 1 receptor (CRF1-R) mRNA using quantitative real-time PCR, and we used Western blot analysis for quantitation of ACTH, ACTH precursor, and CRF1-R proteins. We measured plasma ACTH1-39 using a two-site immunoradiometric assay specific for ACTH1-39. Plasma ACTH precursors were measured by ELISA. Anterior pituitary POMC mRNA levels were not different between groups, whereas CRF1-R levels were significantly higher in the LTH anterior pituitaries compared with control (P<0.05). In contrast, protein levels of POMC, CRF1-R, 22-kDa ACTH, and ACTH1-39 were significantly lower in the LTH group. Plasma concentrations of both ACTH precursors and ACTH1-39 were significantly elevated in LTH fetuses, whereas the ratio of plasma precursors to ACTH was significantly lower. We conclude that LTH results in enhanced POMC processing and/or release to ACTH and increased hypothalamic drive.
Collapse
Affiliation(s)
- Dean A Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, USA
| | | | | | | | | |
Collapse
|
41
|
Adachi K, Umezaki H, Kaushal KM, Ducsay CA. Long-term hypoxia alters ovine fetal endocrine and physiological responses to hypotension. Am J Physiol Regul Integr Comp Physiol 2004; 287:R209-17. [PMID: 15016624 DOI: 10.1152/ajpregu.00701.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Exposure to long-term hypoxia (LTH) results in altered cortisol responses in the ovine fetus. The present study was designed to test the hypothesis that LTH alters adrenal responsiveness to fetal hypotension. Pregnant ewes were maintained at high altitude (3,820 meters) from day 30 of gestation. Normoxic control and LTH fetuses were catheterized on day 132 of gestation. In the LTH group, maternal Po(2) was maintained comparable to that observed at altitude ( approximately 60 mmHg) by nitrogen infusion through a tracheal catheter. On day 137, fetuses received a 5-h saline infusion followed by infusion of sodium nitroprusside to reduce fetal arterial pressure by 30-35% for 10 min. The study was repeated on day 139 of gestation with a continuous cortisol infusion (10 microg/min). Hypothalamic and pituitary tissues were collected from additional fetuses for assessment of glucocorticoid receptors. During the saline infusion in response to hypotension, plasma ACTH increased over preinfusion mean values in both groups (P < 0.05). Plasma cortisol concentrations increased in both groups concomitant with increased ACTH secretion. However, peak values in the LTH fetuses were significantly higher compared with controls (P < 0.05). During the cortisol infusion, the ACTH response was eliminated in both groups, with ACTH levels significantly lower in the LTH group (P < 0.05). Glucocorticoid receptor binding was not different between groups. These results demonstrate an enhanced cortisol response to hypotension in LTH fetuses that does not appear to be the result of an increase in negative feedback sensitivity of the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Keiichi Adachi
- Center for Perinatal Biology, School of Medicine, Loma Linda Univ., Loma Linda, California 92350, USA
| | | | | | | |
Collapse
|
42
|
Panagiotaropoulos T, Pondiki S, Papaioannou A, Alikaridis F, Stamatakis A, Gerozissis K, Stylianopoulou F. Neonatal handling and gender modulate brain monoamines and plasma corticosterone levels following repeated stressors in adulthood. Neuroendocrinology 2004; 80:181-91. [PMID: 15591794 DOI: 10.1159/000082516] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 08/09/2004] [Indexed: 12/14/2022]
Abstract
Neonatal handling affects the response to repeated stress in a sexually dimorphic manner. In order to elucidate the mechanisms underlying these gender-dependent effects, we investigated the consequences of neonatal androgenization and handling on adult stress reactivity by determining: (a) immobility time during repeated forced swimming, (b) plasma corticosterone levels, and (c) brain serotonin and dopamine levels and turnover after either repeated forced swimming, or repeated forced swimming followed by repeated restraint stress. In neonatally androgenized females, immobility time was lower in the handled than in the non-handled rats, a pattern resembling that of the males, suggesting that the sexually dimorphic effect of handling on immobility time can be attributed to the organizational effects of testosterone. No differences were found between androgenized females and females injected neonatally with vehicle, indicating that the gender differences in circulating corticosterone are not due to the organizational effects of testosterone. The stress of a neonatal injection interacted with neonatal handling resulting in lower plasma corticosterone and hypothalamic dopamine and serotonin levels in the neonatally injected handled animals following repeated forced swimming. The serotonergic system appears to be sensitive to both the organizational actions of testosterone and the effects of handling, since handled androgenized females had higher serotonin levels and decreased turnover following repeated forced swimming stress, compared to those injected neonatally with vehicle. Handling resulted in increased hypothalamic and striatal serotonin levels in both males and females following repeated forced swimming. Our results reveal that handling has gender-dependent effects on adult hypothalamic-pituitary-adrenal axis and brain monoaminergic system reactivity to stress and that these effects can be attributed to both the organizational and activational effects of gonadal hormones.
Collapse
|
43
|
Gliddon CM, Smith PF, Darlington CL. Interaction between the hypothalamic-pituitary-adrenal axis and behavioural compensation following unilateral vestibular deafferentation. Acta Otolaryngol 2003; 123:1013-21. [PMID: 14710901 DOI: 10.1080/00016480310000520] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Vestibular compensation is defined as the process of behavioural recovery that occurs following the loss of sensory input from one or both vestibular labyrinths. The visual and postural instability resulting from the vestibular damage must alter the homeostasis of the subject; however, very little research has been conducted that investigates the interaction between vestibular compensation and the adaptive stress response of the body, i.e. the hypothalamic-pituitary-adrenal (HPA) axis. The aim of this review is to describe and evaluate the experimental evidence indicating a link between vestibular compensation and the body's response to stress, via the HPA axis.
Collapse
Affiliation(s)
- Catherine M Gliddon
- Vestibular Research Group, Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago Medical School, Dunedin, New Zealand
| | | | | |
Collapse
|
44
|
Knapp R, Hews DK, Thompson CW, Ray LE, Moore MC. Environmental and endocrine correlates of tactic switching by nonterritorial male tree lizards (Urosaurus ornatus). Horm Behav 2003; 43:83-92. [PMID: 12614637 DOI: 10.1016/s0018-506x(02)00018-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Animals often exhibit individual variation in their behavioral responses to the same stimuli in the biotic or abiotic environment. To elucidate the endocrine mechanisms mediating such behavioral variation, we have been studying a species of lizard with two distinct male phenotypes. Here we document behavioral variation across years in one of the two male phenotypes of the tree lizard, Urosaurus ornatus, and present hormone data that support an endocrine mechanism underlying this behavioral variation. Nonterritorial male tree lizards appear to be nomadic rovers in some years and sedentary satellites in others, whereas territorial males are always territorial. This behavioral variation by nonterritorial males was correlated with environmental conditions. In environmentally harsher years (as assessed by rainfall), nonterritorial males appear to behave as nomads, whereas in more benign years they are more site-faithful. A between-year comparison of levels of corticosterone and testosterone for the two male phenotypes supports a model for how hormones underlie the males' reproductive tactics, particularly the nonterritorial males' behavioral plasticity. In an environmentally harsher (drier) year, both types of males had higher corticosterone levels than in a milder (wetter) year, but only nonterritorial males had lower testosterone in the relatively harsher year. We propose that disruptive selection for individual variation in hormonal responses to environmental cues may be a common mechanism underlying the evolution of alternative male reproductive tactics in this and other species.
Collapse
Affiliation(s)
- Rosemary Knapp
- Department of Biology, Arizona State University, Tempe, AZ 85287-1501, USA.
| | | | | | | | | |
Collapse
|
45
|
Papaioannou A, Dafni U, Alikaridis F, Bolaris S, Stylianopoulou F. Effects of neonatal handling on basal and stress-induced monoamine levels in the male and female rat brain. Neuroscience 2002; 114:195-206. [PMID: 12207965 DOI: 10.1016/s0306-4522(02)00129-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neonatal handling has pervasive effects on the rat brain leading to increased ability to cope with and adapt to stressful stimuli. We determined the effects of neonatal handling on the dopaminergic and serotonergic system, in the male and female rat brain, under basal conditions before and after puberty and after short- and long-term forced swimming stress. Exposure of animals to neonatal handling resulted in sex-dependent changes in the concentration and turnover of monoamines in the different brain areas. In the prepubertal brain, the effect of neonatal handling was manifested as an increase in dopamine turnover in the females, particularly in the hypothalamus, an increase in serotonin levels and a decrease in its turnover in all three brain regions examined of both males and females. Certain of the handling-induced effects observed in the prepubertal brain were reversed in the postpubertal animals. Thus, in the postpubertal brain, the handling-induced changes in serotonin levels and its turnover observed in both sexes before puberty were abolished. On the other hand, the handling-induced increase in hypothalamic dopamine turnover was maintained. After exposure to short-term stress, the effect of handling was manifested on one hand as decreased striatal dopamine levels in the females, and decreased dopamine turnover in the hypothalamus of both males and females, and on the other, as increased serotonin levels in the hypothalamus. After exposure to long-term stress, handled females had decreased dopamine turnover in the hypothalamus and the striatum, but there was no effect of handling on the serotonergic system. Our results provide some neurobiological evidence supporting the determinant role of the mother-infant relationship in the development of psychopathology. Neonatal handling, which modifies normal mother-pup interactions, results in alterations in brain dopaminergic and serotonergic systems, both of which are involved in the etiopathogenesis of major psychoses. Exposure to either short- or long-term stress in adult life results in sex-dependent changes in brain monoamines, which are affected by handling thus making coping more efficient and rendering the stressful stimulus less noxious.
Collapse
Affiliation(s)
- A Papaioannou
- Laboratory of Biology-Biochemistry, School of Health Sciences, University of Athens, Papadiamantopoulou 123, Athens, GR 11527, Greece
| | | | | | | | | |
Collapse
|
46
|
Papaioannou A, Gerozissis K, Prokopiou A, Bolaris S, Stylianopoulou F. Sex differences in the effects of neonatal handling on the animal's response to stress and the vulnerability for depressive behaviour. Behav Brain Res 2002; 129:131-9. [PMID: 11809504 DOI: 10.1016/s0166-4328(01)00334-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neonatal handling is known to affect the programming of the hypothalamic-pituitary-adrenal axis and, as a result, the ability of the organism to respond to stress. We determined the effect of neonatal handling on the animal's response in three animal models of depression, as well as to either (a) acute or (b) chronic forced swimming stress. Neonatal handling resulted in a significant increase in the immobility time in the Porsolt forced swimming test in both sexes, and in the 8-hydroxy-2-(di-n-propylamino) tetralin-induced hypothermia in the males. On the other hand, handling had sex-dependent effects when animals were exposed to a chronic stressor. After exposure to chronic restraint stress, statistically more handled than non-handled females failed to adapt, while no such difference was found in the males. In the chronic forced swimming stress, handled males had shorter immobility times, and higher plasma corticosterone levels, while the opposite held true in the females. Furthermore, neonatal handling significantly decreased basal plasma corticosterone levels in both pre- and post-pubertal animals. Thus, the early experience of handling provides males with a greater capacity to actively face chronic stressors, while in the females it increases their susceptibility to express 'depressive' behaviour since they are unable to cope and adopt a 'passive, despaired' behaviour.
Collapse
Affiliation(s)
- A Papaioannou
- Laboratory of Biology-Biochemistry, School of Health Sciences, University of Athens, Papadiamantopoulou 123, Athens, Greece
| | | | | | | | | |
Collapse
|
47
|
Ordyan NE, Pivina SG, Rakitskaya VV, Shalyapina VG. The neonatal glucocorticoid treatment-produced long-term changes of the pituitary-adrenal function and brain corticosteroid receptors in rats. Steroids 2001; 66:883-8. [PMID: 11711116 DOI: 10.1016/s0039-128x(01)00123-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Two distinct periods of sensitivity to elevated glucocorticoid hormone levels during postnatal development of the pituitary-adrenal axis were studied. Wistar rats were injected subcutaneously (s.c.) with cortisol (1 mg/kg) on postnatal days 1-5 or 14-18. The steroid treatment during the first postnatal week resulted in a decrease of the morning basal and stress-induced plasma corticosterone levels in 30 day-old male rats, as well as in rats that were injected with cortisol on the third postnatal week. Stress-induced corticosterone levels in 90-day old cortisol-treated rats were determined in blood samples drawn from the tail vein before the restraint stress, immediately after the 20-min long stress, then 60 and 180 min afterwards. Only the rats treated with cortisol during the third week showed a prolonged stress-induced corticosterone secretion, with the highest corticosterone level in 180 min after the restraint stress. The early neonatal cortisol treatment had no effect on (3)H-corticosterone binding in all studied brain areas of the 90-day old rats. The rats treated with cortisol at the 14-17th postnatal days showed a significantly lower (3)H-corticosterone binding in the frontal cortex, hippocampus, and hypothalamus. These findings suggest that the third week of life in rats is more sensitive to elevated levels of corticosterone than the first one. The high level of glucocorticoids at this period has long-term effects on the efficiency of the negative feedback mechanisms provided by hypothalamus-pituitary-adrenal axis.
Collapse
Affiliation(s)
- N E Ordyan
- Pavlov Institute of Physiology of the Russian Academy of Sciences, St. Petersburg 199034, Russia.
| | | | | | | |
Collapse
|
48
|
Abrahám IM, Harkany T, Horvath KM, Luiten PG. Action of glucocorticoids on survival of nerve cells: promoting neurodegeneration or neuroprotection? J Neuroendocrinol 2001; 13:749-60. [PMID: 11578524 DOI: 10.1046/j.1365-2826.2001.00705.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extensive studies during the past decades provided compelling evidence that glucocorticoids (GCs) have the potential to affect the development, survival and death of neurones. These observations, however, reflect paradoxical features of GCs, as they may be critically involved in both neurodegenerative and neuroprotective processes. Hence, we first address different aspects of the complex role of GCs in neurodegeneration and neuroprotection, such as concentration dependent actions of GCs on neuronal viability, anatomical diversity of GC-mediated mechanisms in the brain and species and strain differences in GC-induced neurodegeneration. Second, the modulatory action of GCs during development and ageing of the central nervous system, as well as the contribution of altered GC balance to the pathogenesis of neurodegenerative disorders is considered. In addition, we survey recent data as to the possible mechanisms underlying the neurodegenerative and neuroprotective actions of GCs. As such, two major aspects will be discerned: (i) GC-dependent offensive events, such as GC-induced inhibition of glucose uptake, increased extracellular glutamate concentration and concomitant elevation of intracellular Ca(2+), decrease in GABAergic signalling and regulation of local GC concentrations by 11 beta-hydroxysteroid dehydrogenases; and (ii) GC-related cellular defence mechanisms, such as decrease in after-hyperpolarization, increased synthesis and release of neurotrophic factors and lipocortin-1, feedback regulation of Ca(2+) currents and induction of antioxidant enzymes. The particular relevance of these mechanisms to the neurodegenerative and neuroprotective effects of GCs in the brain is discussed.
Collapse
Affiliation(s)
- I M Abrahám
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine of the Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | |
Collapse
|
49
|
Reynolds RM, Phillips DI. Long-term consequences of intrauterine growth retardation. HORMONE RESEARCH 2000; 49 Suppl 2:28-31. [PMID: 9730669 DOI: 10.1159/000053084] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recent studies in Europe, North America and the developing world have shown that low birth weight or other indices of abnormal fetal growth in babies born at term are linked with a higher prevalence of raised blood pressure, non-insulin-dependent diabetes and cardiovascular disease in late adult life. These findings have led to the 'fetal origins' hypothesis which proposes that fetal adaptations to an adverse intrauterine environment programme persistent physiological and metabolic changes which predispose to these diseases. The mechanisms are unknown, but evidence from animal studies and preliminary evidence in humans suggest that impaired fetal nutrient supply permanently alters neuroendocrine development in the offspring resulting in long-term changes in the set point of adrenocortical and sympathoadrenal hormonal activity.
Collapse
Affiliation(s)
- R M Reynolds
- Metabolic Programming Group,Medical Research Council (University of Southampton), Southampton General Hospital, Southampton, UK
| | | |
Collapse
|
50
|
Abstract
Emotional reactivity in infancy and early childhood may play a role in the regulation of brain plasticity and hemispheric organization, which has possible implications for vulnerability to psychopathology. Empiric findings demonstrate the role of attachment patterns in emotional reactivity modulation and limbic circuitry shaping.
Collapse
|