1
|
Leal VNC, Bork F, Mateo Tortola M, von Guilleaume JC, Greve CL, Bugl S, Danker B, Bittner ZA, Grimbacher B, Pontillo A, Weber ANR. Bruton's tyrosine kinase (BTK) and matrix metalloproteinase-9 (MMP-9) regulate NLRP3 inflammasome-dependent cytokine and neutrophil extracellular trap responses in primary neutrophils. J Allergy Clin Immunol 2025; 155:569-582. [PMID: 39547282 DOI: 10.1016/j.jaci.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 10/02/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Inflammation is a double-edged state of immune activation that is required to resolve threats harmful to the host, but can also cause severe collateral damage. Polymorphonuclear neutrophils (PMNs), the primary leukocyte population in humans, mediate inflammation through the release of cytokines and neutrophil extracellular traps (NETs). Although the pathophysiological importance of NETs is unequivocal, the multiple molecular pathways driving NET release are not fully defined. Recently, NET release was linked to the NLRP3 inflammasome, which is regulated by Bruton's tyrosine kinase (BTK) in macrophages. OBJECTIVE As NLRP3 inflammasome regulation by BTK has not been studied in neutrophils, we explored a potential regulatory role of BTK in primary murine and human neutrophils and matched monocytes or macrophages from Btk-deficient versus wild-type mice, or from healthy donors versus BTK-deficient patients with X-linked agammaglobulinemia. METHODS Cytokine, myeloperoxidase, and matrix metalloproteinase-9 (MMP-9) release were quantified by ELISA, NET release, and inflammasome formation by immunofluorescence microscopy. RESULTS Surprisingly, in both mouse and human primary neutrophils, we observed a significant increase in NLRP3 inflammasome-dependent IL-1β and NETs when BTK was absent or inhibited, whereas IL-1β release was decreased in corresponding primary mouse macrophages or human PBMCs. This suggests a novel negative regulatory role of BTK in terms of neutrophil NLRP3 activation. IL-1β and NET release in both mouse and human primary neutrophils was strictly dependent on NLRP3, caspase-1 and, surprisingly, MMP-9. CONCLUSIONS This study highlights BTK and MMP-9 as novel and versatile inflammasome regulators and may have implications for the clinical use of BTK inhibitors.
Collapse
Affiliation(s)
- Vinicius N C Leal
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany; Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Francesca Bork
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Maria Mateo Tortola
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | | | - Carsten L Greve
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Stefanie Bugl
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Bettina Danker
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Zsofia A Bittner
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Bodo Grimbacher
- Klinik für Rheumatologie/Klinische Immunologie, Universitätsklinikum Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Alexander N R Weber
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany; iFIT-Cluster of Excellence (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany; CMFI-Cluster of Excellence (EXC 2124) "Controlling Microbes to Fight Infection," University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Degn SE, Tolar P. Towards a unifying model for B-cell receptor triggering. Nat Rev Immunol 2025; 25:77-91. [PMID: 39256626 DOI: 10.1038/s41577-024-01073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/12/2024]
Abstract
Antibodies are exceptionally versatile molecules with remarkable flexibility in their binding properties. Their natural targets range from small-molecule toxins, across viruses of different sizes, to bacteria and large multicellular parasites. The molecular determinants bound by antibodies include proteins, peptides, carbohydrates, nucleic acids, lipids and even synthetic molecules that have never existed in nature. Membrane-anchored antibodies also serve as receptors on the surface of the B cells that produce them. Despite recent structural insights, there is still no unifying molecular mechanism to explain how antibody targets (antigens) trigger the activation of these B-cell receptors (BCRs). After cognate antigen encounter, somatic hypermutation and class-switch recombination allow BCR affinity maturation and immunoglobulin class-specific responses, respectively. This raises the fundamental question of how one receptor activation mechanism can accommodate a plethora of variant receptors and ligands, and how it can ensure that individual B cells remain responsive to antigen after somatic hypermutation and class switching. There is still no definite answer. Here we give a brief historical account of the different models proposed to explain BCR triggering and discuss their merit in the context of the current knowledge of the structure of BCRs, their dynamic membrane distribution, and recent biochemical and cell biological insights.
Collapse
Affiliation(s)
- Søren E Degn
- Laboratory for Lymphocyte Biology, Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- Centre for Cellular Signal Patterns (CellPAT), Aarhus University, Aarhus, Denmark.
| | - Pavel Tolar
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
3
|
Treon SP, Kotton CN, Park DJ, Moranzoni G, Lemvigh CK, Gathe JC, Varughese TA, Barnett CF, Belenchia JM, Clark NM, Farber CM, Abid MB, Ahmed G, Patterson CJ, Guerrera ML, Soumerai JD, Chea VA, Carulli IP, Southard J, Li S, Wu CJ, Livak KJ, Holmgren E, Kim P, Shi C, Lin H, Ramakrishnan V, Ou Y, Olszewski S, Olsen LR, Keskin DB, Hunter ZR, Tankersley C, Zimmerman T, Dhakal B. A randomized, placebo-controlled trial of the BTK inhibitor zanubrutinib in hospitalized patients with COVID-19 respiratory distress: immune biomarker and clinical findings. Front Immunol 2025; 15:1369619. [PMID: 39906744 PMCID: PMC11791645 DOI: 10.3389/fimmu.2024.1369619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 11/04/2024] [Indexed: 02/06/2025] Open
Abstract
Background Cytokine release triggered by a hyperactive immune response is thought to contribute to severe acute respiratory syndrome coronavirus 2019 (SARS-CoV-2)-related respiratory failure. Bruton tyrosine kinase (BTK) is involved in innate immunity, and BTK inhibitors block cytokine release. We assessed the next-generation BTK inhibitor zanubrutinib in SARS-CoV-2-infected patients with respiratory distress. Method Cohort 1 had a prospective, randomized, double-blind, placebo-controlled design; cohort 2 had a single-arm design. Adults with SARS-CoV-2 requiring hospitalization (without mechanical ventilation) were randomized in cohort 1. Those on mechanical ventilation ≤24 hours were enrolled in cohort 2. Patients were randomized 1:1 to zanubrutinib 320 mg once daily or placebo (cohort 1), or received zanubrutinib 320 mg once daily (cohort 2). Co-primary endpoints were respiratory failure-free survival rate and time to return to breathing room air at 28 days. Corollary studies to assess zanubrutinib's impact on immune response were performed. Results Sixty-three patients in cohort 1 received zanubrutinib (n=30) or placebo (n=33), with median treatment duration of 8.5 and 7.0 days, respectively. The median treatment duration in cohort 2 (n=4) was 13 days; all discontinued treatment early. In cohort 1, respiratory failure-free survival and the estimated rates of not returning to breathing room air by day 28 were not significantly different between treatments. Importantly, serological response to coronavirus disease 2019 (COVID-19) was not impacted by zanubrutinib. Lower levels of granulocyte colony-stimulating factor, interleukin (IL)-10, monocyte chemoattractant protein-1, IL-4, and IL-13 were observed in zanubrutinib-treated patients. Moreover, single-cell transcriptome analysis showed significant downregulation of inflammatory mediators (IL-6, IL-8, macrophage colony-stimulating factor, macrophage inflammatory protein-1α, IL-1β) and signaling pathways (JAK1, STAT3, TYK2), and activation of gamma-delta T cells in zanubrutinib-treated patients. Conclusions Marked reduction in inflammatory signaling with preserved SARS-CoV-2 serological response was observed in hospitalized patients with COVID-19 respiratory distress receiving zanubrutinib. Despite these immunological findings, zanubrutinib did not show improvement over placebo in clinical recovery from respiratory distress. Concurrent administration of steroids and antiviral therapy to most patients may have contributed to these results. Investigation of zanubrutinib may be warranted in other settings where cytokine release and immune cell exhaustion are important. Clinical Trial Registration https://www.clinicaltrials.gov/study/NCT04382586, identifier NCT04382586.
Collapse
Affiliation(s)
| | | | - David J. Park
- Providence St. Jude Medical Center/Providence Medical Foundation, Fullerton, CA, United States
| | - Giorgia Moranzoni
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Camilla K. Lemvigh
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | | | | | - Nina M. Clark
- Loyola University Stritch School of Medicine, Chicago, IL, United States
| | | | | | - Gulrayz Ahmed
- Medical College of Wisconsin, Milwaukee, WI, United States
| | | | | | | | | | | | | | - Shuqiang Li
- Dana-Farber Cancer Institute, Boston, MA, United States
| | | | | | | | - Pil Kim
- BeiGene USA, Inc., San Mateo, CA, United States
| | - Carrie Shi
- BeiGene USA, Inc., San Mateo, CA, United States
| | - Holly Lin
- BeiGene USA, Inc., San Mateo, CA, United States
| | | | - Ying Ou
- BeiGene USA, Inc., San Mateo, CA, United States
| | | | - Lars Rønn Olsen
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Derin B. Keskin
- Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | | | | | | | - Binod Dhakal
- Medical College of Wisconsin, Wauwatosa, WI, United States
| |
Collapse
|
4
|
Kubagawa H, Mahmoudi Aliabadi P, Al-Qaisi K, Jani PK, Honjo K, Izui S, Radbruch A, Melchers F. Functions of IgM fc receptor (FcµR) related to autoimmunity. Autoimmunity 2024; 57:2323563. [PMID: 38465789 DOI: 10.1080/08916934.2024.2323563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Unlike Fc receptors for switched immunoglobulin (Ig) isotypes, Fc receptor for IgM (FcµR) is selectively expressed by lymphocytes. The ablation of the FcµR gene in mice impairs B cell tolerance as evidenced by concomitant production of autoantibodies of IgM and IgG isotypes. In this essay, we reiterate the autoimmune phenotypes observed in mutant mice, ie IgM homeostasis, dysregulated humoral immune responses including autoantibodies, and Mott cell formation. We also propose the potential phenotypes in individuals with FCMR deficiency and the model for FcµR-mediated regulation of self-reactive B cells.
Collapse
Affiliation(s)
| | | | | | - Peter K Jani
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | - Kazuhito Honjo
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shozo Izui
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| |
Collapse
|
5
|
Bravo-Gonzalez A, Alasfour M, Soong D, Noy J, Pongas G. Advances in Targeted Therapy: Addressing Resistance to BTK Inhibition in B-Cell Lymphoid Malignancies. Cancers (Basel) 2024; 16:3434. [PMID: 39456530 PMCID: PMC11506569 DOI: 10.3390/cancers16203434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 10/28/2024] Open
Abstract
B-cell lymphoid malignancies are a heterogeneous group of hematologic cancers, where Bruton's tyrosine kinase (BTK) inhibitors have received FDA approval for several subtypes. The first-in-class covalent BTK inhibitor, Ibrutinib, binds to the C481 amino acid residue to block the BTK enzyme and prevent the downstream signaling. Resistance to covalent BTK inhibitors (BTKi) can occur through mutations at the BTK binding site (C481S) but also other BTK sites and the phospholipase C gamma 2 (PLCγ2) resulting in downstream signaling. To bypass the C481S mutation, non-covalent BTKi, such as Pirtobrutinib, were developed and are active against both wild-type and the C481S mutation. In this review, we discuss the molecular and genetic mechanisms which contribute to acquisition of resistance to covalent and non-covalent BTKi. In addition, we discuss the new emerging class of BTK degraders, which utilize the evolution of proteolysis-targeting chimeras (PROTACs) to degrade the BTK protein and constitute an important avenue of overcoming resistance. The moving landscape of resistance to BTKi and the development of new therapeutic strategies highlight the ongoing advances being made towards the pursuit of a cure for B-cell lymphoid malignancies.
Collapse
Affiliation(s)
| | - Maryam Alasfour
- Department of Medicine, University of Miami and Jackson Memorial Hospital, Miami, FL 33136, USA; (M.A.); (D.S.); (J.N.)
| | - Deborah Soong
- Department of Medicine, University of Miami and Jackson Memorial Hospital, Miami, FL 33136, USA; (M.A.); (D.S.); (J.N.)
| | - Jose Noy
- Department of Medicine, University of Miami and Jackson Memorial Hospital, Miami, FL 33136, USA; (M.A.); (D.S.); (J.N.)
| | - Georgios Pongas
- Division of Hematology, Department of Medicine, University of Miami and Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
6
|
Inoue T, Baba Y, Kurosaki T. BCR signaling in germinal center B cell selection. Trends Immunol 2024; 45:693-704. [PMID: 39168721 DOI: 10.1016/j.it.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
When mature B cells are activated by antigens, the selection of these activated B cells takes place particularly during T cell-dependent immune responses in which an improved antibody repertoire is generated through somatic hypermutation in germinal centers (GCs). In this process the importance of antigen presentation by GC B cells, and subsequent T follicular helper (Tfh) cell help in positive selection of GC B cells, has been well appreciated. By contrast, the role of B cell receptor (BCR) signaling per se remains unclear. Strong experimental support for the involvement of BCR signaling in GC B cell selection has now been provided. Interestingly, these studies suggest that several checkpoints operating through the BCR ensure affinity maturation.
Collapse
Affiliation(s)
- Takeshi Inoue
- Department of Molecular Systems Immunology, University of Tokyo Pandemic Preparedness, Infection, and Advanced Research Center (UTOPIA), Tokyo, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Osaka, Japan; Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan; Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
7
|
Steinmaurer A, Riedl C, König T, Testa G, Köck U, Bauer J, Lassmann H, Höftberger R, Berger T, Wimmer I, Hametner S. The relation between BTK expression and iron accumulation of myeloid cells in multiple sclerosis. Brain Pathol 2024; 34:e13240. [PMID: 38254312 PMCID: PMC11328345 DOI: 10.1111/bpa.13240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Activation of Bruton's tyrosine kinase (BTK) has been shown to play a crucial role in the proinflammatory response of B cells and myeloid cells upon engagement with B cell, Fc, Toll-like receptor, and distinct chemokine receptors. Previous reports suggest BTK actively contributes to the pathogenesis of multiple sclerosis (MS). The BTK inhibitor Evobrutinib has been shown to reduce the numbers of gadolinium-enhancing lesions and relapses in relapsing-remitting MS patients. In vitro, BTK inhibition resulted in reduced phagocytic activity and modulated BTK-dependent inflammatory signaling of microglia and macrophages. Here, we investigated the protein expression of BTK and CD68 as well as iron accumulation in postmortem control (n = 10) and MS (n = 23) brain tissue, focusing on microglia and macrophages. MS cases encompassed active, chronic active, and inactive lesions. BTK+ and iron+ cells positively correlated across all regions of interests and, along with CD68, revealed highest numbers in the center of active and at the rim of chronic active lesions. We then studied the effect of BTK inhibition in the human immortalized microglia-like HMC3 cell line in vitro. In particular, we loaded HMC3 cells with iron-dextran and subsequently administered the BTK inhibitor Evobrutinib. Iron treatment alone induced a proinflammatory phenotype and increased the expression of iron importers as well as the intracellular iron storage protein ferritin light chain (FTL). BTK inhibition of iron-laden cells dampened the expression of microglia-related inflammatory genes as well as iron-importers, whereas the iron-exporter ferroportin was upregulated. Our data suggest that BTK inhibition not only dampens the proinflammatory response but also reduces iron import and storage in activated microglia and macrophages with possible implications on microglial iron accumulation in chronic active lesions in MS.
Collapse
Affiliation(s)
- Anja Steinmaurer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Christian Riedl
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| | - Theresa König
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Giulia Testa
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| | - Ulrike Köck
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Simon Hametner
- Division of Neurochemistry and Neuropathology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Mattos MS, Vandendriessche S, Waisman A, Marques PE. The immunology of B-1 cells: from development to aging. Immun Ageing 2024; 21:54. [PMID: 39095816 PMCID: PMC11295433 DOI: 10.1186/s12979-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
B-1 cells have intricate biology, with distinct function, phenotype and developmental origin from conventional B cells. They generate a B cell receptor with conserved germline characteristics and biased V(D)J recombination, allowing this innate-like lymphocyte to spontaneously produce self-reactive natural antibodies (NAbs) and become activated by immune stimuli in a T cell-independent manner. NAbs were suggested as "rheostats" for the chronic diseases in advanced age. In fact, age-dependent loss of function of NAbs has been associated with clinically-relevant diseases in the elderly, such as atherosclerosis and neurodegenerative disorders. Here, we analyzed comprehensively the ontogeny, phenotypic characteristics, functional properties and emerging roles of B-1 cells and NAbs in health and disease. Additionally, after navigating through the complexities of B-1 cell biology from development to aging, therapeutic opportunities in the field are discussed.
Collapse
Affiliation(s)
- Matheus Silvério Mattos
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Centre of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium.
| |
Collapse
|
9
|
Huber M, Brummer T. Enzyme Is the Name-Adapter Is the Game. Cells 2024; 13:1249. [PMID: 39120280 PMCID: PMC11311582 DOI: 10.3390/cells13151249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Signaling proteins in eukaryotes usually comprise a catalytic domain coupled to one or several interaction domains, such as SH2 and SH3 domains. An additional class of proteins critically involved in cellular communication are adapter or scaffold proteins, which fulfill their purely non-enzymatic functions by organizing protein-protein interactions. Intriguingly, certain signaling enzymes, e.g., kinases and phosphatases, have been demonstrated to promote particular cellular functions by means of their interaction domains only. In this review, we will refer to such a function as "the adapter function of an enzyme". Though many stories can be told, we will concentrate on several proteins executing critical adapter functions in cells of the immune system, such as Bruton´s tyrosine kinase (BTK), phosphatidylinositol 3-kinase (PI3K), and SH2-containing inositol phosphatase 1 (SHIP1), as well as in cancer cells, such as proteins of the rat sarcoma/extracellular signal-regulated kinase (RAS/ERK) mitogen-activated protein kinase (MAPK) pathway. We will also discuss how these adaptor functions of enzymes determine or even undermine the efficacy of targeted therapy compounds, such as ATP-competitive kinase inhibitors. Thereby, we are highlighting the need to develop pharmacological approaches, such as proteolysis-targeting chimeras (PROTACs), that eliminate the entire protein, and thus both enzymatic and adapter functions of the signaling protein. We also review how genetic knock-out and knock-in approaches can be leveraged to identify adaptor functions of signaling proteins.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research, IMMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Center for Biological Signalling Studies BIOSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
10
|
Hjálmsdóttir Á, Hasler F, Waeckerle-Men Y, Duda A, López-Deber MP, Pihlgren M, Vukicevic M, Kündig TM, Johansen P. T cell independent antibody responses with class switch and memory using peptides anchored on liposomes. NPJ Vaccines 2024; 9:115. [PMID: 38909055 PMCID: PMC11193769 DOI: 10.1038/s41541-024-00902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 05/23/2024] [Indexed: 06/24/2024] Open
Abstract
Vaccines generally require T lymphocytes for B-cell activation and immunoglobulin class switching in response to peptide or protein antigens. In the absence of T cells, limited IgG class switch takes place, germinal centers are short-lived, and the B cells lack memory. Here, immunization of mice with liposomes containing 15mer peptides and monophosphoryl lipid A (MPLA) as adjuvant, induced T-cell independent (TI) IgG class switch within three days, as well as germinal center formation. The antibody responses were long-lived, strictly dependent on Toll-like receptor 4 (TLR4) signaling, partly dependent on Bruton's tyrosine kinase (BTK) signal transmission, and independent of signaling through T-cell receptors, MHC class II and inflammasome. The antibody response showed characteristics of both TI type 1 and TI type 2. All IgG subclasses could be boosted months after primary immunization, and the biological function of the secreted antibodies was demonstrated in murine models of allergic anaphylaxis and of bacterial infection. Moreover, antibody responses after immunization with peptide- and MPLA-loaded liposomes could be triggered in neonatal mice and in mice receiving immune-suppressants. This study demonstrates T-cell independent endogenous B-cell memory and recall responses in vivo using a peptide antigen. The stimulation of these antibody responses required a correct and dense assembly and administration of peptide and adjuvant on the surface of liposomes. In the future, TI vaccines may prove beneficial in pathological conditions in which T-cell immunity is compromised through disease or medicines or when rapid, antibody-mediated immune protection is needed.
Collapse
Affiliation(s)
| | - Fabio Hasler
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | | | - Agathe Duda
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Maria Pihlgren
- AC Immune SA, EPFL Innovation Park EPFL, Lausanne, Switzerland
| | | | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Zurich, Switzerland.
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
11
|
Desai JV, Zarakas MA, Wishart AL, Roschewski M, Aufiero MA, Donkò A, Wigerblad G, Shlezinger N, Plate M, James MR, Lim JK, Uzel G, Bergerson JR, Fuss I, Cramer RA, Franco LM, Clark ES, Khan WN, Yamanaka D, Chamilos G, El-Benna J, Kaplan MJ, Staudt LM, Leto TL, Holland SM, Wilson WH, Hohl TM, Lionakis MS. BTK drives neutrophil activation for sterilizing antifungal immunity. J Clin Invest 2024; 134:e176142. [PMID: 38696257 PMCID: PMC11178547 DOI: 10.1172/jci176142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/22/2024] [Indexed: 05/04/2024] Open
Abstract
We describe a previously unappreciated role for Bruton's tyrosine kinase (BTK) in fungal immune surveillance against aspergillosis, an unforeseen complication of BTK inhibitors (BTKi) used for treating B cell lymphoid malignancies. We studied BTK-dependent fungal responses in neutrophils from diverse populations, including healthy donors, patients who were treated with BTKi, and X-linked agammaglobulinemia patients. Upon fungal exposure, BTK was activated in human neutrophils in a TLR2-, Dectin-1-, and FcγR-dependent manner, triggering the oxidative burst. BTK inhibition selectively impeded neutrophil-mediated damage to Aspergillus hyphae, primary granule release, and the fungus-induced oxidative burst by abrogating NADPH oxidase subunit p40phox and GTPase RAC2 activation. Moreover, neutrophil-specific Btk deletion in mice enhanced aspergillosis susceptibility by impairing neutrophil function, not recruitment or lifespan. Conversely, GM-CSF partially mitigated these deficits by enhancing p47phox activation. Our findings underline the crucial role of BTK signaling in neutrophils for antifungal immunity and provide a rationale for GM-CSF use to offset these deficits in patients who are susceptible.
Collapse
Affiliation(s)
- Jigar V. Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Marissa A. Zarakas
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Andrew L. Wishart
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Mariano A. Aufiero
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Agnes Donkò
- Molecular Defenses Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | - Gustaf Wigerblad
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Neta Shlezinger
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Markus Plate
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthew R. James
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jean K. Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gulbu Uzel
- Immunopathogenesis Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | | | - Ivan Fuss
- Mucosal Immunity Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Luis M. Franco
- Functional Immunogenomics Section, NIAMS, NIH, Bethesda, Maryland, USA
| | - Emily S. Clark
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Wasif N. Khan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Georgios Chamilos
- Department of Clinical Microbiology and Microbial Pathogenesis, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Jamel El-Benna
- Centre de Recherche sur l’Inflammation, Laboratoire d’Excellence Inflamex, Faculté de Médecine Xavier Bichat, Université de Paris-Cité, INSERM-U1149, CNRS-ERL8252, Paris, France
| | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Thomas L. Leto
- Molecular Defenses Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | - Steven M. Holland
- Immunopathogenesis Section, LCIM, NIAID, NIH, Bethesda, Maryland, USA
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA
| | - Tobias M. Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology (LCIM), National Institute of Allergy & Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
12
|
Soumerai JD, Diefenbach CS, Jagadeesh D, Asch A, Kumar A, Tsai ML, Jandl TA, Lossos IS, Kenkre VP, Awan F, Novotny W, Huang J, Miao L, Rajagopalan P, Ghalie RG, Zelenetz AD. Safety and efficacy of zandelisib plus zanubrutinib in previously treated follicular and mantle cell lymphomas. Br J Haematol 2024; 204:1762-1770. [PMID: 38500476 PMCID: PMC11156518 DOI: 10.1111/bjh.19419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
The combination of the phosphatidylinositol 3-kinase delta (PI3Kδ) inhibitor zandelisib with the Bruton's tyrosine kinase (BTK) inhibitor zanubrutinib was hypothesized to be synergistic and prevent resistance to single-agent therapy. This phase 1 study (NCT02914938) included a dose-finding stage in patients with relapsed/refractory (R/R) B-cell malignancies (n = 20) and disease-specific expansion cohorts in follicular lymphoma (FL; n = 31) or mantle cell lymphoma (MCL; n = 19). The recommended phase 2 dose was zandelisib 60 mg on Days 1-7 plus zanubrutinib 80 mg twice daily continuously in 28-day cycle. In the total population, the most common adverse events (AEs; all grades/grade 3-4) were neutropenia (35%/24%), diarrhoea (33%/2%), thrombocytopenia (32%/8%), anaemia (27%/8%), increased creatinine (25%/0%), contusion (21%/0%), fatigue (21%/2%), nausea (21%/2%) and increased aspartate aminotransferase (24%/6%). Three patients discontinued due to AEs. The overall response rate was 87% (complete response [CR] = 33%) for FL and 74% (CR = 47%) for MCL. The median duration of response and progression-free survival (PFS) were not reached in either group. The estimated 1-year PFS was 72.3% (95% confidence interval [CI], 51.9-85.1) for FL and 56.3% (95% CI, 28.9-76.7) for MCL (median follow-up: 16.5 and 10.9 months respectively). Zandelisib plus zanubrutinib was associated with high response rates and no increased toxicity compared to either agent alone.
Collapse
Affiliation(s)
| | | | - Deepa Jagadeesh
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Adam Asch
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | | | | | - Izidore S. Lossos
- Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, FL
| | | | - Farrukh Awan
- University of Texas Southwestern Medical Center, Dallas, TX
| | | | | | - Lu Miao
- MEI Pharma, Inc., San Diego, CA
| | | | | | | |
Collapse
|
13
|
Kawata K, Hatano S, Baba A, Imabayashi K, Baba Y. Bruton's tyrosine kinase inhibition limits endotoxic shock by suppressing IL-6 production by marginal zone B cells in mice. Front Immunol 2024; 15:1388947. [PMID: 38638439 PMCID: PMC11024364 DOI: 10.3389/fimmu.2024.1388947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Sepsis is a systemic inflammatory response to a severe, life-threatening infection with organ dysfunction. Although there is no effective treatment for this fatal illness, a deeper understanding of the pathophysiological basis of sepsis and its underlying mechanisms could lead to the development of new treatment approaches. Here, we demonstrate that the selective Bruton's tyrosine kinase (Btk) inhibitor acalabrutinib augments survival rates in a lipopolysaccharide (LPS)-induced septic model. Our in vitro and in vivo findings both indicate that acalabrutinib reduces IL-6 production specifically in marginal zone B (MZ B) cells rather than in macrophages. Furthermore, Btk-deficient MZ B cells exhibited suppressed LPS-induced IL-6 production in vitro. Nuclear factor-kappa B (NF-κB) signaling, which is the downstream signaling cascade of Toll-like receptor 4 (TLR4), was also severely attenuated in Btk-deficient MZ B cells. These findings suggest that Btk blockade may prevent sepsis by inhibiting IL-6 production in MZ B cells. In addition, although Btk inhibition may adversely affect B cell maturation and humoral immunity, antibody responses were not impaired when acalabrutinib was administered for a short period after immunization with T-cell-independent (TI) and T-cell-dependent (TD) antigens. In contrast, long-term administration of acalabrutinib slightly impaired humoral immunity. Therefore, these findings suggest that Btk inhibitors may be a potential option for alleviating endotoxic shock without compromising humoral immunity and emphasize the importance of maintaining a delicate balance between immunomodulation and inflammation suppression.
Collapse
Affiliation(s)
| | | | | | | | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Han F, Shi X, Liao T, Zhang W, Ma M, Leng Q, Jiang W, Na N, Miao Y, Huang Z. Bruton's tyrosine kinase ablation inhibits B cell responses and antibody production for the prevention of chronic rejection in cardiac transplantation. Clin Immunol 2024; 261:109941. [PMID: 38365047 DOI: 10.1016/j.clim.2024.109941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Chronic rejection is the primary cause of late allograft failure, however, the current treatments for chronic rejection have not yielded desirable therapeutic effects. B cell activation and donor-specific antibody (DSA) production are the primary factors leading to chronic rejection. Bruton's tyrosine kinase (BTK) plays a key role in the activation and differentiation of B cells and in antibody production. This study investigated the efficacy of blocking BTK signalling in the prevention of chronic rejection. BTK signalling was blocked using the BTK inhibitor ibrutinib and gene knockout. In vitro assays were conducted to examine the consequences and underlying mechanisms of BTK blockade in regards to B cell activation, differentiation, and antibody secretion. Additionally, we established a cardiac transplantation mouse model of chronic rejection to explore the preventive effects and mechanisms of BTK ablation on chronic rejection. Ablating BTK signalling in vitro resulted in the inhibition of B cell activation, differentiation, and antibody production. In vivo experiments provided evidence that ablating BTK signalling alleviated chronic rejection, leading to reduced damage in myocardial tissue, neointimal hyperplasia, interstitial fibrosis, inflammatory cell infiltration, and C4d deposition. Allograft survival was prolonged, and B cell responses and DSA production were inhibited as a result. We confirmed that ablation of BTK signalling inhibited B cell response by blocking downstream PLCγ2 phosphorylation and inhibiting the NF-κB, NFAT, and ERK pathways. Our findings demonstrated that ablation of BTK signalling inhibited B cell activation and differentiation, reduced DSA production, and effectively prevented chronic rejection.
Collapse
Affiliation(s)
- Fei Han
- Organ Transplantation Research Institution, Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoyi Shi
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tao Liao
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Zhang
- Organ Transplantation Research Institution, Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Maolin Ma
- Organ Transplantation Research Institution, Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qianghua Leng
- Organ Transplantation Research Institution, Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Weichen Jiang
- Organ Transplantation Research Institution, Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ning Na
- Organ Transplantation Research Institution, Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yun Miao
- Department of Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Zhengyu Huang
- Organ Transplantation Research Institution, Division of Kidney Transplantation, Department of Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
15
|
Zhao M, Li L, Kiernan CH, Castro Eiro MD, Dammeijer F, van Meurs M, Brouwers-Haspels I, Wilmsen MEP, Grashof DGB, van de Werken HJG, Hendriks RW, Aerts JG, Mueller YM, Katsikis PD. Overcoming immune checkpoint blockade resistance in solid tumors with intermittent ITK inhibition. Sci Rep 2023; 13:15678. [PMID: 37735204 PMCID: PMC10514027 DOI: 10.1038/s41598-023-42871-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Cytotoxic CD8 + T cell (CTL) exhaustion is driven by chronic antigen stimulation. Reversing CTL exhaustion with immune checkpoint blockade (ICB) has provided clinical benefits in different types of cancer. We, therefore, investigated whether modulating chronic antigen stimulation and T-cell receptor (TCR) signaling with an IL2-inducible T-cell kinase (ITK) inhibitor, could confer ICB responsiveness to ICB resistant solid tumors. In vivo intermittent treatment of 3 ICB-resistant solid tumor (melanoma, mesothelioma or pancreatic cancer) with ITK inhibitor significantly improved ICB therapy. ITK inhibition directly reinvigorate exhausted CTL in vitro as it enhanced cytokine production, decreased inhibitory receptor expression, and downregulated the transcription factor TOX. Our study demonstrates that intermittent ITK inhibition can be used to directly ameliorate CTL exhaustion and enhance immunotherapies even in solid tumors that are ICB resistant.
Collapse
Affiliation(s)
- Manzhi Zhao
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Department of Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Ling Li
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Caoimhe H Kiernan
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Melisa D Castro Eiro
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Marjan van Meurs
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Inge Brouwers-Haspels
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Merel E P Wilmsen
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Dwin G B Grashof
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Harmen J G van de Werken
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
- Cancer Computational Biology Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Joachim G Aerts
- Department of Pulmonary Medicine, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Yvonne M Mueller
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Korzhenevich J, Janowska I, van der Burg M, Rizzi M. Human and mouse early B cell development: So similar but so different. Immunol Lett 2023; 261:1-12. [PMID: 37442242 DOI: 10.1016/j.imlet.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Early B cell development in the bone marrow ensures the replenishment of the peripheral B cell pool. Immature B cells continuously develop from hematopoietic stem cells, in a process guided by an intricate network of transcription factors as well as chemokine and cytokine signals. Humans and mice possess somewhat similar regulatory mechanisms of B lymphopoiesis. The continuous discovery of monogenetic defects that impact early B cell development in humans substantiates the similarities and differences with B cell development in mice. These differences become relevant when targeted therapeutic approaches are used in patients; therefore, predicting potential immunological adverse events is crucial. In this review, we have provided a phenotypical classification of human and murine early progenitors and B cell stages, based on surface and intracellular protein expression. Further, we have critically compared the role of key transcription factors (Ikaros, E2A, EBF1, PAX5, and Aiolos) and chemo- or cytokine signals (FLT3, c-kit, IL-7R, and CXCR4) during homeostatic and aberrant B lymphopoiesis in both humans and mice.
Collapse
Affiliation(s)
- Jakov Korzhenevich
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria
| | - Iga Janowska
- Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, Leiden University Medical Center, 2333, ZA Leiden, The Netherlands
| | - Marta Rizzi
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090, Vienna, Austria; Department of Rheumatology and Clinical Immunology, Freiburg University Medical Center, University of Freiburg, 79106, Freiburg, Germany; Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
17
|
Dadelahi AS, Abushahba MFN, Ponzilacqua-Silva B, Chambers CA, Moley CR, Lacey CA, Dent AL, Skyberg JA. Interactions between B cells and T follicular regulatory cells enhance susceptibility to Brucella infection independent of the anti-Brucella humoral response. PLoS Pathog 2023; 19:e1011672. [PMID: 37721965 PMCID: PMC10538787 DOI: 10.1371/journal.ppat.1011672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
Brucellosis, caused by facultative, intracellular Brucella spp., often results in chronic and/or lifelong infection. Therefore, Brucella must employ mechanisms to subvert adaptive immunity to cause chronic infection. B lymphocytes enhance susceptibility to infection with Brucella spp. though the mechanisms remain unclear. Here we investigated the role of antibody secretion, B cell receptor (BCR) specificity, and B cell antigen presentation on susceptibility to B. melitensis. We report that mice unable to secrete antibody do not display altered resistance to Brucella. However, animals with B cells that are unable to recognize Brucella through their BCR are resistant to infection. In addition, B cell MHCII expression enhances susceptibility to infection in a CD4+ T cell-dependent manner, and we found that follicular B cells are sufficient to inhibit CD4+ T cell-mediated immunity against Brucella. B cells promote development of T follicular helper (TFH) and T follicular regulatory (TFR) cells during Brucella infection. Inhibition of B cell and CD4+ T cell interaction via CD40L blockade enhances resistance to Brucella in a B cell dependent manner concomitant with suppression of TFH and TFR differentiation. Conversely, PD-1 blockade increases Brucella burdens in a B and CD4+ T cell dependent manner while augmenting T regulatory (TReg) and TFR responses. Intriguingly, TFR deficiency enhances resistance to Brucella via a B cell dependent, but antibody independent mechanism. Collectively, these results demonstrate B cells support TFR responses that promote susceptibility to Brucella infection independent of the antibody response.
Collapse
Affiliation(s)
- Alexis S. Dadelahi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Mostafa F. N. Abushahba
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
- Department of Zoonoses, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Bárbara Ponzilacqua-Silva
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Catherine A. Chambers
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Charles R. Moley
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Carolyn A. Lacey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| | - Alexander L. Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jerod A. Skyberg
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, United States of America
- Laboratory for Infectious Disease Research, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
18
|
Messina JA, Giamberardino CD, Tenor JL, Toffaletti DL, Schell WA, Asfaw YG, Palmucci JR, Lionakis MS, Perfect JR. Susceptibility to Cryptococcus neoformans Infection with Bruton's Tyrosine Kinase Inhibition. Infect Immun 2023; 91:e0004223. [PMID: 37404186 PMCID: PMC10429641 DOI: 10.1128/iai.00042-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/01/2023] [Indexed: 07/06/2023] Open
Abstract
Patients receiving the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib have an increased likelihood of fungal infections. The objectives of this study were to determine if Cryptococcus neoformans infection severity was isolate dependent with BTK inhibition and whether blocking BTK impacted infection severity in a mouse model. We compared four clinical isolates from patients on ibrutinib to virulent (H99) and avirulent (A1-35-8) reference strains. BTK knockout (KO) and wild-type (WT) C57 mice and WT CD1 mice were infected by intranasal (i.n.), oropharyngeal aspiration (OPA), and intravenous (i.v.) routes. Infection severity was assessed by survival and fungal burden (CFU per gram of tissue). Ibrutinib (25 mg/kg) or vehicle was administered daily through intraperitoneal injections. In the BTK KO model, no isolate-dependent effect on fungal burden was observed, and infection severity was not significantly different from that of the WT with i.n., OPA, and i.v. routes. Ibrutinib treatment did not impact infection severity. However, when the four clinical isolates were compared to H99, two of these isolates were less virulent, with significantly longer survival and reduced rates of brain infection. In conclusion, C. neoformans infection severity in the BTK KO model does not appear to be isolate dependent. BTK KO and ibrutinib treatment did not result in significantly different infection severities. However, based on repeated clinical observations of increased susceptibility to fungal infections with BTK inhibitor therapy, further work is needed to optimize a mouse model with BTK inhibition to better understand the role that this pathway plays in susceptibility to C. neoformans infection.
Collapse
Affiliation(s)
- Julia A. Messina
- Duke University School of Medicine, Department of Medicine, Division of Infectious Diseases, Durham, North Carolina, USA
| | - Charles D. Giamberardino
- Duke University School of Medicine, Department of Medicine, Division of Infectious Diseases, Durham, North Carolina, USA
| | - Jennifer L. Tenor
- Duke University School of Medicine, Department of Medicine, Division of Infectious Diseases, Durham, North Carolina, USA
| | - Dena L. Toffaletti
- Duke University School of Medicine, Department of Medicine, Division of Infectious Diseases, Durham, North Carolina, USA
| | - Wiley A. Schell
- Duke University School of Medicine, Department of Medicine, Division of Infectious Diseases, Durham, North Carolina, USA
| | - Yohannes G. Asfaw
- Duke University School of Medicine, Department of Medicine, Division of Infectious Diseases, Durham, North Carolina, USA
| | - Julia R. Palmucci
- Duke University School of Medicine, Department of Medicine, Division of Infectious Diseases, Durham, North Carolina, USA
| | - Michail S. Lionakis
- National Institutes of Health, Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - John R. Perfect
- Duke University School of Medicine, Department of Medicine, Division of Infectious Diseases, Durham, North Carolina, USA
| |
Collapse
|
19
|
Murti K, Fender H, Glatzle C, Wismer R, Sampere-Birlanga S, Wild V, Muhammad K, Rosenwald A, Serfling E, Avots A. Calcineurin-independent NFATc1 signaling is essential for survival of Burkitt lymphoma cells. Front Oncol 2023; 13:1205788. [PMID: 37546418 PMCID: PMC10403262 DOI: 10.3389/fonc.2023.1205788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
In Burkitt lymphoma (BL), a tumor of germinal center B cells, the pro-apoptotic properties of MYC are controlled by tonic B cell receptor (BCR) signals. Since BL cells do not exhibit constitutive NF-κB activity, we hypothesized that anti-apoptotic NFATc1 proteins provide a major transcriptional survival signal in BL. Here we show that post-transcriptional mechanisms are responsible for the calcineurin (CN) independent constitutive nuclear over-expression of NFATc1 in BL and Eµ-MYC - induced B cell lymphomas (BCL). Conditional inactivation of the Nfatc1 gene in B cells of Eµ-MYC mice leads to apoptosis of BCL cells in vivo and ex vivo. Inhibition of BCR/SYK/BTK/PI3K signals in BL cells results in cytosolic re-location of NFATc1 and apoptosis. Therefore, NFATc1 activity is an integrated part of tonic BCR signaling and an alternative target for therapeutic intervention in BL.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Andris Avots
- *Correspondence: Edgar Serfling, ; Andris Avots,
| |
Collapse
|
20
|
Guldenpfennig C, Teixeiro E, Daniels M. NF-kB's contribution to B cell fate decisions. Front Immunol 2023; 14:1214095. [PMID: 37533858 PMCID: PMC10391175 DOI: 10.3389/fimmu.2023.1214095] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
NF-κB signaling is essential to an effective innate and adaptive immune response. Many immune-specific functional and developmental outcomes depend in large on NF-κB. The formidable task of sorting out the mechanisms behind the regulation and outcome of NF-κB signaling remains an important area of immunology research. Here we briefly discuss the role of NF-κB in regulating cell fate decisions at various times in the path of B cell development, activation, and the generation of long-term humoral immunity.
Collapse
Affiliation(s)
- Caitlyn Guldenpfennig
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Emma Teixeiro
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Mark Daniels
- Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
21
|
Evonuk KS, Wang S, Mattie J, Cracchiolo CJ, Mager R, Ferenčić Ž, Sprague E, Carrier B, Schofield K, Martinez E, Stewart Z, Petrosino T, Johnson GA, Yusuf I, Plaisted W, Naiman Z, Delp T, Carter L, Marušić S. Bruton's tyrosine kinase inhibition reduces disease severity in a model of secondary progressive autoimmune demyelination. Acta Neuropathol Commun 2023; 11:115. [PMID: 37438842 PMCID: PMC10337138 DOI: 10.1186/s40478-023-01614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023] Open
Abstract
Bruton's tyrosine kinase (BTK) is an emerging target in multiple sclerosis (MS). Alongside its role in B cell receptor signaling and B cell development, BTK regulates myeloid cell activation and inflammatory responses. Here we demonstrate efficacy of BTK inhibition in a model of secondary progressive autoimmune demyelination in Biozzi mice with experimental autoimmune encephalomyelitis (EAE). We show that late in the course of disease, EAE severity could not be reduced with a potent relapse inhibitor, FTY720 (fingolimod), indicating that disease was relapse-independent. During this same phase of disease, treatment with a BTK inhibitor reduced both EAE severity and demyelination compared to vehicle treatment. Compared to vehicle treatment, late therapeutic BTK inhibition resulted in fewer spinal cord-infiltrating myeloid cells, with lower expression of CD86, pro-IL-1β, CD206, and Iba1, and higher expression of Arg1, in both tissue-resident and infiltrating myeloid cells, suggesting a less inflammatory myeloid cell milieu. These changes were accompanied by decreased spinal cord axonal damage. We show similar efficacy with two small molecule inhibitors, including a novel, highly selective, central nervous system-penetrant BTK inhibitor, GB7208. These results suggest that through lymphoid and myeloid cell regulation, BTK inhibition reduced neurodegeneration and disease progression during secondary progressive EAE.
Collapse
Affiliation(s)
| | - Sen Wang
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Josh Mattie
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - C. J. Cracchiolo
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Reine Mager
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Željko Ferenčić
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Ethan Sprague
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Brandon Carrier
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Kai Schofield
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Evelyn Martinez
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Zachary Stewart
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Tara Petrosino
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | | | - Isharat Yusuf
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Warren Plaisted
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Zachary Naiman
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Timothy Delp
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| | - Laura Carter
- Gossamer Bio, 3013 Science Park Road, Suite 200, San Diego, CA 92121 USA
| | - Suzana Marušić
- Hooke Laboratories, LLC, 439 South Union Street, Lawrence, MA 01843 USA
| |
Collapse
|
22
|
Chen ST, Oliveira TY, Gazumyan A, Cipolla M, Nussenzweig MC. B cell receptor signaling in germinal centers prolongs survival and primes B cells for selection. Immunity 2023; 56:547-561.e7. [PMID: 36882061 PMCID: PMC10424567 DOI: 10.1016/j.immuni.2023.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/28/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023]
Abstract
Germinal centers (GCs) are sites of B cell clonal expansion, diversification, and antibody affinity selection. This process is limited and directed by T follicular helper cells that provide helper signals to B cells that endocytose, process, and present cognate antigens in proportion to their B cell receptor (BCR) affinity. Under this model, the BCR functions as an endocytic receptor for antigen capture. How signaling through the BCR contributes to selection is not well understood. To investigate the role of BCR signaling in GC selection, we developed a tracker for antigen binding and presentation and a Bruton's tyrosine kinase drug-resistant-mutant mouse model. We showed that BCR signaling per se is necessary for the survival and priming of light zone B cells to receive T cell help. Our findings provide insight into how high-affinity antibodies are selected within GCs and are fundamental to our understanding of adaptive immunity and vaccine development.
Collapse
Affiliation(s)
- Spencer T Chen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
23
|
Targeting Human Proteins for Antiviral Drug Discovery and Repurposing Efforts: A Focus on Protein Kinases. Viruses 2023; 15:v15020568. [PMID: 36851782 PMCID: PMC9966946 DOI: 10.3390/v15020568] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Despite the great technological and medical advances in fighting viral diseases, new therapies for most of them are still lacking, and existing antivirals suffer from major limitations regarding drug resistance and a limited spectrum of activity. In fact, most approved antivirals are directly acting antiviral (DAA) drugs, which interfere with viral proteins and confer great selectivity towards their viral targets but suffer from resistance and limited spectrum. Nowadays, host-targeted antivirals (HTAs) are on the rise, in the drug discovery and development pipelines, in academia and in the pharmaceutical industry. These drugs target host proteins involved in the virus life cycle and are considered promising alternatives to DAAs due to their broader spectrum and lower potential for resistance. Herein, we discuss an important class of HTAs that modulate signal transduction pathways by targeting host kinases. Kinases are considered key enzymes that control virus-host interactions. We also provide a synopsis of the antiviral drug discovery and development pipeline detailing antiviral kinase targets, drug types, therapeutic classes for repurposed drugs, and top developing organizations. Furthermore, we detail the drug design and repurposing considerations, as well as the limitations and challenges, for kinase-targeted antivirals, including the choice of the binding sites, physicochemical properties, and drug combinations.
Collapse
|
24
|
Masle-Farquhar E, Jeelall Y, White J, Bier J, Deenick EK, Brink R, Horikawa K, Goodnow CC. CARD11 gain-of-function mutation drives cell-autonomous accumulation of PD-1 + ICOS high activated T cells, T-follicular, T-regulatory and T-follicular regulatory cells. Front Immunol 2023; 14:1095257. [PMID: 36960072 PMCID: PMC10028194 DOI: 10.3389/fimmu.2023.1095257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Germline CARD11 gain-of-function (GOF) mutations cause B cell Expansion with NF-κB and T cell Anergy (BENTA) disease, whilst somatic GOF CARD11 mutations recur in diffuse large B cell lymphoma (DLBCL) and in up to 30% of the peripheral T cell lymphomas (PTCL) adult T cell leukemia/lymphoma (ATL), cutaneous T cell lymphoma (CTCL) and Sezary Syndrome. Despite their frequent acquisition by PTCL, the T cell-intrinsic effects of CARD11 GOF mutations are poorly understood. Methods Here, we studied B and T lymphocytes in mice with a germline Nethyl-N-nitrosourea (ENU)-induced Card11M365K mutation identical to a mutation identified in DLBCL and modifying a conserved region of the CARD11 coiled-coil domain recurrently mutated in DLBCL and PTCL. Results and discussion Our results demonstrate that CARD11.M365K is a GOF protein that increases B and T lymphocyte activation and proliferation following antigen receptor stimulation. Germline Card11M365K mutation was insufficient alone to cause B or T-lymphoma, but increased accumulation of germinal center (GC) B cells in unimmunized and immunized mice. Card11M365K mutation caused cell-intrinsic over-accumulation of activated T cells, T regulatory (TREG), T follicular (TFH) and T follicular regulatory (TFR) cells expressing increased levels of ICOS, CTLA-4 and PD-1 checkpoint molecules. Our results reveal CARD11 as an important, cell-autonomous positive regulator of TFH, TREG and TFR cells. They highlight T cell-intrinsic effects of a GOF mutation in the CARD11 gene, which is recurrently mutated in T cell malignancies that are often aggressive and associated with variable clinical outcomes.
Collapse
Affiliation(s)
- Etienne Masle-Farquhar
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Etienne Masle-Farquhar, ; Yogesh Jeelall,
| | - Yogesh Jeelall
- John Curtin School of Medical Research, Immunology Department, The Australian National University, Canberra, ACT, Australia
- *Correspondence: Etienne Masle-Farquhar, ; Yogesh Jeelall,
| | - Jacqueline White
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Julia Bier
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Keisuke Horikawa
- John Curtin School of Medical Research, Immunology Department, The Australian National University, Canberra, ACT, Australia
| | - Christopher Carl Goodnow
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
25
|
Sarden N, Sinha S, Potts KG, Pernet E, Hiroki CH, Hassanabad MF, Nguyen AP, Lou Y, Farias R, Winston BW, Bromley A, Snarr BD, Zucoloto AZ, Andonegui G, Muruve DA, McDonald B, Sheppard DC, Mahoney DJ, Divangahi M, Rosin N, Biernaskie J, Yipp BG. A B1a-natural IgG-neutrophil axis is impaired in viral- and steroid-associated aspergillosis. Sci Transl Med 2022; 14:eabq6682. [PMID: 36475902 DOI: 10.1126/scitranslmed.abq6682] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lung naturally resists Aspergillus fumigatus (Af) in healthy individuals, but multiple conditions can disrupt this resistance, leading to lethal invasive infections. Core processes of natural resistance and its breakdown are undefined. We investigated three distinct conditions predisposing to lethal aspergillosis-severe SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection, influenza A viral pneumonia, and systemic corticosteroid use-in human patients and murine models. We found a conserved and essential coupling of innate B1a lymphocytes, Af-binding natural immunoglobulin G antibodies, and lung neutrophils. Failure of this axis concealed Af from neutrophils, allowing rapid fungal invasion and disease. Reconstituting the axis with immunoglobulin therapy reestablished resistance, thus representing a realistic pathway to repurpose currently available therapies. Together, we report a vital host resistance pathway that is responsible for protecting against life-threatening aspergillosis in the context of distinct susceptibilities.
Collapse
Affiliation(s)
- Nicole Sarden
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Kyle G Potts
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Erwan Pernet
- Meakins-Christie Laboratories, Departments of Medicine and Pathology, McGill International TB Centre, McGill University, Montreal, QC H4A 3JI, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Carlos H Hiroki
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mortaza F Hassanabad
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Angela P Nguyen
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Yuefei Lou
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Raquel Farias
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Brent W Winston
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Amy Bromley
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Brendan D Snarr
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Amanda Z Zucoloto
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Graciela Andonegui
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Daniel A Muruve
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Braedon McDonald
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Donald C Sheppard
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada.,Division of Infectious Diseases and Department of Medical Microbiology, McGill University Health Centre, Montreal, QC H4A 3JI, Canada
| | - Douglas J Mahoney
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Maziar Divangahi
- Meakins-Christie Laboratories, Departments of Medicine and Pathology, McGill International TB Centre, McGill University, Montreal, QC H4A 3JI, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Nicole Rosin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Bryan G Yipp
- Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada.,Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
26
|
Cao T, Wang Z, Zhu X. The Immunomodulatory Functions of BTK Inhibition in the Central Nervous System. J Inflamm Res 2022; 15:6427-6438. [PMID: 36452053 PMCID: PMC9704002 DOI: 10.2147/jir.s389958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/15/2022] [Indexed: 02/22/2025] Open
Abstract
Bruton's tyrosine kinase (BTK) is a central signaling node in B cells. BTK inhibition has witnessed great success in the treatment of B-cell malignancies. Additionally, in the immune system, BTK is also a prominent component linking a wide variety of immune-related pathways. Therefore, more and more studies attempting to dissect the role of BTK in autoimmune and inflammation progression have emerged in recent years. In particular, BTK expression was also found to be elevated within the central nervous system (CNS) during neuroinflammation. BTK inhibitors are capable of crossing the blood-brain barrier rapidly to modulate B cell functions, attenuate microglial activities and affect NLRP3 inflammasome pathways within the CNS to improve the outcome of diseases. Thus, BTK inhibition appears to be a promising approach to modulate dysregulated inflammation in the CNS and alleviate destruction caused by excessive inflammatory responses. This review will summarize the immunomodulatory mechanisms in which BTK is involved in the development of neurological diseases and discuss the therapeutic potential of BTK inhibition for the treatment of neuroinflammatory pathology.
Collapse
Affiliation(s)
- Tingyu Cao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Xiaodong Zhu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
27
|
Pan C, Zhao A, Li M. Atopic Dermatitis-like Genodermatosis: Disease Diagnosis and Management. Diagnostics (Basel) 2022; 12:diagnostics12092177. [PMID: 36140582 PMCID: PMC9498295 DOI: 10.3390/diagnostics12092177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Eczema is a classical characteristic not only in atopic dermatitis but also in various genodermatosis. Patients suffering from primary immunodeficiency diseases such as hyper-immunoglobulin E syndromes, Wiskott-Aldrich syndrome, immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome, STAT5B deficiency, Omenn syndrome, atypical complete DiGeorge syndrome; metabolic disorders such as acrodermatitis enteropathy, multiple carboxylase deficiency, prolidase deficiency; and other rare syndromes like severe dermatitis, multiple allergies and metabolic wasting syndrome, Netherton syndrome, and peeling skin syndrome frequently perform with eczema-like lesions. These genodermatosis may be misguided in the context of eczematous phenotype. Misdiagnosis of severe disorders unavoidably affects appropriate treatment and leads to irreversible outcomes for patients, which underlines the importance of molecular diagnosis and genetic analysis. Here we conclude clinical manifestations, molecular mechanism, diagnosis and management of several eczema-related genodermatosis and provide accessible advice to physicians.
Collapse
Affiliation(s)
- Chaolan Pan
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Anqi Zhao
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Ming Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Department of Dermatology, The Children’s Hospital of Fudan University, Shanghai 200092, China
- Correspondence: ; Tel.: +86-2125078571
| |
Collapse
|
28
|
Wang B, Tan Y, Zhou W, Yang J, Jiang Y, Liu X, Zhan Z. Loss of BTK ameliorates the pathological cardiac fibrosis and dysfunction. Matrix Biol 2022; 112:171-189. [PMID: 36031013 DOI: 10.1016/j.matbio.2022.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/30/2022] [Accepted: 08/24/2022] [Indexed: 01/14/2023]
Abstract
Cardiac fibrosis is a common irreversible pathological feature of diverse heart disorders. Uncontrolled cardiac fibrosis contributes to maladaptive cardiac remodeling and eventually heart failure. However, the molecular determinants of ischemic and non-ischemic pathological cardiac fibrosis remain largely unknown. Here, we investigated the role of Bruton's tyrosine kinase (BTK) in cardiac fibrosis and remodeling of mice under various pathological conditions. BTK expression was increased in myocardium of mice after pressure overload or myocardial infarction (MI). BTK was mainly located in cardiac fibroblasts of myocardium, and its expression in isolated cardiac fibroblasts was also upregulated following TGF-β treatment. The deficiency or pharmacological inhibition of BTK with the second-generation inhibitor Acalabrutinib attenuated cardiac fibrosis, preserved cardiac function and prevented adverse cardiac remodeling, which protected against heart failure in mice following pressure overload or MI. BTK deficiency or inhibitor treatment significantly decreased the expression of pro-fibrotic molecules in isolated cardiac fibroblasts and inhibited the transition of fibroblasts to myofibroblasts in response to diverse pathological stresses. BTK directly bound and phosphorylated TGF-β receptor Ⅰ (TβRⅠ) at tyrosine 182, and then promoted the activation of downstream SMAD-dependent or -independent TGF-β signaling, leading to the enhanced transition of fibroblasts to pro-fibrotic myofibroblasts and the excessive extracellular matrix gene expression. Our finding uncovers a driving role of BTK in cardiac fibrosis and dysfunction following pressure overload and MI stress, and highlights novel pathogenic mechanisms in ischemic and non-ischemic maladaptive cardiac remodeling, which presents as a promising target for the development of anti-fibrotic therapy.
Collapse
Affiliation(s)
- Bo Wang
- Shanghai Institute of Transplantation, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yong Tan
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Wenhui Zhou
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jing Yang
- Department of Cardiology, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui hospital, Fudan University, Shanghai 200031, China
| | - Yuyu Jiang
- Department of Pathogen Biology, Naval Medical University, Shanghai 200433, China
| | - Xingguang Liu
- Department of Pathogen Biology, Naval Medical University, Shanghai 200433, China.
| | - Zhenzhen Zhan
- Shanghai Institute of Transplantation, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
29
|
Smith CIE, Bergman P, Hagey DW. Estimating the number of diseases - the concept of rare, ultra-rare, and hyper-rare. iScience 2022; 25:104698. [PMID: 35856030 PMCID: PMC9287598 DOI: 10.1016/j.isci.2022.104698] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
At the dawn of the personalized medicine era, the number of rare diseases has been estimated at 10,000. By considering the influence of environmental factors together with genetic variations and our improved diagnostic capabilities, an assessment suggests a considerably larger number. The majority would be extremely rare, and hence, we introduce the term "hyper-rare," defined as affecting <1/108 individuals. Such disorders would potentially outnumber all currently known rare diseases. Because autosomal recessive disorders are likely concentrated in consanguineous populations, and rare toxicities in rural areas, establishing their existence necessitates a greater reach than is currently viable. Moreover, the randomness of X-linked and gain-of-function mutations greatly compound this challenge. However, whether concurrent diseases actually cause a distinct illness will depend on if their pathological mechanisms interact (phenotype conversion) or not (phenotype maintenance). The hyper-rare disease concept will be important in precision medicine with improved diagnosis and treatment of rare disease patients.
Collapse
Affiliation(s)
- C. I. Edvard Smith
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine and Translational Research Center Karolinska (TRACK), Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Stellenbosch Institute for Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Peter Bergman
- Department of Infectious Diseases, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Laboratory Medicine, Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Daniel W. Hagey
- Department of Laboratory Medicine, Biomolecular and Cellular Medicine and Translational Research Center Karolinska (TRACK), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
30
|
Yang Y, Shao A, Vihinen M. PON-All: Amino Acid Substitution Tolerance Predictor for All Organisms. Front Mol Biosci 2022; 9:867572. [PMID: 35782867 PMCID: PMC9245922 DOI: 10.3389/fmolb.2022.867572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 01/08/2023] Open
Abstract
Genetic variations are investigated in human and many other organisms for many purposes (e.g., to aid in clinical diagnosis). Interpretation of the identified variations can be challenging. Although some dedicated prediction methods have been developed and some tools for human variants can also be used for other organisms, the performance and species range have been limited. We developed a novel variant pathogenicity/tolerance predictor for amino acid substitutions in any organism. The method, PON-All, is a machine learning tool trained on human, animal, and plant variants. Two versions are provided, one with Gene Ontology (GO) annotations and another without these details. GO annotations are not available or are partial for many organisms of interest. The methods provide predictions for three classes: pathogenic, benign, and variants of unknown significance. On the blind test, when using GO annotations, accuracy was 0.913 and MCC 0.827. When GO features were not used, accuracy was 0.856 and MCC 0.712. The performance is the best for human and plant variants and somewhat lower for animal variants because the number of known disease-causing variants in animals is rather small. The method was compared to several other tools and was found to have superior performance. PON-All is freely available at http://structure.bmc.lu.se/PON-All and http://8.133.174.28:8999/.
Collapse
Affiliation(s)
- Yang Yang
- School of Computer Science and Technology, Soochow University, Suzhou, China
- Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing, China
| | - Aibin Shao
- School of Computer Science and Technology, Soochow University, Suzhou, China
| | - Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- *Correspondence: Mauno Vihinen,
| |
Collapse
|
31
|
Impaired B cell terminal differentiation in B cell-specific knockout mice of cell death-defying factor anamorsin. Biochem Biophys Res Commun 2022; 603:1-6. [DOI: 10.1016/j.bbrc.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 11/19/2022]
|
32
|
Bonami RH, Thurman CE, Verma S, Westlake CS, Nyhoff LE, Barron BB, Reboldi A, Kendall PL. Bruton's Tyrosine Kinase Supports Gut Mucosal Immunity and Commensal Microbiome Recognition in Autoimmune Arthritis. Front Immunol 2022; 13:748284. [PMID: 35422819 PMCID: PMC9002138 DOI: 10.3389/fimmu.2022.748284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 03/02/2022] [Indexed: 11/19/2022] Open
Abstract
Bruton's tyrosine kinase (Btk) deficiency preferentially eliminates autoreactive B cells while sparing normal humoral responses, but has not been studied in mucosal immunity. Commensal microbes and intact BTK signaling have been independently shown to be essential for arthritis development in K/BxN mice. Here, we examine how BTK-mediated signaling interfaces with the gut microbiome. Btk-deficient K/BxN mice were found to have small Peyer's Patches with reduced germinal center and IgA class-switched B cells. IgA-switched plasma cells in small intestines were reduced, especially in villi of Btk-deficient mice. IgH CDR3 sequencing showed similar V gene diversity and somatic hypermutation frequency despite Btk deficiency but showed reduced CDR3 amino acid polarity, suggesting potential qualitative differences in the gut plasma cell repertoire. Small intestinal IgA was low and IgA coating of commensal bacteria was reduced. IgA-seq showed a shift in small intestinal microbes that are normally IgA-coated into the uncoated fraction in Btk-deficient mice. Overall, this study shows that BTK supports normal intestinal IgA development in response to commensals. This manuscript was previously published as a preprint at: https://www.biorxiv.org/content/10.1101/2021.03.10.434762v2.
Collapse
Affiliation(s)
- Rachel H. Bonami
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Nashville, TN, United States
| | - Christina E. Thurman
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sonam Verma
- Department of Medicine, Division of Allergy and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Camille S. Westlake
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lindsay E. Nyhoff
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Bridgette B. Barron
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Peggy L. Kendall
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Nashville, TN, United States
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Medicine, Division of Allergy and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
33
|
Betzler AC, Kieser S, Fiedler K, Laban S, Theodoraki MN, Schuler PJ, Wirth T, Tedford K, Fischer KD, Hoffmann TK, Brunner C. Differential Requirement of Vav Proteins for Btk-dependent and –Independent Signaling During B Cell Development. Front Cell Dev Biol 2022; 10:654181. [PMID: 35281114 PMCID: PMC8904969 DOI: 10.3389/fcell.2022.654181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Btk and Vav proteins are all components of the signalosome that builds upon B cell receptor (BCR) activation. However, the role of Vav proteins within the signalosome is quite complex and not yet fully understood. Until now, studies of these have focused predominantly on a deficiency of Vav proteins alone or in combination with other Vav protein family members. Since a physical association of Btk with Vav was shown previously, we asked whether these molecules lie in the same or independent signaling pathways. By analyzing Vav1 and Vav3 single knock-out mice and generating double-knock-out animals deficient for either Vav1 or Vav3 and Btk, we observed, in line with previous publications, no severe B cell developmental defects when either Vav1 or Vav3 alone are not expressed. However, a simultaneous deficiency of Btk together with either Vav1 or Vav3 leads to a severe reduction of splenic B cells, which exhibit an immature phenotype. B cell developmental defects of Btk/Vav1-double deficient mice in the periphery were more severe than those observed in Btk-single-deficient animals. Additionally, morphological changes in splenic microarchitecture were observed in double- but also in single-knock-out mutants. These observations were accompanied by reduced BCR-induced Ca2+ mobilization, proliferation, germinal center formation and immunoglobulin secretion. Although deletion of Btk alone impaired Ca2+ mobilization upon BCR activation, the defect was even more severe when Vav1 or Vav3 were also mutated, indicating that Btk and the Vav proteins act in separate pathways that converge on Ca2+ signaling. In vitro ASC differentiation suggests that both B and T cells contribute to the observed phenotype of a Btk/Vav-double deficiency. Our results show that Vav proteins and Btk are both components of the BCR-activated signalosome but control separate signaling pathways important for B cell development.
Collapse
Affiliation(s)
- Annika C. Betzler
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Kieser
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Katja Fiedler
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- Institute for Physiological Chemistry, Ulm University, Ulm, Germany
| | - Simon Laban
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Marie-Nicole Theodoraki
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Patrick J. Schuler
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Thomas Wirth
- Institute for Physiological Chemistry, Ulm University, Ulm, Germany
| | - Kerry Tedford
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Klaus-Dieter Fischer
- Institute of Biochemistry and Cell Biology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Thomas K. Hoffmann
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Ulm University Medical Center, Ulm, Germany
- *Correspondence: Cornelia Brunner,
| |
Collapse
|
34
|
Regulation of the BCR signalosome by the class II peptide editor, H2-M, affects the development and repertoire of innate-like B cells. Cell Rep 2022; 38:110200. [DOI: 10.1016/j.celrep.2021.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 09/23/2021] [Accepted: 12/13/2021] [Indexed: 11/21/2022] Open
|
35
|
Nyhoff LE, Griffith AS, Clark ES, Thomas JW, Khan WN, Kendall PL. Btk Supports Autoreactive B Cell Development and Protects against Apoptosis but Is Expendable for Antigen Presentation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2922-2932. [PMID: 34799428 PMCID: PMC9117567 DOI: 10.4049/jimmunol.2000558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/29/2021] [Indexed: 11/19/2022]
Abstract
Bruton's tyrosine kinase (Btk) propagates B cell signaling, and BTK inhibitors are in clinical trials for autoimmune disease. Although autoreactive B cells fail to develop in the absence of Btk, its role in mature cells is unknown. To address this issue, a model of conditional removal (Btk flox/Cre-ERT2 ) was used to excise Btk from mature transgenic B cells that recognize the pathophysiologic autoantigen insulin. Anti-insulin B cells escape central tolerance and promote autoimmune diabetes, mimicking human autoreactive cells. Lifelong Btk deficiency was previously shown to eliminate 95% of anti-insulin B cells, but in this model, mature anti-insulin B cells survived for weeks after targeted Btk deletion, even when competing with a polyclonal repertoire. BCR-stimulated cells could still signal via Syk, PLCy2, and CD22, but failed to upregulate the antiapoptotic protein Bcl-xL, and proliferation was impaired. Surprisingly, Btk-depleted anti-insulin B cells could still present Ag and activate T cells, a critical function in promoting T cell-mediated islet cell destruction. Thus, pharmacologic targeting of Btk may be most effective by blocking expansion of established autoreactive cells, and preventing emergence of new ones.
Collapse
Affiliation(s)
- Lindsay E Nyhoff
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Amber S Griffith
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Emily S Clark
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL; and
| | - James W Thomas
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Wasif N Khan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL; and
| | - Peggy L Kendall
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN;
- Division of Allergy, Pulmonary and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
36
|
McDonald C, Xanthopoulos C, Kostareli E. The role of Bruton's tyrosine kinase in the immune system and disease. Immunology 2021; 164:722-736. [PMID: 34534359 PMCID: PMC8561098 DOI: 10.1111/imm.13416] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/30/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) is a TEC kinase with a multifaceted role in B-cell biology and function, highlighted by its position as a critical component of the B-cell receptor signalling pathway. Due to its role as a therapeutic target in several haematological malignancies including chronic lymphocytic leukaemia, BTK has been gaining tremendous momentum in recent years. Within the immune system, BTK plays a part in numerous pathways and cells beyond B cells (i.e. T cells, macrophages). Not surprisingly, BTK has been elucidated to be a driving factor not only in lymphoproliferative disorders but also in autoimmune diseases and response to infection. To extort this role, BTK inhibitors such as ibrutinib have been developed to target BTK in other diseases. However, due to rising levels of resistance, the urgency to develop new inhibitors with alternative modes of targeting BTK is high. To meet this demand, an expanding list of BTK inhibitors is currently being trialled. In this review, we synopsize recent discoveries regarding BTK and its role within different immune cells and pathways. Additionally, we discuss the broad significance and relevance of BTK for various diseases ranging from haematology and rheumatology to the COVID-19 pandemic. Overall, BTK signalling and its targetable nature have emerged as immensely important for a wide range of clinical applications. The development of novel, more specific and less toxic BTK inhibitors could be revolutionary for a significant number of diseases with yet unmet treatment needs.
Collapse
Affiliation(s)
- Charlotte McDonald
- The Wellcome‐Wolfson Institute for Experimental MedicineSchool of Medicine Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Charalampos Xanthopoulos
- The Wellcome‐Wolfson Institute for Experimental MedicineSchool of Medicine Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Efterpi Kostareli
- The Wellcome‐Wolfson Institute for Experimental MedicineSchool of Medicine Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
37
|
Ringheim GE, Wampole M, Oberoi K. Bruton's Tyrosine Kinase (BTK) Inhibitors and Autoimmune Diseases: Making Sense of BTK Inhibitor Specificity Profiles and Recent Clinical Trial Successes and Failures. Front Immunol 2021; 12:662223. [PMID: 34803999 PMCID: PMC8595937 DOI: 10.3389/fimmu.2021.662223] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Clinical development of BTK kinase inhibitors for treating autoimmune diseases has lagged behind development of these drugs for treating cancers, due in part from concerns over the lack of selectivity and associated toxicity profiles of first generation drug candidates when used in the long term treatment of immune mediated diseases. Second generation BTK inhibitors have made great strides in limiting off-target activities for distantly related kinases, though they have had variable success at limiting cross-reactivity within the more closely related TEC family of kinases. We investigated the BTK specificity and toxicity profiles, drug properties, disease associated signaling pathways, clinical indications, and trial successes and failures for the 13 BTK inhibitor drug candidates tested in phase 2 or higher clinical trials representing 7 autoimmune and 2 inflammatory immune-mediated diseases. We focused on rheumatoid arthritis (RA), multiple sclerosis (MS), and systemic lupus erythematosus (SLE) where the majority of BTK nonclinical and clinical studies have been reported, with additional information for pemphigus vulgaris (PV), Sjogren’s disease (SJ), chronic spontaneous urticaria (CSU), graft versus host disease (GVHD), and asthma included where available. While improved BTK selectivity versus kinases outside the TEC family improved clinical toxicity profiles, less profile distinction was evident within the TEC family. Analysis of genetic associations of RA, MS, and SLE biomarkers with TEC family members revealed that BTK and TEC family members may not be drivers of disease. They are, however, mediators of signaling pathways associated with the pathophysiology of autoimmune diseases. BTK in particular may be associated with B cell and myeloid differentiation as well as autoantibody development implicated in immune mediated diseases. Successes in the clinic for treating RA, MS, PV, ITP, and GVHD, but not for SLE and SJ support the concept that BTK plays an important role in mediating pathogenic processes amenable to therapeutic intervention, depending on the disease. Based on the data collected in this study, we propose that current compound characteristics of BTK inhibitor drug candidates for the treatment of autoimmune diseases have achieved the selectivity, safety, and coverage requirements necessary to deliver therapeutic benefit.
Collapse
Affiliation(s)
- Garth E Ringheim
- Clinical Pharmacology and Translational Medicine, Eisai Inc, Woodcliff Lake, NJ, United States
| | | | - Kinsi Oberoi
- Science Group, Clarivate, Philadelphia, PA, United States
| |
Collapse
|
38
|
Resident macrophage-dependent immune cell scaffolds drive anti-bacterial defense in the peritoneal cavity. Immunity 2021; 54:2578-2594.e5. [PMID: 34717795 DOI: 10.1016/j.immuni.2021.10.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/13/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
Peritoneal immune cells reside unanchored within the peritoneal fluid in homeostasis. Here, we examined the mechanisms that control bacterial infection in the peritoneum using a mouse model of abdominal sepsis following intraperitoneal Escherichia coli infection. Whole-mount immunofluorescence and confocal microscopy of the peritoneal wall and omentum revealed that large peritoneal macrophages (LPMs) rapidly cleared bacteria and adhered to the mesothelium, forming multilayered cellular aggregates composed by sequentially recruited LPMs, B1 cells, neutrophils, and monocyte-derived cells (moCs). The formation of resident macrophage aggregates (resMφ-aggregates) required LPMs and thrombin-dependent fibrin polymerization. E. coli infection triggered LPM pyroptosis and release of inflammatory mediators. Resolution of these potentially inflammatory aggregates required LPM-mediated recruitment of moCs, which were essential for fibrinolysis-mediated resMφ-aggregate disaggregation and the prevention of peritoneal overt inflammation. Thus, resMφ-aggregates provide a physical scaffold that enables the efficient control of peritoneal infection, with implications for antimicrobial immunity in other body cavities, such as the pleural cavity or brain ventricles.
Collapse
|
39
|
Bittner ZA, Liu X, Mateo Tortola M, Tapia-Abellán A, Shankar S, Andreeva L, Mangan M, Spalinger M, Kalbacher H, Düwell P, Lovotti M, Bosch K, Dickhöfer S, Marcu A, Stevanović S, Herster F, Cardona Gloria Y, Chang TH, Bork F, Greve CL, Löffler MW, Wolz OO, Schilling NA, Kümmerle-Deschner JB, Wagner S, Delor A, Grimbacher B, Hantschel O, Scharl M, Wu H, Latz E, Weber ANR. BTK operates a phospho-tyrosine switch to regulate NLRP3 inflammasome activity. J Exp Med 2021; 218:212658. [PMID: 34554188 PMCID: PMC8480672 DOI: 10.1084/jem.20201656] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/18/2021] [Accepted: 08/05/2021] [Indexed: 12/18/2022] Open
Abstract
Activity of the NLRP3 inflammasome, a critical mediator of inflammation, is controlled by accessory proteins, posttranslational modifications, cellular localization, and oligomerization. How these factors relate is unclear. We show that a well-established drug target, Bruton’s tyrosine kinase (BTK), affects several levels of NLRP3 regulation. BTK directly interacts with NLRP3 in immune cells and phosphorylates four conserved tyrosine residues upon inflammasome activation, in vitro and in vivo. Furthermore, BTK promotes NLRP3 relocalization, oligomerization, ASC polymerization, and full inflammasome assembly, probably by charge neutralization, upon modification of a polybasic linker known to direct NLRP3 Golgi association and inflammasome nucleation. As NLRP3 tyrosine modification by BTK also positively regulates IL-1β release, we propose BTK as a multifunctional positive regulator of NLRP3 regulation and BTK phosphorylation of NLRP3 as a novel and therapeutically tractable step in the control of inflammation.
Collapse
Affiliation(s)
- Zsófia Agnes Bittner
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Xiao Liu
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Maria Mateo Tortola
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Ana Tapia-Abellán
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Sangeetha Shankar
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Liudmila Andreeva
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
| | - Matthew Mangan
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Marianne Spalinger
- Department for Gastroenterology and Hepatology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Peter Düwell
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Marta Lovotti
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Karlotta Bosch
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Sabine Dickhöfer
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Ana Marcu
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Franziska Herster
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Yamel Cardona Gloria
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Tzu-Hsuan Chang
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Francesca Bork
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Carsten L Greve
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Markus W Löffler
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.,Cluster of Excellence 2180, Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany
| | - Olaf-Oliver Wolz
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany
| | - Nadine A Schilling
- Institute of Organic Chemistry, University of Tübingen, Tübingen, Germany
| | - Jasmin B Kümmerle-Deschner
- Division of Pediatric Rheumatology and Autoinflammation Reference Center Tübingen, Department of Pediatrics, University Hospital Tübingen, Tübingen, Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence 2124, Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | - Anita Delor
- Centre of Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Centre of Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany.,Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs University, Freiburg, Germany.,German Center for Infection Research, Freiburg, Germany.,Center for Integrative Biological Signaling Studies, Albert-Ludwigs University, Freiburg, Germany.,Cluster of Excellence 2155, Resolving Infection Susceptibility, Hanover Medical School, Freiburg, Germany
| | - Oliver Hantschel
- Institute of Physiological Chemistry, Faculty of Medicine, Philipps University of Marburg, Marburg, Germany
| | - Michael Scharl
- Department for Gastroenterology and Hepatology, University Hospital Zürich and University of Zürich, Zürich, Switzerland
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany.,Division of Infectious Diseases and Immunology, University of Massachusetts, Worcester, MA
| | - Alexander N R Weber
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Tübingen, Germany.,Cluster of Excellence 2180, Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany.,Cluster of Excellence 2124, Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany.,German Cancer Consortium, Tübingen, Germany
| |
Collapse
|
40
|
Fukao S, Haniuda K, Tamaki H, Kitamura D. Protein kinase Cδ is essential for the IgG response against T-cell-independent type 2 antigens and commensal bacteria. eLife 2021; 10:72116. [PMID: 34693907 PMCID: PMC8610492 DOI: 10.7554/elife.72116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Antigens (Ags) with multivalent and repetitive structure elicit IgG production in a T-cell-independent manner. However, the mechanisms by which such T-cell-independent type-2 (TI-2) Ags induce IgG responses remain obscure. Here, we report that B-cell receptor (BCR) engagement with a TI-2 Ag but not with a T-cell-dependent (TD) Ag was able to induce the transcription of Aicda encoding activation-induced cytidine deaminase (AID) and efficient class switching to IgG3 upon costimulation with IL-1 or IFN-α in mouse B cells. TI-2 Ags strongly induced the phosphorylation of protein kinase C (PKC)δ and PKCδ mediated the Aicda transcription through the induction of BATF, the key transcriptional regulator of Aicda. In PKCδ-deficient mice, production of IgG was intact against TD Ag but abrogated against typical TI-2 Ags as well as commensal bacteria, and experimental disruption of the gut epithelial barrier resulted in fatal bacteremia. Thus, our results have revealed novel molecular requirements for class switching in the TI-2 response and highlighted its importance in homeostatic commensal-specific IgG production. When the human body faces a potentially harmful microorganism, the immune system responds by finding and destroying the pathogen. This involves the coordination of several different parts of the immune system. B cells are a type of white blood cell that is responsible for producing antibodies: large proteins that bind to specific targets such as pathogens. B cells often need help from other immune cells known as T cells to complete antibody production. However, T cells are not required for B cells to produce antibodies against some bacteria. For example, when certain pathogenic bacteria coated with a carbohydrate called a capsule – such as pneumococcus, which causes pneumonia, or salmonella – invade our body, B cells recognize a repetitive structure of the capsule using a B-cell antigen receptor. This recognition allows B cells to produce antibodies independently of T cells. It is unclear how B cells produce antibodies in this situation or what proteins are required for this activity. To understand this process, Fukao et al. used genetically modified mice and their B cells to study how they produce antibodies independently of T cells. They found that a protein called PKCδ is critical for B cells to produce antibodies, especially of an executive type called IgG, in the T-cell-independent response. PKCδ became active when B cells were stimulated with the repetitive antigen present on the surface of bacteria like salmonella or pneumococcus. Mice that lack PKCδ were unable to produce IgG independently of T cells, leading to fatal infections when bacteria reached the tissues and blood. Understanding the mechanism behind the T cell-independent B cell response could lead to more effective antibody production, potentially paving the way for new vaccines to prevent fatal diseases caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Saori Fukao
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Kei Haniuda
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Hiromasa Tamaki
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Daisuke Kitamura
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| |
Collapse
|
41
|
de Porto AP, Liu Z, de Beer R, Florquin S, Roelofs JJTH, de Boer OJ, den Haan JMM, Hendriks RW, van 't Veer C, van der Poll T, de Vos AF. Bruton's Tyrosine Kinase-Mediated Signaling in Myeloid Cells Is Required for Protective Innate Immunity During Pneumococcal Pneumonia. Front Immunol 2021; 12:723967. [PMID: 34552589 PMCID: PMC8450579 DOI: 10.3389/fimmu.2021.723967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Bruton’s tyrosine kinase (Btk) is a cytoplasmic kinase expressed in B cells and myeloid cells. It is essential for B cell development and natural antibody-mediated host defense against bacteria in humans and mice, but little is known about the role of Btk in innate host defense in vivo. Previous studies have indicated that lack of (natural) antibodies is paramount for impaired host defense against Streptococcus (S.) pneumoniae in patients and mice with a deficiency in functional Btk. In the present study, we re-examined the role of Btk in B cells and myeloid cells during pneumococcal pneumonia and sepsis in mice. The antibacterial defense of Btk-/- mice was severely impaired during pneumococcal pneumosepsis and restoration of natural antibody production in Btk-/- mice by transgenic expression of Btk specifically in B cells did not suffice to protect against infection. Btk-/- mice with reinforced Btk expression in MhcII+ cells, including B cells, dendritic cells and macrophages, showed improved antibacterial defense as compared to Btk-/- mice. Bacterial outgrowth in Lysmcre-Btkfl/Y mice was unaltered despite a reduced capacity of Btk-deficient alveolar macrophages to respond to pneumococci. Mrp8cre-Btkfl/Y mice with a neutrophil specific paucity in Btk expression, however, demonstrated impaired antibacterial defense. Neutrophils of Mrp8cre-Btkfl/Y mice displayed reduced release of granule content after pulmonary installation of lipoteichoic acid, a gram-positive bacterial cell wall component relevant for pneumococci. Moreover, Btk deficient neutrophils showed impaired degranulation and phagocytosis upon incubation with pneumococci ex vivo. Taken together, the results of our study indicate that besides regulating B cell-mediated immunity, Btk is critical for regulation of myeloid cell-mediated, and particularly neutrophil-mediated, innate host defense against S. pneumoniae in vivo.
Collapse
Affiliation(s)
- Alexander P de Porto
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Zhe Liu
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| | - Regina de Beer
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| | - Sandrine Florquin
- Department of Pathology, Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Onno J de Boer
- Department of Pathology, Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Joke M M den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam University Medical Centers (UMC), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus Medical Center Rotterdam, University Medical Center, Rotterdam, Netherlands
| | - Cornelis van 't Veer
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers (UMC), Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Infection and Immunity Institute (AI&II), Amsterdam University Medical Centers (UMC), Amsterdam, Netherlands
| |
Collapse
|
42
|
X-linked immunodeficient (XID) mice exhibit high susceptibility to Cryptococcus gattii infection. Sci Rep 2021; 11:18397. [PMID: 34526536 PMCID: PMC8443669 DOI: 10.1038/s41598-021-97041-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Cryptococcosis is an opportunistic disease caused by the fungus Cryptococcus neoformans and Cryptococcus gattii. It starts as a pulmonary infection that can spread to other organs, such as the brain, leading to the most serious occurrence of the disease, meningoencephalitis. The humoral response has already been described in limiting the progression of cryptococcosis where the B-1 cell seems to be responsible for producing natural IgM antibodies, crucial for combating fungal infections. The role of the B-1 cell in C. neoformans infection has been initially described, however the role of the humoral response of B-1 cells has not yet been evaluated during C. gattii infections. In the present study we tried to unravel this issue using XID mice, a murine model deficient in the Btk protein which compromises the development of B-1 lymphocytes. We use the XID mice compared to BALB/c mice that are sufficient for the B-1 population during C. gattii infection. Our model of chronic lung infection revealed that XID mice, unlike the sufficient group of B-1, had early mortality with significant weight loss, in addition to reduced levels of IgM and IgG specific to GXM isolated from the capsule of C. neoformans. In addition to this, we observed an increased fungal load in the blood and in the brain. We described an increase in the capsular size of C. gattii and the predominant presence of cytokines with a Th2 profile was also observed in these animals. Thus, the present study strongly points to a higher susceptibility of the XID mouse to C. gattii, which suggests that the presence of B-1 cells and anti-GXM antibodies is fundamental during the control of infection by C. gattii.
Collapse
|
43
|
Wright JA, Bazile C, Clark ES, Carlesso G, Boucher J, Kleiman E, Mahmoud T, Cheng LI, López-Rodríguez DM, Satterthwaite AB, Altman NH, Greidinger EL, Khan WN. Impaired B Cell Apoptosis Results in Autoimmunity That Is Alleviated by Ablation of Btk. Front Immunol 2021; 12:705307. [PMID: 34512628 PMCID: PMC8427801 DOI: 10.3389/fimmu.2021.705307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/30/2021] [Indexed: 01/23/2023] Open
Abstract
While apoptosis plays a role in B-cell self-tolerance, its significance in preventing autoimmunity remains unclear. Here, we report that dysregulated B cell apoptosis leads to delayed onset autoimmune phenotype in mice. Our longitudinal studies revealed that mice with B cell-specific deletion of pro-apoptotic Bim (BBimfl/fl ) have an expanded B cell compartment with a notable increase in transitional, antibody secreting and recently described double negative (DN) B cells. They develop greater hypergammaglobulinemia than mice lacking Bim in all cells and accumulate several autoantibodies characteristic of Systemic Lupus Erythematosus (SLE) and related Sjögren's Syndrome (SS) including anti-nuclear, anti-Ro/SSA and anti-La/SSB at a level comparable to NODH2h4 autoimmune mouse model. Furthermore, lymphocytes infiltrated the tissues including submandibular glands and formed follicle-like structures populated with B cells, plasma cells and T follicular helper cells indicative of ongoing immune reaction. This autoimmunity was ameliorated upon deletion of Bruton's tyrosine kinase (Btk) gene, which encodes a key B cell signaling protein. These studies suggest that Bim-mediated apoptosis suppresses and B cell tyrosine kinase signaling promotes B cell-mediated autoimmunity.
Collapse
Affiliation(s)
- Jacqueline A. Wright
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Cassandra Bazile
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Emily S. Clark
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Gianluca Carlesso
- Early Oncology Discovery, Early Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Justin Boucher
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Eden Kleiman
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tamer Mahmoud
- Early Oncology Discovery, Early Oncology R&D, AstraZeneca, Gaithersburg, MD, United States
| | - Lily I. Cheng
- Oncology Safety/Pathology, Clinical Pharmacology and Safety Sciences, AstraZeneca, Gaithersburg, MD, United States
| | - Darlah M. López-Rodríguez
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Anne B. Satterthwaite
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Norman H. Altman
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Eric L. Greidinger
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Wasif N. Khan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
44
|
Rip J, de Bruijn MJW, Neys SFH, Singh SP, Willar J, van Hulst JAC, Hendriks RW, Corneth OBJ. Bruton's tyrosine kinase inhibition induces rewiring of proximal and distal B-cell receptor signaling in mice. Eur J Immunol 2021; 51:2251-2265. [PMID: 34323286 PMCID: PMC9291019 DOI: 10.1002/eji.202048968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/31/2021] [Accepted: 07/22/2021] [Indexed: 12/04/2022]
Abstract
Bruton′s tyrosine kinase (Btk) is a crucial signaling molecule in BCR signaling and a key regulator of B‐ cell differentiation and function. Btk inhibition has shown impressive clinical efficacy in various B‐cell malignancies. However, it remains unknown whether inhibition additionally induces changes in BCR signaling due to feedback mechanisms, a phenomenon referred to as BCR rewiring. In this report, we studied the impact of Btk activity on major components of the BCR signaling pathway in mice. As expected, NF‐κB and Akt/S6 signaling was decreased in Btk‐deficient B cells. Unexpectedly, phosphorylation of several proximal signaling molecules, including CD79a, Syk, and PI3K, as well as the key Btk‐effector PLCγ2 and the more downstream kinase Erk, were significantly increased. This pattern of BCR rewiring was essentially opposite in B cells from transgenic mice overexpressing Btk. Importantly, prolonged Btk inhibitor treatment of WT mice or mice engrafted with leukemic B cells also resulted in increased phosho‐CD79a and phospho‐PLCγ2 in B cells. Our findings show that Btk enzymatic function determines phosphorylation of proximal and distal BCR signaling molecules in B cells. We conclude that Btk inhibitor treatment results in rewiring of BCR signaling, which may affect both malignant and healthy B cells.
Collapse
Affiliation(s)
- Jasper Rip
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Marjolein J W de Bruijn
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Stefan F H Neys
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Simar Pal Singh
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jonas Willar
- Department of Biology, Institute of Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jennifer A C van Hulst
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
45
|
Resistance to Bruton's Tyrosine Kinase Inhibitors: The Achilles Heel of Their Success Story in Lymphoid Malignancies. Blood 2021; 138:1099-1109. [PMID: 34320163 DOI: 10.1182/blood.2020006783] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
Bruton's tyrosine kinase inhibitors (BTKi) have significantly changed the treatment landscape for patients with B-cell malignancies including chronic lymphocytic leukemia (CLL), Waldenstrom's macroglobulinemia (WM), mantle cell lymphoma (MCL), and marginal zone lymphoma (MZL). Unfortunately, patients with BTKi resistant disease have shortened survival. Clinical and molecular risk factors, such as number of prior therapies and presence of TP53 mutations, can be used to predict patients at the highest risk of developing BTKi resistance. Many mechanisms of BTKi resistance have been reported with mutations in BTK and phospholipase C g 2 supported with the most data. The introduction of venetoclax has lengthened the survival of patients with BTKi resistant disease. Ongoing clinical trials with promising treatment modalities such as next-generation BTKi and chimeric antigen receptor T-cell therapy have reported promising efficacy in patients with BTKi resistant disease. Continued research focusing on resistance mechanisms and methods of how to circumvent resistance is needed to further prolong the survival of patients with BTKi resistant B-cell malignancies.
Collapse
|
46
|
Wang X, Kokabee L, Kokabee M, Conklin DS. Bruton's Tyrosine Kinase and Its Isoforms in Cancer. Front Cell Dev Biol 2021; 9:668996. [PMID: 34307353 PMCID: PMC8297165 DOI: 10.3389/fcell.2021.668996] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/25/2021] [Indexed: 01/04/2023] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a soluble tyrosine kinase with central roles in the development, maturation, and signaling of B cells. BTK has been found to regulate cell proliferation, survival, and migration in various B-cell malignancies. Targeting BTK with recently developed BTK inhibitors has been approved by the Food and Drug Administration (FDA) for the treatment of several hematological malignancies and has transformed the treatment of several B-cell malignancies. The roles that BTK plays in B cells have been appreciated for some time. Recent studies have established that BTK is expressed and plays pro-tumorigenic roles in several epithelial cancers. In this review, we focus on novel isoforms of the BTK protein expressed in epithelial cancers. We review recent work on the expression, function, and signaling of these isoforms and their value as potential therapeutic targets in epithelial tumors.
Collapse
Affiliation(s)
- Xianhui Wang
- Department of Biomedical Sciences, Cancer Research Center, State University of New York, Rensselaer, NY, United States
| | - Leila Kokabee
- Department of Biomedical Sciences, Cancer Research Center, State University of New York, Rensselaer, NY, United States
| | - Mostafa Kokabee
- Department of Biomedical Sciences, Cancer Research Center, State University of New York, Rensselaer, NY, United States
| | - Douglas S Conklin
- Department of Biomedical Sciences, Cancer Research Center, State University of New York, Rensselaer, NY, United States
| |
Collapse
|
47
|
Nguyen T, Deenick EK, Tangye SG. Phosphatidylinositol 3-kinase signaling and immune regulation: insights into disease pathogenesis and clinical implications. Expert Rev Clin Immunol 2021; 17:905-914. [PMID: 34157234 DOI: 10.1080/1744666x.2021.1945443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase that plays a fundamental role in cell survival, metabolism, proliferation and differentiation. Thus, balanced PI3K signalling is critical for multiple aspects of human health. The discovery that germline variants in genes in the PI3K pathway caused inborn errors of immunity highlighted the non-redundant role of these signalling proteins in the human immune system. The subsequent identification and characterisation of >300 individuals with a novel immune dysregulatory disorder, termed activated PI3K-delta syndrome (APDS), has reinforced the status of PI3K as a key pathway regulating immune function. Studies of APDS have demonstrated that dysregulated PI3K function is disruptive for immune cell development, activation, differentiation, effector function and self-tolerance, which are all important in supporting effective, long-term immune responses. AREAS COVERED In this review, we recount recent findings regarding humans with germline variants in PI3K genes and discuss the underlying cellular and molecular pathologies, with a focus on implications for therapy in APDS patients. EXPERT OPINION Modulating PI3K immune cell signalling by offers opportunities for therapeutic interventions in settings of immunodeficiency, autoimmunity and malignancy, but also highlights potential adverse events that may result from overt pharmacological or intrinsic inhibition of PI3K function.
Collapse
Affiliation(s)
- Tina Nguyen
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| | - Elissa K Deenick
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| | - Stuart G Tangye
- Immunity & Inflammation Theme, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical Clinical School, University of NSW, Kensington, NSW, Australia
| |
Collapse
|
48
|
Fleming MR, Xiao L, Jackson KD, Beckman JA, Barac A, Moslehi JJ. Vascular Impact of Cancer Therapies: The Case of BTK (Bruton Tyrosine Kinase) Inhibitors. Circ Res 2021; 128:1973-1987. [PMID: 34110908 PMCID: PMC10185355 DOI: 10.1161/circresaha.121.318259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Novel targeted cancer therapies have revolutionized oncology therapies, but these treatments can have cardiovascular complications, which include heterogeneous cardiac, metabolic, and vascular sequelae. Vascular side effects have emerged as important considerations in both cancer patients undergoing active treatment and cancer survivors. Here, we provide an overview of vascular effects of cancer therapies, focusing on small-molecule kinase inhibitors and specifically inhibitors of BTK (Bruton tyrosine kinase), which have revolutionized treatment and prognosis for B-cell malignancies. Cardiovascular side effects of BTK inhibitors include atrial fibrillation, increased risk of bleeding, and hypertension, with the former 2 especially providing a treatment challenge for the clinician. Cardiovascular complications of small-molecule kinase inhibitors can occur through either on-target (targeting intended target kinase) or off-target kinase inhibition. We will review these concepts and focus on the case of BTK inhibitors, highlight the emerging data suggesting an off-target effect that may provide insights into development of arrhythmias, specifically atrial fibrillation. We believe that cardiac and vascular sequelae of novel targeted cancer therapies can provide insights into human cardiovascular biology.
Collapse
Affiliation(s)
- Matthew R Fleming
- Division of Cardiovascular Medicine (M.R.F., J.A.B., J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ling Xiao
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston (L.X.)
| | - Klarissa D Jackson
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill (K.D.J.)
| | - Joshua A Beckman
- Division of Cardiovascular Medicine (M.R.F., J.A.B., J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ana Barac
- Georgetown University and MedStar Heart and Vascular Institute, MedStar Washing Hospital Center, DC (A.B.)
| | - Javid J Moslehi
- Division of Cardiovascular Medicine (M.R.F., J.A.B., J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Cardio-Oncology Program (J.J.M.), Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
49
|
Neys SFH, Hendriks RW, Corneth OBJ. Targeting Bruton's Tyrosine Kinase in Inflammatory and Autoimmune Pathologies. Front Cell Dev Biol 2021; 9:668131. [PMID: 34150760 PMCID: PMC8213343 DOI: 10.3389/fcell.2021.668131] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) was discovered due to its importance in B cell development, and it has a critical role in signal transduction downstream of the B cell receptor (BCR). Targeting of BTK with small molecule inhibitors has proven to be efficacious in several B cell malignancies. Interestingly, recent studies reveal increased BTK protein expression in circulating resting B cells of patients with systemic autoimmune disease (AID) compared with healthy controls. Moreover, BTK phosphorylation following BCR stimulation in vitro was enhanced. In addition to its role in BCR signaling, BTK is involved in many other pathways, including pattern recognition, Fc, and chemokine receptor signaling in B cells and myeloid cells. This broad involvement in several immunological pathways provides a rationale for the targeting of BTK in the context of inflammatory and systemic AID. Accordingly, numerous in vitro and in vivo preclinical studies support the potential of BTK targeting in these conditions. Efficacy of BTK inhibitors in various inflammatory and AID has been demonstrated or is currently evaluated in clinical trials. In addition, very recent reports suggest that BTK inhibition may be effective as immunosuppressive therapy to diminish pulmonary hyperinflammation in coronavirus disease 2019 (COVID-19). Here, we review BTK's function in key signaling pathways in B cells and myeloid cells. Further, we discuss recent advances in targeting BTK in inflammatory and autoimmune pathologies.
Collapse
|
50
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6:201. [PMID: 34054126 PMCID: PMC8165101 DOI: 10.1038/s41392-021-00572-w] [Citation(s) in RCA: 793] [Impact Index Per Article: 198.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the advantages in efficacy and safety compared with traditional chemotherapy drugs, targeted therapeutic drugs have become mainstream cancer treatments. Since the first tyrosine kinase inhibitor imatinib was approved to enter the market by the US Food and Drug Administration (FDA) in 2001, an increasing number of small-molecule targeted drugs have been developed for the treatment of malignancies. By December 2020, 89 small-molecule targeted antitumor drugs have been approved by the US FDA and the National Medical Products Administration (NMPA) of China. Despite great progress, small-molecule targeted anti-cancer drugs still face many challenges, such as a low response rate and drug resistance. To better promote the development of targeted anti-cancer drugs, we conducted a comprehensive review of small-molecule targeted anti-cancer drugs according to the target classification. We present all the approved drugs as well as important drug candidates in clinical trials for each target, discuss the current challenges, and provide insights and perspectives for the research and development of anti-cancer drugs.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chenyu Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhuang Miao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|