1
|
Metri NA, Mandl A, Paller CJ. Harnessing nature's therapeutic potential: A review of natural products in prostate cancer management. Urol Oncol 2025; 43:221-243. [PMID: 39794185 DOI: 10.1016/j.urolonc.2024.12.260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/16/2024] [Accepted: 12/01/2024] [Indexed: 01/13/2025]
Abstract
Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer-related death among men in the United States. The global burden of this disease is rising, placing significant strain on healthcare systems worldwide. Although definitive therapies like surgery and radiation are often effective, prostate cancer can recur and progress to castration-resistant prostate cancer in some cases. Conventional treatments for prostate cancer often have substantial side effects that can greatly impact patients' quality of life. Therefore, many patients turn to complementary therapies to improve outcomes, manage side effects, and enhance overall well-being. Natural products show promise as complementary treatments for prostate cancer, offering anticancer properties with a low risk of adverse effects. While preclinical research has produced encouraging results, their role in prostate cancer treatment remains controversial, largely due to inconsistent and limited success in clinical trials. This review explores the mechanisms of action of key natural products in prostate cancer management and summarizes clinical trials evaluating their efficacy and safety. It underscores the need for high-quality, rigorously designed, and adequately powered studies to validate the therapeutic potential and safety of these supplements in cancer care. Additionally, we propose future directions to enhance their role in addressing the complex challenges associated with prostate cancer.
Collapse
Affiliation(s)
- Nicole A Metri
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Adel Mandl
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Channing J Paller
- Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD.
| |
Collapse
|
2
|
Duraki A, Krieger KD, Nonn L. The double disparity: Vitamin D deficiency and lethal prostate cancer in black men. J Steroid Biochem Mol Biol 2025; 247:106675. [PMID: 39827969 PMCID: PMC11932436 DOI: 10.1016/j.jsbmb.2025.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Epidemiological data from as early as the 1930s documented a dramatic racial disparity in prostate cancer incidence, survival, and mortality rates among Black men-a trend that persists to this day. Black men are disproportionately burdened by prostate cancer, developing the disease at younger ages, facing more aggressive and lethal forms, and ultimately experiencing double the mortality rate of men of European descent. Investigating the multifactorial contributors to this racial disparity has been extensive, but results have often been inconsistent or inconclusive, making it difficult to pinpoint clear correlations. However, there is strong evidence suggesting that vitamin D deficiency is significantly associated with lethal forms of prostate cancer. This is particularly important given that Black men are at a higher risk for both vitamin D deficiency and developing aggressive, lethal prostate cancer, presenting a double disparity. The disparity in prostate cancer and vitamin D extends to Black men outside the US, but most of the studies have been done in African American men. Understanding the available evidence on vitamin D deficiency and its influence on prostate cancer biology may reveal new opportunities for prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Adriana Duraki
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Kirsten D Krieger
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA
| | - Larisa Nonn
- Department of Pathology, University of Illinois Chicago, Chicago, IL, USA; University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|
3
|
Gkotinakou IM, Mylonis I, Tsakalof A. Vitamin D and Hypoxia: Points of Interplay in Cancer. Cancers (Basel) 2022; 14:cancers14071791. [PMID: 35406562 PMCID: PMC8997790 DOI: 10.3390/cancers14071791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D is a hormone that, through its action, elicits a broad spectrum of physiological responses ranging from classic to nonclassical actions such as bone morphogenesis and immune function. In parallel, many studies describe the antiproliferative, proapoptotic, antiangiogenic effects of calcitriol (the active hormonal form) that contribute to its anticancer activity. Additionally, epidemiological data signify the inverse correlation between vitamin D levels and cancer risk. On the contrary, tumors possess several adaptive mechanisms that enable them to evade the anticancer effects of calcitriol. Such maladaptive processes are often a characteristic of the cancer microenvironment, which in solid tumors is frequently hypoxic and elicits the overexpression of Hypoxia-Inducible Factors (HIFs). HIF-mediated signaling not only contributes to cancer cell survival and proliferation but also confers resistance to anticancer agents. Taking into consideration that calcitriol intertwines with signaling events elicited by the hypoxic status cells, this review examines their interplay in cellular signaling to give the opportunity to better understand their relationship in cancer development and their prospect for the treatment of cancer.
Collapse
Affiliation(s)
| | - Ilias Mylonis
- Correspondence: (I.M.); (A.T.); Tel.: +30-2410-685578 (I.M. & A.T)
| | - Andreas Tsakalof
- Correspondence: (I.M.); (A.T.); Tel.: +30-2410-685578 (I.M. & A.T)
| |
Collapse
|
4
|
Yasuda K, Nishikawa M, Mano H, Takano M, Kittaka A, Ikushiro S, Sakaki T. Development of In Vitro and In Vivo Evaluation Systems for Vitamin D Derivatives and Their Application to Drug Discovery. Int J Mol Sci 2021; 22:ijms222111839. [PMID: 34769269 PMCID: PMC8584323 DOI: 10.3390/ijms222111839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
We have developed an in vitro system to easily examine the affinity for vitamin D receptor (VDR) and CYP24A1-mediated metabolism as two methods of assessing vitamin D derivatives. Vitamin D derivatives with high VDR affinity and resistance to CYP24A1-mediated metabolism could be good therapeutic agents. This system can effectively select vitamin D derivatives with these useful properties. We have also developed an in vivo system including a Cyp27b1-gene-deficient rat (a type I rickets model), a Vdr-gene-deficient rat (a type II rickets model), and a rat with a mutant Vdr (R270L) (another type II rickets model) using a genome editing method. For Cyp27b1-gene-deficient and Vdr mutant (R270L) rats, amelioration of rickets symptoms can be used as an index of the efficacy of vitamin D derivatives. Vdr-gene-deficient rats can be used to assess the activities of vitamin D derivatives specialized for actions not mediated by VDR. One of our original vitamin D derivatives, which displays high affinity VDR binding and resistance to CYP24A1-dependent metabolism, has shown good therapeutic effects in Vdr (R270L) rats, although further analysis is needed.
Collapse
Affiliation(s)
- Kaori Yasuda
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan; (K.Y.); (H.M.)
| | - Miyu Nishikawa
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan; (M.N.); (S.I.)
| | - Hiroki Mano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan; (K.Y.); (H.M.)
| | - Masashi Takano
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo 173-8605, Japan; (M.T.); (A.K.)
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo 173-8605, Japan; (M.T.); (A.K.)
| | - Shinichi Ikushiro
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan; (M.N.); (S.I.)
| | - Toshiyuki Sakaki
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu 939-0398, Toyama, Japan; (K.Y.); (H.M.)
- Correspondence:
| |
Collapse
|
5
|
Campolina-Silva GH, Barata MC, Werneck-Gomes H, Maria BT, Mahecha GAB, Belleannée C, Oliveira CA. Altered expression of the vitamin D metabolizing enzymes CYP27B1 and CYP24A1 under the context of prostate aging and pathologies. J Steroid Biochem Mol Biol 2021; 209:105832. [PMID: 33596463 DOI: 10.1016/j.jsbmb.2021.105832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/20/2022]
Abstract
Low circulating levels of vitamin D are common at older ages and have been linked to an increased risk of prostate disease, including cancer. However, it has not yet been determined whether aging affects the ability of prostate cells to locally metabolize vitamin D into its active metabolite calcitriol and thus mediate the vitamin D signaling in autocrine and paracrine ways. By using a suitable rat model to interrogate spontaneous prostatic modifications over the course of aging, here we showed that both CYP27B1 and CYP24A1 enzymes, which are key players respectively involved with calcitriol synthesis and deactivation, were highly expressed in the prostate epithelium. Furthermore, as the animals aged, a drastic reduction of CYP27B1 levels was detected in total protein extracts and especially in epithelial areas of lesions, including tumors. On the other hand, CYP24A1 expression significantly increased with aging and remained elevated even in altered epithelia. Such intricate unbalance in regard to vitamin D metabolizing enzymes was strongly associated with reduced bioavailability of calcitriol in the senile prostate, which in addition to decreased expression of the vitamin D receptor, further limits the protective actions mediated by vitamin D signaling. This evidence was corroborated by the increased proliferative activity exactly at sites of lesions where the factors implicated with calcitriol synthesis and responsiveness had its expression inhibited. Taken together, our results emphasize a set of modifications over the course of aging with a high potential to hamper vitamin D signaling on the prostate. These findings highlight a crosstalk between vitamin D, aging, and prostate carcinogenesis, offering new potential targets in the prevention of malignancies and other aging-related disorders arising in the gland.
Collapse
Affiliation(s)
| | - Maria Clara Barata
- Department of Morphology, Universidade Federal De Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | - Hipácia Werneck-Gomes
- Department of Morphology, Universidade Federal De Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | - Bruna Toledo Maria
- Department of Morphology, Universidade Federal De Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil
| | | | - Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU De Québec Research Center (CHUL), Quebec City, QC, Canada
| | - Cleida Aparecida Oliveira
- Department of Morphology, Universidade Federal De Minas Gerais, Cx. Postal 486, CEP 31.270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
6
|
Holland CT, Hsu J, Walker AM. S179D Prolactin Sensitizes Human PC3 Prostate Cancer Xenografts to Anti-tumor Effects of Well-Tolerated Doses of Calcitriol. ACTA ACUST UNITED AC 2020; 4:442-456. [PMID: 33179012 PMCID: PMC7655011 DOI: 10.26502/jcsct.5079085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Calcitriol has been shown to have multiple anti-prostate cancer effects both in vitro and in xenograft models, and associations between low levels of calcitriol and more aggressive forms of prostate cancer have been observed clinically. However, the concentrations of calcitriol required to have a substantive anti-cancer effect in vivo are toxic. In previous work, we had observed that the selective prolactin receptor modulator, S179D PRL, sensitized prostate cancer cells in vitro to physiological concentrations of calcitriol through an ability to increase expression of the vitamin D receptor. Here, we have investigated whether administration of S179D PRL would likewise sensitize androgen-insensitive human PC3 xenografts in vivo and do so without inducing tissue damage akin to hypervitaminosis D. Using low concentrations of both S179D PRL (250 ng/h) and calcitriol (up to 220 pg/h), we found no effect of each alone or in combination on the growth rate of tumors. However, there was increased central tumor death with their combination that was more than additive at 250 ng S179D PRL and 220 pg calcitriol per hour. Both S179D PRL and calcitriol alone were antiangiogenic, but their antiangiogenic effects were not additive. Also, both S179D PRL and calcitriol alone increased the number of apoptotic cells in tumor sections, but their combination reduced the number, suggesting more effective clearance of apoptotic cells. Histopathology of the livers and kidneys showed no changes consistent with hypervitaminosis D. We conclude that dual therapy holds promise as a means to harness the anti-tumor effects of well-tolerated doses of calcitriol.
Collapse
Affiliation(s)
| | | | - Ameae M. Walker
- Corresponding Author: Dr. Ameae M. Walker, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA, Tel: 1-951-565-1339;
| |
Collapse
|
7
|
Grioli SM, Alonso EN, Mascaró E, Stabile SA, Ferronato MJ, Quevedo MA, Radivoy G, Facchinetti MM, Vitale CA, Curino AC. Structure-Activity Relationship Study of an Alkynylphosphonate and Vynilphosphonate Analogues of Calcitriol. Med Chem 2020; 17:230-246. [PMID: 32819231 DOI: 10.2174/1573406416999200818145115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 07/05/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND 1α,25-dihydroxy vitamin D3 (calcitriol) shows potent growth-inhibitory properties on different cancer cell lines, but its hypercalcemic effects have severely hampered its therapeutic application. Therefore, it is important to develop synthetic calcitriol analogues that retain or even increase its antitumoral effects and lack hypercalcemic activity. Based on previous evidence of the potent antitumor effects of the synthetic alkynylphosphonate EM1 analogue, we have now synthesized a derivative called SG. OBJECTIVE The aim of the present work is to evaluate the calcemic activity and the antitumor effect of SG, comparing these effects with those exerted by calcitriol and with those previously published for EM1. In addition, we propose to analyze by in silico studies, the chemical structure-biological function relationship of these molecules. METHODS We performed the synthesis of vinylphosphonate SG analogue; in vitro assays on different cancer cell lines; in vivo assays on mice; and in silico assays applying computational molecular modeling. RESULTS The SG compound lacks hypercalcemic activity, similar to the parent compound EM1. However, the antitumor activity was blunted, as no antiproliferative or anti-migratory effects were observed. By in silico assays, we demonstrated that SG analogue has a lower affinity for the VDRligand- binding domain than the EM1 compound due to lack of interaction with the important residues His305 and His397. CONCLUSION These results demonstrate that the chemical modification in the lateral side chain of the SG analogue affects the antitumoral activity observed previously for EM1 but does not affect the calcemic activity. These results contribute to the rational design and synthesis of novel calcitriol analogues.
Collapse
Affiliation(s)
- Silvina M Grioli
- Laboratorio de Quimica Organica, Instituto de Quimica del Sur (INQUISUR), Universidad Nacional del Sur (UNS), CONICET, Departamento de Quimica (UNS), Bahia Blanca, 8000, Argentina
| | - Eliana N Alonso
- Laboratorio de Biología del Cancer, Instituto de Investigaciones Bioquimicas de Bahia Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Departamento de Biologia, Bioquimica y Farmacia (UNS), Bahia Blanca, 8000, Argentina
| | - Evangelina Mascaró
- Laboratorio de Quimica Organica, Instituto de Quimica del Sur (INQUISUR), Universidad Nacional del Sur (UNS), CONICET, Departamento de Quimica (UNS), Bahia Blanca, 8000, Argentina
| | - Santiago A Stabile
- Laboratorio de Quimica Organica, Instituto de Quimica del Sur (INQUISUR), Universidad Nacional del Sur (UNS), CONICET, Departamento de Quimica (UNS), Bahia Blanca, 8000, Argentina
| | - María J Ferronato
- Laboratorio de Biología del Cancer, Instituto de Investigaciones Bioquimicas de Bahia Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Departamento de Biologia, Bioquimica y Farmacia (UNS), Bahia Blanca, 8000, Argentina
| | - Mario A Quevedo
- Unidad de Investigacion y Desarrollo en Tecnologia Farmaceutica (UNITEFA-CONICET), Facultad de Ciencias Quimicas, Ciudad Universitaria, Universidad Nacional de Cordoba, Cordoba, 5000, Argentina
| | - Gabriel Radivoy
- Laboratorio de Quimica Organica, Instituto de Quimica del Sur (INQUISUR), Universidad Nacional del Sur (UNS), CONICET, Departamento de Quimica (UNS), Bahia Blanca, 8000, Argentina
| | - María M Facchinetti
- Laboratorio de Biología del Cancer, Instituto de Investigaciones Bioquimicas de Bahia Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Departamento de Biologia, Bioquimica y Farmacia (UNS), Bahia Blanca, 8000, Argentina
| | - Cristian A Vitale
- Laboratorio de Quimica Organica, Instituto de Quimica del Sur (INQUISUR), Universidad Nacional del Sur (UNS), CONICET, Departamento de Quimica (UNS), Bahia Blanca, 8000, Argentina
| | - Alejandro C Curino
- Laboratorio de Biología del Cancer, Instituto de Investigaciones Bioquimicas de Bahia Blanca (INIBIBB), Universidad Nacional del Sur (UNS)-CONICET, Departamento de Biologia, Bioquimica y Farmacia (UNS), Bahia Blanca, 8000, Argentina
| |
Collapse
|
8
|
Vitamin D Signaling in Inflammation and Cancer: Molecular Mechanisms and Therapeutic Implications. Molecules 2020; 25:molecules25143219. [PMID: 32679655 PMCID: PMC7397283 DOI: 10.3390/molecules25143219] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Vitamin D and its active metabolites are important nutrients for human skeletal health. UV irradiation of skin converts 7-dehydrocholesterol into vitamin D3, which metabolized in the liver and kidneys into its active form, 1α,25-dihydroxyvitamin D3. Apart from its classical role in calcium and phosphate regulation, scientists have shown that the vitamin D receptor is expressed in almost all tissues of the body, hence it has numerous biological effects. These includes fetal and adult homeostatic functions in development and differentiation of metabolic, epidermal, endocrine, neurological and immunological systems of the body. Moreover, the expression of vitamin D receptor in the majority of immune cells and the ability of these cells to actively metabolize 25(OH)D3 into its active form 1,25(OH)2D3 reinforces the important role of vitamin D signaling in maintaining a healthy immune system. In addition, several studies have showed that vitamin D has important regulatory roles of mechanisms controlling proliferation, differentiation and growth. The administration of vitamin D analogues or the active metabolite of vitamin D activates apoptotic pathways, has antiproliferative effects and inhibits angiogenesis. This review aims to provide an up-to-date overview on the effects of vitamin D and its receptor (VDR) in regulating inflammation, different cell death modalities and cancer. It also aims to investigate the possible therapeutic benefits of vitamin D and its analogues as anticancer agents.
Collapse
|
9
|
Noh K, Yang QJ, Sekhon L, Quach HP, Chow ECY, Pang KS. Noteworthy idiosyncrasies of 1α,25-dihydroxyvitamin D 3 kinetics for extrapolation from mouse to man: Commentary. Biopharm Drug Dispos 2020; 41:126-148. [PMID: 32319119 DOI: 10.1002/bdd.2223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/30/2020] [Accepted: 03/06/2020] [Indexed: 12/17/2022]
Abstract
Calcitriol or 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ] is the active ligand of the vitamin D receptor (VDR) that plays a vital role in health and disease. Vitamin D is converted to the relatively inactive metabolite, 25-hydroxyvitamin D3 [25(OH)D3 ], by CYP27A1 and CYP2R1 in the liver, then to 1,25(OH)2 D3 by a specific, mitochondrial enzyme, CYP27B1 (1α-hydroxylase) that is present primarily in the kidney. The degradation of both metabolites is mostly carried out by the more ubiquitous mitochondrial enzyme, CYP24A1. Despite the fact that calcitriol inhibits its formation and degradation, allometric scaling revealed strong interspecies correlation of the net calcitriol clearance (CL estimated from dose/AUC∞ ), production rate (PR), and basal, plasma calcitriol concentration with body weight (BW). PBPK-PD (physiologically based pharmacokinetic-pharmacodynamic) modeling confirmed the dynamic interactions between calcitriol and Cyp27b1/Cyp24a1 on the decrease in the PR and increase in CL in mice. Close scrutiny of the literature revealed that basal levels of calcitriol had not been taken into consideration for estimating the correct AUC∞ and CL after exogenous calcitriol dosing in both animals and humans, leading to an overestimation of AUC∞ and underestimation of the plasma CL. In humans, CL was decreased in chronic kidney disease but increased in cancer. Collectively, careful pharmacokinetic data analysis and improved definition are achieved with PBPK-PD modeling, which embellishes the complexity of dose, enzyme regulation, and disease conditions. Allometric scaling and PBPK-PD modeling were applied successfully to extend the PBPK model to predict calcitriol kinetics in cancer patients.
Collapse
Affiliation(s)
- Keumhan Noh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Qi Joy Yang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Lavtej Sekhon
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Holly P Quach
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Edwin C Y Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| |
Collapse
|
10
|
Cheboub A, Regouat N, Djidjik R, Slimani A, Hadj-Bekkouche F. Short-term aromatase inhibition induces prostatic alterations in adult wistar rat: A biochemical, histopathological and immunohistochemical study. Acta Histochem 2019; 121:151441. [PMID: 31522738 DOI: 10.1016/j.acthis.2019.151441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 08/08/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE This study aimed to evaluate the effects of estrogen reduction on amyloid deposition, some lipid metabolism and oxidative stress markers, PSA-like production and p63 expression in the prostate of the adult rat. METHODS Aromatase inhibitor: Formestane (4-OHA), was administrated to male rats, at a dose of 0.1 mg/kg b.w./day, for 10 days. The control group (CONT) received the same volume of placebo injection (NaCl 0.9%). RESULTS 4-OHA treatment induced a significant accumulation of intraprostatic cholesterol (138.90 ± 17.64 vs 85.12 ± 2.87, p = 0.01); against an insignificant diminution of malondialdehyde (412.6 ± 54.35 vs 842.70 ± 336.50, p > 0.05) and glutathione (2.40 ± 0.23 vs 3.65 ± 0.88, p > 0.05). This was associated with a significant decrease of nitric oxide (31.76 ± 7.07 vs 179.40 ± 58.35, p = 0.024). Additionally, 4-OHA significantly increased the intraprostatic production of PSA-like (11.12 ± 2.78 vs 3.91 ± 0.43, p = 0.043). The prostatic histology revealed an amyloid deposition, in all prostatic lobes and a smooth muscle layer growth (p < 0.05); especially significant in the dorsal and lateral lobes. Theses lobes manifested a basal cells proliferation, with a 3-fold increase of p63 expression (p < 0.001). The ventral lobe presented epithelial atrophy (37.80 ± 16.20 vs 167.60 ± 5.16, p < 0.05); with occasional and significant proliferative foci (247.00 ± 9.573 vs 167.60 ± 5.16 p < 0.05). DISCUSSION AND CONCLUSION Aromatase inhibition, in the adult male rat, alters the prostatic function by reducing nitric oxide availability and inducing amyloid deposition along with limiting the differentiation of basal cells, through a lobe-specific p63-overexpression.
Collapse
Affiliation(s)
- Amina Cheboub
- Faculty of Biology Sciences, University of Sciences and Technology Houari Boumediene, Algeria.
| | - Nadia Regouat
- Faculty of Biology Sciences, University of Sciences and Technology Houari Boumediene, Algeria
| | - Reda Djidjik
- Immunology Service of Isaad Hassani-Beni Messous Hospital, Algiers, Algeria
| | - Assia Slimani
- Pathological Anatomy Service of Isaad Hassani-Beni Messous Hospital, Algiers, Algeria
| | - Fatima Hadj-Bekkouche
- Faculty of Biology Sciences, University of Sciences and Technology Houari Boumediene, Algeria
| |
Collapse
|
11
|
Abstract
Signaling through the vitamin D receptor has been shown to be biologically active and important in a number of preclinical studies in prostate and other cancers. Epidemiologic data also indicate that vitamin D signaling may be important in the cause and prognosis of prostate and other cancers. These data indicate that perturbation of vitamin D signaling may be a target for the prevention and treatment of prostate cancer. Large studies of vitamin D supplementation will be required to determine whether these observations can be translated into prevention strategies. This paper reviews the available data in the use of vitamin D compounds in the treatment of prostate cancer. Clinical data are limited which support the use of vitamin D compounds in the management of men with prostate cancer. However, clinical trials guided by existing preclinical data are limited.
Collapse
Affiliation(s)
- Donald L Trump
- Inova Schar Cancer Institute, Inova Health System, Fairfax, VA 22037, USA
| | | |
Collapse
|
12
|
Petrou S, Mamais I, Lavranos G, P Tzanetakou I, Chrysostomou S. Effect of Vitamin D Supplementation in Prostate Cancer: A Systematic Review of Randomized Control Trials. INT J VITAM NUTR RES 2019; 88:100-112. [PMID: 31038028 DOI: 10.1024/0300-9831/a000494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vitamin D is important in many cellular functions including cell cycling and proliferation, differentiation, and apoptosis. Via the induction of cell cycle arrest and/or apoptosis, vitamin D inhibits normal prostatic epithelial cells growth. Review the evidence of the effect of vitamin D supplementation on prostate cancer (PC) biomarkers and patient survival and assess optimal dosage, formulation and duration. Pubmed, Medline and Ebsco Host databases were systematically searched for relevant literature. 8 Randomized Controlled Trials were included in this review. All studies, besides one, were of high methodological quality. 4 studies used calcitriol (0,5-45 μg/weekly), 2 studies have used vitamin D3 (150-1000 μg/daily) and 2 other studies have used 1α-hydroxy Vitamin D2 (10 μg/ daily or weekly). Duration of supplementation varied between 28 days up to 18.3 months. Two studies had positive effects on prostate specific antigen (PSA) (p < .05), 1 study had a significant positive effect on median survival (p < .05) and 1 study showed a significant reduction of vitamin D receptor (VDR) expression (p < .05). The remaining studies showed negative or no effect on PC characteristics, clinical outcomes and/or survival. Current evidence suggests that vitamin D supplementation in conjunction with standard of care (e.g. chemotherapy, radiation therapy) may confer clinical benefits such as a decrease in serum PSA levels and VDR expression but further research is required to ascertain these results. Calcitriol supplementation in doses ranging from 250-1000 mg for 3-8 weeks or a lower dose of 45 mg for 18.3 months, appear most beneficial regarding outcomes of PC progression and survival.
Collapse
Affiliation(s)
- Spyros Petrou
- 1 Department of Life Sciences, European University Cyprus, Nicosia-Cyprus
| | - Ioannis Mamais
- 2 Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Greece
| | - Giagkos Lavranos
- 3 Department of Health Sciences, European University Cyprus, Nicosia-Cyprus
| | - Irene P Tzanetakou
- 1 Department of Life Sciences, European University Cyprus, Nicosia-Cyprus
| | | |
Collapse
|
13
|
Abstract
Prostate cancer is the second most frequent cancer diagnosis made in men and the fifth leading cause of death worldwide. Prostate cancer may be asymptomatic at the early stage and often has an indolent course that may require only active surveillance. Based on GLOBOCAN 2018 estimates, 1,276,106 new cases of prostate cancer were reported worldwide in 2018, with higher prevalence in the developed countries. Differences in the incidence rates worldwide reflect differences in the use of diagnostic testing. Prostate cancer incidence and mortality rates are strongly related to the age with the highest incidence being seen in elderly men (> 65 years of age). African-American men have the highest incidence rates and more aggressive type of prostate cancer compared to White men. There is no evidence yet on how to prevent prostate cancer; however, it is possible to lower the risk by limiting high-fat foods, increasing the intake of vegetables and fruits and performing more exercise. Screening is highly recommended at age 45 for men with familial history and African-American men. Up-to-date statistics on prostate cancer occurrence and outcomes along with a better understanding of the etiology and causative risk factors are essential for the primary prevention of this disease.
Collapse
Affiliation(s)
- Prashanth Rawla
- Hospitalist, Department of Internal Medicine, SOVAH Health, Martinsville, VA 24112, USA.
| |
Collapse
|
14
|
Trump DL. Calcitriol and cancer therapy: A missed opportunity. Bone Rep 2018; 9:110-119. [PMID: 30591928 PMCID: PMC6303233 DOI: 10.1016/j.bonr.2018.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/07/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022] Open
Abstract
The vitamin D receptor is expressed in most tissues of the body - and the cancers that arise from those tissues. The vitamin D signaling pathway is active in those tissues and cancers. This is at least consistent with the hypothesis that perturbing this signaling may have a favorable effect on the genesis and growth of cancers. Epidemiologic data indicate that vitamin D signaling may be important in the initiation and outcome of a number of types of cancer. Many studies have shown that calcitriol (1,25 dihydroxycholecalciferol) and other vitamin D compounds have antiproliferative, pro-apoptotic, anti-cell migration and antiangiogenic activity in a number of preclinical studies in many different cancer types. Unfortunately, the assessment of the activity of calcitriol or other vitamin D analogues in the treatment of cancer, as single agents or in combination with other anticancer agents has been stymied by the failure to adhere to commonly accepted principles of drug development and clinical trials conduct.
Collapse
Affiliation(s)
- Donald L Trump
- Inova Schar Cancer Institute, Inova Health System, Fairfax, VA 22037, United States of America
| |
Collapse
|
15
|
Ferronato MJ, Alonso EN, Salomón DG, Fermento ME, Gandini NA, Quevedo MA, Mascaró E, Vitale C, Fall Y, Facchinetti MM, Curino AC. Antitumoral effects of the alkynylphosphonate analogue of calcitriol EM1 on glioblastoma multiforme cells. J Steroid Biochem Mol Biol 2018; 178:22-35. [PMID: 29102624 DOI: 10.1016/j.jsbmb.2017.10.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/22/2017] [Accepted: 10/25/2017] [Indexed: 02/05/2023]
Abstract
Glioblastoma multiforme (GBM) is the worst and most common brain tumor, characterized by high proliferation and invasion rates. The current standard treatment is mainly based on chemoradiotherapy and this approach has slightly improved patient survival. Thus, novel strategies aimed at prolonging the survival and ensuring a better quality of life are necessary. In the present work, we investigated the antitumoral effect of the novel analogue of calcitriol EM1 on GBM cells employing in vitro, in silico, and in vivo assays. In vitro, we demonstrated that EM1 treatment selectively decreases the viability of murine and human tumor cells without affecting that of normal human astrocytes. The analysis of the mechanisms showed that EM1 produces cell cycle arrest in the T98G cell line, which is accompanied by an increase in p21, p27, p57 protein levels and a decrease in cyclin D1, p-Akt-S473, p-ERK1/2 and c-Jun expression. Moreover, EM1 treatment also exerts in GBM cells anti-migratory effects and decreases their invasive capacity by a reduction in MMP-9 proteolytic activity. In silico, we demonstrated that EM1 is able to bind to the vitamin D receptor with greater affinity than calcitriol. Finally, we showed that EM1 treatment of nude mice administered at 50ug/kg body weight during 21days neither induces hypercalcemia nor toxicity effects. In conclusion, all the results indicate the potential of EM1 analogue as a promising therapeutic alternative for GBM treatment.
Collapse
Affiliation(s)
- María Julia Ferronato
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS), CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Eliana Noelia Alonso
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS), CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Débora Gisele Salomón
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS), CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - María Eugenia Fermento
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS), CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Norberto Ariel Gandini
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS), CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Mario Alfredo Quevedo
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA-CONICET), Facultad de Ciencias Químicas, Ciudad Universitaria, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Evangelina Mascaró
- Laboratorio de Química Orgánica, Instituto de Química del Sur (INQUISUR), Universidad Nacional del Sur (UNS), CONICET, Departamento de Química (UNS), Bahía Blanca, Argentina
| | - Cristian Vitale
- Laboratorio de Química Orgánica, Instituto de Química del Sur (INQUISUR), Universidad Nacional del Sur (UNS), CONICET, Departamento de Química (UNS), Bahía Blanca, Argentina
| | - Yagamare Fall
- Departamento de Química Orgánica, Facultad de Química e Instituto de Investigación Biomédica (IBI), Universidad de Vigo, Campus Lagoas de Marcosende, 36310 Vigo, Spain
| | - María Marta Facchinetti
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS), CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina
| | - Alejandro Carlos Curino
- Laboratorio de Biología del Cáncer, Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Universidad Nacional del Sur (UNS), CONICET, Departamento de Biología, Bioquímica y Farmacia (UNS), Bahía Blanca, Argentina.
| |
Collapse
|
16
|
Abstract
The vitamin D receptor (VDR) binds the secosteroid hormone 1,25(OH)2D3 with high affinity and regulates gene programs that control a serum calcium levels, as well as cell proliferation and differentiation. A significant focus has been to exploit the VDR in cancer settings. Although preclinical studies have been strongly encouraging, to date clinical trials have delivered equivocal findings that have paused the clinical translation of these compounds. However, it is entirely possible that mining of genomic data will help to refine precisely what are the key anticancer actions of vitamin D compounds and where these can be used most effectively.
Collapse
Affiliation(s)
- Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, 536 Parks Hall, Columbus, OH 43210, USA.
| | - Donald L Trump
- Department of Medicine, Inova Schar Cancer Institute, Virginia Commonwealth University, 3221 Gallows Road, Fairfax, VA 22031, USA
| |
Collapse
|
17
|
DiFranco KM, Mulligan JK, Sumal AS, Diamond G. Induction of CFTR gene expression by 1,25(OH) 2 vitamin D 3, 25OH vitamin D 3, and vitamin D 3 in cultured human airway epithelial cells and in mouse airways. J Steroid Biochem Mol Biol 2017; 173:323-332. [PMID: 28130182 PMCID: PMC5785933 DOI: 10.1016/j.jsbmb.2017.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/18/2017] [Accepted: 01/20/2017] [Indexed: 01/08/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which often leads to protein misfolding and no CFTR surface localization. This then leads to chronic airway infections, inflammation, and tissue damage. Although vitamin D has been explored as a therapy to treat CF due to its antimicrobial-inducing and anti-inflammatory properties, the effect of 1,25-dihydroxyvitamin D3 (1α,25(OH)2D3) on CFTR directly has not been studied. We treated cultured healthy and diseased bronchial epithelial cells (BEC) with 10nM 1α,25(OH)2D3 for 6 and 24h and found that 1α,25(OH)2D3 increases both mRNA and protein CFTR levels using RT-qPCR, flow cytometry and fluorescence immunohistochemistry. Treatment of CF cells with 10nM 1α,25(OH)2D3 led to an increase in both total and surface CFTR expression, suggesting 1α,25(OH)2D3 could be used to increase properly localized CFTR in airway cells. To determine if BEC could convert the more clinically relevant cholecalciferol to 25OHD3, cultured non-CF and CF BECs were treated with a range of cholecalciferol concentrations, and 25OHD3 levels were quantified by ELISA. We found that 25OHD3 levels increased in a concentration-dependent manner. Treatment of BEC with 10μM cholecalciferol led to increases in both CYP24A1 and CFTR mRNA levels, even when added to the apical surface of cells grown in an air-liquid interface, suggesting that topical administration of vitamin D could be used therapeutically. To demonstrate this in vivo, we intranasally delivered 1μM 1α,25(OH)2D3 into mice. After 6h, we observed induction of both Cyp24A1 and CFTR expression in the tracheas of treated mice. The major findings of this study are that vitamin D can be converted to the active form when topically administered to the airway, and this could be used to increase CFTR levels in patients with CF. This could potentially be useful as an adjunctive therapy, together with newly developed CF treatments.
Collapse
Affiliation(s)
- Kristina M DiFranco
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States, United States
| | - Jennifer K Mulligan
- Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Aman S Sumal
- Department of Otolaryngology, Head and Neck Surgery, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Gill Diamond
- Department of Oral Biology, University of Florida, Gainesville, FL 32610, United States, United States.
| |
Collapse
|
18
|
Campbell MJ. Bioinformatic approaches to interrogating vitamin D receptor signaling. Mol Cell Endocrinol 2017; 453:3-13. [PMID: 28288905 DOI: 10.1016/j.mce.2017.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022]
Abstract
Bioinformatics applies unbiased approaches to develop statistically-robust insight into health and disease. At the global, or "20,000 foot" view bioinformatic analyses of vitamin D receptor (NR1I1/VDR) signaling can measure where the VDR gene or protein exerts a genome-wide significant impact on biology; VDR is significantly implicated in bone biology and immune systems, but not in cancer. With a more VDR-centric, or "2000 foot" view, bioinformatic approaches can interrogate events downstream of VDR activity. Integrative approaches can combine VDR ChIP-Seq in cell systems where significant volumes of publically available data are available. For example, VDR ChIP-Seq studies can be combined with genome-wide association studies to reveal significant associations to immune phenotypes. Similarly, VDR ChIP-Seq can be combined with data from Cancer Genome Atlas (TCGA) to infer the impact of VDR target genes in cancer progression. Therefore, bioinformatic approaches can reveal what aspects of VDR downstream networks are significantly related to disease or phenotype.
Collapse
Affiliation(s)
- Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, 536 Parks Hall, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
19
|
Luo W, Johnson CS, Trump DL. Vitamin D Signaling Modulators in Cancer Therapy. VITAMINS AND HORMONES 2016; 100:433-72. [PMID: 26827962 DOI: 10.1016/bs.vh.2015.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The antiproliferative and pro-apoptotic effects of 1α,25-dihydroxycholecalciferol (1,25(OH)2D3, 1,25D3, calcitriol) have been demonstrated in various tumor model systems in vitro and in vivo. However, limited antitumor effects of 1,25D3 have been observed in clinical trials. This may be attributed to a variety of factors including overexpression of the primary 1,25D3 degrading enzyme, CYP24A1, in tumors, which would lead to rapid local inactivation of 1,25D3. An alternative strategy for improving the antitumor activity of 1,25D3 involves the combination with a selective CYP24A1 inhibitor. The validity of this approach is supported by numerous preclinical investigations, which demonstrate that CYP24A1 inhibitors suppress 1,25D3 catabolism in tumor cells and increase the effects of 1,25D3 on gene expression and cell growth. Studies are now required to determine whether selective CYP24A1 inhibitors+1,25D3 can be used safely and effectively in patients. CYP24A1 inhibitors plus 1,25D3 can cause dose-limiting toxicity of vitamin D (hypercalcemia) in some patients. Dexamethasone significantly reduces 1,25D3-mediated hypercalcemia and enhances the antitumor activity of 1,25D3, increases VDR-ligand binding, and increases VDR protein expression. Efforts to dissect the mechanisms responsible for CYP24A1 overexpression and combinational effect of 1,25D3/dexamethasone in tumors are underway. Understanding the cross talk between vitamin D receptor (VDR) and glucocorticoid receptor (GR) signaling axes is of crucial importance to the design of new therapies that include 1,25D3 and dexamethasone. Insights gained from these studies are expected to yield novel strategies to improve the efficacy of 1,25D3 treatment.
Collapse
Affiliation(s)
- Wei Luo
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Candace S Johnson
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Donald L Trump
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York, USA; Inova Dwight and Martha Schar Cancer Institute, Falls Church, Virginia, USA.
| |
Collapse
|
20
|
Munetsuna E, Kittaka A, Chen TC, Sakaki T. Metabolism and Action of 25-Hydroxy-19-nor-Vitamin D3 in Human Prostate Cells. VITAMIN D HORMONE 2016; 100:357-77. [DOI: 10.1016/bs.vh.2015.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Vitamin D in cancer: effects of pharmaceutical drugs on the vitamin D pharmacokinetics. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2014. [DOI: 10.1007/s40005-014-0147-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
22
|
Medioni J, Deplanque G, Ferrero JM, Maurina T, Rodier JMP, Raymond E, Allyon J, Maruani G, Houillier P, Mackenzie S, Renaux S, Dufour-Lamartinie JF, Elaidi R, Lerest C, Oudard S. Phase I safety and pharmacodynamic of inecalcitol, a novel VDR agonist with docetaxel in metastatic castration-resistant prostate cancer patients. Clin Cancer Res 2014; 20:4471-7. [PMID: 25013124 DOI: 10.1158/1078-0432.ccr-13-3247] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We conducted a phase I multicenter trial in naïve metastatic castrate-resistant prostate cancer patients with escalating inecalcitol dosages, combined with docetaxel-based chemotherapy. Inecalcitol is a novel vitamin D receptor agonist with higher antiproliferative effects and a 100-fold lower hypercalcemic activity than calcitriol. EXPERIMENTAL DESIGN Safety and efficacy were evaluated in groups of three to six patients receiving inecalcitol during a 21-day cycle in combination with docetaxel (75 mg/m2 every 3 weeks) and oral prednisone (5 mg twice a day) up to six cycles. Primary endpoint was dose-limiting toxicity (DLT) defined as grade 3 hypercalcemia within the first cycle. Efficacy endpoint was ≥30% PSA decline within 3 months. RESULTS Eight dose levels (40-8,000 μg) were evaluated in 54 patients. DLT occurred in two of four patients receiving 8,000 μg/day after one and two weeks of inecalcitol. Calcemia normalized a few days after interruption of inecalcitol. Two other patients reached grade 2, and the dose level was reduced to 4,000 μg. After dose reduction, calcemia remained within normal range and grade 1 hypercalcemia. The maximum tolerated dose was 4,000 μg daily. Respectively, 85% and 76% of the patients had ≥30% PSA decline within 3 months and ≥50% PSA decline at any time during the study. Median time to PSA progression was 169 days. CONCLUSION High antiproliferative daily inecalcitol dose has been safely used in combination with docetaxel and shows encouraging PSA response (≥30% PSA response: 85%; ≥50% PSA response: 76%). A randomized phase II study is planned.
Collapse
Affiliation(s)
- Jacques Medioni
- Department of Medical Oncology, Georges Pompidou European Hospital, Paris, France. Paris Descartes University, Paris, France.
| | | | | | | | | | | | - Jorge Allyon
- Department of Medical Oncology, Georges Pompidou European Hospital, Paris, France
| | - Gerard Maruani
- Physiology Department, Georges Pompidou European Hospital, Paris, France. Inserm UMRS 845, Centre de Recherche, Université Paris-Descartes, Paris, France
| | - Pascal Houillier
- Paris Descartes University, Paris, France. Physiology Department, Georges Pompidou European Hospital, Paris, France
| | - Sarah Mackenzie
- Inserm UMRS 845, Centre de Recherche, Université Paris-Descartes, Paris, France
| | | | | | - Reza Elaidi
- ARTIC, Georges Pompidou European Hospital, Paris, France
| | - Celine Lerest
- ARTIC, Georges Pompidou European Hospital, Paris, France
| | - Stephane Oudard
- Department of Medical Oncology, Georges Pompidou European Hospital, Paris, France. Paris Descartes University, Paris, France
| |
Collapse
|
23
|
Wisinski KB, Ledesma WM, Kolesar J, Wilding G, Liu G, Douglas J, Traynor AM, Albertini M, Mulkerin D, Bailey HH. A phase I study to determine the maximum tolerated dose and safety of oral LR-103 (1α,24(S)Dihydroxyvitamin D2) in patients with advanced cancer. J Oncol Pharm Pract 2014; 21:416-24. [PMID: 24986793 DOI: 10.1177/1078155214541572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The objective of this study was to determine the maximum tolerated dose and safety of LR-103, a Vitamin D analogue, in patients with advanced cancer. METHODS In Step A, patients received oral LR-103 once daily in 14-day cycles with intra-patient dose escalation per accelerated dose escalation design. Dose limiting toxicity for Step A was defined as ≥grade 2 hypercalcemia and/or >grade 2 other toxicities. Starting dose was 5 µg/day. Step B used a 3+3 design starting at Step A maximum tolerated dose with 28-day cycles. Dose limiting toxicity was defined as ≥grade 3 hypercalcemia or any grade 3 or 4 non-hematologic toxicity, except hypercalciuria. RESULTS Twenty-one patients were enrolled; eight were treated in Step A. At dose level 3 (15 µg/day), two patients had dose limiting toxicity. One had grade 4 hyperuricemia. The other had grade 4 GGT plus grade 3 alkaline phosphatase, fatigue and urinary tract infection (UTI). Dose level 2 (10 µg/day) was the maximum tolerated dose for Step A and was starting dose for Step B. The dose was escalated to dose level 5 (30 µg/day) with a patient experiencing grade 3 dose limiting toxicity of hypercalcemia. The study was discontinued before reaching the maximum tolerated dose due to sponsor decision. Modest increases in serum osteocalcin and calcium and decrease in parathyroid hormone were noted. Best response was stable disease; four patients were on therapy for six months or longer. CONCLUSION Step A dose limiting toxicities limited accelerated dose escalation. The maximum tolerated dose of LR-103 was not reached prior to study termination and this agent is no longer being developed.
Collapse
Affiliation(s)
- Kari B Wisinski
- UW School of Medicine and Public Health, University of Wisconsin (UW) Carbone Cancer Center, Madison, WI, USA
| | - Wendy M Ledesma
- UW School of Medicine and Public Health, University of Wisconsin (UW) Carbone Cancer Center, Madison, WI, USA
| | - Jill Kolesar
- UW School of Medicine and Public Health, University of Wisconsin (UW) Carbone Cancer Center, Madison, WI, USA
| | - George Wilding
- UW School of Medicine and Public Health, University of Wisconsin (UW) Carbone Cancer Center, Madison, WI, USA
| | - Glenn Liu
- UW School of Medicine and Public Health, University of Wisconsin (UW) Carbone Cancer Center, Madison, WI, USA
| | - Jeffrey Douglas
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Anne M Traynor
- UW School of Medicine and Public Health, University of Wisconsin (UW) Carbone Cancer Center, Madison, WI, USA
| | | | - Daniel Mulkerin
- UW School of Medicine and Public Health, University of Wisconsin (UW) Carbone Cancer Center, Madison, WI, USA
| | - Howard H Bailey
- UW School of Medicine and Public Health, University of Wisconsin (UW) Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
24
|
Early growth inhibition is followed by increased metastatic disease with vitamin D (calcitriol) treatment in the TRAMP model of prostate cancer. PLoS One 2014; 9:e89555. [PMID: 24586868 PMCID: PMC3935875 DOI: 10.1371/journal.pone.0089555] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/21/2014] [Indexed: 12/27/2022] Open
Abstract
The active metabolite of vitamin D3, 1,25-dihydroxyvitamin D3 (calcitriol) has antiproliferative effects in non-aggressive prostate cancer, however, its effects in more aggressive model systems are still unclear. In these studies, effects of calcitriol and a less-calcemic vitamin D analog, QW-1624F2-2 (QW), were tested in vivo, using the aggressive autochthonous transgenic adenocarcinoma of mouse prostate (TRAMP) model. To study prevention of androgen-stimulated prostate cancer, vehicle, calcitriol (20 µg/kg), or QW (50 µg/kg) were administered to 4 week-old TRAMP mice intraperitoneal (i.p.) 3×/week on a MWF schedule for 14 weeks. Calcitriol and QW slowed progression of prostate cancer as indicated by reduced urogenital tract (p = 0.0022, calcitriol; p = 0.0009, QW) and prostate weights (p = 0.0178, calcitriol; p = 0.0086, QW). However, only calcitriol increased expression of the pro-differentiation marker, cadherin 1 (p = 0.0086), and reduced tumor proliferation (p = 0.0467). By contrast, neither vitamin D analog had any effect on castration resistant prostate cancer in mice treated pre- or post-castration. Interestingly, although vitamin D showed inhibitory activity against primary tumors in hormone-intact mice, distant organ metastases seemed to be enhanced following treatment (p = 0.0823). Therefore, TRAMP mice were treated long-term with calcitriol to further examine effects on metastasis. Calcitriol significantly increased the number of distant organ metastases when mice were treated from 4 weeks-of-age until development of palpable tumors (20–25 weeks-of-age)(p = 0.0003). Overall, data suggest that early intervention with vitamin D in TRAMP slowed androgen-stimulated tumor progression, but prolonged treatment resulted in development of a resistant and more aggressive disease associated with increased distant organ metastasis.
Collapse
|
25
|
Kawar N, Maclaughlan S, Horan TC, Uzun A, Lange TS, Kim KK, Hopson R, Singh AP, Sidhu PS, Glass KA, Shaw S, Padbury JF, Vorsa N, Arnold LA, Moore RG, Brard L, Singh RK. PT19c, Another Nonhypercalcemic Vitamin D2 Derivative, Demonstrates Antitumor Efficacy in Epithelial Ovarian and Endometrial Cancer Models. Genes Cancer 2014; 4:524-34. [PMID: 24386512 DOI: 10.1177/1947601913507575] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 09/12/2013] [Indexed: 01/05/2023] Open
Abstract
Hypercalcemia remains a major impediment to the clinical use of vitamin D in cancer treatment. Approaches to remove hypercalcemia and development of nonhypercalcemic agents can lead to the development of vitamin D-based therapies for treatment of various cancers. In this report, in vitro and in vivo anticancer efficacy, safety, and details of vitamin D receptor (VDR) interactions of PT19c, a novel nonhypercalcemic vitamin D derived anticancer agent, are described. PT19c was synthesized by bromoacetylation of PTAD-ergocalciferol adduct. Broader growth inhibitory potential of PT19c was evaluated in a panel of chemoresistant breast, renal, ovarian, lung, colon, leukemia, prostate, melanoma, and central nervous system cancers cell line types of NCI60 cell line panel. Interactions of PT19c with VDR were determined by a VDR transactivation assay in a VDR overexpressing VDR-UAS-bla-HEK293 cells, in vitro VDR-coregulator binding, and molecular docking with VDR-ligand binding domain (VDR-LBD) in comparison with calcitriol. Acute toxicity of PT19c was determined in nontumored mice. In vivo antitumor efficacy of PT19c was determined via ovarian and endometrial cancer xenograft experiments. Effect of PT19c on actin filament organization and focal adhesion formation was examined by microscopy. PT19c treatment inhibited growth of chemoresistant NCI60 cell lines (log10GI50 ~ -4.05 to -6.73). PT19c (10 mg/kg, 35 days) reduced growth of ovarian and endometrial xenograft tumor without hypercalcemia. PT19c exerted no acute toxicity up to 400 mg/kg (QDx1) in animals. PT19c showed weak VDR antagonism, lack of VDR binding, and inverted spatial accommodation in VDR-LBD. PT19c caused actin filament dysfunction and inhibited focal adhesion in SKOV-3 cells. PT19c is a VDR independent nonhypercalcemic vitamin D-derived agent that showed noteworthy safety and efficacy in ovarian and endometrial cancer animal models and inhibited actin organization and focal adhesion in ovarian cancer cells.
Collapse
Affiliation(s)
- Nada Kawar
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Department of Obstetrics and Gynecology, Women and Infants' Hospital, Brown University, Providence, RI, USA
| | | | - Timothy C Horan
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Department of Obstetrics and Gynecology, Women and Infants' Hospital, Brown University, Providence, RI, USA
| | - Alper Uzun
- Department of Pediatrics, Women and Infants' Hospital, Brown University, Providence, RI, USA
| | - Thilo S Lange
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Department of Obstetrics and Gynecology, Women and Infants' Hospital, Brown University, Providence, RI, USA
| | - Kyu K Kim
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Department of Obstetrics and Gynecology, Women and Infants' Hospital, Brown University, Providence, RI, USA
| | - Russell Hopson
- Department of Chemistry, Brown University, Providence, RI, USA
| | - Ajay P Singh
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| | - Preetpal S Sidhu
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, USA
| | - Kyle A Glass
- Department of Pediatrics, Women and Infants' Hospital, Brown University, Providence, RI, USA
| | - Sunil Shaw
- Department of Pediatrics, Women and Infants' Hospital, Brown University, Providence, RI, USA
| | - James F Padbury
- Department of Pediatrics, Women and Infants' Hospital, Brown University, Providence, RI, USA
| | - Nicholi Vorsa
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ, USA
| | - Leggy A Arnold
- Department of Chemistry and Biochemistry, University of Wisconsin, Milwaukee, WI, USA
| | - Richard G Moore
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Department of Obstetrics and Gynecology, Women and Infants' Hospital, Brown University, Providence, RI, USA
| | - Laurent Brard
- Department of Obstetrics and Gynecology, School of Medicine, Southern Illinois University, Springfield, IL, USA
| | - Rakesh K Singh
- Molecular Therapeutics Laboratory, Program in Women's Oncology, Department of Obstetrics and Gynecology, Women and Infants' Hospital, Brown University, Providence, RI, USA
| |
Collapse
|
26
|
Wang Z, Fan J, Liu M, Yeung S, Chang A, Chow MSS, Pon D, Huang Y. Nutraceuticals for prostate cancer chemoprevention: from molecular mechanisms to clinical application. Expert Opin Investig Drugs 2013; 22:1613-26. [DOI: 10.1517/13543784.2013.833183] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Yasuda K, Ikushiro S, Kamakura M, Takano M, Saito N, Kittaka A, Chen TC, Ohta M, Sakaki T. Human cytochrome P450-dependent differential metabolism among three 2α-substituted-1α,25-dihydroxyvitamin D(3) analogs. J Steroid Biochem Mol Biol 2013; 133:84-92. [PMID: 22982757 DOI: 10.1016/j.jsbmb.2012.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 11/27/2022]
Abstract
Our previous studies revealed that C2α-substituted-1α,25(OH)(2)D(3) analogs had unique biological activities. For example, 19-nor-2α-(3-hydroxypropyl)-1α,25(OH)(2)D(3) (MART-10), which has a high affinity for vitamin D receptor (VDR), is more bioavailable and more potent than 1α,25(OH)(2)D(3) in inhibiting cancer cell growth and invasion because of its weaker binding to vitamin D binding protein (DBP), and more resistance to CYP24A1-dependent metabolism. In this study, we examined the metabolism of MART-10 and two other 2α-substituted analogs, 2α-(3-hydroxypropoxy)-1α,25(OH)(2)D(3) (O2C3) and 2α-(3-hydroxypropyl)-1α,25(OH)(2)D(3) (O1C3) by using human liver microsomes and human P450s. We demonstrated that O2C3 was converted to 1α,2α,25(OH)(3)D(3) in human liver microsomes, whereas both O1C3 and MART-10 were hardly metabolized. The metabolism of O2C3 was significantly inhibited by ketoconazole, and the recombinant human CYP3A4 converted O2C3 to 1α,2α,25(OH)(3)D(3), which suggests that CYP3A4 is responsible for the metabolism of O2C3 in human liver. The k(cat)/K(m) values of CYP3A4 for O1C3 and MART-10 are much smaller than that for O2C3. The k(cat)/K(m) values of human CYP24A1 for the three analogs are 1% (MART-10), 3% (O2C3), and 4% (O1C3) of that for 1α,25(OH)(2)D(3), indicating that MART-10 is the most resistant to CYP24A1 hydroxylation. On the other hand, 1α,2α,25(OH)(3)D(3), the metabolite of O2C3 by CYP3A4, was metabolized by CYP24A1 via multiple pathways similar to 1α,25(OH)(2)D(3), which suggests that O2C3 can be metabolized by two sequential hydroxylations, first by CYP3A4 and then by CYP24A1 in human body. These results suggest that modification at C-2α position and C-19 demethylenation markedly change metabolic profiles and biological activities of vitamin D analogs.
Collapse
Affiliation(s)
- Kaori Yasuda
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Clark AS, DeMichele A. Vitamin D and breast cancer: evidence for biological and clinical significance. BREAST CANCER MANAGEMENT 2012. [DOI: 10.2217/bmt.12.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Both vitamin D deficiency and breast cancer are common. Laboratory evidence strongly suggests a biological role for vitamin D in normal breast cellular maintenance. Clinically, however, definitive associations between vitamin D and breast cancer risk and outcome have been challenging to decipher. A myriad of epidemiological studies have attempted to connect vitamin D with breast cancer risk, stage at diagnosis and outcome, but results vary. Here, we will closely examine the biologic evidence that supports an association between vitamin D and breast cancer and summarize the epidemiologic and clinical studies in this area. We will discuss ongoing trials and additional research questions that should be addressed in future studies.
Collapse
Affiliation(s)
- Amy S Clark
- Abramson Cancer Center, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
- Department of Medicine, Division of Hematology/Oncology, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Angela DeMichele
- Center for Clinical Epidemiology & Biostatistics, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Abstract
Vitamin D system is a complex pathway that includes precursors, active metabolites, enzymes, and receptors. This complex system actives several molecular pathways and mediates a multitude of functions. In addition to the classical role in calcium and bone homeostasis, vitamin D plays "non-calcemic" effects in host defense, inflammation, immunity, and cancer processes as recognized in vitro and in vivo studies. The aim of this review is to highlight the relationship between vitamin D and cancer, summarizing several mechanisms proposed to explain the potential protective effect of vitamin D against the development and progression of cancer. Vitamin D acts like a transcription factor that influences central mechanisms of tumorigenesis: growth, cell differentiation, and apoptosis. In addition to cellular and molecular studies, epidemiological surveys have shown that sunlight exposure and consequent increased circulating levels of vitamin D are associated with reduced reduced occurrence and a reduced mortality in different histological types of cancer. Another recent field of interest concerns polymorphisms of vitamin D receptor (VDR); in this context, preliminary data suggest that VDR polymorphisms more frequently associated with tumorigenesis are Fok1, Bsm1, Taq1, Apa1, EcoRV, Cdx2; although further studies are needed to clarify their role in the cancer. In this review, the relationship between vitamin D and cancer is discussed.
Collapse
Affiliation(s)
- Laura Vuolo
- Department of Molecular and Clinical Endocrinology and Oncology, "Federico II" University of Naples Naples, Italy.
| | | | | | | |
Collapse
|
30
|
Krishnan AV, Trump DL, Johnson CS, Feldman D. The role of vitamin D in cancer prevention and treatment. Rheum Dis Clin North Am 2012; 38:161-78. [PMID: 22525850 PMCID: PMC5731474 DOI: 10.1016/j.rdc.2012.03.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Considerable data described in the first part of this review suggest that there is a role for vitamin D in cancer therapy and prevention. Although the preclinical data are persuasive and the epidemiologic data intriguing, no well-designed clinical trial of optimal administration of vitamin D as a cancer therapy has ever been conducted. Had there been the opportunity and insight to develop calcitriol as any other cancer drug, the following studies would have been completed: 1. Definition of the MTD. 2. Definition of a phase II dose, as a single agent and in combination with cytotoxic agents. 3. Studies to define a biologically optimal dose. 4. Phase II (probably randomized phase II) studies of calcitriol alone and chemotherapy ± calcitriol. 5. Then, randomized phase III trials would be conducted and designed such that the only variable was the administration of calcitriol. Prerequisites 1 to 5 have not been completed for calcitriol. Preclinical data provide considerable rationale for continued development of vitamin D analogue-based cancer therapies. However, design of future studies should be informed by good clinical trials design principles and the mistakes of the past not repeated. Such studies may finally provide compelling data to prove whether or not there is a role for vitamin D analogues in cancer therapy.
Collapse
Affiliation(s)
- Aruna V. Krishnan
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Room S-025, Stanford, CA 94305-5103, USA
| | - Donald L. Trump
- Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Candace S. Johnson
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - David Feldman
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Room S-025, Stanford, CA 94305-5103, USA
| |
Collapse
|
31
|
Chen TC, Kittaka A. Novel vitamin d analogs for prostate cancer therapy. ISRN UROLOGY 2011; 2011:301490. [PMID: 22084796 PMCID: PMC3195751 DOI: 10.5402/2011/301490] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 06/03/2011] [Indexed: 12/14/2022]
Abstract
Prostate cells contain specific receptors for 1α,25-dihydroxyvitamin D [1α,25(OH)2D] or calcitriol, the active form of vitamin D. 1α,25(OH)2D is known to inhibit the proliferation and invasiveness of prostate cancer cells. These findings support the use of 1α,25(OH)2D for prostate cancer therapy. However, 1α,25(OH)2D can cause hypercalcemia, analogs of 1α,25(OH)2D that are less calcemic but exhibit potent antiproliferative activity would be attractive as therapeutic agents. To accomplish these goals, different strategies, based on metabolism, molecular mechanism of actions, and structural modeling, have been taken to modify the structure of vitamin D molecule with the aims to improve the efficacy and decrease the toxicity of vitamin D to treat different diseases. During the past four decades, over 3,000 analogs have been synthesized. In this paper, we discuss the development and the biological analysis of a unique class of vitamin D analogs with a substitution at the carbon 2 of 19-nor-1α,25(OH)2D3 molecule for potential application to the prevention and treatment of prostate cancer as well as other cancers.
Collapse
Affiliation(s)
- Tai C Chen
- Boston University School of Medicine, Room M-1022, 715 Albany Street, Boston, MA 02118, USA
| | | |
Collapse
|
32
|
Abstract
There are substantial preclinical and epidemiologic data that suggest that vitamin D plays a role in the prevention and treatment of cancer. Numerous observational studies have shown that low blood levels of 25(OH) vitamin D (cholecalciferol), estimated by geographical location, diet and activity assessment or measured serum levels are associated with a higher risk of cancer and worse cancer-specific survival as well as numerous morbidities to e.g. cardiovascular disease, stroke, infection, autoimmune disease, and neuromuscular dysfunction among large populations. A considerable number of in vitro and in vivo studies indicate that the most active metabolite of vitamin D--1,25-dihydroxycholecalciferol or calcitriol--has anti-proliferative, pro-apoptotic, pro-differentiating, and anti-angiogenic properties. Combined treatment of calcitriol and many types of cytotoxic agents has synergistic or at least additive effects. However, clinical trials testing these hypotheses have been less encouraging, though a number of methodological, pharmacological, and pharmaceutical issues confound all trials ever conducted. In order to properly assess the clinical value of vitamin D, its metabolites and analogs in cancer prevention and treatment, more studies are needed.
Collapse
Affiliation(s)
- Anna Woloszynska-Read
- Department of Cancer Prevention and Population Sciences, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Candace S. Johnson
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Donald L. Trump
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Corresponding author: (D.L. Trump)
| |
Collapse
|
33
|
Hartmann B, Heine G, Babina M, Steinmeyer A, Zügel U, Radbruch A, Worm M. Targeting the vitamin D receptor inhibits the B cell-dependent allergic immune response. Allergy 2011; 66:540-8. [PMID: 21121929 DOI: 10.1111/j.1398-9995.2010.02513.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND 1α,25-dihydroxyvitamin D(3) (calcitriol), the biologically active form of vitamin D, is an immunomodulatory hormone, e.g. it inhibits IgE synthesis in B cells. As its clinical application is limited by hypercalcemia, synthetic vitamin D receptor (VDR) agonists that mediate immunomodulatory activities without adverse hypercalcemic effects are of great interest. This study aimed to investigate the impact of a low-calcemic VDR agonist on the IgE immune response in vitro and in vivo. METHODS Human peripheral B cells were cultured under IgE inducing conditions in the presence of VDR ligands. B cells were analyzed by quantitative RT-PCR, enzyme-linked immunosorbent assays, enzyme-linked immunospot technique, and flow cytometry. BALB/c mice were sensitized with ovalbumin (OVA)/alum followed by the therapeutic VDR agonist treatment and analyzed regarding the humoral immunoglobulin profile. RESULTS The natural VDR ligand calcitriol, but also a low-calcemic VDR agonist, profoundly suppressed IgE production by human peripheral B cells by 63.9 ± 5.9%. The potential mechanisms involved are the reduction of the transcript for activation-induced deaminase (AID) and the reduction of IgE immunoglobulin-secreting cells by 68.1 ± 12.7%. By using an in vivo approach, we finally demonstrate that the humoral IgE response in a type I allergy mouse model was impaired by the VDR agonist. CONCLUSION Our results show that targeting the VDR modulates the humoral immune response including IgE. Whether it might be useful for clinical applications has to be determined in appropriate clinical trials.
Collapse
Affiliation(s)
- B Hartmann
- Allergie-Centrum-Charité, CCM, Klinik für Dermatologie und Allergologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The discovery of the vitamin D endocrine system and a receptor for the hormonal form, 1α,25-dihydroxyvitamin D(3), has brought a new understanding of the relationship between vitamin D and metabolic bone diseases, and has also established the functions of vitamin D beyond the skeleton. This has ushered in many investigations into the possible roles of vitamin D in autoimmune diseases, cardiovascular disorders, infectious diseases, cancers and granuloma-forming diseases. This article presents an evaluation of the possible roles of vitamin D in these diseases. The potential of vitamin D-based therapies in treating diseases for which the evidence is most compelling is also discussed.
Collapse
Affiliation(s)
- Lori A Plum
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706-1544, USA
| | | |
Collapse
|
35
|
Wang X, Gocek E, Novik V, Harrison JS, Danilenko M, Studzinski GP. Inhibition of Cot1/Tlp2 oncogene in AML cells reduces ERK5 activation and up-regulates p27Kip1 concomitant with enhancement of differentiation and cell cycle arrest induced by silibinin and 1,25-dihydroxyvitamin D(3). Cell Cycle 2010; 9:4542-51. [PMID: 21084834 DOI: 10.4161/cc.9.22.13790] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute myelogenous leukemia (AML) is a disease characterized by dysregulated cell proliferation associated with impaired cell differentiation, and current treatment regimens rarely save the patient. Thus, new mechanism-based approaches are needed to improve prognosis of this disease. We have investigated in preclinical studies the potential anti-leukemia use of the plant-derived polyphenol Silibinin (SIL) in combination with 1,25-dihydroxyvitamin D3 (1,25D). Although most of the leukemic blasts ex vivo responded by differentiation to treatment with this combination, the reasons for the absence of SIL-1,25D synergy in some cases were unclear. Here we report that failure of SIL to enhance the action of 1,25D is likely due to the SIL-induced increase in the activity of differentiation-antagonizing cell components, such as ERK5. This kinase is under the control of Cot1/Tlp2, and inhibition of Cot1 activity by a specific pharmacological inhibitor 4-(3-chloro-4-fluorophenylamino)-6-(pyridin-3-yl-methylamino-3-cyano-[1-7]-naphthyridine, or by Cot1 siRNA, increases the differentiation by SIL/1,25D combinations. Conversely, over-expression of a Cot1 construct increases the cellular levels of P-ERK5, and SIL/1,25D-induced differentiation and cell cycle arrest are diminished. It appears that reduction in ERK5 activity by inhibition of Cot1 allows SIL to augment the expression of 1,25D-induced differentiation promoting factors and cell cycle regulators such as p27 (Kip1) , which leads to cell cycle arrest. This study shows that in some cell contexts SIL/1,25D can promote expression of both differentiation-promoting and differentiation-inhibiting genes, and that the latter can be neutralized by a highly specific pharmacological inhibitor, suggesting a potential for supplementing treatment of AML with this combination of agents.
Collapse
Affiliation(s)
- Xuening Wang
- Department of Pathology and Laboratory Medicine, New Jersey Medical School, University of Medicine and Dentistry New Jersey, Newark, USA
| | | | | | | | | | | |
Collapse
|
36
|
Nieves NJ, Ahrens JM, Plum LA, DeLuca HF, Clagett-Dame M. Identification of a unique subset of 2-methylene-19-nor analogs of vitamin D with comedolytic activity in the rhino mouse. J Invest Dermatol 2010; 130:2359-67. [PMID: 20535127 DOI: 10.1038/jid.2010.142] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The active metabolite of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), and a series of 2-methylene-19-nor analogs of 1,25(OH)(2)D(3) were evaluated for their ability to reduce the size of utricles (comedolytic activity) in a rhino mouse model of acne. All analogs tested, as well as the native hormone, increased the skin epidermal thickness. In contrast, only a subset of analogs that lacked a full side chain and 25-hydroxyl group were found to possess comedolytic activity. A reduction in comedone area could be achieved without adversely affecting serum calcium levels. Although all compounds that contained a side chain ranging from 2 to 5 carbons in length had similar potency as comedolytic agents, increasing the length of the side chain resulted in a progressive increase in calcemic liability. Dose-response studies of the comedolytic analogs showed that an increase in epidermal thickness was achieved at a lower dose than that needed to induce comedolysis. Thus, we have identified a unique subset of vitamin D analogs that produce comedolysis in the absence of hypercalcemia. Further, the activity of vitamin D analogs in causing epidermal hyperproliferation has been distinguished from that resulting in a reduction in utricle size.
Collapse
Affiliation(s)
- Nirca J Nieves
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
37
|
Krishnan AV, Trump DL, Johnson CS, Feldman D. The role of vitamin D in cancer prevention and treatment. Endocrinol Metab Clin North Am 2010; 39:401-18, table of contents. [PMID: 20511060 PMCID: PMC5788175 DOI: 10.1016/j.ecl.2010.02.011] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Calcitriol (1,25-dihydroxyvitamin D(3)), the hormonally active form of vitamin D, exerts growth inhibitory and prodifferentiating effects on many malignant cells and retards tumor growth in animal models. Calcitriol is being evaluated as an anticancer agent in several human cancers. The mechanisms underlying the anticancer effects of calcitriol include inhibition of cell proliferation, stimulation of apoptosis, suppression of inflammation, and inhibition of tumor angiogenesis, invasion, and metastasis. This review discusses some of the molecular pathways mediating these anticancer actions of calcitriol and the preclinical data in cell culture and animal models. The clinical trials evaluating the use of calcitriol and its analogues in the treatment of patients with cancer are described. The reasons for the lack of impressive beneficial effects in clinical trials compared with the substantial efficacy seen in preclinical models are discussed.
Collapse
Affiliation(s)
- Aruna V. Krishnan
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Room S-025, Stanford, CA 94305-5103, USA
| | - Donald L. Trump
- Department of Medicine, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Candace S. Johnson
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - David Feldman
- Department of Medicine, Division of Endocrinology, Stanford University School of Medicine, 300 Pasteur Drive, Room S-025, Stanford, CA 94305-5103, USA
- Corresponding author.
| |
Collapse
|
38
|
Chadha MK, Tian L, Mashtare T, Payne V, Silliman C, Levine E, Wong M, Johnson C, Trump DL. Phase 2 trial of weekly intravenous 1,25 dihydroxy cholecalciferol (calcitriol) in combination with dexamethasone for castration-resistant prostate cancer. Cancer 2010; 116:2132-9. [PMID: 20166215 DOI: 10.1002/cncr.24973] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Preclinical data indicate that there is substantial antitumor activity and synergy between calcitriol and dexamethasone. On the basis of these data, the authors conducted a phase 2 trial of intravenous (iv) calcitriol at a dose of 74 microg weekly (based on a recent phase 1 trial) and dexamethasone in patients with castration-resistant prostate cancer (CRPC). METHODS A 2-stage Kepner-Chang design was used. Oral dexamethasone at a dose of 4 mg was given weekly on Days 1 and 2, and iv calcitriol (74 microg over 1 hour) was administered weekly on Day 2 from 4 to 8 hours after the dexamethasone dose in patients with CRPC. Laboratory data were monitored weekly, and renal sonograms, computed tomography scans, and bone scans were obtained every 3 months. Disease response was assessed by using the Response Evaluation Criteria in Solid Tumors (RECIST) and standard criteria for prostate-specific antigen (PSA) response. The calcitriol dose was delineated by from the authors' recent phase 1 trial. RESULTS Of 18 evaluable patients, 15 patients were Caucasian (83%). No patients had a complete or partial response by either RECIST or PSA response criteria. Fourteen patients had progressive disease, 2 patients refused to continue treatment (after 64 days and 266 days), and 2 patients remain on the trial (for 306 days and 412 days).The median time to disease progression was 106 days (95% confidence interval, 80-182 days). Fourteen episodes of grade 3 or 4 toxicity were noted in 7 patients (hyperglycemia, hypocalemia, chest pain, dyspnea, hypercalcemia, hypophosphatemia, cardiac arrhythmia, and pain). Only 1 episode of grade 3/ 4 toxicity was related definitely to calcitriol (hypercalcemia). No treatment-related deaths were noted. CONCLUSIONS High-dose, iv calcitriol at a dose of 74 microg weekly in combination with dexamethasone was well tolerated but failed to produce a clinical or PSA response in men with CRPC.
Collapse
Affiliation(s)
- Manpreet K Chadha
- Department of Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Trump DL, Deeb KK, Johnson CS. Vitamin D: considerations in the continued development as an agent for cancer prevention and therapy. Cancer J 2010; 16:1-9. [PMID: 20164683 PMCID: PMC2857702 DOI: 10.1097/ppo.0b013e3181c51ee6] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Considerable preclinical and epidemiologic data suggest that vitamin D may play a role in the pathogenesis, progression, and therapy for cancer. Numerous epidemiologic studies support the hypothesis that individuals with lower serum vitamin D levels have a higher risk of a number of cancers. Measures of vitamin D level in such studies include both surrogate estimates of vitamin D level (residence in more northern latitudes, history of activity, and sun exposure) as well as measured serum 25(OH) cholecalciferol levels. Perhaps, the most robust of these epidemiologic studies is that of Giovannucci et al, who developed and validated an estimate of serum 25(OH) cholecalciferol level and reported that among >40,000 individuals in the Health Professionals Study, an increase in 25(OH) cholecalciferol level of 62.5 ng/mL was associated with a reduction in the risk of head/neck, esophagus, pancreas cancers, and acute leukemia by >50%. Unfortunately, very limited data are available to indicate whether or not giving vitamin D supplements reduces the risk of cancer. Many preclinical studies indicate that exposing cancer cells, as well as vascular endothelial cells derived from tumors, to high concentrations of active metabolites of vitamin D halts progression through cell cycle, induces apoptosis and will slow or stop the growth of tumors in vivo. There are no data that one type of cancer is more or less susceptible to the effects of vitamin D. Vitamin D also potentiates the antitumor activity of a number of types of cytotoxic anticancer agents in in vivo preclinical models. Vitamin D analogues initiate signaling through a number of important pathways, but the pathway(s) essential to the antitumor activities of vitamin D are unclear. Clinical studies of vitamin D as an antitumor agent have been hampered by the lack of a suitable pharmaceutical preparation for clinical study. All commercially available formulations are inadequate because of the necessity to administer large numbers of caplets and the poor "bioavailability" of calcitriol (the most carefully studied analogue) at these high doses. Preclinical data suggest that high exposures to calcitriol are necessary for the antitumor effects. Clinical data do indicate that high doses of calcitriol (>100 mcg weekly, intravenously, and 0.15 microg /kg weekly, orally) can be given safely. The maximum tolerated dose of calcitriol is unclear. While a 250-patient trial in men with castration-resistant prostate cancer comparing docetaxel (36 mg/sqm weekly) +/- calcitriol 0.15 microg/kg indicated that calcitriol was very safe may have reduced to death rate, an adequately powered (1000 patients) randomized study of weekly docetaxel + calcitriol versus q3 week docetaxel was negative. The limitations of this trial were the unequal chemotherapy arms compared in this study and the failure to use an optimal biologic dose or maximum-tolerated dose of calcitriol. In view of the substantial preclinical and epidemiologic data supporting the potential role of vitamin D in cancer, careful studies to evaluate the impact of vitamin D replacement on the frequency of cancer and the impact of an appropriate dose and schedule of calcitriol or other active vitamin D analogue on the treatment of established cancer are indicated.
Collapse
Affiliation(s)
- Donald L Trump
- Department of Medicine, The Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| | | | | |
Collapse
|
40
|
Brown WM. Vitamin D, vitamin D analogs (deltanoids) and prostate cancer. Expert Rev Clin Pharmacol 2008; 1:803-13. [PMID: 24410609 DOI: 10.1586/17512433.1.6.803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
'Vitamin D' is a generic term for a family of secosteroids, members of which bind to the vitamin D receptor. Calcitriol, the active form of vitamin D, has antiproliferative effects on many tumor cells. However, clinical use of calcitriol in cancer prevention or therapy is limited because it induces hypercalcemia at the necessary supraphysiological doses. The anti-tumor effects of vitamin D analogs (deltanoids) have been researched extensively; more than 3000 deltanoids have now been described. Prostate cancer is more common in northern geographic regions; mortality decreases with exposure to sunlight. As UV light is necessary for vitamin D synthesis in the skin, it has long been dogma that vitamin D is involved. This review concerns deltanoids that have been assessed for use in treating or preventing prostate cancer.
Collapse
Affiliation(s)
- William M Brown
- VaxDesign Corp., 12612 Challenger Parkway, Suite 365, Orlando, FL 32826, USA.
| |
Collapse
|
41
|
Affiliation(s)
- Eric Yarnell
- President of the Botanical Medicine Academy, a specialty board for using medicinal herbs, and is a faculty member at Bastyr University in Kenmore, Washington
| | - Kathy Abascal
- Executive director of the Botanical Medicine Academy in Vashon, Washington
| |
Collapse
|
42
|
Schwartz GG. Vitamin D and intervention trials in prostate cancer: from theory to therapy. Ann Epidemiol 2008; 19:96-102. [PMID: 18619854 DOI: 10.1016/j.annepidem.2008.03.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 01/28/2008] [Accepted: 03/17/2008] [Indexed: 01/08/2023]
Abstract
Studies of vitamin D and prostate cancer have advanced rapidly from the hypothesis that vitamin D deficiency increases the risk of prostate cancer to intervention trials of vitamin D administration in clinical cancer. The hormonal form of vitamin D, 1,25(OH)(2)D, exerts prodifferentiating, antiproliferative, anti-invasive, and antimetastatic effects on prostate cells. Moreover, normal prostate cells synthesize 1,25(OH)(2)D from serum levels of the prohormone, 25-hydroxyvitamin D. The autocrine synthesis of 1,25(OH)(2)D by prostatic cells provides a biochemical mechanism whereby vitamin D may prevent prostate cancer. Many prostate cancer cells have lost the ability to synthesize 1,25(OH)(2)D but still possess 1,25(OH)(2)D receptors. This suggests that whereas vitamin D (e.g., cholecalciferol) might prevent prostate cancer, existing prostate tumors likely would require treatment with 1,25(OH)(2)D and/or its analogs. The major obstacle to the use of 1,25(OH)(2)D in patients therapeutically is the risk of hypercalcemia. Several maneuvers to reduce this risk, including pulse dosing and the use of less calcemic 1,25(OH)(2)D analogs, have been explored in Phase I-III clinical trials. Once merely a promise, vitamin D-based therapies for prostate cancer may soon be medical practice.
Collapse
Affiliation(s)
- Gary G Schwartz
- Departments of Cancer Biology and Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
43
|
Brown AJ, Slatopolsky E. Vitamin D analogs: therapeutic applications and mechanisms for selectivity. Mol Aspects Med 2008; 29:433-52. [PMID: 18554710 DOI: 10.1016/j.mam.2008.04.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 04/22/2008] [Indexed: 12/17/2022]
Abstract
The vitamin D endocrine system plays a central role in mineral ion homeostasis through the actions of the vitamin D hormone, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], on the intestine, bone, parathyroid gland, and kidney. The main function of 1,25(OH)(2)D(3) is to promote the dietary absorption of calcium and phosphate, but effects on bone, kidney and the parathyroids fine-tune the mineral levels. In addition to these classical actions, 1,25(OH)(2)D(3) exerts pleiotropic effects in a wide variety of target tissues and cell types, often in an autocrine/paracrine fashion. These biological activities of 1,25(OH)(2)D(3) have suggested a multitude of potential therapeutic applications of the vitamin D hormone for the treatment of hyperproliferative disorders (e.g. cancer and psoriasis), immune dysfunction (autoimmune diseases), and endocrine disorders (e.g. hyperparathyroidism). Unfortunately, the effective therapeutic doses required to treat these disorders can produce substantial hypercalcemia. This limitation of 1,25(OH)(2)D(3) therapy has spurred the development of vitamin D analogs that retain the therapeutically important properties of 1,25(OH)(2)D(3), but with reduced calcemic activity. Analogs with improved therapeutic indices are now available for treatment of psoriasis and secondary hyperparathyroidism in chronic kidney disease, and research on newer analogs for these indications continues. Other analogs are under development and in clinical trials for treatment of various types of cancer, autoimmune disorders, and many other diseases. Although many new analogs show tremendous promise in cell-based models, this article will limit it focus on the development of analogs currently in use and those that have demonstrated efficacy in animal models or in clinical trials.
Collapse
Affiliation(s)
- Alex J Brown
- Renal Division, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
44
|
Tan J, Dwivedi PP, Anderson P, Nutchey BK, O'Loughlin P, Morris HA, May BK, Ferrante A, Hii CS. Antineoplastic agents target the 25-hydroxyvitamin D3 24-hydroxylase messenger RNA for degradation: implications in anticancer activity. Mol Cancer Ther 2008; 6:3131-8. [PMID: 18089708 DOI: 10.1158/1535-7163.mct-07-0427] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calcitriol or 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] has antitumor activity and hence its levels in patients may play an important role in disease outcome. Here, we report that the antineoplastic agents, daunorubicin hydrochloride, etoposide, and vincristine sulfate inhibited the ability of 1,25(OH)(2)D(3) to cause the accumulation of mRNA for kidney 25-hydroxyvitamin D(3) 24-hydroxylase (CYP24), an enzyme which catabolizes this hormone. This was not due to a drug-induced cytotoxic effect, reduction in the expression of the vitamin D receptor or inhibition of the vitamin D receptor-mediated activation of the mitogen-activated protein kinases or CYP24 promoter activity. Interestingly, there was selective degradation of CYP24 mRNA in the presence of the drugs. This was accompanied by an enhancement in the levels of 1,25(OH)(2)D(3) in cells incubated with 25-hydroxy vitamin D(3). These data identify a novel mechanism of action of some commonly used antineoplastic agents which by decreasing the stability of CYP24 mRNA would prolong the bioavailability of 1,25(OH)(2)D(3) for anticancer actions.
Collapse
Affiliation(s)
- Joseph Tan
- Department of Immunopathology, Children, Youth, and Women's Health Service, University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 2007; 7:684-700. [PMID: 17721433 DOI: 10.1038/nrc2196] [Citation(s) in RCA: 1002] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epidemiological studies indicate that vitamin D insufficiency could have an aetiological role in various human cancers. Preclinical research indicates that the active metabolite of vitamin D, 1alpha,25(OH)2D3, also known as calcitriol, or vitamin D analogues might have potential as anticancer agents because their administration has antiproliferative effects, can activate apoptotic pathways and inhibit angiogenesis. In addition, 1alpha,25(OH)2D3 potentiates the anticancer effects of many cytotoxic and antiproliferative anticancer agents. Here, we outline the epidemiological, preclinical and clinical studies that support the development of 1alpha,25(OH)2D3 and vitamin D analogues as preventative and therapeutic anticancer agents.
Collapse
Affiliation(s)
- Kristin K Deeb
- Department of Pharmacology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | | | | |
Collapse
|
46
|
Beer TM, Ryan CW, Venner PM, Petrylak DP, Chatta GS, Ruether JD, Redfern CH, Fehrenbacher L, Saleh MN, Waterhouse DM, Carducci MA, Vicario D, Dreicer R, Higano CS, Ahmann FR, Chi KN, Henner WD, Arroyo A, Clow FW. Double-blinded randomized study of high-dose calcitriol plus docetaxel compared with placebo plus docetaxel in androgen-independent prostate cancer: a report from the ASCENT Investigators. J Clin Oncol 2007; 25:669-74. [PMID: 17308271 DOI: 10.1200/jco.2006.06.8197] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To compare the safety and activity of DN-101, a new high-dose oral formulation of calcitriol designed for cancer therapy, and docetaxel with placebo and docetaxel. PATIENTS AND METHODS Patients with progressive metastatic androgen-independent prostate cancer and adequate organ function received weekly docetaxel 36 mg/m2 intravenously for 3 weeks of a 4-week cycle combined with either 45 microg DN-101 or placebo taken orally 1 day before docetaxel. The primary end point was prostate-specific antigen (PSA) response within 6 months of enrollment, defined as a 50% reduction confirmed at least 4 weeks later. RESULTS Two hundred fifty patients were randomly assigned. Baseline characteristics were similar in both arms. Within 6 months, PSA responses were seen in 58% in DN-101 patients and 49% in placebo patients (P = .16). Overall, PSA response rates were 63% (DN-101) and 52% (placebo), P = .07. Patients in the DN-101 group had a hazard ratio for death of 0.67 (P = .04) in a multivariate analysis that included baseline hemoglobin and performance status. Median survival has not been reached for the DN-101 arm and is estimated to be 24.5 months using the hazard ratio, compared with 16.4 months for placebo. Grade 3/4 adverse events occurred in 58% of DN-101 patients and in 70% of placebo-treated patients (P = .07). Most common grade 3/4 toxicities for DN-101 versus placebo were neutropenia (10% v 8%), fatigue (8% v 16%), infection (8% v 13%), and hyperglycemia (6% v 12%). CONCLUSION This study suggests that DN-101 treatment was associated with improved survival, but this will require confirmation because survival was not a primary end point. The addition of weekly DN-101 did not increase the toxicity of weekly docetaxel.
Collapse
Affiliation(s)
- Tomasz M Beer
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chen TC, Persons KS, Zheng S, Mathieu J, Holick MF, Lee YF, Bao B, Arai MA, Kittaka A. Evaluation of C-2-substituted 19-nor-1alpha,25-dihydroxyvitamin D3 analogs as therapeutic agents for prostate cancer. J Steroid Biochem Mol Biol 2007; 103:717-20. [PMID: 17207993 DOI: 10.1016/j.jsbmb.2006.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
1alpha,25-Dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) is known to inhibit the proliferation and invasiveness of prostate cancer cells. However, 1alpha,25(OH)(2)D(3) can cause hypercalcemia and is not suitable as a therapeutic agent. 19-Nor-vitamin D derivatives are known to be less calcemic when administered systemically. In order to develop more potent anti-cancer agents with less calcemic side effect, we therefore utilized (3)H-thymidine incorporation as an index for cell proliferation and examined the antiproliferative activities of nine C-2-substituted 19-nor-1alpha,25(OH)(2)D(3) analogs in the immortalized PZ-HPV-7 normal prostate cell line. Among the nine analogs we observed that the substitution with 2alpha- or 2beta-hydroxypropyl group produced two analogs having antiproliferative potency that is approximately 500- to 1000-fold higher than 1alpha,25(OH)(2)D(3). The (3)H-thymidine incorporation data were supported by the cell counting data after cells were treated with 1alpha,25(OH)(2)D(3), 19-nor-2alpha-(3-hydroxypropyl)-1alpha,25(OH)(2)D(3) or 19-nor-2beta-(3-hydroxypropyl)-1alpha,25(OH)(2)D(3) for 7 days. 19-Nor-2alpha-(3-hydroxypropyl)-1alpha,25(OH)(2)D(3) and 19-nor-2beta-(3-hydroxypropyl)-1alpha,25(OH)(2)D(3) were also shown to be about 10-fold more active than 1alpha,25(OH)(2)D(3) in cell invasion studies using prostate cancer cells. In conclusion, a substitution at the C-2 position of 19-nor-1alpha,25(OH)(2)D(3) molecule with a hydroxypropyl group greatly increased the antiproliferative and anti-invasion potencies. Thus, these two analogs could be developed to be effective therapeutic agents for treating early and late stages of prostate cancer.
Collapse
Affiliation(s)
- T C Chen
- Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Alagbala AA, Johnson CS, Trump DL, Posner GH, Foster BA. Antitumor effects of two less-calcemic vitamin D analogs (Paricalcitol and QW-1624F2-2) in squamous cell carcinoma cells. Oncology 2007; 70:483-92. [PMID: 17237623 DOI: 10.1159/000098813] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Accepted: 09/25/2006] [Indexed: 01/03/2023]
Abstract
The active metabolite of vitamin D(3) (1alpha,25-dihydroxyvitamin D(3), calcitriol) has potent antitumor activities in vitro and in vivo in multiple cancers. Concerns about induction of hypercalcemia by calcitriol and the desire for more potent agents have prompted development of less-calcemic vitamin D analogs. These studies demonstrate that two vitamin D analogs, 19-nor-1alpha,25-dihydroxyvitamin D(2) (paricalcitol) and 1alpha-hydroxymethyl-16-ene-24,24-difluoro-25-hydroxy-26,27-bis-homovitamin D(3) (QW-1624F(2)-2, QW), have anticancer effects in the calcitriol-responsive squamous cell carcinoma (SCC) cell line. Paricalcitol (GI50 = 0.7 nM) and QW (GI50 = 0.001 nM) inhibited SCC cell growth; however, QW was more potent. Paricalcitol (10 nM) and QW (10 nM) induced G0/G1 cell cycle arrest and inhibited DNA synthesis by approximately 95%. The vitamin D analogs modulated cell cycle regulators, including decreasing mRNA and protein levels of p21(Waf1/Cip1) (p21) and cyclin-dependent kinase 2 (cdk2), and increasing p27(Kip1) (p27) protein expression. Vitamin D analogs induced apoptosis, caspase-3 cleavage and increased expression of pro-apoptotic MEKK-1. Phosphorylation of Akt, MEK and ERK1/2 that promote cell growth and survival were inhibited by vitamin D analogs. The anticancer effects of paricalcitol and QW are comparable to the effect of calcitriol. These less-calcemic vitamin D analogs are as effective as calcitriol in vitro and are promising for prevention and treatment of cancer and other diseases.
Collapse
Affiliation(s)
- Adebusola A Alagbala
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, N.Y., USA
| | | | | | | | | |
Collapse
|
49
|
Beer TM, Javle MM, Ryan CW, Garzotto M, Lam GN, Wong A, Henner WD, Johnson CS, Trump DL. Phase I study of weekly DN-101, a new formulation of calcitriol, in patients with cancer. Cancer Chemother Pharmacol 2006; 59:581-7. [PMID: 17066293 DOI: 10.1007/s00280-006-0299-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Accepted: 07/19/2006] [Indexed: 12/19/2022]
Abstract
BACKGROUND DN-101 is a new, high-dose, oral formulation of calcitriol under investigation for the treatment of cancer. We sought to evaluate the tolerability and pharmacokinetics (PK) of weekly doses of DN-101 in patients with advanced cancer. METHODS Patients who completed a previously reported single dose escalation study of DN-101 [Beer et al. (2005) Clin Cancer Res 11:7794-7799] were eligible for this continuation weekly dosing study. Cohorts of 3-10 patients were treated at doses of 15, 30, 45, 60, and 75 microg calcitriol. Once 45 microg was established as the maximum tolerated dose (MTD), this cohort was expanded to include 18 patients. Dose limiting toxicity (DLT) was defined as > or =grade 2 hypercalcemia or > or =grade 3 persistent treatment-related toxicities. RESULTS Thirty-seven patients were recruited. DLT of transient reversible grade 2 hypercalcemia (serum calcium of 11.6-12.5 mg/dL) occurred in two of six patients treated with 60 microg of DN-101. No DLT was observed in the 18 patients who received DN-101 weekly at 45 microg. Overall, DN-101 was well tolerated. The most frequent adverse events were fatigue (27%), hypercalcemia (19%, including five grade 1, two grade 2, and no grade 3 or 4 events), and grade 1 nausea (16%). PK parameters following repeat dosing were comparable to those for the initial dose (n = 4). CONCLUSION The MTD for weekly DN-101 was established as 45 mug. The DLTs observed were two episodes of rapidly reversible grade 2 hypercalcemia in two of the six patients treated at 60 microg weekly. Repeat doses of DN-101 at 45 microg weekly are well tolerated and this dose is suitable for studies of weekly DN-101 in cancer patients.
Collapse
Affiliation(s)
- Tomasz M Beer
- Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health and Science University, Mail Code CR-145, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Beer TM, Garzotto M, Park B, Mori M, Myrthue A, Janeba N, Sauer D, Eilers K. Effect of Calcitriol on Prostate-Specific Antigen In vitro and in Humans. Clin Cancer Res 2006; 12:2812-6. [PMID: 16675575 DOI: 10.1158/1078-0432.ccr-05-2310] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Calcitriol, the natural ligand for the vitamin D receptor, has significant potential in prostate cancer treatment. Measurement of its antineoplastic activity in prostate cancer clinical trials may be complicated by effects of calcitriol on prostate-specific antigen (PSA) production. We examined the effects of calcitriol at similar concentration on cell proliferation, androgen receptor (AR) expression, and PSA production in vitro and on PSA concentrations in prostate cancer patients. EXPERIMENTAL DESIGN LNCaP prostate cancer cell proliferation was examined by cell counts 6 days after exposure to a range of concentrations of calcitriol. AR and PSA protein was quantified in LNCaP cells over 96 hours after exposure to 1 nmol/L calcitriol. Serum PSA and free PSA was serially measured by immunoassay over a period of 8 days in patients with hormone-naïve prostate cancer after a single dose of 0.5 microg/kg calcitriol. RESULTS Calcitriol treatment resulted in dose-dependent growth inhibition of LNCaP with approximately 50% growth inhibition at the clinically achievable concentration of 1 nmol/L. Time-dependent up-regulation of AR expression and of PSA production in LNCaP cells was shown at the same concentration. No significant change in serum PSA or free PSA over 8 days was seen in eight subjects treated with a single dose of 0.5 microg/kg calcitriol. The analysis was powered to detect a 1.23-fold change between the baseline and day 8 serum PSA. CONCLUSIONS At clinically achievable concentrations, calcitriol inhibits growth and induces AR and PSA expression in LNCaP cells. We did not detect similar changes in serum PSA or free PSA in patients exposed to similar concentrations of calcitriol. Thus, a PSA flare, predicted by preclinical systems, is unlikely to occur in patients and therefore unlikely to complicate interpretation of clinical trial outcomes.
Collapse
Affiliation(s)
- Tomasz M Beer
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon 97239-3098, USA.
| | | | | | | | | | | | | | | |
Collapse
|