1
|
Dessì D, Fais G, Follesa P, Sarais G. Neuroprotective Effects of Myrtle Berry By-Product Extracts on 6-OHDA-Induced Cytotoxicity in PC12 Cells. Antioxidants (Basel) 2025; 14:88. [PMID: 39857422 PMCID: PMC11759165 DOI: 10.3390/antiox14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
The rising global focus on healthy lifestyles and environmental sustainability has prompted interest in repurposing plant-based by-products for health benefits. With increasing life expectancy, the incidence of neurodegenerative diseases-characterized by complex, multifactorial mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress, and inflammation-continues to grow. Medicinal plants, with their diverse bioactive compounds, offer promising therapeutic avenues for such conditions. Myrtus communis L., a Mediterranean plant primarily used in liquor production, generates significant waste rich in antioxidant and anti-inflammatory properties. This study explores the neuroprotective potential of Myrtus berry by-products in a cellular model of neurodegeneration. Using PC12 cells exposed to 6-hydroxydopamine (6-OHDA), we assessed cell viability via MTT assay and measured reactive oxygen species (ROS) production using DCFDA fluorescence. Additionally, we analyzed the expression of genes linked to oxidative stress and neuronal function, including AChE, PON2, Grin1, Gabrd, and c-fos, by RT-PCR. Our findings reveal that Myrtus extract significantly protects against 6-OHDA-induced cytotoxicity, reduces ROS levels, and modulates the expression of key stress-related genes, underscoring its potential as a neuroprotective agent. These results highlight the therapeutic promise of Myrtus extracts in mitigating neurodegenerative processes, paving the way for future interventions.
Collapse
Affiliation(s)
- Debora Dessì
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy;
| | - Giacomo Fais
- Interdepartmental Center of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy;
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, 09123 Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy
| | - Giorgia Sarais
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy
| |
Collapse
|
2
|
Fais G, Sidorowicz A, Perra G, Dessì D, Loy F, Lai N, Follesa P, Orrù R, Cao G, Concas A. Cytotoxic Effects of ZnO and Ag Nanoparticles Synthesized in Microalgae Extracts on PC12 Cells. Mar Drugs 2024; 22:549. [PMID: 39728124 DOI: 10.3390/md22120549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/Ag2O/ZnO nanocomposites (NCs), using polar and apolar extracts of Chlorella vulgaris, offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/Ag2O NPs synthesized with apolar (Ag/Ag2O NPs A) and polar (Ag/Ag2O NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag+ ion release and the disruption of mitochondrial function. However, it is more likely the organic content, rather than size, influenced anticancer activity, as commercial Ag NPs, despite smaller crystallite sizes, exhibit less effective activity. ZnO NPs P showed increased reactive oxygen species (ROS) generation, correlated with higher cytotoxicity, while ZnO NPs A produced lower ROS levels, resulting in diminished cytotoxic effects. A comparative analysis revealed significant differences in LD50 values and toxicity profiles. Differentiated PC12 cells showed higher resistance to ZnO, while AgNPs and Ag/Ag2O-based materials had similar effects on both cell types. This study emphasizes the crucial role of the synthesis environment and bioactive compounds from C. vulgaris in modulating nanoparticle surface chemistry, ROS generation, and cytotoxicity. The results provide valuable insights for designing safer and more effective nanomaterials for biomedical applications, especially for targeting tumor-like cells, by exploring the relationships between nanoparticle size, polarity, capping agents, and nanocomposite structures.
Collapse
Affiliation(s)
- Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Agnieszka Sidorowicz
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Giovanni Perra
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Debora Dessì
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Francesco Loy
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Nicola Lai
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, 09042 Cagliari, Italy
| | - Roberto Orrù
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
- Center for Advanced Studies, Research and Development in Sardinia (CRS4), Loc. Piscina Manna, Building 1, 09050 Pula, Italy
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
3
|
Su D, Zhang R, Wang X, Ding Q, Che F, Zhang W, Wu W, Li P, Tang B. A new multi-parameter imaging platform for in vivo drug efficacy evaluation of ischemic stroke. Talanta 2024; 266:125133. [PMID: 37659227 DOI: 10.1016/j.talanta.2023.125133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/06/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Ischemic stroke with high incidence and disability rate severely endangers human health. Current clinical treatment strategies are quite limited, new drugs for ischemic stroke are urgently needed. However, most existing methods for the efficacy evaluation of new drugs possess deficiencies of divorcing from the true biological context, single detection indicator and complex operations, leading to evaluation biases and delaying drug development process. In this work, leveraging the advantages of fluorescence imaging with non-invasive, real-time, in-situ, high selectivity and high sensitivity, a new multi-parameter simultaneous fluorescence imaging platform (MPSFL-Platform) based on two fluorescence materials was constructed to evaluate the efficacy of new drug for ischemic stroke. Through simultaneous fluorescence observing three key indicators of ischemic stroke, malondialdehyde (MDA), formaldehyde (FA), and monoamine oxidase A (MAO-A), the efficacy evaluations of three drugs for ischemic stroke were real-time and in-situ performed. Compared with edaravone and butylphthalide, edaravone dexborneol exhibited better therapeutic effect by using MPSFL-Platform. The successful establishment of MPSFL-Platform is serviceable to accelerate the conduction of preclinical trial and the exploration of pathophysiology mechanism for drugs related to ischemic stroke and other brain diseases, which is perspective to promote the efficiency of new drug development.
Collapse
Affiliation(s)
- Di Su
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Ran Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China.
| | - Qi Ding
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Feida Che
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China
| | - Wei Wu
- Department of Neurology, Qi-Lu Hospital of Shandong University and Brain Science Research Institute, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, Shandong, People's Republic of China; Laoshan Laboratory, Qingdao, 266237, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Dhillon K, Aizel K, Broomhall TJ, Secret E, Goodman T, Rotherham M, Telling N, Siaugue JM, Ménager C, Fresnais J, Coppey M, El Haj AJ, Gates MA. Directional control of neurite outgrowth: emerging technologies for Parkinson's disease using magnetic nanoparticles and magnetic field gradients. J R Soc Interface 2022; 19:20220576. [PMID: 36349444 PMCID: PMC9653228 DOI: 10.1098/rsif.2022.0576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/19/2022] [Indexed: 08/08/2023] Open
Abstract
A challenge in current stem cell therapies for Parkinson's disease (PD) is controlling neuronal outgrowth from the substantia nigra towards the targeted area where connectivity is required in the striatum. Here we present progress towards controlling directional neurite extensions through the application of iron-oxide magnetic nanoparticles (MNPs) labelled neuronal cells combined with a magnetic array generating large spatially variant field gradients (greater than 20 T m-1). We investigated the viability of this approach in both two-dimensional and organotypic brain slice models and validated the observed changes in neurite directionality using mathematical models. Results showed that MNP-labelled cells exhibited a shift in directional neurite outgrowth when cultured in a magnetic field gradient, which broadly agreed with mathematical modelling of the magnetic force gradients and predicted MNP force direction. We translated our approach to an ex vivo rat brain slice where we observed directional neurite outgrowth of transplanted MNP-labelled cells from the substantia nigra towards the striatum. The improved directionality highlights the viability of this approach as a remote-control methodology for the control and manipulation of cellular growth for regenerative medicine applications. This study presents a new tool to overcome challenges faced in the development of new therapies for PD.
Collapse
Affiliation(s)
- K. Dhillon
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - K. Aizel
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Physico Chimie, Paris, France
| | - T. J. Broomhall
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - E. Secret
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - T. Goodman
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Staffordshire, UK
| | - M. Rotherham
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - N. Telling
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Staffordshire, UK
| | - J. M. Siaugue
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - C. Ménager
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - J. Fresnais
- Sorbonne Université, CNRS, Laboratoire Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, PHENIX, 75005 Paris, France
| | - M. Coppey
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Physico Chimie, Paris, France
| | - A. J. El Haj
- Healthcare Technologies Institute, Department of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - M. A. Gates
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Staffordshire, UK
- School of Medicine, Keele University, Staffordshire, UK
| |
Collapse
|
5
|
Hsieh FF, Korsunsky I, Shih AJ, Moss MA, Chatterjee PK, Deshpande J, Xue X, Madankumar S, Kumar G, Rochelson B, Metz CN. Maternal oxytocin administration modulates gene expression in the brains of perinatal mice. J Perinat Med 2022; 50:207-218. [PMID: 34717055 DOI: 10.1515/jpm-2020-0525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 10/01/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Oxytocin (OXT) is widely used to facilitate labor. However, little is known about the effects of perinatal OXT exposure on the developing brain. We investigated the effects of maternal OXT administration on gene expression in perinatal mouse brains. METHODS Pregnant C57BL/6 mice were treated with saline or OXT at term (n=6-7/group). Dams and pups were euthanized on gestational day (GD) 18.5 after delivery by C-section. Another set of dams was treated with saline or OXT (n=6-7/group) and allowed to deliver naturally; pups were euthanized on postnatal day 9 (PND9). Perinatal/neonatal brain gene expression was determined using Illumina BeadChip Arrays and real time quantitative PCR. Differential gene expression analyses were performed. In addition, the effect of OXT on neurite outgrowth was assessed using PC12 cells. RESULTS Distinct and sex-specific gene expression patterns were identified in offspring brains following maternal OXT administration at term. The microarray data showed that female GD18.5 brains exhibited more differential changes in gene expression compared to male GD18.5 brains. Specifically, Cnot4 and Frmd4a were significantly reduced by OXT exposure in male and female GD18.5 brains, whereas Mtap1b, Srsf11, and Syn2 were significantly reduced only in female GD18.5 brains. No significant microarray differences were observed in PND9 brains. By quantitative PCR, OXT exposure reduced Oxtr expression in female and male brains on GD18.5 and PND9, respectively. PC12 cell differentiation assays revealed that OXT induced neurite outgrowth. CONCLUSIONS Prenatal OXT exposure induces sex-specific differential regulation of several nervous system-related genes and pathways with important neural functions in perinatal brains.
Collapse
Affiliation(s)
- Frances F Hsieh
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology Stamford Hospital, Stamford, CT, USA
| | - Ilya Korsunsky
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, USA.,Division of Genetics, Department of Medicine at Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew J Shih
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, USA
| | - Matthew A Moss
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Prodyot K Chatterjee
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, USA
| | - Jaai Deshpande
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, USA.,Providence Community Health Center, Providence, RI, USA
| | - Xiangying Xue
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, USA
| | - Swati Madankumar
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, USA
| | - Gopal Kumar
- Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, USA
| | - Burton Rochelson
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Christine N Metz
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.,Institute of Molecular Medicine, Feinstein Institutes for Medical Research at Northwell Health, Manhasset, NY, USA.,Elmezzi Graduate School of Molecular Medicine at Northwell Health, Manhasset, NY, USA
| |
Collapse
|
6
|
HAO S, CHO BO, WANG F, SHIN JY, SHIN DJ, JANG SI. Zingiber officinale attenuates 6-hydroxydopamine induced oxidative stress and apoptosis through AKT, Nrf2, MAPK, NF-κB signaling pathway in PC12 cells. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.111221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Suping HAO
- Jeonju University, Republic of Korea; Xingtai University, China
| | - Byoung Ok CHO
- Jeonju University, Republic of Korea; Ato Q&A Co., LTD, Republic of Korea
| | - Feng WANG
- Jeonju University, Republic of Korea
| | | | | | - Seon Il JANG
- Jeonju University, Republic of Korea; Ato Q&A Co., LTD, Republic of Korea
| |
Collapse
|
7
|
The Influence of Burst-Firing EMF on Forskolin-Induced Pheochromocytoma (PC12) Plasma Membrane Extensions. NEUROSCI 2021. [DOI: 10.3390/neurosci2040028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previous research has demonstrated that pheochromocytoma (PC12) cells treated with forskolin provides a model for the in vitro examination of neuritogenesis. Exposure to electromagnetic fields (EMFs), especially those which have been designed to mimic biological function, can influence the functions of various biological systems. We aimed to assess whether exposure of PC12 cells treated with forskolin to patterned EMF would produce more plasma membrane extensions (PME) as compared to PC12 cells treated with forskolin alone (i.e., no EMF exposure). In addition, we aimed to determine whether the differences observed between the proportion of PME of PC12 cells treated with forskolin and exposed to EMF were specific to the intensity, pattern, or timing of the applied EMF. Our results showed an overall increase in PME for PC12 cells treated with forskolin and exposed to Burst-firing EMF as compared to PC12 cells receiving forskolin alone. No other patterned EMF investigated were deemed to be effective. Furthermore, intensity and timing of the Burst-firing pattern did not significantly alter the proportion of PME of PC12 cells treated with forskolin and exposed to patterned EMF.
Collapse
|
8
|
Sultan N, Amin LE, Zaher AR, Grawish ME, Scheven BA. Dental pulp stem cells stimulate neuronal differentiation of PC12 cells. Neural Regen Res 2021; 16:1821-1828. [PMID: 33510089 PMCID: PMC8328759 DOI: 10.4103/1673-5374.306089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/14/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Dental pulp stem cells (DPSCs) secrete neurotrophic factors which may play an important therapeutic role in neural development, maintenance and repair. To test this hypothesis, DPSCs-conditioned medium (DPSCs-CM) was collected from 72 hours serum-free DPSCs cultures. The impact of DPSCs-derived factors on PC12 survival, growth, migration and differentiation was investigated. PC12 cells were treated with nerve growth factor (NGF), DPSCs-CM or co-cultured with DPSCs using Transwell inserts for 8 days. The number of surviving cells with neurite outgrowths and the length of neurites were measured by image analysis. Immunocytochemical staining was used to evaluate the expression of neuronal markers NeuN, microtubule associated protein 2 (MAP-2) and cytoskeletal marker βIII-tubulin. Gene expression levels of axonal growth-associated protein 43 and synaptic protein Synapsin-I, NeuN, MAP-2 and βIII-tubulin were analysed by quantitative polymerase chain reaction (qRT-PCR). DPSCs-CM was analysed for the neurotrophic factors (NGF, brain-derived neurotrophic factor [BDNF], neurotrophin-3, and glial cell-derived neurotrophic factor [GDNF]) by specific ELISAs. Specific neutralizing antibodies against the detected neurotrophic factors were used to study their exact role on PC12 neuronal survival and neurite outgrowth extension. DPSCs-CM significantly promoted cell survival and induced the neurite outgrowth confirmed by NeuN, MAP-2 and βIII-tubulin immunostaining. Furthermore, DPSCs-CM was significantly more effective in stimulating PC12 neurite outgrowths than live DPSCs/PC12 co-cultures over the time studied. The morphology of induced PC12 cells in DPSCs-CM was similar to NGF positive controls; however, DPSCs-CM stimulation of cell survival was significantly higher than what was seen in NGF-treated cultures. The number of surviving PC12 cells treated with DPSCs-CM was markedly reduced by the addition of anti-GDNF, whilst PC12 neurite outgrowth was significantly attenuated by anti-NGF, anti-GDNF and anti-BDNF antibodies. These findings demonstrated that DPSCs were able to promote PC12 survival and differentiation. DPSCs-derived NGF, BDNF and GDNF were involved in the stimulatory action on neurite outgrowth, whereas GDNF also had a significant role in promoting PC12 survival. DPSCs-derived factors may be harnessed as a cell-free therapy for peripheral nerve repair. All experiments were conducted on dead animals that were not sacrificed for the purpose of the study. All the methods were carried out in accordance with Birmingham University guidelines and regulations and the ethical approval is not needed.
Collapse
Affiliation(s)
- Nessma Sultan
- School of Dentistry, Oral Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Egypt
| | - Laila E. Amin
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Egypt
- Faculty of Dentistry, Horus University, New Damietta, Egypt
| | - Ahmed R. Zaher
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Egypt
| | - Mohammed E. Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Egypt
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura, Egypt
| | - Ben A. Scheven
- School of Dentistry, Oral Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Challenges and solutions for fabrication of three-dimensional cocultures of neural cell-loaded biomimetic constructs. Biointerphases 2021; 16:011202. [PMID: 33706526 DOI: 10.1116/6.0000700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Fabrication of three-dimensional (3D) constructs to model body tissues and organs can contribute to research into tissue development and models for studying disease, as well as supporting preclinical drug screening in vitro. Furthermore, 3D constructs can also be used for diagnosis and therapy of disease conditions via lab on a chip and microarrays for diagnosis and engineered products for tissue repair, replacement, and regeneration. While cell culture approaches for studying tissue development and disease in two dimensions are long-established, the translation of this knowledge into 3D environments remains a fertile field of research. In this Tutorial, we specifically focus on the application of biosynthetic hydrogels for neural cell encapsulation. The Tutorial briefly covers background on using biosynthetic hydrogels for cell encapsulation, as well as common fabrication techniques. The Methods section focuses on the hydrogel design and characterization, highlighting key elements and tips for more effective approaches. Coencapsulation of different cell types, and the challenges associated with different growth and maintenance requirements, is the main focus of this Tutorial. Much care is needed to blend different cell types, and this Tutorial provides tips and insights that have proven successful for 3D coculture in biosynthetic hydrogels.
Collapse
|
10
|
Rosca A, Coronel R, Moreno M, González R, Oniga A, Martín A, López V, González MDC, Liste I. Impact of environmental neurotoxic: current methods and usefulness of human stem cells. Heliyon 2020; 6:e05773. [PMID: 33376823 PMCID: PMC7758368 DOI: 10.1016/j.heliyon.2020.e05773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
The development of central nervous system is a highly coordinated and complex process. Any alteration of this process can lead to disturbances in the structure and function of the brain, which can cause deficits in neurological development, resulting in neurodevelopmental disorders, including, for example, autism or attention-deficit hyperactivity disorder. Exposure to certain chemicals during the fetal period and childhood is known to cause developmental neurotoxicity and has serious consequences that persist into adult life. For regulatory purposes, determination of the potential for developmental neurotoxicity is performed according the OECD Guideline 426, in which the test substance is administered to animals during gestation and lactation. However, these animal models are expensive, long-time consuming and may not reflect the physiology in humans; that makes it an unsustainable model to test the large amount of existing chemical products, hence alternative models to the use of animals are needed. One of the most promising methods is based on the use of stem cell technology. Stem cells are undifferentiated cells with the ability to self-renew and differentiate into more specialized cell types. Because of these properties, these cells have gained increased attention as possible therapeutic agents or as disease models. Here, we provide an overview of the current models both animal and cellular, available to study developmental neurotoxicity and review in more detail the usefulness of human stem cells, their properties and how they are becoming an alternative to evaluate and study the mechanisms of action of different environmental toxicants.
Collapse
Affiliation(s)
- Andreea Rosca
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
- Toxicología Ambiental, Centro Nacional de Sanidad Ambiental, Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Miryam Moreno
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa González
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Andreea Oniga
- Toxicología Ambiental, Centro Nacional de Sanidad Ambiental, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Martín
- Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid, Spain
| | - Victoria López
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María del Carmen González
- Toxicología Ambiental, Centro Nacional de Sanidad Ambiental, Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Santi MD, Arredondo F, Carvalho D, Echeverry C, Prunell G, Peralta MA, Cabrera JL, Ortega MG, Savio E, Abin-Carriquiry JA. Neuroprotective effects of prenylated flavanones isolated from Dalea species, in vitro and in silico studies. Eur J Med Chem 2020; 206:112718. [DOI: 10.1016/j.ejmech.2020.112718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
|
12
|
A Synthetic Snake-Venom-Based Tripeptide Protects PC12 Cells from the Neurotoxicity of Acrolein by Improving Axonal Plasticity and Bioenergetics. Neurotox Res 2019; 37:227-237. [DOI: 10.1007/s12640-019-00111-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
|
13
|
Chen Y, Taskin MB, Zhang Z, Su Y, Han X, Chen M. Bioadhesive anisotropic nanogrooved microfibers directing three-dimensional neurite extension. Biomater Sci 2019; 7:2165-2173. [PMID: 30896681 DOI: 10.1039/c8bm01603h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurodegenerative diseases and acute nerve injuries are becoming global clinical problems. Engineering three-dimensional (3D), anisotropic neural cellular structures in vitro is therefore desirable in the regenerative medicine research community. Here, we present, for the first time, a single-step, facile but delicate, fabrication of a 3D macroporous microfibrous scaffold with both anisotropic nanogrooved topography and in situ functionalization with a mussel inspired bioadhesive, poly(norepinephrine) (pNE). Specifically, immiscible blends of polycaprolactone (PCL) and polyethylene oxide (PEO) were electrospun into a grounded coagulation bath containing the precursor of pNE. Upon jet entrance in the bath, both phase-separation-driven longitudinal nanotopography and in situ pNE surface functionalization were introduced on individual microfibers that were packed into a 3D macroporous structure. The resulting scaffold significantly promoted 3D neurite extension capacity, 8-fold higher neurite extension over the isotropic counterpart, demonstrating that such a scaffold has great promise in 3D neural cell culture for nerve tissue modelling and engineering.
Collapse
Affiliation(s)
- Yilin Chen
- Department of Engineering, Aarhus University, Aarhus 8000, Denmark.
| | | | | | | | | | | |
Collapse
|
14
|
Hu C, Sam R, Shan M, Nastasa V, Wang M, Kim T, Gillette M, Sengupta P, Popescu G. Optical excitation and detection of neuronal activity. JOURNAL OF BIOPHOTONICS 2019; 12:e201800269. [PMID: 30311744 DOI: 10.1002/jbio.201800269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/09/2018] [Indexed: 05/23/2023]
Abstract
Optogenetics has emerged as an exciting tool for manipulating neural activity, which in turn, can modulate behavior in live organisms. However, detecting the response to the optical stimulation requires electrophysiology with physical contact or fluorescent imaging at target locations, which is often limited by photobleaching and phototoxicity. In this paper, we show that phase imaging can report the intracellular transport induced by optogenetic stimulation. We developed a multimodal instrument that can both stimulate cells with subcellular spatial resolution and detect optical pathlength (OPL) changes with nanometer scale sensitivity. We found that OPL fluctuations following stimulation are consistent with active organelle transport. Furthermore, the results indicate a broadening in the transport velocity distribution, which is significantly higher in stimulated cells compared to optogenetically inactive cells. It is likely that this label-free, contactless measurement of optogenetic response will provide an enabling approach to neuroscience.
Collapse
Affiliation(s)
- Chenfei Hu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Richard Sam
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Mingguang Shan
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- College of Information and Communication Engineering, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Viorel Nastasa
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- National Institute for Laser Plasma and Radiation Physics, Bucharest, Ilfov, Romania
| | - Minqi Wang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Taewoo Kim
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Martha Gillette
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Parijat Sengupta
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Gabriel Popescu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
15
|
Imaninezhad M, Pemberton K, Xu F, Kalinowski K, Bera R, Zustiak SP. Directed and enhanced neurite outgrowth following exogenous electrical stimulation on carbon nanotube-hydrogel composites. J Neural Eng 2018; 15:056034. [DOI: 10.1088/1741-2552/aad65b] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Benseny-Cases N, Álvarez-Marimon E, Castillo-Michel H, Cotte M, Falcon C, Cladera J. Synchrotron-Based Fourier Transform Infrared Microspectroscopy (μFTIR) Study on the Effect of Alzheimer’s Aβ Amorphous and Fibrillar Aggregates on PC12 Cells. Anal Chem 2018; 90:2772-2779. [DOI: 10.1021/acs.analchem.7b04818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Núria Benseny-Cases
- ALBA Synchrotron Light Source, Carrer de la Llum 2−26, 08290 Cerdanyola del Vallès, Catalonia, Spain
| | - Elena Álvarez-Marimon
- Unitat
de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat
de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | - Hiram Castillo-Michel
- ID21, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Marine Cotte
- ID21, European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38043 Grenoble, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8220, Laboratoire d’Archéologie Moléculaire et Structurale (LAMS), 4 place Jussieu, 75005 Paris, France
| | - Carlos Falcon
- ALBA Synchrotron Light Source, Carrer de la Llum 2−26, 08290 Cerdanyola del Vallès, Catalonia, Spain
| | - Josep Cladera
- Unitat
de Biofísica, Departament de Bioquímica i de Biologia Molecular, Facultat
de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
17
|
Convertino D, Luin S, Marchetti L, Coletti C. Peripheral Neuron Survival and Outgrowth on Graphene. Front Neurosci 2018; 12:1. [PMID: 29403346 PMCID: PMC5786521 DOI: 10.3389/fnins.2018.00001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/03/2018] [Indexed: 01/17/2023] Open
Abstract
Graphene displays properties that make it appealing for neuroregenerative medicine, yet its interaction with peripheral neurons has been scarcely investigated. Here, we culture on graphene two established models for peripheral neurons: PC12 cells and DRG primary neurons. We perform a nano-resolved analysis of polymeric coatings on graphene and combine optical microscopy and viability assays to assess the material cytocompatibility and influence on differentiation. We find that differentiated PC12 cells display a remarkably increased neurite length on graphene (up to 27%) with respect to controls. Notably, DRG primary neurons survive both on bare and coated graphene. They present dense axonal networks on coated graphene, while they form cell islets characterized by dense axonal bundles on uncoated graphene. These findings indicate that graphene holds potential for nerve tissue regeneration and might pave the road to novel concepts of active nerve conduits.
Collapse
Affiliation(s)
- Domenica Convertino
- NEST, Scuola Normale Superiore, Pisa, Italy.,Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | | | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - Camilla Coletti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| |
Collapse
|
18
|
Hu R, Cao Q, Sun Z, Chen J, Zheng Q, Xiao F. A novel method of neural differentiation of PC12 cells by using Opti-MEM as a basic induction medium. Int J Mol Med 2018; 41:195-201. [PMID: 29115371 PMCID: PMC5746309 DOI: 10.3892/ijmm.2017.3195] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
The PC12 cell line is a classical neuronal cell model due to its ability to acquire the sympathetic neurons features when deal with nerve growth factor (NGF). In the present study, the authors used a variety of different methods to induce PC12 cells, such as Opti-MEM medium containing different concentrations of fetal bovine serum (FBS) and horse serum compared with RPMI-1640 medium, and then observed the neurite length, differentiation, adhesion, cell proliferation and action potential, as well as the protein levels of axonal growth-associated protein 43 (GAP-43) and synaptic protein synapsin-1, among other differences. Compared with the conventional RPMI-1640 medium induction method, the new approach significantly improved the neurite length of induced cells (2.7 times longer), differentiation rate (30% increase), adhesion rate (21% increase) and expression of GAP-43 and synapsin-1 (three times), as well as reduced cell proliferation. The morphology of induced cells in Opti-MEM medium containing 0.5% FBS was more like that of neurons. Additionally, induced cells were also able to motivate the action potential after treatment for 6 days. Therefore, the research provided a novel, improved induction method of neural differentiation of PC12 cells using Opti-MEM medium containing 0.5% FBS, resulting in a better neuronal model cell line that can be widely used in neurobiology and neuropharmacology research.
Collapse
Affiliation(s)
- Rendong Hu
- Department of Pharmacology, School of Medicine, Jinan University
| | - Qiaoyu Cao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632
| | - Zhongqing Sun
- Department of Anesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, SAR
| | - Jinying Chen
- Department of Ophthalmology, The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qing Zheng
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, Jinan University
| |
Collapse
|
19
|
Wang ZH, Chang YY, Wu JG, Lin CY, An HL, Luo SC, Tang TK, Su WF. Novel 3D Neuron Regeneration Scaffolds Based on Synthetic Polypeptide Containing Neuron Cue. Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/04/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Zhen-Hua Wang
- Department of Materials Science and Engineering; National Taiwan University; Taipei 10617 Taiwan
| | - Yen-Yu Chang
- Department of Materials Science and Engineering; National Taiwan University; Taipei 10617 Taiwan
| | - Jhih-Guang Wu
- Department of Materials Science and Engineering; National Taiwan University; Taipei 10617 Taiwan
| | - Chia-Yu Lin
- Department of Materials Science and Engineering; National Taiwan University; Taipei 10617 Taiwan
| | - Hsiao-Lung An
- Institute of Biomedical Sciences; Academia Sinica; Taipei 11529 Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering; National Taiwan University; Taipei 10617 Taiwan
- Molecular Image Center; National Taiwan University; Taipei 10617 Taiwan
| | - Tang K. Tang
- Institute of Biomedical Sciences; Academia Sinica; Taipei 11529 Taiwan
| | - Wei-Fang Su
- Department of Materials Science and Engineering; National Taiwan University; Taipei 10617 Taiwan
- Molecular Image Center; National Taiwan University; Taipei 10617 Taiwan
| |
Collapse
|
20
|
All-in-one low-intensity pulsed ultrasound stimulation system using piezoelectric micromachined ultrasonic transducer (pMUT) arrays for targeted cell stimulation. Biomed Microdevices 2017; 19:86. [PMID: 28929363 DOI: 10.1007/s10544-017-0228-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel cell-stimulation system was fabricated using 10 × 29 piezoelectric micromachined ultrasonic transducer (pMUT) arrays for targeted ultrasonic cell stimulation. Both the diameter of a single pMUT element and the edge-to-edge gap were 120 μm, and the size of a pMUT array was 2.27 × 6.84 mm, to be placed at the bottom of a Transwell. The measured resonance frequency of a single pMUT element was 1.48 ± 0.13 MHz and the measured acoustic intensity of the pMUT array was 0.15 ± 0.03 MPa at 1 mm away from the transducer. A pMUT array was mounted on a print circuit board (PCB), which was designed in accordance with the size of a 12-well Transwell. The Transwell was placed on the PCB and wire bonding was performed to electrically connect the PCB and pMUT arrays. After wiring, the PCB and pMUT arrays were coated with 2.6-μm thick parylene-C to ensure biocompatibility and waterproofing. PC12 cells were used for ultrasonic cell stimulation tests to examine the proposed all-in-one low-intensity pulsed ultrasound stimulation system. Various stimulation times and duty cycles were used simultaneously for cell proliferation in a confined cell culture environment. All stimulation groups showed increased cell proliferation rates, in the range 138-166%, versus the proliferation rate of the control group.
Collapse
|
21
|
Gozal E, Metz CJ, Dematteis M, Sachleben LR, Schurr A, Rane MJ. PKA activity exacerbates hypoxia-induced ROS formation and hypoxic injury in PC-12 cells. Toxicol Lett 2017; 279:107-114. [PMID: 28751209 PMCID: PMC5608019 DOI: 10.1016/j.toxlet.2017.07.895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
Abstract
Hypoxia is a primary factor in many pathological conditions. Hypoxic cell death is commonly attributed to metabolic failure and oxidative injury. cAMP-dependent protein kinase A (PKA) is activated in hypoxia and regulates multiple enzymes of the mitochondrial electron transport chain, thus may be implicated in cellular energy depletion and hypoxia-induced cell death. Wild type (WT) PC-12 cells and PKA activity-deficient 123.7 PC-12 cells were exposed to 3, 6, 12 and 24h hypoxia (0.1% or 5% O2). Hypoxia, at 24h 0.1% O2, induced cell death and increased reactive oxygen species (ROS) in WT PC-12 cells. Despite lower ATP levels in normoxic 123.7 cells than in WT cells, hypoxia only decreased ATP levels in WT cells. However, menadione-induced oxidative stress similarly affected both cell types. While mitochondrial COX IV expression remained consistently higher in 123.7 cells, hypoxia decreased COX IV expression in both cell types. N-acetyl cysteine antioxidant treatment blocked hypoxia-induced WT cell death without preventing ATP depletion. Transient PKA catα expression in 123.7 cells partially restored hypoxia-induced ROS but did not alter ATP levels or COX IV expression. We conclude that PKA signaling contributes to hypoxic injury, by regulating oxidative stress rather than by depleting ATP levels. Therapeutic strategies targeting PKA signaling may improve cellular adaptation and recovery in hypoxic pathologies.
Collapse
Affiliation(s)
- Evelyne Gozal
- Department of Pediatrics PRI, University of Louisville, School of Medicine, Louisville, KY, USA; Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA; Department of Pharmacology & Toxicology, University of Louisville, School of Medicine, Louisville, KY, USA.
| | - Cynthia J Metz
- Department of Pediatrics PRI, University of Louisville, School of Medicine, Louisville, KY, USA; Department of Physiology, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Maurice Dematteis
- University Hospital, Department of Addiction Medicine, Grenoble F-38043, France; Grenoble Alpes University, Faculty of Medicine, Grenoble, F-38042, France
| | - Leroy R Sachleben
- Department of Pediatrics PRI, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Avital Schurr
- Department of Anesthesiology & Perioperative Medicine, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Madhavi J Rane
- Department of Medicine/Nephrology, University of Louisville, School of Medicine, Louisville, KY, USA
| |
Collapse
|
22
|
Berg NG, Pearce BL, Rohrbaugh N, Jiang L, Nolan MW, Ivanisevic A. Gallium containing composites as a tunable material to understand neuronal behavior under variable stiffness and radiation conditions. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:317-321. [PMID: 27987713 DOI: 10.1016/j.msec.2016.10.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/09/2016] [Accepted: 10/16/2016] [Indexed: 10/20/2022]
Abstract
We report a composite biomaterial containing nanostructured GaOOH and Matrigel™ that can be modulated with respect to its stiffness and radiosensitization properties. A variety of concentrations of GaOOH were added to the composite to alter the mechanical properties of the material as well as to tune the radiosensitizing properties to the composite. PC-12 cells were used to study the combined effects of different stimuli on cell behavior. NGF was given to the cells to record their morphology as well as viability. An increase in the substrate stiffness caused an increase in neurite outgrowth but a decrease in cell viability. In addition, increasing the radiation dose decreased neurite outgrowth but increased cell viability when radiosensitizing particles were present. A subtractive effect between radiosensitizing and mechanical stimuli was observed when PC-12 cells were grown on the GaOOH containing composite.
Collapse
Affiliation(s)
- Nora G Berg
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Brady L Pearce
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Nathaniel Rohrbaugh
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Lin Jiang
- Materials Science and Engineering, University of New South Wales, Sydney, Australia
| | - Michael W Nolan
- Department of Clinical Sciences (College of Veterinary Medicine), Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606, USA
| | - Albena Ivanisevic
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
23
|
Shukla S, Shariat-Madar Z, Walker LA, Tekwani BL. Mechanism for neurotropic action of vorinostat, a pan histone deacetylase inhibitor. Mol Cell Neurosci 2016; 77:11-20. [PMID: 27678157 DOI: 10.1016/j.mcn.2016.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 12/17/2022] Open
Abstract
In this study we investigated the neurotrophic actions of vorinostat (suberoylanilide hydroxamic acid, SAHA), a class I and class II HDAC inhibitor, on the differentiation of Neuroscreen-1 (NS-1) cells. NS-1 cell is a subclone of the rat pheochromocytoma cell line (PC 12). Vorinostat independently induced neurite outgrowth in NS-1 cells. The NS-1 cells were further interrogated for the effects of vorinostat on intracellular neurotrophin signaling pathways, to understand its mechanism of neurotrophic action. Selective inhibitors of MEK1/2 (PD98059 and U0126), phosphoinositide 3-kinase (PI3K) (LY294002) and tyrosine kinase A (TrkA) (GW441756) were employed for these interrogations. Our results suggest that neurite outgrowth mediated by both nerve growth factor (NGF), an intrinsic neurotrophin, and vorinostat were blocked by the inhibitors of MEK1/2 & PI3K. Vorinostat induced phosphorylation of ERK1/2 occurs at 2h post treatment. Phosphorylation of ERK was abolished in presence of U0126, further confirming the role of ERK pathway in vorinostat-induced differentiation of NS-1 cells. Vorinostat-induced neurite outgrowth also involves the activation of upstream extracellular kinase TrkA, as both vorinostat mediated neurite outgrowth and activation of ERK were attenuated in presence of the TrkA inhibitor, GW441756. Vorinostat also stimulated hyperacetylation of α-tubulin and histones H3/H4 in NS-1 cells. The results suggest that vorinostat exerts a positive effect on the neuritogenesis via activation of MEK1/2 & PI3K pathways involving an upstream kinase, TrkA. Bioactive small molecules with neurotrophic and neuritogenic actions, like vorinostat identified in the present study, hold great promise as therapeutic agents for treatment of neurodegenerative diseases and neuronal injuries by virtue of their ability to stimulate neuritic outgrowth.
Collapse
Affiliation(s)
- Surabhi Shukla
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Zia Shariat-Madar
- Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Larry A Walker
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Babu L Tekwani
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA; Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
24
|
Botulinum toxin a inhibits acetylcholine release from cultured neurons in vitro. In Vitro Cell Dev Biol Anim 2016; 29:456-60. [PMID: 27519746 DOI: 10.1007/bf02639379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/1992] [Accepted: 12/22/1992] [Indexed: 10/23/2022]
Abstract
Clostridium botulinum type toxin A (BoTx) blocks stimulus-induced acetylcholine (ACh) release from presynaptic nerve terminals at peripheral neuromuscular junctions. However, the detailed mechanism of this effect remains elusive. One obstacle in solving this problem is the lack of a suitable in vitro homogenous cholinergic neuronal model system. We studied the clonal pheochromocytoma PC12 cell line to establish such a model. PC12 cells were differentiated in culture by treatment with 50 ng/ml nerve growth factor (NGF) for 4 days to enhance cellular ACh synthesis and release properties. Stimulation of these cells with high K(+) (80 mM) in the perfusion medium markedly increased calcium-dependent [(3)H]ACh release compared to undifferentiated cells. Stimulated [(3)H]ACh release was totally inhibited by pretreatment of cells with 2 nM BoTx for 2 h. BoTx inhibition of [(3)H]ACh release was time- and concentration-dependent. A 50% inhibition was obtained after 2 h incubation with a low (0.02 nM) toxin concentration. The time required for 2 nM BoTx to cause a measurable inhibition (18%) of stimulated [(3)H]ACh release was 30 min. Botulinum toxin inhibition of stimulated ACh release was prevented by toxin antiserum and heat treatment, suggesting the specificity of the toxin effect. Our results show that by differentiation with NGF, PC12 cells can be shifted from an insensitive to a sensitive state with respect to BoTx inhibition of stimulated ACh release. This cell line, therefore, may serve as a valuable in vitro cholinergic model system to study the mechanism of action of BoTx.
Collapse
|
25
|
Tseng WT, Hsu YW, Pan TM. Neuroprotective effects of dimerumic acid and deferricoprogen from Monascus purpureus NTU 568-fermented rice against 6-hydroxydopamine-induced oxidative stress and apoptosis in differentiated pheochromocytoma PC-12 cells. PHARMACEUTICAL BIOLOGY 2016; 54:1434-1444. [PMID: 26794209 DOI: 10.3109/13880209.2015.1104698] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Oxidative stress plays a key role in neurodegenerative disorders, including Parkinson's disease (PD). Rice fermented with Monascus purpureus Went (Monascaceae) NTU 568 (red mould rice) was found to contain antioxidants, including dimerumic acid (DMA) and deferricoprogen (DFC). Objective The effects of DMA and DFC on 6-hydroxydopamine (6-OHDA)-induced cytotoxicity and potential protective mechanisms in differentiated PC-12 pheochromocytoma cells were investigated. Materials and methods DMA (0-60 μM) or DFC (0-10 μM) was co-treated with 6-OHDA (200 μM, 24 h exposure) in differentiated PC-12 cells. Cell viability and intercellular reactive oxygen species (ROS) were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assays, respectively. Cell apoptosis was determined by DNA fragmentation analysis and propidium iodide staining by flow cytometry. Western blot analysis was used to measure the levels of cell protein expression. Results DMA and DFC significantly increased cell viability to 72% and 81% in 6-OHDA-induced differentiated PC-12 cell cultures, respectively. Furthermore, DMA and DFC reduced 6-OHDA-induced formation of extracellular and intercellular ROS by 25% and 20%, respectively, and decreased NADPH oxidase-2 expression in differentiated PC-12 cells. DMA and DFC inhibited 6-OHDA-induced apoptosis and decreased activation of caspase-3 via regulation of Bcl-2-associated X protein (Bax) and Bcl-2 protein expression in differentiated PC-12 cells. Conclusion DMA and DFC may protect against 6-OHDA toxicity by inhibiting ROS formation and apoptosis. These results showed that the metabolites from M. purpureus NTU 568 fermentation were potential therapeutic agents for PD induced by oxidative damage and should be encouraged for further research.
Collapse
Affiliation(s)
- Wei-Ting Tseng
- a Department of Biochemical Science and Technology , College of Life Science, National Taiwan University , Taipei , Taiwan
| | - Ya-Wen Hsu
- b SunWay Biotechnology Company , Taipei , Taiwan
| | - Tzu-Ming Pan
- a Department of Biochemical Science and Technology , College of Life Science, National Taiwan University , Taipei , Taiwan
| |
Collapse
|
26
|
Aregueta-Robles UA, Lim KS, Martens PJ, Lovell NH, Poole-Warren LA, Green R. Producing 3D neuronal networks in hydrogels for living bionic device interfaces. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2015:2600-2603. [PMID: 26736824 DOI: 10.1109/embc.2015.7318924] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hydrogels hold significant promise for supporting cell based therapies in the field of bioelectrodes. It has been proposed that tissue engineering principles can be used to improve the integration of neural interfacing electrodes. Degradable hydrogels based on poly (vinyl alcohol) functionalised with tyramine (PVA-Tyr) have been shown to support covalent incorporation of non-modified tyrosine rich proteins within synthetic hydrogels. PVA-Tyr crosslinked with such proteins, were explored as a scaffold for supporting development of neural tissue in a three dimensional (3D) environment. In this study a model neural cell line (PC12) and glial accessory cell line, Schwann cell (SC) were encapsulated in PVA-Tyr crosslinked with gelatin and sericin. Specifically, this study aimed to examine the growth and function of SC and PC12 co-cultures when translated from a two dimensional (2D) environment to a 3D environment. PC12 differentiation was successfully promoted in both 2D and 3D at 25 days post-culture. SC encapsulated as a single cell line and in co-culture were able to produce both laminin and collagen-IV which are required to support neuronal development. Neurite outgrowth in the 3D environment was confirmed by immunocytochemical staining. PVA-Tyr/sericin/gelatin hydrogel showed mechanical properties similar to nerve tissue elastic modulus. It is suggested that the mechanical properties of the PVA-Tyr hydrogels with native protein components are providing with a compliant substrate that can be used to support the survival and differentiation of neural networks.
Collapse
|
27
|
Mir TA, Shinohara H. Two-dimensional surface plasmon resonance imager: An approach to study neuronal differentiation. Anal Biochem 2013; 443:46-51. [PMID: 23969011 DOI: 10.1016/j.ab.2013.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/23/2013] [Accepted: 08/10/2013] [Indexed: 11/30/2022]
Abstract
There is a growing demand for the development of a new bioanalytical technique that is capable of monitoring neuronal differentiation noninvasively, in real time, and without any fluorescent probes. In a previous article, we demonstrated that a high-resolution two-dimensional surface plasmon resonance (2D-SPR) imager was very useful to monitor cell response on chemical stimulation in which protein kinase C (PKC) translocation was related. In the current study, we focused on developing a new method for monitoring neuronal differentiation and examined the application of the high-resolution 2D-SPR imager to monitor neuronal differentiation noninvasively and by a label-free format. We successfully monitored the intracellular signal transduction, which was mainly translocation of PKC in PC12 cells by the 2D-SPR imager, and found that the cells treated with a differentiation factor, nerve growth factor (NGF), showed a remarkable enhancement of 2D-SPR response to muscarine, carbachol, and acetylcholine stimulation. The results demonstrated that 2D-SPR sensing is applicable to in situ assessment of neuronal differentiation and to studying the expression state of the specific receptors in the living state.
Collapse
Affiliation(s)
- Tanveer Ahamd Mir
- Biological Information Systems Science, Graduate School of Innovative Life Science for Education, University of Toyama, Toyama 930-8555, Japan.
| | | |
Collapse
|
28
|
Sarvestani NN, Khodagholi F, Ansari N, Farimani MM. Involvement of p-CREB and phase II detoxifying enzyme system in neuroprotection mediated by the flavonoid calycopterin isolated from Dracocephalum kotschyi. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2013; 20:939-946. [PMID: 23639191 DOI: 10.1016/j.phymed.2013.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 02/24/2013] [Accepted: 03/15/2013] [Indexed: 06/02/2023]
Abstract
PURPOSE There is an increasing amount of experimental evidence that oxidative stress has a central role in the neuropathology of neurodegenerative diseases. It has been suggested that the loss of cell function results from the increased oxidative damage to proteins and DNA. Herein, we investigated the effect of a natural neuroprotective flavonoid, calycopterin, on H₂O₂-induced disruption of phase II detoxifying enzyme system and cAMP response element binding protein (CREB) phosphorylation. METHODS PC12 cells were treated with 25, 50 and 100 μM of calycopterin for 3h, followed by adding H₂O₂ (150 μM) for 24 h. The extent of apoptosis was assessed by comet assay. The level of phosphorylated CREB, nuclear factor erythroid 2-related factor 2 (Nrf2), glutamylcysteine synthetase (γ-GCS) and heme oxygenase 1 (HO-1) were measured by western blot method. The concentration of glutathione (GSH) was determined in whole cell lysate using dithionitrobenzoic acid method. Superoxide dismutase (SOD) activity was measured by colorimetric assay. RESULT Morphological analysis of protection induced by calycopterin, determined by comet assay, showed that calycopterin reduced DNA in tail. We found that H₂O₂ decreased mitochondrial membrane potential (MMP), while, calycopterin prevented this decrease in MMP in presence of H₂O₂. In H₂O₂-treated cells, calycopterin also suppressed cytochrome C release to cytosol that is necessary for maintaining mitochondrial homeostasis in survived cells. Moreover, calycopterin, in presence of H₂O₂ inhibited the decrease caused by oxidative stress in stress-sensing transcription factors, CREB and Nrf2, which play an important role in antioxidant capacity of the cell. There was also an increase in γ-GCS and HO-1 levels in calycopterin pretreated cells. In the presence of H₂O₂, calycopterin inhibited decrease in GSH level and SOD activity. CONCLUSION We provided documentation of neuroprotective effect of a natural flavone, calycopterin, against H₂O₂-induced oxidative stress in differentiated PC12 cells by modulating the level of CREB phosphorylation and Nrf2 pathway.
Collapse
|
29
|
NGF-induced cell differentiation and gene activation is mediated by integrative nuclear FGFR1 signaling (INFS). PLoS One 2013; 8:e68931. [PMID: 23874817 PMCID: PMC3707895 DOI: 10.1371/journal.pone.0068931] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/04/2013] [Indexed: 11/19/2022] Open
Abstract
Nerve growth factor (NGF) is the founding member of the polypeptide neurotrophin family responsible for neuronal differentiation. To determine whether the effects of NGF rely upon novel Integrative Nuclear FGF Receptor-1 (FGFR1) Signaling (INFS) we utilized the PC12 clonal cell line, a long-standing benchmark model of sympathetic neuronal differentiation. We demonstrate that NGF increases expression of the fgfr1 gene and promotes trafficking of FGFR1 protein from cytoplasm to nucleus by inhibiting FGFR1 nuclear export. Nuclear-targeted dominant negative FGFR1 antagonizes NGF-induced neurite outgrowth, doublecortin (dcx) expression and activation of the tyrosine hydroxylase (th) gene promoter, while active constitutive nuclear FGFR1 mimics the effects of NGF. NGF increases the expression of dcx, th, βIII tubulin, nurr1 and nur77, fgfr1and fibroblast growth factor-2 (fgf-2) genes, while enhancing binding of FGFR1and Nur77/Nurr1 to those genes. NGF activates transcription from isolated NurRE and NBRE motifs. Nuclear FGFR1 transduces NGF activation of the Nur dimer and raises basal activity of the Nur monomer. Cooperation of nuclear FGFR1 with Nur77/Nurr1 in NGF signaling expands the integrative functions of INFS to include NGF, the first discovered pluripotent neurotrophic factor.
Collapse
|
30
|
Phan CW, Wong WL, David P, Naidu M, Sabaratnam V. Pleurotus giganteus (Berk.) Karunarathna & K.D. Hyde: Nutritional value and in vitro neurite outgrowth activity in rat pheochromocytoma cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:102. [PMID: 22812497 PMCID: PMC3416657 DOI: 10.1186/1472-6882-12-102] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 07/19/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND Drugs dedicated to alleviate neurodegenerative diseases like Parkinson's and Alzheimer's have always been associated with debilitating side effects. Medicinal mushrooms which harness neuropharmacological compounds offer a potential possibility for protection against such diseases. Pleurotus giganteus (formerly known as Panus giganteus) has been consumed by the indigenous people in Peninsular Malaysia for many years. Domestication of this wild mushroom is gaining popularity but to our knowledge, medicinal properties reported for this culinary mushroom are minimal. METHODS The fruiting bodies P. giganteus were analysed for its nutritional values. Cytotoxicity of the mushroom's aqueous and ethanolic extracts towards PC12, a rat pheochromocytoma cell line was assessed by using 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Neurite outgrowth stimulation assay was carried out with nerve growth factor (NGF) as control. To elucidate signaling mechanisms involved by mushroom extract-induced neurite outgrowth, treatment of specific inhibitor for MEK/ERK and PI3K signalling pathway was carried out. RESULTS The fruiting bodies of P. giganteus were found to have high carbohydrate, dietary fibre, potassium, phenolic compounds and triterpenoids. Both aqueous and ethanolic extracts induced neurite outgrowth of PC12 cells in a dose- and time-dependant manner with no detectable cytotoxic effect. At day 3, 25 μg/ml of aqueous extract and 15 μg/ml of ethanolic extract showed the highest percentage of neurite-bearing cells, i.e. 31.7 ± 1.1% and 33.3 ± 0.9%; respectively. Inhibition treatment results suggested that MEK/ERK and PI3K/Akt are responsible for neurite outgrowth of PC12 cells stimulated by P. giganteus extract. The high potassium content (1345.7 mg/100 g) may be responsible for promoting neurite extension, too. CONCLUSIONS P. giganteus contains bioactive compounds that mimic NGF and are responsible for neurite stimulation. Hence, this mushroom may be developed as a nutraceutical for the mitigation of neurodegenerative diseases.
Collapse
|
31
|
Interferon beta modulates major histocompatibility complex class I (MHC I) and CD3-zeta expression in PC12 cells. Neurosci Lett 2012; 513:223-8. [PMID: 22387456 DOI: 10.1016/j.neulet.2012.02.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/31/2012] [Accepted: 02/14/2012] [Indexed: 11/24/2022]
Abstract
It has been demonstrated that the major histocompatibility complex of class I (MHC I) up regulation by exogenous treatment with interferon beta (IFNbeta) influences the glial reaction and synaptic elimination process. Therefore, the present study aimed to investigate the effects of IFNbeta treatment on the expression of MHC I, CD3-zeta (a subunit of MHC I receptor) and synaptic formation in PC12 cells, an in vitro model for studying the synaptic formation/elimination process. For this purpose, established cultures were subjected to IFNbeta (500 and 1000IU/ml) treatment for 5, 10 and 15 days. The cells were then fixed and processed for immunocytochemistry with antisera against MHC I (OX18), CD3-zeta and synaptophysin. The results were compared with control cultures only treated with basal medium. IFNbeta (500IU/ml) modulated the MHC I expression in PC12 cells, especially after 10 days of treatment. In this sense, IFNbeta induced MHC I as well as CD3-zeta up regulation. It was observed that the highest dose caused culture degeneration. Interestingly, differential regulation of MHC I was paralleled by enhancement in synaptic network remodeling. Altogether, the present data indicate that PC12 cells may be used as an in vitro model for studying MHC I modulation and synaptic plasticity. It also reinforced the role of IFNbeta on the synaptic elimination process.
Collapse
|
32
|
Moridi Farimani M, Namazi Sarvestani N, Ansari N, Khodagholi F. Calycopterin Promotes Survival and Outgrowth of Neuron-Like PC12 Cells by Attenuation of Oxidative- and ER-Stress-Induced Apoptosis along with Inflammatory Response. Chem Res Toxicol 2011; 24:2280-92. [DOI: 10.1021/tx200420a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Mahdi Moridi Farimani
- Department of Phytochemistry,
Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, G. C., Evin, Tehran, Iran
| | | | - Niloufar Ansari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran,
Iran
| |
Collapse
|
33
|
Schmidt S, Mo M, Heidrich FM, Ćelić A, Ehrlich BE. C-terminal domain of chromogranin B regulates intracellular calcium signaling. J Biol Chem 2011; 286:44888-96. [PMID: 22016391 DOI: 10.1074/jbc.m111.251330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The versatility of intracellular calcium as a second messenger is seen in its ability to mediate opposing events such as neuronal cell growth and apoptosis. A leading hypothesis used to explain how calcium regulates such divergent signaling pathways is that molecules responsible for maintaining calcium homeostasis have multiple roles. For example, chromogranin B (CGB), a calcium binding protein found in secretory granules and in the lumen of the endoplasmic reticulum, buffers calcium and also binds to and amplifies the activity of the inositol 1,4,5-trisphosphate receptor (InsP(3)R). Previous studies have identified two conserved domains of CGB, an N-terminal domain (N-CGB) and a C-terminal domain (C-CGB). N-CGB binds to the third intraluminal loop of the InsP(3)R and inhibits binding of full-length CGB. This displacement of CGB decreases InsP(3)R-dependent calcium release and alters normal signaling patterns. In the present study, we further characterized the role of N-CGB and identified roles for C-CGB. The effect of N-CGB on calcium release depended upon endogenous levels of cellular CGB, whereas the regulatory effect of C-CGB was apparent regardless of endogenous levels of CGB. When either full-length CGB or C-CGB was expressed in cells, calcium transients were increased. Additionally, the calcium signal initiation site was altered upon C-CGB expression in neuronally differentiated PC12 and SHSY5Y cells. These results show that CGB has numerous regulatory roles and that CGB is a critical component in modulating InsP(3)R-dependent calcium signaling.
Collapse
Affiliation(s)
- Stefan Schmidt
- Department of Pharmacology and Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
34
|
Probable Mechanisms of the Effects of Cerebral on Morphological Characteristics of Rat Pheochromocytoma Cells. NEUROPHYSIOLOGY+ 2011. [DOI: 10.1007/s11062-011-9180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Wang F, Jiao C, Liu J, Yuan H, Lan M, Gao F. Oxidative mechanisms contribute to nanosize silican dioxide-induced developmental neurotoxicity in PC12 cells. Toxicol In Vitro 2011; 25:1548-56. [PMID: 21635944 DOI: 10.1016/j.tiv.2011.05.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 05/16/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
Neurotoxicity was investigated in nano-SiO2-treated cultured PC12 cells, an in vitro neuronal cell model, in order to define a relatively safe dose range for its application. The following were observed in the present study: (1) A dose-dependent increase in the level of reactive oxygen species (ROS) with a corresponding decrease in the level of glutathione (R2=0.965) suggesting 20- and 50-nm SiO2-induced free radical generation and glutathione depletion. (2) A dose- and time-dependent decrease in cell viability that was associated with elevation of ROS level, especially after 24-h nano-SiO2 exposure (R2=0.965), suggesting the role of oxidative stress on nano-SiO2 induced cell death. (3) An increase in the level of thiobarbituric-acid reactive species that correlated reversely with cell viability of the PC12 cells treated with nano-SiO2 (R2=0.945) suggesting nano-SiO2-induced membrane damage caused by lipid peroxidation. (4) A dose-dependent increase in sub-G1 population in SiO2-exposed cells along with cell shrinkage and nuclear condensation from morphological examination suggesting nano-SiO2-induced cell apoptosis. Furthermore, nano-SiO2 exposure diminished the ability of neurite extension in response to nerve growth factor in treated PC12 cells. In summary, SiO2 nanoparticle exposure resulted in dose-dependent neurotoxicity in cultured PC12 cells that was probably associated with oxidative stress and induced apoptosis.
Collapse
Affiliation(s)
- Fen Wang
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, PR China
| | | | | | | | | | | |
Collapse
|
36
|
Auer M, Hausott B, Klimaschewski L. Rho GTPases as regulators of morphological neuroplasticity. Ann Anat 2011; 193:259-66. [PMID: 21459565 PMCID: PMC3143277 DOI: 10.1016/j.aanat.2011.02.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 02/28/2011] [Indexed: 11/17/2022]
Abstract
GTPases function as intracellular, bimolecular switches by adopting different conformational states in response to binding GDP or GTP. Their activation is mediated through cell-surface receptors. Rho GTPases act on several downstream effectors involved in cellular morphogenesis, cell polarity, migration and cell division. In neurons, Rho GTPases regulate various features of dendritic and axonal outgrowth during development and regeneration mainly through their effects on the cytoskeleton. This review summarizes the main functions of Rho, Rac and Cdc42 GTPases as key regulators of morphological neuroplasticity under normal and pathological conditions.
Collapse
Affiliation(s)
- Maria Auer
- Division of Neuroanatomy, Medical University of Innsbruck, Muellerstrasse 59, Innsbruck, Austria
| | | | | |
Collapse
|
37
|
Segura-Aguilar J. Catecholaminergic Cell Lines for the Study of Dopamine Metabolism and Neurotoxicity. NEUROMETHODS 2011. [DOI: 10.1007/978-1-61779-077-5_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
38
|
Abstract
In vitro test methods can provide a rapid approach for the screening of large numbers of chemicals for their potential to produce toxicity. In order to identify potential developmental neurotoxicants, assessment of critical neurodevelopmental processes, such as neuronal differentiation and growth has been proposed. PC12 cells have been widely used to study the neurotrophic factor-induced signaling pathways that control differentiation, and as in vitro models to detect the effect of chemicals on neurite outgrowth. Upon exposure to nerve growth factor (NGF), PC12 cells cease to proliferate, extend multiple neurites, and acquire the properties of sympathetic neurons. Measurement of the number and length of neurites during exposure to NGF provides a quantitative assessment of neuronal differentiation and growth. Differentiation and neurite outgrowth can be measured using simple contrast microscopy in live cells, or using automated imaging systems in cells prepared with immunocytochemistry.
Collapse
Affiliation(s)
- Joshua A Harrill
- Systems Biology Branch, Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratories, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | | |
Collapse
|
39
|
Ito Y, Kimura T, Nam K, Katoh A, Masuzawa T, Kishida A. Effects of vibration on differentiation of cultured PC12 cells. Biotechnol Bioeng 2010; 108:592-9. [PMID: 20939009 DOI: 10.1002/bit.22961] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/12/2010] [Accepted: 09/14/2010] [Indexed: 12/20/2022]
Abstract
Different types of physiological-mechanical stress, such as shear stress in vascular endothelial cells or hydrostatic pressure in chondrocytes are well known as regulators of cell function. In this study, the effects of vibration, a type of non-physiological mechanical stimulation, on differentiation of rat pheochromocytoma (PC12) cells are reported. A nano-vibration system was designed to produce nanometer-scale vibration. The frequency and amplitude of the nano-vibrations were monitored by a capacitance displacement sensor connected to an oscilloscope. When PC12 cells exposed to nerve growth factor were subjected to vibration at 10 kHz, differentiation and elongation of their neurites were promoted earlier in the culture. Vibration promoted differentiation of PC12 cells. This approach could therefore also be promising for determining of the effects of the physical environment on cell differentiation.
Collapse
Affiliation(s)
- Yukiko Ito
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Alves MM, Burzynski G, Delalande JM, Osinga J, van der Goot A, Dolga AM, de Graaff E, Brooks AS, Metzger M, Eisel ULM, Shepherd I, Eggen BJL, Hofstra RMW. KBP interacts with SCG10, linking Goldberg-Shprintzen syndrome to microtubule dynamics and neuronal differentiation. Hum Mol Genet 2010; 19:3642-51. [PMID: 20621975 PMCID: PMC7297230 DOI: 10.1093/hmg/ddq280] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Goldberg–Shprintzen syndrome (GOSHS) is a rare clinical disorder characterized by central and enteric nervous system defects. This syndrome is caused by inactivating mutations in the
Kinesin Binding Protein (KBP)
gene, which encodes a protein of which the precise function is largely unclear. We show that
KBP
expression is up-regulated during neuronal development in mouse cortical neurons. Moreover, KBP-depleted PC12 cells were defective in nerve growth factor-induced differentiation and neurite outgrowth, suggesting that KBP is required for cell differentiation and neurite development. To identify KBP interacting proteins, we performed a yeast two-hybrid screen and found that KBP binds almost exclusively to microtubule associated or related proteins, specifically SCG10 and several kinesins. We confirmed these results by validating KBP interaction with one of these proteins: SCG10, a microtubule destabilizing protein. Zebrafish studies further demonstrated an epistatic interaction between KBP and SCG10
in vivo
. To investigate the possibility of direct interaction between KBP and microtubules, we undertook co-localization and
in vitro
binding assays, but found no evidence of direct binding. Thus, our data indicate that KBP is involved in neuronal differentiation and that the central and enteric nervous system defects seen in GOSHS are likely caused by microtubule-related defects.
Collapse
Affiliation(s)
- Maria M Alves
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Radio NM, Freudenrich TM, Robinette BL, Crofton KM, Mundy WR. Comparison of PC12 and cerebellar granule cell cultures for evaluating neurite outgrowth using high content analysis. Neurotoxicol Teratol 2010; 32:25-35. [DOI: 10.1016/j.ntt.2009.06.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/21/2009] [Accepted: 06/08/2009] [Indexed: 01/21/2023]
|
42
|
An impedimetric biosensor based on PC 12 cells for the monitoring of exogenous agents. Biosens Bioelectron 2009; 24:1153-8. [DOI: 10.1016/j.bios.2008.06.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Revised: 06/14/2008] [Accepted: 06/30/2008] [Indexed: 11/24/2022]
|
43
|
Niinomi K, Banno Y, Iida H, Dohi S. Nicorandil, an Adenosine Triphosphate-Sensitive Potassium Channel Opener, Inhibits Muscarinic Acetylcholine Receptor-Mediated Activation of Extracellular Signal-Regulated Kinases in PC12 Cells. Anesth Analg 2008; 107:1892-8. [DOI: 10.1213/ane.0b013e31818880a8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Abstract
RCSN-3 cells are a cloned cell line derived from the substantia nigra of an adult rat. The cell line grows in monolayer and does not require differentiation to express catecholaminergic traits, such as (i) tyrosine hydroxylase; (ii) dopamine release; (iii) dopamine transport; (iv) norepinephrine transport; (v) monoamine oxidase (MAO)-A expression, but not MAO-B; (vi) formation of neuromelanin; (vii) VMAT-2 expression. In addition, this cell line expresses serotonin transporters, divalent metal transporter, DMT1, dopamine receptor 1 mRNA under proliferating conditions, and dopamine receptor 5 mRNA after incubation with dopamine or dicoumarol. Expression of dopamine receptors D(2), D(3) and D(4) mRNA were not detected in proliferating cells or when the cells were treated with dopamine, CuSO(4), dicoumarol or dopamine-copper complex. Angiotensin II receptor mRNA was also found to be expressed, but it underwent down regulation in the presence of aminochrome. Total quinone reductase activity corresponded 94% to DT-diaphorase. The cells also express antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase. This cell line is a suitable in vitro model for studies of dopamine metabolism, since under proliferating conditions the cells express all the pertinent markers.
Collapse
|
45
|
Hausott B, Schlick B, Vallant N, Dorn R, Klimaschewski L. Promotion of neurite outgrowth by fibroblast growth factor receptor 1 overexpression and lysosomal inhibition of receptor degradation in pheochromocytoma cells and adult sensory neurons. Neuroscience 2008; 153:461-73. [DOI: 10.1016/j.neuroscience.2008.01.083] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 01/28/2008] [Accepted: 01/28/2008] [Indexed: 11/24/2022]
|
46
|
Young JJ, Mehdi A, Stohl LL, Levin LR, Buck J, Wagner JA, Stessin AM. "Soluble" adenylyl cyclase-generated cyclic adenosine monophosphate promotes fast migration in PC12 cells. J Neurosci Res 2008; 86:118-24. [PMID: 17680672 PMCID: PMC2587045 DOI: 10.1002/jnr.21458] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In a model for neuronal movement, PC12 cells undergo fast migration in response to nerve growth factor (NGF) and phorbol ester (PMA). We previously showed that NGF increases intracellular cAMP via activation of soluble adenylyl cyclase (sAC). In this report, we demonstrate that sAC activation is an essential component of NGF- + PMA-induced fast migration in PC12 cells. Interestingly, PMA also raises intracellular cAMP but does so by stimulating transmembrane adenylyl cyclases (tmAC); however, this tmAC-generated cAMP does not contribute to fast migration. Therefore, cells must possess independent pools of cAMP capable of modulating distinct functions.
Collapse
Affiliation(s)
- Jennifer J. Young
- Gateways to the Laboratory Program, Weill Medical College of Cornell University, New York, New York
| | - Amna Mehdi
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York
| | - Lori L. Stohl
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York
| | - Lonny R. Levin
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York
- Correspondence to: Lonny R. Levin, Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10026. E-mail:
| | - Jochen Buck
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York
| | - John A. Wagner
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York
| | - Alexander M. Stessin
- Tri-Institutional MD/PhD Program, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
47
|
Radio NM, Mundy WR. Developmental neurotoxicity testing in vitro: models for assessing chemical effects on neurite outgrowth. Neurotoxicology 2008; 29:361-76. [PMID: 18403021 DOI: 10.1016/j.neuro.2008.02.011] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/13/2008] [Accepted: 02/20/2008] [Indexed: 11/15/2022]
Abstract
In vitro models may be useful for the rapid toxicological screening of large numbers of chemicals for their potential to produce toxicity. Such screening could facilitate prioritization of resources needed for in vivo toxicity testing towards those chemicals most likely to result in adverse health effects. Cell cultures derived from nervous system tissue have proven to be powerful tools for elucidating cellular and molecular mechanisms of nervous system development and function, and have been used to understand the mechanism of action of neurotoxic chemicals. Recently, it has been suggested that in vitro models could be used to screen for chemical effects on critical cellular events of neurodevelopment, including differentiation and neurite growth. This review examines the use of neuronal cell cultures as an in vitro model of neurite outgrowth. Examples of the cell culture systems that are commonly used to examine the effects of chemicals on neurite outgrowth are provided, along with a description of the methods used to quantify this neurodevelopmental process in vitro. Issues relating to the relevance of the methods and models currently used to assess neurite outgrowth are discussed in the context of hazard identification and chemical screening. To demonstrate the utility of in vitro models of neurite outgrowth for the evaluation of large numbers of chemicals, efforts should be made to: (1) develop a set of reference chemicals that can be used as positive and negative controls for comparing neurite outgrowth between model systems, (2) focus on cell cultures of human origin, with emphasis on the emerging area of neural progenitor cells, and (3) use high-throughput methods to quantify endpoints of neurite outgrowth.
Collapse
Affiliation(s)
- Nicholas M Radio
- Neurotoxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protections Agency (USEPA), B105-06 Research Triangle Park, NC 27711, USA
| | | |
Collapse
|
48
|
Banno Y, Nemoto S, Murakami M, Kimura M, Ueno Y, Ohguchi K, Hara A, Okano Y, Kitade Y, Onozuka M, Murate T, Nozawa Y. Depolarization-induced differentiation of PC12 cells is mediated by phospholipase D2 through the transcription factor CREB pathway. J Neurochem 2008; 104:1372-86. [DOI: 10.1111/j.1471-4159.2007.05085.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Ord D, Meerits K, Ord T. TRB3 protects cells against the growth inhibitory and cytotoxic effect of ATF4. Exp Cell Res 2007; 313:3556-67. [PMID: 17707795 DOI: 10.1016/j.yexcr.2007.07.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 07/11/2007] [Accepted: 07/19/2007] [Indexed: 01/03/2023]
Abstract
Tribbles homolog 3 (TRB3) is a pseudokinase the level of which is increased in response to various stresses. We and other researchers have previously shown that TRB3 interacts with activating transcription factor 4 (ATF4) and may function as a negative feedback regulator of ATF4. In the present study, we investigate the effect of ATF4 and TRB3 on cell growth and viability, using both the enforced expression and silencing of the genes. HEK293 cells overexpressing ATF4 show retarded growth in the complete medium and decreased viability in the glucose-free medium. The enforced expression of ATF4 increases the level of reactive oxygen species (ROS) and the supplementation of the medium with ROS scavenging and reducing compounds supports the growth and survival of cells overexpressing ATF4. The deleterious effects of elevated ATF4 are suppressed by the coexpression of TRB3, which downregulates ATF4 transcriptional activity and results in the decrease of intracellular ROS. Also, the coexpression of TRB3 rescues postmitotic neuronally differentiated PC12 cells from the apoptosis evoked by ATF4 overexpression. The silencing of ATF4 and TRB3 genes by RNA interference reveals that endogenous ATF4 promotes and TRB3 suppresses the death of glucose-deprived SaOS2 cells. Together, the results indicate that TRB3 protects cells against the growth inhibitory and cytotoxic effect of ATF4.
Collapse
Affiliation(s)
- Daima Ord
- Institute of Molecular and Cell Biology, Tartu University, Tartu, Estonia; Estonian Biocentre, 23 Riia St, Tartu, Estonia
| | | | | |
Collapse
|
50
|
Fernstrom JD, Fernstrom MH. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J Nutr 2007; 137:1539S-1547S; discussion 1548S. [PMID: 17513421 DOI: 10.1093/jn/137.6.1539s] [Citation(s) in RCA: 442] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aromatic amino acids in the brain function as precursors for the monoamine neurotransmitters serotonin (substrate tryptophan) and the catecholamines [dopamine, norepinephrine, epinephrine; substrate tyrosine (Tyr)]. Unlike almost all other neurotransmitter biosynthetic pathways, the rates of synthesis of serotonin and catecholamines in the brain are sensitive to local substrate concentrations, particularly in the ranges normally found in vivo. As a consequence, physiologic factors that influence brain pools of these amino acids, notably diet, influence their rates of conversion to neurotransmitter products, with functional consequences. This review focuses on Tyr and phenylalanine (Phe). Elevating brain Tyr concentrations stimulates catecholamine production, an effect exclusive to actively firing neurons. Increasing the amount of protein ingested, acutely (single meal) or chronically (intake over several days), raises brain Tyr concentrations and stimulates catecholamine synthesis. Phe, like Tyr, is a substrate for Tyr hydroxylase, the enzyme catalyzing the rate-limiting step in catecholamine synthesis. Tyr is the preferred substrate; consequently, unless Tyr concentrations are abnormally low, variations in Phe concentration do not affect catecholamine synthesis. Unlike Tyr, Phe does not demonstrate substrate inhibition. Hence, high concentrations of Phe do not inhibit catecholamine synthesis and probably are not responsible for the low production of catecholamines in subjects with phenylketonuria. Whereas neuronal catecholamine release varies directly with Tyr-induced changes in catecholamine synthesis, and brain functions linked pharmacologically to catecholamine neurons are predictably altered, the physiologic functions that utilize the link between Tyr supply and catecholamine synthesis/release are presently unknown. An attractive candidate is the passive monitoring of protein intake to influence protein-seeking behavior.
Collapse
Affiliation(s)
- John D Fernstrom
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|